**SFB 925**Light induced dynamics and control of correlated quantum systems

# Project C7

### 2018

#### Quantum point spread function for imaging trapped few-body systems with a quantum gas microscope

*S. Krönke, M. Pyzh, C. Weitenberg, P. Schmelcher*

Quantum gas microscopes, which image the atomic occupations in an optical lattice, have opened a new avenue to the exploration of many-body lattice systems. Imaging trapped systems after freezing the density distribution by ramping up a pinning lattice leads, however, to a distortion of the original density distribution, especially when its structures are on the scale of the pinning lattice spacing. We show that this dynamics can be described by a filter, which we call in analogy to classical optics a quantum point spread function. Using a machine learning approach, we demonstrate via several experimentally relevant setups that a suitable deconvolution allows for the reconstruction of the original density distribution. These findings are both of fundamental interest for the theory of imaging and of immediate importance for current quantum gas experiments.

#### Spectral properties and breathing dynamics of a few-body Bose–Bose mixture in a 1D harmonic trap

*M. Pyzh, S. Krönke, C. Weitenberg, P. Schmelcher*

We investigate a few-body mixture of two bosonic components, each consisting of two particles confined in a quasi one-dimensional harmonic trap. By means of exact diagonalization with a correlated basis approach we obtain the low-energy spectrum and eigenstates for the whole range of repulsive intra- and inter-component interaction strengths. We analyse the eigenvalues as a function of the inter-component coupling, covering hereby all the limiting regimes, and characterize the behaviour in-between these regimes by exploiting the symmetries of the Hamiltonian. Provided with this knowledge we study the breathing dynamics in the linear-response regime by slightly quenching the trap frequency symmetrically for both components. Depending on the choice of interactions strengths, we identify 1 to 3 monopole modes besides the breathing mode of the centre of mass coordinate. For the uncoupled mixture each monopole mode corresponds to the breathing oscillation of a specific relative coordinate. Increasing the inter-component coupling first leads to multi-mode oscillations in each relative coordinate, which turn into single-mode oscillations of the same frequency in the composite-fermionization regime.

#### Entanglement Induced Interactions in Binary Mixtures

*J. Chen, J.M. Schurer and P. Schmelcher*

We establish a conceptual framework for the identification and the characterization of induced interactions in binary mixtures and reveal their intricate relation to entanglement between the components or species of the mixture. Exploiting an expansion in terms of the strength of the entanglement among the two species enables us to deduce an effective single-species description. In this way, we naturally incorporate the mutual feedback of the species and obtain induced interactions for both species which are effectively present among the particles of same type. Importantly, our approach incorporates few-body and inhomogeneous systems extending the scope of induced interactions where two particles interact via a bosonic bath-type environment. Employing the example of a one-dimensional ultracold Bose-Fermi mixture, we obtain induced Bose-Bose and Fermi-Fermi interactions with short-range attraction and long-range repulsion. With this, we show how beyond species mean-field physics visible in the two-body correlation functions can be understood via the induced interactions.

#### Bosonic quantum dynamics following a linear interaction quench in finite optical lattices of unit filling

*S.I. Mistakidis, G.M. Koutentakis and P. Schmelcher*

The nonequilibrium ultracold bosonic quantum dynamics in finite optical lattices of unit filling following a linear interaction quench from a superfluid to a Mott insulator state and vice versa is investigated. The resulting dynamical response consists of various inter and intraband tunneling modes. We find that the competition between the quench rate and the interparticle repulsion leads to a resonant dynamical response, at moderate ramp times, being related to avoided crossings in the many-body eigenspectrum with varying interaction strength. Crossing the regime of weak to strong interactions several transport pathways are excited. The higher-band excitation dynamics is shown to obey an exponential decay possessing two distinct time scales with varying ramp time. Studying the crossover from shallow to deep lattices we find that for a diabatic quench the excited band fraction decreases, while approaching the adiabatic limit it exhibits a non-linear behavior for increasing height of the potential barrier. The inverse ramping process from strong to weak interactions leads to a melting of the Mott insulator and possesses negligible higher-band excitations which follow an exponential decay for decreasing quench rate. Finally, independently of the direction that the phase boundary is crossed, we observe a significant enhancement of the excited to higher-band fraction for increasing system size.

