Project B2
2023
Circular Dichroism in Hard X-ray Photoelectron Diffraction Observed by Time-of-Flight Momentum Microscopy
O. Tkach et al.
X-ray photoelectron diffraction (XPD) is a powerful technique that yields detailed structural information of solids and thin films that complements electronic structure measurements. Among the strongholds of XPD we can identify dopant sites, track structural phase transitions, and perform holographic reconstruction. High-resolution imaging of kll-distributions (momentum microscopy) presents a new approach to core-level photoemission. It yields full-field kx-ky XPD patterns with unprecedented acquisition speed and richness in details. Here, we show that beyond the pure diffraction information, XPD patterns exhibit pronounced circular dichroism in the angular distribution (CDAD) with asymmetries up to 80 %, alongside with rapid variations on a small kll-scale (0.1 Å−1). Measurements with circularly-polarized hard X-rays (hν = 6 keV) for a number of core levels, including Si, Ge, Mo and W, prove that core-level CDAD is a general phenomenon that is independent of atomic number. The fine structure in CDAD is more pronounced compared to the corresponding intensity patterns. Additionally, they obey the same symmetry rules as found for atomic and molecular species, and valence bands. The CD is antisymmetric with respect to the mirror planes of the crystal, whose signatures are sharp zero lines. Calculations using both the Bloch-wave approach and one-step photoemission reveal the origin of the fine structure that represents the signature of Kikuchi diffraction. To disentangle the roles of photoexcitation and diffraction, XPD has been implemented into the Munich SPRKKR package to unify the one-step model of photoemission and multiple scattering theory.
2022
Tracking the surface atomic motion in a coherent phonon oscillation
Davide Curcio, Klara Volckaert, Dmytro Kutnyakhov, Steinn Ymir Agustsson, Kevin Bühlmann, Federico Pressacco, Michael Heber, Siarhei Dziarzhytski, Yves Acremann, Jure Demsar, Wilfried Wurth, Charlotte E. Sanders, and Philip Hofmann
X-ray photoelectron diffraction is a powerful tool for determining the structure of clean and adsorbate-covered surfaces. Extending the technique into the ultrafast time domain will open the door to studies as diverse as the direct determination of the electron-phonon coupling strength in solids and the mapping of atomic motion in surface chemical reactions. Here we demonstrate time-resolved photoelectron diffraction using ultrashort soft x-ray pulses from the free electron laser FLASH. We collect Se 3d photoelectron diffraction patterns over a wide angular range from optically excited Bi2Se3 with a time resolution of 140 fs. Combining these with multiple scattering simulations allows us to track the motion of near-surface atoms within the first 3 ps after triggering a coherent vibration of the A1g optical phonons. Using a fluence of 4.2mJ/cm2 from a 1.55 eV pump laser, we find the resulting coherent vibrational amplitude in the first two interlayer spacings to be on the order of 0.01 Å.
Multispectral time-resolved energy–momentum microscopy using high-harmonic extreme ultraviolet radiation
Michael Heber, Nils Wind, Dmytro Kutnyakhov, Federico Pressacco, Tiberiu Arion, Friedrich Roth, Wolfgang Eberhardt, and Kai Rossnagel
A 790-nm-driven high-harmonic generation source with a repetition rate of 6 kHz is combined with a toroidal-grating monochromator and a high-detection-efficiency photoelectron time-of-flight momentum microscope to enable time- and momentum-resolved photoemission spectroscopy over a spectral range of 23.6–45.5 eV with sub-100 fs time resolution. Three-dimensional (3D) Fermi surface mapping is demonstrated on graphene-covered Ir(111) with energy and momentum resolutions of ≲100 meV and ≲0.1 Å−1, respectively. The tabletop experiment sets the stage for measuring the kz-dependent ultrafast dynamics of 3D electronic structure, including band structure, Fermi surface, and carrier dynamics in 3D materials as well as 3D orbital dynamics in molecular layers.
