Lehre
SS 2021 Quantum field theory for correlated many particle systems
Lehrende: Dr. Georg Rohringer
Veranstaltungsart: Vorlesung
Semesterwochenstunden: 4
Unterrichtssprache: Englisch
Inhalte:
- Introduction to correlated many-body sytems
- Second Quantization
- One- and two-particle Green's functions
- Matsubara formalism
- Diagrammatic perturbation theory and Feynman diagrams
- Fermi liquid theory
- Linear response theory
- Applications: Magnetism and (Super)conductivity
- Outlook: Dynamical mean field theory and beyond
Lernziel:
Upon successful completion of the module the students are acquainted with the relevant quantum field theoretical methods for the theoretical description of strongly correlated many-body systems and are able to independently apply these techniques to model as well as realistic many-particle systems.
Lehrungerlagen:
- Overview
- Lecture Notes 1: Introduction to correlated many-body systems - Mean Field Theories
- Lecture Notes 2: Second Quantization
- Lecture Notes 3a: One- and two-particle Green's functions and Matsubara formalism
- Lecture Notes 3b: One- and two-particle Green's functions and Matsubara formalism
- Lecture Notes 4: Diagrammatic perturbation theory and Feynman diagrams (including basics of Fermi Liquid Theory)
- Lecture Notes 5: Linear response theory and Applications: Superconductivity, Magnetism and Charge fluctuations
Literatur:
- A. A. Abrikosov , L. P. Gorkov , I. E. Dzyloshinski , Methods of Quantum Field Theory in Statistical Physics, Dover Publications, Inc. New York, 1963
- A. Altland and B. Simons, Condensed Matter Field Theory, Cambridge University Press, 2010
- K. Elk und W. Gasser, Die Methode der Greenschen Funktionen in der Festkörperphysik, Akademia Verlag, Berlin 1979
- A. L. Fetter and J. D. Walecka , Quantum Theory of Many Particle Systems, Dover Publications, 2003
- A. M. Zagoskin , Quantum Theory of Many Body Systems, Springer Science+Business Media New York, 1998
WS 2020 Physik I und Einführung in die Theoretische Physik I
Übungsgruppenleiter für "Übungen zur Physik I und Einführung in die Theoretische Physik I". Mehre Informationen zu dieser Lehrveranstaltung sind auf STiNE verfügbar.
SS 2020 Quantum field theory for correlated many particle systems
Lehrende: Dr. Georg Rohringer
Veranstaltungsart: Vorlesung
Semesterwochenstunden: 2
Unterrichtssprache: Englisch
Inhalte:
- Introduction to correlated many-body sytems
- Second Quantization
- One- and two-particle Green's functions
- Matsubara formalism
- Diagrammatic perturbation theory and Feynman diagrams
- Fermi liquid theory
- Linear response theory
- Applications: Magnetism and (Super)conductivity
- Outlook: Dynamical mean field theory and beyond
Lernziel:
Upon successful completion of the module the students are acquainted with the relevant quantum field theoretical methods for the theoretical description of strongly correlated many-body systems and are able to independently apply these techniques to model as well as realistic many-particle systems.
Lehrungerlagen:
- Overview
- Lecture Notes 1: Introduction to correlated many-body systems - Mean Field Theories
- Lecture Notes 2: Second Quantization
- Lecture Notes 3a: One- and two-particle Green's functions and Matsubara formalism
- Lecture Notes 3b: One- and two-particle Green's functions and Matsubara formalism
- Lecture Notes 4: Diagrammatic perturbation theory and Feynman diagrams (including basics of Fermi Liquid Theory)
- Lecture Notes 5: Linear response theory and Applications: Superconductivity, Magnetism and Charge fluctuations
Literatur:
- A. A. Abrikosov , L. P. Gorkov , I. E. Dzyloshinski , Methods of Quantum Field Theory in Statistical Physics, Dover Publications, Inc. New York, 1963
- A. Altland and B. Simons, Condensed Matter Field Theory, Cambridge University Press, 2010
- K. Elk und W. Gasser, Die Methode der Greenschen Funktionen in der Festkörperphysik, Akademia Verlag, Berlin 1979
- A. L. Fetter and J. D. Walecka , Quantum Theory of Many Particle Systems, Dover Publications, 2003
- A. M. Zagoskin , Quantum Theory of Many Body Systems, Springer Science+Business Media New York, 1998