Project C4
2022
Observing the influence of reduced dimensionality on fermionic superfluids
Lennart Sobirey, Hauke Biss, Niclas Luick, Markus Bohlen, Henning Moritz, and Thomas Lompe
Understanding the origins of unconventional superconductivity has been a major focus of condensed matter physics for many decades. While many questions remain unanswered, experiments have found the highest critical temperatures in layered two-dimensional materials. However, to what extent the remarkable stability of these strongly correlated 2D superfluids is affected by their reduced dimensionality is still an open question. Here, we use dilute gases of ultracold fermionic atoms as a model system to directly observe the influence of dimensionality on the stability of strongly interacting fermionic superfluids. We find that the superfluid gap follows the same universal function of the interaction strength regardless of dimensionality, which suggests that there is no inherent difference in the stability of two- and three-dimensional fermionic superfluids. Finally, we compare our data to results from solid state systems and find a similar relation between the interaction strength and the gap for a wide range of two- and three-dimensional superconductors.
Excitation Spectrum and Superfluid Gap of an Ultracold Fermi Gas
Hauke Biss, Lennart Sobirey, Niclas Luick, Markus Bohlen, Jami J. Kinnunen, Georg M. Bruun, Thomas Lompe, and Henning Moritz
Ultracold atomic gases are a powerful tool to experimentally study strongly correlated quantum many-body systems. In particular, ultracold Fermi gases with tunable interactions have allowed to realize the famous BEC-BCS crossover from a Bose-Einstein condensate (BEC) of molecules to a Bardeen-Cooper-Schrieffer (BCS) superfluid of weakly bound Cooper pairs. However, large parts of the excitation spectrum of fermionic superfluids in the BEC-BCS crossover are still unexplored. In this work, we use Bragg spectroscopy to measure the full momentum-resolved low-energy excitation spectrum of strongly interacting ultracold Fermi gases. This enables us to directly observe the smooth transformation from a bosonic to a fermionic superfluid that takes place in the BEC-BCS crossover. We also use our spectra to determine the evolution of the superfluid gap and find excellent agreement with previous experiments and self-consistent T-matrix calculations both in the BEC and crossover regime. However, toward the BCS regime a calculation that includes the effects of particle-hole correlations shows better agreement with our data.
2021
Observation of superfluidity in a strongly correlated two-dimensional Fermi gas
Lennart Sobirey, Niclas Luick, Markus Bohlen, Hauke Biss, Henning Moritz and Thomas Lompe
Understanding how strongly correlated two-dimensional (2D) systems can give rise to unconventional superconductivity with high critical temperatures is one of the major unsolved problems in condensed matter physics. Ultracold 2D Fermi gases have emerged as clean and controllable model systems to study the interplay of strong correlations and reduced dimensionality, but direct evidence of superfluidity in these systems has been missing. We demonstrate superfluidity in an ultracold 2D Fermi gas by moving a periodic potential through the system and observing no dissipation below a critical velocity vc. We measure vc as a function of interaction strength and find a maximum in the crossover regime between bosonic and fermionic superfluidity. Our measurements enable systematic studies of the influence of reduced dimensionality on fermionic superfluidity.
Single-atom counting in a two-color magneto-optical trap
Martin Schlederer, Alexandra Mozdzen, Thomas Lompe, and Henning Moritz
Recording the fluorescence of a magneto-optical trap (MOT) is a standard tool for measuring atom numbers in experiments with ultracold atoms. When trapping few atoms in a small MOT, the emitted fluorescence increases with the atom number in discrete steps, which allows one to measure the atom number with single-particle resolution. Achieving such single-particle resolution requires stringent minimization of stray light from the MOT beams, which is very difficult to achieve in experimental setups that require in-vacuum components close to the atoms. Here, we present a modified scheme that addresses this issue: Instead of collecting the fluorescence on the MOT (D2) transition, we scatter light on an additional probing (D1) transition and collect this fluorescence with a high-resolution microscope while filtering out the intense MOT light. Using this scheme, we are able to reliably distinguish up to 17 40K atoms with classification fidelities of ∼98% for up to 5 atom numbers and fidelities of more than 85% for up to 17 atoms.