#### Many-body expansion dynamics of a Bose-Fermi mixture confined in an optical lattice

*P. Siegl, S.I. Mistakidis and P. Schmelcher*

We unravel the correlated nonequilibrium dynamics of a mass balanced Bose-Fermi mixture in a one-dimensional optical lattice upon quenching an imposed harmonic trap from strong to weak confinement. Regarding the system's ground state, the competition between the inter- and intraspecies interaction strength gives rise to the immiscible and miscible phases characterized by negligible and complete overlap of the constituting atomic clouds, respectively. The resulting dynamical response depends strongly on the initial phase and consists of an expansion of each cloud and an interwell tunneling dynamics. For varying quench amplitude and referring to a fixed phase, a multitude of response regimes is unveiled, being richer within the immiscible phase, which are described by distinct expansion strengths and tunneling channels.

#### Correlation effects in the quench-induced phase separation dynamics of a two species ultracold quantum gas

*S.I. Mistakidis, G.C. Katsimiga, P.G. Kevrekidis and P. Schmelcher*

We explore the quench dynamics of a binary Bose–Einstein condensate crossing the miscibility–immiscibility threshold and vice versa, both within and in particular beyond the mean-field approximation. Increasing the interspecies repulsion leads to the filamentation of the density of each species, involving shorter wavenumbers and longer spatial scales in the many-body (MB) approach. These filaments appear to be strongly correlated and exhibit domain-wall structures. Following the reverse quench process multiple dark–antidark solitary waves are spontaneously generated and subsequently found to decay in the MB scenario. We simulate single-shot images to connect our findings to possible experimental realizations. Finally, the growth rate of the variance of a sample of single-shots probes the degree of entanglement inherent in the system.

#### Correlation induced localization of lattice trapped bosons coupled to a Bose–Einstein condensate

*K. Keiler, S. Krönke and P. Schmelcher*

We investigate the ground state properties of a lattice trapped bosonic system coupled to a Lieb–Liniger type gas. Our main goal is the description and in depth exploration and analysis of the two-species many-body quantum system including all relevant correlations beyond the standard mean-field approach. To achieve this, we use the multi-configuration time-dependent Hartree method for mixtures (ML-MCTDHX). Increasing the lattice depth and the interspecies interaction strength, the wave function undergoes a transition from an uncorrelated to a highly correlated state, which manifests itself in the localization of the lattice atoms in the latter regime. For small interspecies couplings, we identify the process responsible for this cross-over in a single-particle-like picture. Moreover, we give a full characterization of the wave function's structure in both regimes, using Bloch and Wannier states of the lowest band, and we find an order parameter, which can be exploited as a corresponding experimental signature. To deepen the understanding, we use an effective Hamiltonian approach, which introduces an induced interaction and is valid for small interspecies interaction. We finally compare the ansatz of the effective Hamiltonian with the results of the ML-MCTDHX simulations.

#### Quantum dynamics of two trapped bosons following infinite interaction quenches

*L.M.A. Kehrberger, V.J. Bolsinger and P. Schmelcher*

We investigate the quantum dynamics of two identical bosons in a one-dimensional harmonic trap following an interaction quench from zero to infinite interaction strength and vice versa. For both quench scenarios, closed analytical expressions for the temporal evolution of the wave function as well as the Loschmidt echo are found and the dynamics of the momentum density as well as the reduced single-particle density matrix are analyzed. We observe a crossover of these quantities between bosonic, “symmetrized” fermionic, and fermionic properties. Furthermore, several combined quenches are analyzed as well.

### 2017

#### Quantum dynamical response of ultracold few-boson ensembles in finite optical lattices to multiple interaction quenches

*J. Neuhaus-Steinmetz, S. Mistakidis and P. Schmelcher*

The correlated nonequilibrium quantum dynamics following a multiple interaction quench protocol for few-bosonic ensembles confined in finite optical lattices is investigated. The quenches give rise to an interwell tunneling and excite the cradle and a breathing mode. Several tunneling pathways open during the time interval of increased interactions, while only a few occur when the system is quenched back to its original interaction strength. The cradle mode, however, persists during and in between the quenches, while the breathing mode possesses distinct frequencies. The occupation of excited bands is explored in detail revealing a monotonic behavior with increasing quench amplitude and a nonlinear dependence on the duration of the application of the quenched interaction strength. Finally, a periodic population transfer between momenta for quenches of increasing interaction is observed, with a power-law frequency dependence on the quench amplitude. Our results open the possibility to dynamically manipulate various excited modes of the bosonic system.

#### Collective excitations of dipolar gases based on local tunneling in superlattices

*L. Cao, S.I. Mistakidis, X. Deng and P. Schmelcher*

The collective dynamics of a dipolar fermionic quantum gas confined in a one-dimensional double-well superlattice is explored. The fermionic gas resides in a paramagnetic-like ground state in the weak interaction regime, upon which a new type of collective dynamics is found when applying a local perturbation. This dynamics is composed of the local tunneling of fermions in separate supercells, and is a pure quantum effect, with no classical counterpart. Due to the presence of the dipolar interactions the local tunneling transports through the entire superlattice, giving rise to a collective dynamics. A well-defined momentum-energy dispersion relation is identified in the ab-initio simulations demonstrating the phonon-like behavior. The phonon-like characteristic is also confirmed by an analytical description of the dynamics within a semiclassical picture.