Ultrafast orbital tomography of a pentacene film using time-resolved momentum microscopy at a FEL
Kiana Baumgärtner, Marvin Reuner, Christian Metzger, Dmytro Kutnyakhov, Michael Heber, Federico Pressacco, Chul-Hee Min, Thiago R. F. Peixoto, Mario Reiser, Chan Kim, Wei Lu, Roman Shayduk, Manuel Izquierdo, Günter Brenner, Friedrich Roth, Achim Schöll, Serguei Molodtsov, Wilfried Wurth, Friedrich Reinert, Anders Madsen, Daria Popova-Gorelova & Markus Scholz
Time-resolved momentum microscopy provides insight into the ultrafast interplay between structural and electronic dynamics. Here we extend orbital tomography into the time domain in combination with time-resolved momentum microscopy at a free-electron laser (FEL) to follow transient photoelectron momentum maps of excited states of a bilayer pentacene film on Ag(110). We use optical pump and FEL probe pulses by keeping FEL source conditions to minimize space charge effects and radiation damage. From the momentum microscopy signal, we obtain time-dependent momentum maps of the excited-state dynamics of both pentacene layers separately. In a combined experimental and theoretical study, we interpret the observed signal for the bottom layer as resulting from the charge redistribution between the molecule and the substrate induced by excitation. We identify that the dynamics of the top pentacene layer resembles excited-state molecular dynamics.
Coexisting ferromagnetic component and negative magnetoresistance at low temperature in single crystals of the VdW material GaGeTe
A. Roychowdhury, T.K. Dalui, P.K. Ghose, S.K. Mahatha, N. Wind, K. Rossnagel, S. Majumdar, S. Giri
We report magnetoresistance and magnetization studies of single-crystal GaGeTe, which has been proposed as a Van der Waals material. Semi-metallic character is observed in the temperature (T) variation of resistivity (ρ), following ρ(T) ∝ T2 at low temperature with a slope compatible with the usual spin-fluctuating system. Magnetoresistance (MR) at 2 K is negative and strongly dependent on the direction of the magnetic field (H) with respect to the crystallographic c-axis. MR changes sign with increasing temperature above ∼ 100 K, when H is applied along the c-axis. Hall measurements indicate the p-type conductivity with a considerable hole concentration of ∼ 8.7 × 1019 cm−3. Angle-resolved photoemission spectroscopy reproduces the reported results and confirms a peculiar dispersion shape of the hole-like band at the bulk high-symmetry T point near the Fermi energy indicating band inversion. Magnetic hysteresis measurement at 2 K shows diamagnetic behaviour at high-H, whereas a ferromagnetic (FM)-like magnetic hysteresis loop is observed at low-H in between ± 4 kOe. The FM component disappears close to 3 K. Signature of spin-fluctuation in ρ(T), negative MR, and low-T FM component without 3d or 4f impurities in GaGeTe is attractive for the fundamental interest.
Ultrafast MHz-Rate Burst-Mode Pump–Probe Laser for the FLASH FEL Facility Based on Nonlinear Compression of ps-Level Pulses from an Yb-Amplifier Chain
Marcus Seidel, Federico Pressacco, Oender Akcaalan, Thomas Binhammer, John Darvill,Nagitha Ekanayake, Maik Frede, Uwe Grosse-Wortmann, Michael Heber,Christoph M. Heyl, Dmytro Kutnyakhov, Chen Li, Christian Mohr, Jost Müller,Oliver Puncken, Harald Redlin, Nora Schirmel, Sebastian Schulz, Angad Swiderski,Hamed Tavakol, Henrik Tünnermann, Caterina Vidoli, Lukas Wenthaus, Nils Wind,Lutz Winkelmann, Bastian Manschwetus, and Ingmar Hartl
The Free-Electron Laser (FEL) FLASH offers the worldwide still unique capability to study ultrafast processes with high-flux, high-repetition rate extreme ultraviolet, and soft X-ray pulses. The vast majority of experiments at FLASH are of pump–probe type. Many of them rely on optical ultrafast lasers. Here, a novel FEL facility laser is reported which combines high average power output from Yb:YAG amplifiers with spectral broadening in a Herriott-type multipass cell and subsequent pulse compression to sub-100-fs durations. Compared to other facility lasers employing optical parametric amplification, the new system comes with significantly improved noise figures, compactness, simplicity, and power efficiency. Like FLASH, the optical laser operates with 10-Hz burst repetition rate. The bursts consist of 800-μs long trains of up to 800 ultrashort pulses being synchronized to the FEL with femtosecond precision. In the experimental chamber, pulses with up to 50-μJ energy, 60-fs full-width half-maximum duration and 1-MHz rate at 1.03-μm wavelength are available and can be adjusted by computer-control. Moreover, nonlinear polarization rotation is implemented to improve laser pulse contrast. First cross-correlation measurements with the FEL at the plane-grating monochromator photon beamline are demonstrated, exhibiting the suitability of the laser for user experiments at FLASH.