2020
An ideal Josephson junction in an ultracold two-dimensional Fermi gas
Niclas Luick, Lennart Sobirey, Markus Bohlen, Vijay Pal, Ludwig Mathey, Thomas Lompe, Henning Moritz
The role of reduced dimensionality in high-temperature superconductors is still under debate. Recently, ultracold atoms have emerged as an ideal model system to study such strongly correlated two-dimensional (2D) systems. Here, we report on the realization of a Josephson junction in an ultracold 2D Fermi gas. We measure the frequency of Josephson oscillations as a function of the phase difference across the junction and find excellent agreement with the sinusoidal current phase relation of an ideal Josephson junction. Furthermore, we determine the critical current of our junction in the crossover from tightly bound molecules to weakly bound Cooper pairs. Our measurements clearly demonstrate phase coherence and provide strong evidence for superfluidity in a strongly interacting 2D Fermi gas.
Sound Propagation and Quantum-Limited Damping in a Two-Dimensional Fermi Gas
Markus Bohlen, Lennart Sobirey, Niclas Luick, Hauke Biss, Tilman Enss, Thomas Lompe, and Henning Moritz
Strongly interacting two-dimensional Fermi systems are one of the great remaining challenges in many-body physics due to the interplay of strong local correlations and enhanced long-range fluctuations. Here, we probe the thermodynamic and transport properties of a 2D Fermi gas across the BEC-BCS crossover by studying the propagation and damping of sound modes. We excite particle currents by imprinting a phase step onto homogeneous Fermi gases trapped in a box potential and extract the speed of sound from the frequency of the resulting density oscillations. We measure the speed of sound across the BEC-BCS crossover and compare the resulting dynamic measurement of the equation of state both to a static measurement based on recording density profiles and to quantum Monte Carlo calculations and find reasonable agreement between all three. We also measure the damping of the sound mode, which is determined by the shear and bulk viscosities as well as the thermal conductivity of the gas. We find that the damping is minimal in the strongly interacting regime and the diffusivity approaches the universal quantum bound ℏ/m of a perfect fluid.
2017
Detecting Friedel oscillations in ultracold Fermi gases
Keno Riechers, Klaus Hueck, Niclas Luick, Thomas Lompe, Henning Moritz
Investigating Friedel oscillations in ultracold gases would complement the studies performed on solid state samples with scanning-tunneling microscopes. In atomic quantum gases interactions and external potentials can be tuned freely and the inherently slower dynamics allow to access non-equilibrium dynamics following a potential or interaction quench. Here, we examine how Friedel oscillations can be observed in current ultracold gas experiments under realistic conditions. To this aim we numerically calculate the amplitude of the Friedel oscillations which a potential barrier provokes in a 1D Fermi gas and compare it to the expected atomic and photonic shot noise in a density measurement. We find that to detect Friedel oscillations the signal from several thousand one-dimensional systems has to be averaged. However, as up to 100 parallel one-dimensional systems can be prepared in a single run with present experiments, averaging over about 100 images is sufficient.
Eur. Phys. J. D 71, 232 (2017)
http://lanl.arxiv.org/abs/1704.06626
Two-Dimensional Homogeneous Fermi Gases
Klaus Hueck, Niclas Luick, Lennart Sobirey, Jonas Siegl, Thomas Lompe, Henning Moritz
We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as non-local properties of strongly interacting many-body systems. As a first measurement, we use a local probe to extract the equation of state (EOS) of a non-interacting Fermi gas. We then perform matter wave focusing to extract its momentum distribution and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of strongly interacting homogeneous 2D gases in the crossover between attractively interacting fermions and deeply-bound bosonic molecules.