#### Mode coupling of interaction quenched ultracold few-boson ensembles in periodically driven lattices

*S.I. Mistakidis and P. Schmelcher*

The out-of-equilibrium dynamics of interaction quenched finite ultracold bosonic ensembles in periodically driven one-dimensional optical lattices is investigated. It is shown that periodic driving enforces the bosons in the outer wells of the finite lattice to exhibit out-of-phase dipolelike modes, while in the central well the atomic cloud experiences a local breathing mode. The dynamical behavior is investigated with varying driving frequencies, revealing resonantlike behavior of the intrawell dynamics. An interaction quench in the periodically driven lattice gives rise to admixtures of different excitations in the outer wells, enhanced breathing in the center, and amplification of the tunneling dynamics. We then observe multiple resonances between the inter- and the intrawell dynamics at different quench amplitudes, with the position of the resonances being tunable via the driving frequency. Our results pave the way for future investigations of the use of combined driving protocols in order to excite different inter- and intrawell modes and to subsequently control them.

#### Quench-induced resonant tunneling mechanisms of bosons in an optical lattice with harmonic confinement

*G.M. Koutentakis, S.I. Mistakidis and P. Schmelcher*

The nonequilibrium dynamics of small boson ensembles in a one-dimensional optical lattice is explored upon a sudden quench of an additional harmonic trap from strong to weak confinement. We find that the competition between the initial localization and the repulsive interaction leads to a resonant response of the system for intermediate quench amplitudes, corresponding to avoided crossings in the many-body eigenspectrum with varying final trap frequency. In particular, we show that these avoided crossings can be utilized to prepare the system in a desired state. The dynamical response is shown to depend on both the interaction strength as well as the number of atoms manifesting the many-body nature of the tunneling dynamics.

### 2015

#### Resonant quantum dynamics of few ultracold bosons in periodically driven finite lattices

* S.I. Mistakidis, T. Wulf, A. Negretti and P. Schmelcher*

The out-of-equilibrium dynamics of finite ultracold bosonic ensembles in periodically driven one-dimensional optical lattices is investigated. Our study reveals that the driving enforces the bosons in different wells to oscillate in-phase and to exhibit a dipole-like mode. A wide range from weak-to-strong driving frequencies is covered and a resonance-like behavior of the intra-well dynamics is discussed. In the proximity of the resonance a rich intraband excitation spectrum is observed. The single particle excitation mechanisms are studied in the framework of Floquet theory elucidating the role of the driving frequency. The impact of the interatomic repulsive interactions is examined in detail yielding a strong influence on the tunneling period and the excitation probabilities. Finally, the dependence of the resonance upon a variation of the tunable parameters of the optical lattice is examined. Our analysis is based on the ab initio multi-configuration time-dependent Hartree method for bosons.

#### Two-body correlations and natural-orbital tomography in ultracold bosonic systems of definite parity

* S. Krönke and P. Schmelcher*

The relationship between natural orbitals, one-body coherences, and two-body correlations is explored for bosonic many-body systems of definite parity with two occupied single-particle states. We show that the strength of local two-body correlations at the parity-symmetry center characterizes the number-state distribution and controls the structure of nonlocal two-body correlations. A recipe for the experimental reconstruction of the natural-orbital densities and quantum depletion is derived. These insights into the structure of the many-body wave function are applied to the predicted quantum-fluctuation-induced decay of dark solitons.

#### Magnetic Kink States Emulated with Dipolar Superlattice Gases

* X. Yin, L. Cao. P. Schmelcher*

We propose an effective Ising spin chain constructed with dipolar quantum gases confined in a one-dimensional optical superlattice. Mapping the motional degree of freedom of a single particle in the lattice onto a pseudo-spin results in an effective Ising type chain dressed with transverse and longitudinal magnetic fields. The ground state of this effective Ising chain changes from a paramagnetic to a single-kink state as the dipolar interaction increases. Particularly in the single-kink state this effective chain permits emulations of magnetic kink effects. Being realizable with current experimental techniques, this effective Ising chain presents a unique platform for emulations of Ising physics and enriches the toolbox for quantum emulation of spin models by ultracold quantum gases.