2021
Ultrafast electronic linewidth broadening in the C 1s core level of graphene
Davide Curcio et al.
We show that the presence of a transiently excited hot electron gas in graphene leads to a substantial broadening of the C 1s line probed by time-resolved x-ray photoemission spectroscopy. The broadening is found to be caused by an exchange of energy and momentum between the photoemitted core electron and the hot electron gas, rather than by vibrational excitations. This interpretation is supported by a quantitative line-shape analysis that accounts for the presence of the excited electrons. Fitting the spectra to this model directly yields the electronic temperature of the system, in good agreement with electronic temperature values obtained from valence band data. Furthermore, we show how the momentum change of the outgoing core electrons leads to a detectable but very small change in the time-resolved photoelectron diffraction pattern and to a nearly complete elimination of the core level binding energy variation associated with the presence of a narrow σ band in the C 1s state.
Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics
F. Pressacco et al.
Femtosecond light-induced phase transitions between different macroscopic orders provide the possibility to tune the functional properties of condensed matter on ultrafast timescales. In first-order phase transitions, transient non-equilibrium phases and inherent phase coexistence often preclude non-ambiguous detection of transition precursors and their temporal onset. Here, we present a study combining time-resolved photoelectron spectroscopy and ab-initio electron dynamics calculations elucidating the transient subpicosecond processes governing the photoinduced generation of ferromagnetic order in antiferromagnetic FeRh. The transient photoemission spectra are accounted for by assuming that not only the occupation of electronic states is modified during the photoexcitation process. Instead, the photo-generated non-thermal distribution of electrons modifies the electronic band structure. The ferromagnetic phase of FeRh, characterized by a minority band near the Fermi energy, is established 350 ± 30 fs after the laser excitation. Ab-initio calculations indicate that the phase transition is initiated by a photoinduced Rh-to-Fe charge transfer.
Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens
G. Schönhense et. al.
The performance of time-resolved photoemission experiments at fs-pulsed photon sources is ultimately limited by the e–e Coulomb interaction, downgrading energy and momentum resolution. Here, we present an approach to effectively suppress space-charge artifacts in momentum microscopes and photoemission microscopes. A retarding electrostatic field generated by a special objective lens repels slow electrons, retaining the k-image of the fast photoelectrons. The suppression of space-charge effects scales with the ratio of the photoelectron velocities of fast and slow electrons. Fields in the range from −20 to −1100 V/mm for Ekin = 100 eV to 4 keV direct secondaries and pump-induced slow electrons back to the sample surface. Ray tracing simulations reveal that this happens within the first 40 to 3 μm above the sample surface for Ekin = 100 eV to 4 keV. An optimized front-lens design allows switching between the conventional accelerating and the new retarding mode. Time-resolved experiments at Ekin = 107 eV using fs extreme ultraviolet probe pulses from the free-electron laser FLASH reveal that the width of the Fermi edge increases by just 30 meV at an incident pump fluence of 22 mJ/cm2 (retarding field −21 V/mm). For an accelerating field of +2 kV/mm and a pump fluence of only 5 mJ/cm2, it increases by 0.5 eV (pump wavelength 1030 nm). At the given conditions, the suppression mode permits increasing the slow-electron yield by three to four orders of magnitude. The feasibility of the method at high energies is demonstrated without a pump beam at Ekin = 3830 eV using hard x rays from the storage ring PETRA III. The approach opens up a previously inaccessible regime of pump fluences for photoemission experiments.