PRL 120, 060402 (2018).
http://lanl.arxiv.org/abs/1704.06315
Calibrating High Intensity Absorption Imaging of Ultracold Atoms
Klaus Hueck, Niclas Luick, Lennart Sobirey, Jonas Siegl, Thomas Lompe, Henning Moritz, Logan W. Clark, Cheng Chin
Absorption imaging of ultracold atoms is the foundation for quantitative extraction of information from experiments with ultracold atoms. Due to the limited exposure time available in these systems, the signal-to-noise ratio is largest for high intensity absorption imaging where the intensity of the imaging light is on the order of the saturation intensity. In this case, the absolute value of the intensity of the imaging light enters as an additional parameter making it more sensitive to systematic errors. Here, we present a novel and robust technique to determine the imaging intensity in units of the effective saturation intensity to better than 5%. We do this
by measuring the momentum transferred to the atoms by the imaging light while varying its intensity. We further utilize the method to quantify the purity of the polarization of the imaging light and to determine the correct
imaging detuning.
Opt. Express 25, 8670-8679 (2017)
https://arxiv.org/abs/1702.01943
Suppression of kHz-Frequency Switching Noise in Digital Micro-Mirror Devices
Klaus Hueck, Anton Mazurenko, Niclas Luick, Thomas Lompe, Henning Moritz
igh resolution digital micro-mirror devices (DMD) make it possible to produce nearly arbitrary light fields with high accuracy, reproducibility and low optical aberrations. However, using these devices to trap and manipulate ultracold atomic systems for e.g. quantum simulation is often complicated by the presence of kHz-frequency switching noise. Here we demonstrate a simple hardware extension that solves this problem and makes it possible to produce truly static light fields. This modification leads to a 47 fold increase in the time that we can hold ultracold 6Li atoms in a dipole potential created with the DMD. Finally, we provide reliable and user friendly APIs written in Matlab and Python to control the DMD.
Rev. Sci. Instrum. 88, 016103 (2017)
https://arxiv.org/abs/1611.03397
2016
Sudden and slow quenches into the antiferromagnetic phase of ultracold fermions
M. Ojekhile, R. Höppner, H. Moritz, L. Mathey
Probing superfluidity of Bose-Einstein condensates via laser stirring
Vijay Pal Singh, Wolf Weimer, Kai Morgener, Jonas Siegl, Klaus Hueck, Niclas Luick, Henning Moritz, Ludwig Mathey
We investigate the superfluid behavior of a Bose-Einstein condensate of 6Li molecules. In the experiment by Weimer et al., Phys. Rev. Lett. 114, 095301 (2015) a condensate is stirred by a weak, red-detuned laser beam along a circular path around the trap center. The rate of induced heating increases steeply above a velocity vc, which we define as the critical velocity. Below this velocity, the moving beam creates almost no heating. In this paper, we demonstrate a quantitative understanding of the critical velocity. Using both numerical and analytical methods, we identify the non-zero temperature, the circular motion of the stirrer, and the density profile of the cloud as key factors influencing the magnitude of vc. A direct comparison to the experimental data shows excellent agreement.
Phys. Rev. A 93, 023634 (2016)
http://lanl.arxiv.org/abs/1509.02168
2015
The critical velocity in the BEC-BCS crossover
W. Weimer, K. Morgener, V. P. Singh, J. Siegl, K. Hueck, N. Luick, L. Mathey, H. Moritz
We map out the critical velocity in the crossover from Bose-Einstein condensation (BEC) to Bardeen-Cooper-Schrieffer superfluidity with ultracold 6Li gases. A small attractive potential is dragged along lines of constant column density. The rate of the induced heating increases steeply above a critical velocity vc. In the same samples, we measure the speed of sound vs by exciting density waves and compare the results to the measured values of vc. We perform numerical simulations in the BEC regime and find very good agreement, validating the approach. In the strongly correlated regime, where theoretical predictions only exist for the speed of sound, our measurements of vc provide a testing ground for theoretical approaches.
Phys. Rev. Lett. 114, 095301 (2015)
http://arxiv.org/abs/1408.5239