#### Correlated quantum dynamics of a single atom collisionally coupled to an ultracold finite bosonic ensemble

* S. Krönke, J. Knörzer and P. Schmelcher*

We explore the correlated quantum dynamics of a single atom, regarded as an open system, with a spatio-temporally localized coupling to a finite bosonic environment. The single atom, initially prepared in a coherent state of low energy, oscillates in a one-dimensional harmonic trap and thereby periodically penetrates an interacting ensemble of NA bosons held in a displaced trap. We show that the inter-species energy transfer accelerates with increasing NA and becomes less complete at the same time. System-environment correlations prove to be significant except for times when the excess energy distribution among the subsystems is highly imbalanced. These correlations result in incoherent energy transfer processes, which accelerate the early energy donation of the single atom and stochastically favour certain energy transfer channels, depending on the instantaneous direction of transfer. Concerning the subsystem states, the energy transfer is mediated by non-coherent states of the single atom and manifests itself in singlet and doublet excitations in the finite bosonic environment. These comprehensive insights into the non-equilibrium quantum dynamics of an open system are gained by ab initio simulations of the total system with the recently developed multi-layer multi-configuration time-dependent Hartree method for bosons.

#### Beyond-mean-field study of a binary bosonic mixture in a state-dependent honeycomb lattice

* L. Cao, S. Krönke, J. Stockhofe, J. Simonet, K. Sengstock, D.-S. Lühmann and P. Schmelcher*

We investigate a binary mixture of bosonic atoms loaded into a state-dependent honeycomb lattice. For this system, the emergence of a so-called twisted-superfluid ground state was experimentally observed in Soltan-Panahi et al. [Nat. Phys. 8, 71 (2012)]. Theoretically, the origin of this effect is not understood. We perform numerical simulations of an extended single-band Bose-Hubbard model adapted to the experimental parameters employing the multilayer multiconfiguration time-dependent Hartree method for Bosons. Our results confirm the overall applicability of mean-field theory in the relevant parameter range, within the extended single-band Bose-Hubbard model. Beyond this, we provide a detailed analysis of correlation effects correcting the mean-field result. These have the potential to induce asymmetries in single shot time-of-flight measurements, but we find no indication of the patterns characteristic of the twisted superfluid. We comment on the restrictions of our model and possible extensions.

#### Negative-quench-induced excitation dynamics for ultracold bosons in one-dimensional lattices

* S.I. Mistakidis, L. Cao and P. Schmelcher*

The nonequilibrium dynamics following a quench of strongly repulsive bosonic ensembles in one-dimensional finite lattices is investigated by employing interaction quenches and/or a ramp of the lattice potential. Both sudden and time-dependent quenches are analyzed in detail. For the case of interaction quenches we address the transition from the strong repulsive to the weakly interacting regime, suppressing in this manner the heating of the system. The excitation modes such as the cradle process and the local breathing mode are examined via local density observables. In particular, the cradle mode is inherently related to the initial delocalization and, following a negative interaction quench, can be excited only for incommensurate setups with filling larger than unity. Alternatively, a negative quench of the lattice depth which favors the spatial delocalization is used to access the cradle mode for setups with filling smaller than unity. Our results shed light on possible schemes to control the cradle and the breathing modes. Finally, employing the notion of fidelity we study the dynamical response of the system after a diabatic or adiabatic parameter modulation for short and long evolution times. The evolution of the system is obtained numerically using the ab initio multilayer multiconfiguration time-dependent Hartree method for bosons, which permits us to follow nonequilibrium dynamics including the corresponding investigation of higher-band effects.

### 2014

#### Interaction quench induced multimode dynamics of finite atomic ensembles

*S. Mistakidis, L. Cao, P. Schmelcher*

The correlated non-equilibrium dynamics of few-boson systems in one-dimensional finite lattices is investigated. Starting from weak interactions we perform a sudden interaction quench and employ the numerically exact multi-layer multi-configuration time-dependent Hartree method for bosons to obtain the resulting quantum dynamics. Focusing on the low-lying modes of the finite lattice we observe the emergence of density-wave tunneling, breathing and cradle-like processes. In particular, the tunneling induced by the quench leads to a 'global' density-wave oscillation. The resulting breathing and cradle modes are inherent to the local intrawell dynamics and connected to excited-band states. Moreover, the interaction quenches couple the density-wave and the cradle modes allowing for resonance phenomena. These are associated with an avoided-crossing in the respective frequency spectrum and lead to a beating dynamics for the cradle. Finally, complementing the numerical studies, an effective Hamiltonian in terms of the relevant Fock states is derived for the description of the spectral properties and the related resonant dynamics.

