Quantum Physics
Large-Amplitude Superexchange of High-Spin Fermions in Optical Lattices
6 July 2013

Photo: AG Sengstock
We show that fermionic high-spin systems with spin-changing collisions allow to monitor superexchange processes in optical superlattices with large amplitudes and strong spin fluctuations. By investigating the non-equilibrium dynamics, we find a superexchange dominated regime at weak interactions. The underlying mechanism is driven by an emerging tunneling-energy gap in shallow few-well potentials. As a consequence, the interaction-energy gap that is expected to occur only for strong interactions in deep lattices is reestablished. A crossover between two regimes with negligible particle number fluctuations is found: first, the common regime with vanishing spin-fluctuations in deep lattices and, second, a novel regime with strong spin fluctuations in shallow lattices.