Dr. Mikhail Korobko
Wissenschaftlicher Mitarbeiter
Anschrift
Büro
Kontakt
Schwerpunkte
- Gravitationswellendetektion
- Quantengequetschtes Licht
- Quantenmessungen und Metrologie
- Quanten-Optomechanik
- Thermisches Rauschen in mechanischen Oszillatoren
Funktionen
- Wissenschaftler mit Schlüsselexpertise bei Quantum Universe
- Co-Vorsitzender des LIGO Academic Advisory Committee
- Vorsitzender der LIGO-Quantenrausch-Arbeitsgruppe
- Co-Vorsitzender der Arbeitsgemeinschaft für das Observatoriumsdesign und das Rauschbudget des Einstein-Teleskops
- Generalkoordinator von GWECS - einer Organisation für Nachwuchswissenschaftler im Bereich der Gravitationswellenforschung (gwecs.org)
Publications
Squeezed light for gravitational-wave detection [1]. Korobko, M., Südbeck, J., Steinlechner, S., & Schnabel, R. (2023). Mitigating quantum decoherence in force sensors by internal squeezing. Physical Review Letters, 131(14), 143603. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.143603
[2] Korobko, M., Südbeck, J., Steinlechner, S., & Schnabel, R. (2023). Fundamental sensitivity limit of lossy cavity-enhanced interferometers with external and internal squeezing. Physical Review A, 108(6), 063705. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.108.063705
[3]. Korobko, M., Ma, Y., Chen, Y. & Schnabel, R. Quantum expander for gravitational-wave observatories. Light Sci. Appl. 8, 1–8 (2019). https://www.nature.com/articles/s41377-019-0230-2
[4]. Korobko, M. et al. Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation. Phys. Rev. Lett. 118, 143601 (2017). http://link.aps.org/doi/10.1103/PhysRevLett.118.143601
[5]. Südbeck, J., Steinlechner, S., Korobko, M. & Schnabel, R. (2020). Demonstration of interferometer enhancement through Einstein-Podolsky-Rosen entanglement. Nature photonics, 14(4), 240-244. https://www.nature.com/articles/s41566-019-0583-3
[6]. Steinlechner, S. et al. Mitigating mode-matching loss in nonclassical laser interferometry. Phys. Rev. Lett. 121, 263602 (2018). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.263602
Quantum optomechanics [7.]Korobko, M., Khalili, F. Y. & Schnabel, R. Engineering the optical spring via intra-cavity optical-parametric amplification. Phys. Lett. A 382, 2238–2244 (2018). https://linkinghub.elsevier.com/retrieve/pii/S0375960117303146
[8]. Li, X., Korobko, M., Ma, Y., Schnabel, R. & Chen, Y. Coherent coupling completing an unambiguous optomechanical classification framework. Phys. Rev. A 100, 53855 (2019). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.053855
[9]. Korobko, M., Voronchev, N., Miao, H. & Khalili, F. Y. Paired carriers as a way to reduce quantum noise of multicarrier gravitational-wave detectors. Phys. Rev. D 91, 42004 (2015). http://link.aps.org/doi/10.1103/PhysRevD.91.042004
Gravitational-wave observations [10]. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 61102 (2016). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102
[11]. Abbott, B., Abbott, R., Abbott, T. et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88 (2017). https://doi.org/10.1038/nature24471
[12]. Abbott, B. P. et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017). https://iopscience.iop.org/article/10.3847/2041-8213/aa920c
Gravitational-wave detectors [13] Goodwin-Jones, A. W., Cabrita, R., Korobko, M., Van Beuzekom, M., Brown, D. D., Fafone, V., ... & Tacca, M. (2024). Transverse mode control in quantum enhanced interferometers: a review and recommendations for a new generation. Optica, 11(2), 273-290. https://opg.optica.org/optica/fulltext.cfm?uri=optica-11-2-273&id=546555
[14]. Aasi, J. et al. Advanced LIGO. Classical Quantum Gravity 32, (2015). https://iopscience.iop.org/article/10.1088/0264-9381/32/7/074001/pdf
[15]. Abbott, B. P. et al. Exploring the sensitivity of next generation gravitational wave detectors. Classical Quantum Gravity 34, (2017). https://iopscience.iop.org/article/10.1088/1361-6382/aa51f4
[16]. Adhikari, R. X. et al. (2020). A cryogenic silicon interferometer for gravitational-wave detection. Classical and Quantum Gravity, 37(16), 165003. https://iopscience.iop.org/article/10.1088/1361-6382/ab9143