### 2013

#### Quantum breathing dynamics of ultracold bosons in one-dimensional harmonic traps: Unraveling the pathway from few- to many-body systems

* R. Schmitz, S. Krönke, L. Cao, P. Schmelcher*

Following a “bottom-up approach” in understanding many-particle effects and dynamics we provide a systematic ab initio study of the dependence of the breathing dynamics of ultracold bosons in a one-dimensional (1D) harmonic trap on the number of bosons ranging from few to many. To this end, we employ the multilayer multiconfiguration time-dependent Hartree method for bosons (ML-MCTDHB) which has been developed very recently [ Krönke, Cao, Vendrell and Schmelcher New J. Phys. 15 063018 (2013)]. The beating behavior for two bosons is found numerically and consequently explained by an analytical approach. Drawing on this, we show how to compute the complete breathing mode spectrum in this case. We examine how the two-mode breathing behavior of two bosons evolves to the single-frequency behavior of the many-particle limit when adding more particles. In the limit of many particles, we numerically study the dependence of the breathing mode frequency on both the interaction strength as well as on the particle number. We provide an estimate for the parameter region where the mean-field description provides a valid approximation.

#### The multi-layer multi-configuration time-dependent Hartree method for bosons: Theory, implementation, and applications

* L. Cao, S. Krönke, O. Vendrell, P. Schmelcher*

We develop the multi-layer multi-configuration time-dependent Hartree method for bosons (ML-MCTDHB), a variational numerically exact ab initio method for studying the quantum dynamics and stationary properties of general bosonic systems. ML-MCTDHB takes advantage of the permutation symmetry of identical bosons, which allows for investigations of the quantum dynamics from few to many-body systems. Moreover, the multi-layer feature enables ML-MCTDHB to describe mixed bosonic systems consisting of arbitrary many species. Multi-dimensional as well as mixed-dimensional systems can be accurately and efficiently simulated via the multi-layer expansion scheme. We provide a detailed account of the underlying theory and the corresponding implementation. We also demonstrate the superior performance by applying the method to the tunneling dynamics of bosonic ensembles in a one-dimensional double well potential, where a single-species bosonic ensemble of various correlation strengths and a weakly interacting two-species bosonic ensemble are considered.

#### Non-equilibrium quantum dynamics of ultra-cold atomic mixtures: the multi-layer multi-configuration time-dependent Hartree method for bosons

* S. Krönke, L. Cao, O. Vendrell, P. Schmelcher*

We develop and apply the multi-layer multi-configuration time-dependent Hartree method for bosons, which represents an ab initio method for investigating the non-equilibrium quantum dynamics of multi-species bosonic systems. Its multi-layer feature allows for tailoring the wave function ansatz to describe intra- and inter-species correlations accurately and efficiently. To demonstrate the beneficial scaling and efficiency of the method, we explored the correlated tunneling dynamics of two species with repulsive intra- and inter-species interactions, to which a third species with vanishing intra-species interaction was weakly coupled. The population imbalances of the first two species can feature a temporal equilibration and their time evolution significantly depends on the coupling to the third species. Bosons of the first and second species exhibit a bunching tendency, whose strength can be influenced by their coupling to the third species.

#### Two-component few-fermion mixtures in a one-dimensional trap: Numerical versus analytical approach

*I. Brouzos, P. Schmelcher*

We explore a few-fermion mixture consisting of two components that are repulsively interacting and confined in a one-dimensional harmonic trap. Different scenarios of population imbalance ranging from the completely imbalanced case where the physics of a single impurity in the Fermi sea is discussed to the partially imbalanced and equal population configurations are investigated. For the numerical calculations the multiconfigurational time-dependent Hartree method is employed, extending its application to few-fermion systems. Apart from numerical calculations we generalize our ansatz for a correlated pair wave function proposed recently [ I. Brouzos and P. Schmelcher Phys. Rev. Lett. 108 045301 (2012)] for bosons to mixtures of fermions. From weak to strong coupling between the components the energies, the densities and the correlation properties of one-dimensional systems change vastly with an upper limit set by fermionization where for infinite repulsion all fermions can be mapped to identical ones. The numerical and analytical treatments are in good agreement with respect to the description of this crossover. We show that for equal populations each pair of different component atoms splits into two single peaks in the density while for partial imbalance additional peaks and plateaus arise for very strong interaction strengths. The case of a single-impurity atom shows rich behavior of the energy and density as we approach fermionization and is directly connected to recent experiments [ G. Zürn et al. Phys. Rev. Lett. 108 075303 (2012)].

### 2012

#### Controlled Excitation and Resonant Acceleration of Ultracold Few-Boson Systems by Driven Interactions in a Harmonic Trap

*I. Brouzos, P. Schmelcher*