Review of Scientific Instruments 92, 053703 (2021)
Magnetic order and surface state gap in (Sb0.95Cr0.05)2 Te3
T. K. Dalui, P. K. Ghose, S. Majumdar, S. K. Mahatha, F. Diekmann, K. Rossnagel, R. Tomar, S. Chakraverty, A. Berlie, and S. Giri
Magnetic transition element doping in topological insulators, which breaks the time-reversal symmetry, gives rise to the diverse range of exotic consequences, though proper understanding of the magnetic order has rarely been attempted by using any microscopic experiments. We report the occurrence of the magnetic order in (Sb0.95Cr0.05)2Te3 using the muon spin relaxation studies. The asymmetry curve at low temperature (T) shows an evidence of a damped oscillation, providing a clue about the internal magnetic field (Hint), which follows Hint(T)=Hint(0)[1−T/TC]β with ordering temperature TC≈6.1 K and critical exponent β≈0.22. The critical exponent is close to the two-dimensional XY-type interaction. The magnetization curves at low T exhibit a ferromagnetic behavior at low field (H) and the de Haas–van Alphen (dHvA) effect at high H. The analysis of the dHvA oscillation proposes the charge carrier that acts like a massive Dirac fermion. The Berry phase, as obtained from the Landau-level fan diagram, suggests a surface state gap at the Dirac point. The complex electronic structure is discussed by correlating the magnetic order attributed to the Cr doping in Sb2Te3.
2020
An open-source, end-to-end workflow for multidimensional photoemission spectroscopy
R. Patrick Xian , Yves acremann, Steinn Y. agustsson, Maciej Dendzik, Kevin Bühlmann, Davide Curcio, Dmytro Kutnyakhov, Federico Pressacco, Michael Heber, Shuo Dong, Tommaso Pincelli, Jure Demsar, Wilfried Wurth, Philip Hofmann, Martin Wolf, Markus Scheidgen, Laurenz Rettig & Ralph Ernstorfer
Characterization of the electronic band structure of solid state materials is routinely performed using photoemission spectroscopy. Recent advancements in short-wavelength light sources and electron detectors give rise to multidimensional photoemission spectroscopy, allowing parallel measurements of the electron spectral function simultaneously in energy, two momentum components and additional physical parameters with single-event detection capability. Efficient processing of the photoelectron event streams at a rate of up to tens of megabytes per second will enable rapid band mapping for materials characterization. We describe an open-source workflow that allows user interaction with billion-count single-electron events in photoemission band mapping experiments, compatible with beamlines at 3rd and 4rd generation light sources and table-top laser-based setups. The workflow offers an end-to-end recipe from distributed operations on single-event data to structured formats for downstream scientific tasks and storage to materials science database integration. Both the workflow and processed data can be archived for reuse, providing the infrastructure for documenting the provenance and lineage of photoemission data for future high-throughput experiments.
Observation of an Excitonic Mott Transition Through Ultrafast Core-cum-Conduction Photoemission Spectroscopy
Maciej Dendzik, R. Patrick Xian, Enrico Perfetto, Davide Sangalli, Dmytro Kutnyakhov, Shuo Dong, Samuel Beaulieu, Tommaso Pincelli, Federico Pressacco, Davide Curcio, Steinn Ymir Agustsson, Michael Heber, Jasper Hauer, Wilfried Wurth, Günter Brenner, Yves Acremann, Philip Hofmann, Martin Wolf, Andrea Marini, Gianluca Stefanucci, Laurenz Rettig, and Ralph Ernstorfer
Time-resolved soft-x-ray photoemission spectroscopy is used to simultaneously measure the ultrafast dynamics of core-level spectral functions and excited states upon excitation of excitons in WSe2. We present a many-body approximation for the Green’s function, which excellently describes the transient core-hole spectral function. The relative dynamics of excited-state signal and core levels clearly show a delayed core-hole renormalization due to screening by excited quasifree carriers resulting from an excitonic Mott transition. These findings establish time-resolved core-level photoelectron spectroscopy as a sensitive probe of subtle electronic many-body interactions and ultrafast electronic phase transitions.
