Dr. Mikhail Korobko

Wissenschaftlicher Mitarbeiter
Anschrift
Büro
Kontakt
Schwerpunkte
- Gravitationswellendetektion
- Quantenmetrologie
- Quanten-Optomechanik
Publikationen
Squeezed light for gravitational-wave detection
[1]. Korobko, M., Ma, Y., Chen, Y. & Schnabel, R. Quantum expander for gravitational-wave observatories. Light Sci. Appl. 8, 1–8 (2019). https://www.nature.com/articles/s41377-019-0230-2
[2]. Korobko, M. et al. Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation. Phys. Rev. Lett. 118, 143601 (2017). http://link.aps.org/doi/10.1103/PhysRevLett.118.143601
[3]. Südbeck, J., Steinlechner, S., Korobko, M. & Schnabel, R. Demonstration of interferometer enhancement through EPR entanglement. arXiv Prepr. arXiv1908.09602 (2019). https://arxiv.org/abs/1908.09602
[4]. Steinlechner, S. et al. Mitigating mode-matching loss in nonclassical laser interferometry. Phys. Rev. Lett. 121, 263602 (2018). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.263602
Quantum optomechanics
[5]. Korobko, M., Khalili, F. Y. & Schnabel, R. Engineering the optical spring via intra-cavity optical-parametric amplification. Phys. Lett. A 382, 2238–2244 (2018). https://linkinghub.elsevier.com/retrieve/pii/S0375960117303146
[6]. Li, X., Korobko, M., Ma, Y., Schnabel, R. & Chen, Y. Coherent coupling completing an unambiguous optomechanical classification framework. Phys. Rev. A 100, 53855 (2019). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.053855
[7]. Korobko, M., Voronchev, N., Miao, H. & Khalili, F. Y. Paired carriers as a way to reduce quantum noise of multicarrier gravitational-wave detectors. Phys. Rev. D 91, 42004 (2015). http://link.aps.org/doi/10.1103/PhysRevD.91.042004
Gravitational-wave observations
[8]. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 61102 (2016). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102
[9]. Abbott, B., Abbott, R., Abbott, T. et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88 (2017). https://doi.org/10.1038/nature24471
[10]. Abbott, B. P. et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017). https://iopscience.iop.org/article/10.3847/2041-8213/aa920c
Gravitational-wave detectors
[11]. Aasi, J. et al. Advanced LIGO. Class. Quantum Gravity 32, (2015). https://iopscience.iop.org/article/10.1088/0264-9381/32/7/074001/pdf
[12]. Abbott, B. P. et al. Exploring the sensitivity of next generation gravitational wave detectors. Class. Quantum Gravity 34, (2017). https://iopscience.iop.org/article/10.1088/1361-6382/aa51f4
[13]. Adhikari, R. X. et al. A Cryogenic Silicon Interferometer for Gravitational-wave Detection. arXiv Prepr. arXiv2001.11173 (2020). https://arxiv.org/abs/2001.11173