Dr. Mikhail Korobko

Postdoctoral researcher
Address
Office
Contact
Key aspects of activity
- Gravitational-wave detection
- Quantum squeezed light
- Quantum measurements and metrology
- Quantum optomechanics
- Thermal noise in mechanical oscillators
Main role
- Key researcher at Quantum Universe
- Co-chair of LIGO Academic Advisory Committee
- Chair of LIGO quantum noise working group
- Co-chair of observatory design and noise budget work package of Einstein Telescope
- Coordination general of GWECS — gravitational-wave early career scientist organisation (gwecs.org)
Rudolf-Steiner-Prize 2024
Dr. Mikhail Korobko has been awarded the 2024 Rudolf Kaiser Prize “for the first experimental demonstration of signal enhancement in an optical cavity through internally generated quantum correlations” in February 2025. The prize, worth €30,000, is awarded to experimental physicists who have published several outstanding research papers but have not yet been appointed to a professorship.
The award honors Dr. Korobko’s pioneering work on a new class of optomechanical force measurements, which go beyond quantum-enhanced gravitational wave detection.
Further information can be find here.
Publications
Squeezed light for gravitational-wave detection [1]. Korobko, M., Südbeck, J., Steinlechner, S., & Schnabel, R. (2023). Mitigating quantum decoherence in force sensors by internal squeezing. Physical Review Letters, 131(14), 143603. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.143603
[2] Korobko, M., Südbeck, J., Steinlechner, S., & Schnabel, R. (2023). Fundamental sensitivity limit of lossy cavity-enhanced interferometers with external and internal squeezing. Physical Review A, 108(6), 063705. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.108.063705
[3]. Korobko, M., Ma, Y., Chen, Y. & Schnabel, R. Quantum expander for gravitational-wave observatories. Light Sci. Appl. 8, 1–8 (2019). https://www.nature.com/articles/s41377-019-0230-2
[4]. Korobko, M. et al. Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation. Phys. Rev. Lett. 118, 143601 (2017). http://link.aps.org/doi/10.1103/PhysRevLett.118.143601
[5]. Südbeck, J., Steinlechner, S., Korobko, M. & Schnabel, R. (2020). Demonstration of interferometer enhancement through Einstein-Podolsky-Rosen entanglement. Nature photonics, 14(4), 240-244. https://www.nature.com/articles/s41566-019-0583-3
[6]. Steinlechner, S. et al. Mitigating mode-matching loss in nonclassical laser interferometry. Phys. Rev. Lett. 121, 263602 (2018). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.263602
Quantum optomechanics [7.]Korobko, M., Khalili, F. Y. & Schnabel, R. Engineering the optical spring via intra-cavity optical-parametric amplification. Phys. Lett. A 382, 2238–2244 (2018). https://linkinghub.elsevier.com/retrieve/pii/S0375960117303146
[8]. Li, X., Korobko, M., Ma, Y., Schnabel, R. & Chen, Y. Coherent coupling completing an unambiguous optomechanical classification framework. Phys. Rev. A 100, 53855 (2019). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.053855
[9]. Korobko, M., Voronchev, N., Miao, H. & Khalili, F. Y. Paired carriers as a way to reduce quantum noise of multicarrier gravitational-wave detectors. Phys. Rev. D 91, 42004 (2015). http://link.aps.org/doi/10.1103/PhysRevD.91.042004
Gravitational-wave observations [10]. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 61102 (2016). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102
[11]. Abbott, B., Abbott, R., Abbott, T. et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88 (2017). https://doi.org/10.1038/nature24471
[12]. Abbott, B. P. et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017). https://iopscience.iop.org/article/10.3847/2041-8213/aa920c
Gravitational-wave detectors [13] Goodwin-Jones, A. W., Cabrita, R., Korobko, M., Van Beuzekom, M., Brown, D. D., Fafone, V., ... & Tacca, M. (2024). Transverse mode control in quantum enhanced interferometers: a review and recommendations for a new generation. Optica, 11(2), 273-290. https://opg.optica.org/optica/fulltext.cfm?uri=optica-11-2-273&id=546555
[14]. Aasi, J. et al. Advanced LIGO. Classical Quantum Gravity 32, (2015). https://iopscience.iop.org/article/10.1088/0264-9381/32/7/074001/pdf
[15]. Abbott, B. P. et al. Exploring the sensitivity of next generation gravitational wave detectors. Classical Quantum Gravity 34, (2017). https://iopscience.iop.org/article/10.1088/1361-6382/aa51f4
[16]. Adhikari, R. X. et al. (2020). A cryogenic silicon interferometer for gravitational-wave detection. Classical and Quantum Gravity, 37(16), 165003. https://iopscience.iop.org/article/10.1088/1361-6382/ab9143