Time- and momentum-resolved photoemission studies using time-of-flight momentum microscopy at a free-electron laser
D. Kutnyakhov, R. P. Xian, M. Dendzik, M. Heber, F. Pressacco, S. Y. Agustsson, L. Wenthaus, H. Meyer, S. Gieschen, G. Mercurio, A. Benz, K. Bühlman, S. Däster, R. Gort, D. Curcio, K. Volckaert, M. Bianchi, Ch. Sanders, J. A. Miwa, S. Ulstrup, A. Oelsner, C. Tusche, Y.-J. Chen, D. Vasilyev, K. Medjanik, G. Brenner, S. Dziarzhytski, H. Redlin, B. Manschwetus, S. Dong, J. Hauer, L. Rettig, F. Diekmann, K. Rossnagel, J. Demsar, H.-J. Elmers, Ph. Hofmann, R. Ernstorfer, G. Schönhense, Y. Acremann, and W. Wurth
Time-resolved photoemission with ultrafast pump and probe pulses is an emerging technique with wide application potential. Real-time recording of nonequilibrium electronic processes, transient states in chemical reactions, or the interplay of electronic and structural dynamics offers fascinating opportunities for future research. Combining valence-band and core-level spectroscopy with photoelectron diffraction for electronic, chemical, and structural analyses requires few 10 fs soft X-ray pulses with some 10 meV spectral resolution, which are currently available at high repetition rate free-electron lasers. We have constructed and optimized a versatile setup commissioned at FLASH/PG2 that combines free-electron laser capabilities together with a multidimensional recording scheme for photoemission studies. We use a full-field imaging momentum microscope with time-of-flight energy recording as the detector for mapping of 3D band structures in (kx, ky, E) parameter space with unprecedented efficiency. Our instrument can image full surface Brillouin zones with up to 7 Å−1 diameter in a binding-energy range of several eV, resolving about 2.5 × 105 data voxels simultaneously. Using the ultrafast excited state dynamics in the van der Waals semiconductor WSe2 measured at photon energies of 36.5 eV and 109.5 eV, we demonstrate an experimental energy resolution of 130 meV, a momentum resolution of 0.06 Å−1, and a system response function of 150 fs.
2019
Ultrafast charge redistribution in small iodine containing molecules
M. Hollstein, K. Mertens, S. Klumpp, N. Gerken, S. Palutke, I. Baev, G. Brenner, S. Dziarzhytski, M. Meyer, W. Wurth, D. Pfannkuche1, M. Martins
We present studies on intra-molecular charge redistribution in iodine containing molecules upon iodine-4d photoionization. For this, we employed an XUV-pump-XUV-probe scheme based on time-delayed femtosecond pulses delivered by the free-electron laser at DESY in Hamburg (FLASH). The experimental results show delay dependent and molecule-specific iodine charge state distributions that arise upon multiple iodine-4d photoionization. Using the example of CH3I and CH2I2, we compare the delay-dependent yields of I3+. We model the involved processes using advanced ab initio electronic structure calculations which include electron correlations combined with a classical model of the nuclear motion. The qualitative agreement of our model with the experimental results allows us to relate the observed, strongly molecule-specific efficiencies of the intra-molecular charge rearrangement not only to molecule-specific fragmentation timescales but also to molecule-specific electronic structure and molecular environment.
Direct observation of spin-orbit-induced 3d hybridization via resonant inelastic extreme ultraviolet scattering on an edge-sharing cuprate
M. Malvestuto, A. Caretta, B. Casarin, R. Ciprian, M. Dell'Angela, S. Laterza, Y. Chuang, W. Wurth, A. Revcolevschi, L. A. Wray, and F. Parmigiani
Using high resolution resonant inelastic x-ray scattering measurements, we have observed that the orbital excitations of the quasi-1D spin chain compound CuGeO3 has nontrivial and noticeable orbital mixing effects from 3d valence spin-orbit coupling. In particular, the SOC leads to a significant correction of dz2 state, which has a direct interplay with the low energy physics of cuprates. Guided by atomic multiplet based modeling, our results strongly support a 3d spin-orbit mixing scenario and explore in detail the nature of these excitations.
4D texture of circular dichroism in soft-x-ray photoemission from tungsten
O. Fedchenko, K. Medjanik, S. Chernov, D. Kutnyakhov, M. Ellguth, A. Oelsner, B. Schönhense, T.R.F. Peixoto, P. Lutz, C.-H. Min , F. Reinert, S. Däster, Y. Acremann, J. Viefhaus, W. Wurth, J. Braun, J. Minár, H.Ebert, H.J. Elmers, and G. Schönhense
Photoemission-intensity distributions I RCP/LCP (E B , k ) measured for right- and left-circularly polarized soft x-rays revealed a large circular dichroism in angular distribution (CDAD) in the 4D parameter space (E B binding energy, k momentum vector). Full-field k-imaging combined with time-of-flight energy recording at a high-brilliance soft x-ray beamline allowed mapping the CDAD in the bulk Brillouin zone of tungsten and the entire d-band complex within a few hours. CDAD-asymmetries are very high (up to 90%), persist throughout the whole photon-energy range (300–1300 eV) and show a pronounced dependence on momentum k and binding energy E B, visualized as movies or sequences of cuts through the 4D object. One-step photoemission calculations for the same photon energies show fair agreement with the measured results. In addition to the requirement of a 'handed' experimental geometry, known from previous experiments on adsorbates and surface states, we find an anti-symmetric behavior of the CDAD with respect to two bulk mirror planes. A new symmetry condition along the perpendicular momentum kz makes CDAD a valuable tool for an unambiguous identification of high-symmetry planes in direct transitions in the periodic zone scheme. Technically, the method provides a circular polarimeter for soft, tender and hard x-rays.
2017
Transiently enhanced interlayer tunneling in optically driven high Tc superconductors
J. Okamoto, W. Hu, A. Cavalleri, L. Mathey
Recent pump-probe experiments reported an enhancement of superconducting transport along the c axis of underdoped YBa2Cu3O6+δ (YBCO), induced by a midinfrared optical pump pulse tuned to a specific lattice vibration. To understand this transient nonequilibrium state, we develop a pump-probe formalism for a stack of Josephson junctions, and we consider the tunneling strengths in the presence of modulation with an ultrashort optical pulse. We demonstrate that a transient enhancement of the Josephson coupling can be obtained for pulsed excitation and that this can be even larger than in a continuously driven steady state. Especially interesting is the conclusion that the effect is largest when the material is parametrically driven at a frequency immediately above the plasma frequency, in agreement with what is found experimentally. For bilayer Josephson junctions, an enhancement similar to that experimentally is predicted below the critical temperature Tc. This model reproduces the essential features of the enhancement measured below Tc. To reproduce the experimental results above Tc, we will explore extensions of this model, such as in-plane and amplitude fluctuations, elsewhere.
High-resolution resonant inelastic extreme ultraviolet scattering from orbital and spin excitations in a Heisenberg antiferromagnet
A. Caretta, M. Dell'Angela, Y. Chuang, A. M. Kalashnikova, R. V. Pisarev, D. Bossini, F. Hieke, W. Wurth, B. Casarin, R. Ciprian, F. Parmigiani, S. Wexler, L. A. Wray, M. Malvestuto
We report a high-resolution resonant inelastic extreme ultraviolet (EUV) scattering study of the quantum Heisenberg antiferromagnet KCoF3. By tuning the EUV photon energy to the cobalt M23 edge, a complete set of low-energy 3d spin-orbital excitations is revealed. These low-lying electronic excitations are modeled using an extended multiplet-based mean-field calculation to identify the roles of lattice and magnetic degrees of freedom in modifying the resonant inelastic x-ray scattering (RIXS) spectral line shape. We have demonstrated that the temperature dependence of RIXS features upon the antiferromagnetic ordering transition enables us to probe the energetics of short-range spin correlations in this material.
2016
Extreme ultraviolet resonant inelastic X-ray scattering (RIXS) at a seeded free-electron laser
M. Dell’Angela, F. Hieke, M. Malvestuto, L. Sturari, S. Bajt, I. V. Kozhevnikov, J. Ratanapreechachai, A. Caretta, B. Casarin, F. Glerean, A. M. Kalashnikova, R. V. Pisarev, Y.-D. Chuang, G. Manzoni, F. Cilento, R. Mincigrucci, A. Simoncig, E. Principi, C. Masciovecchio, L. Raimondi, N. Mahne, C. Svetina, M. Zangrando, R. Passuello, G. Gaio, M. Prica, M. Scarcia, G. Kourousias, R. Borghes, L. Giannessi, W. Wurth and F. Parmigiani
In the past few years, we have been witnessing an increased interest for studying materials properties under non-equilibrium conditions. Several well established spectroscopies for experiments in the energy domain have been successfully adapted to the time domain with sub-picosecond time resolution. Here we show the realization of high resolution resonant inelastic X-ray scattering (RIXS) with a stable ultrashort X-ray source such as an externally seeded free electron laser (FEL). We have designed and constructed a RIXS experimental endstation that allowed us to successfully measure the d-d excitations in KCoF3 single crystals at the cobalt M2,3-edge at FERMI FEL (Elettra-Sincrotrone Trieste, Italy). The FEL-RIXS spectra show an excellent agreement with the ones obtained from the same samples at the MERIXS endstation of the MERLIN beamline at the Advanced Light Source storage ring (Berkeley, USA). We established experimental protocols for performing time resolved RIXS experiments at a FEL source to avoid X ray-induced sample damage, while retaining comparable acquisition time to the synchrotron based measurements. Finally, we measured and modelled the influence of the FEL mixed electromagnetic modes, also present in externally seeded FELs, and the beam transport with ~120 meV experimental resolution achieved in the presented RIXS setup.
2014
The role of space charge in spin-resolved photoemission experiments
A. Fognini, G. Salvatella, T.U. Michlmayr, C. Wetli, U. Ramsperger, T. Bähler, F. Sorgenfrei, M. Beye, A. Eschenlohr, N. Pontius, C. Stamm, F. Hieke, M. Dell‘Angela, S. de Jong, R. Kukreja, N. Gerasimova, V. Rybnikov, H. Redlin, J. Raabe, W. Wurth et.
Spin-resolved photoemission is one of the most direct ways of measuring the magnetization of a ferromagnet. If all valence band electrons contribute, the measured average spin polarization is proportional to the magnetization. This is even the case if electronic excitations are present, and thus is of particular interest for studying the response of the magnetization to a pump laser pulse. Here, we demonstrate the feasibility of ultrafast spin-resolved photoemission using free electron laser (FEL) radiation and investigate the effect of space charge on the detected spin polarization. The sample is exposed to the radiation of the FEL FLASH in Hamburg. Surprisingly, the measured spin polarization depends on the fluence of the FEL radiation: a higher FEL fluence reduces the measured spin polarization. Space-charge simulations can explain this effect. These findings have consequences for future spin-polarized photoemission experiments using pulsed photon sources.
New Journal of Physics 16, 043031 (2014)
Ultrafast reduction of the total magnetization in iron
A. Fognini, T. U. Michlmayr, G. Salvatella, C. Wetli, U. Ramsperger, T. Bähler, F.Sorgenfrei, M. Beye, A. Eschenlohr, N. Pontius, C. Stamm, F. Hieke, M. Dell'Angela, S. de Jong, R. Kukreja, N. Gerasimova, V. Rybnikov, H. Redlin, W. Wurth, et. al
Surprisingly, if a ferromagnet is exposed to an ultrafast laser pulse, its apparent magnetization is reduced within less than a picosecond. Up to now, the total magnetization, i.e., the average spin polarization of the whole valence band, was not detectable on a sub-picosecond time scale. Here, we present experimental data, confirming the ultrafast reduction of the total magnetization. Soft x-ray pulses from the free electron laser in Hamburg (FLASH) extract polarized cascade photoelectrons from an iron layer excited by a femtosecond laser pulse. The spin polarization of the emitted electrons is detected by a Mott spin polarimeter.
Applied Physics Letters 104, 032402 (2014)
2013
Speed limit of the insulator metal-transition in magnetite
S. de Jong, R. Kukreja, C. Trabant, N. Pontius, C.F. Chang, T. Kachel, M. Beye, F. Sorgenfrei, C. H. Back, B. Bräuer, W.F. Schlotter, J.J. Turner, O. Krupin, M. Doehler, D. Zhu, M.A. Hossain, W. Wurth, D. Fausti, F. Novelli, M. Esposito, et. al
As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown, magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator–metal, or Verwey, transition has long remained inaccessible. Recently, three-Fe-site lattice distortions called trimerons were identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase9. Here we investigate the Verwey transition with pump–probe X-ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator–metal transition. We find this to be a two-step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5±0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics.
Nature Materials 12, 882 (2013)