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2010: First collisions at the LHC   

Direct exploration of the Fermi scale starts.

What is the mechanism of Electroweak Symmetry breaking ?

main physics goal:



the Higgs or something else? ?

Electroweak symmetry breaking: 2 main questions
What is unitarizing the WLWL scattering amplitude?

What is cancelling the divergent diagrams?
: Hierarchy problem

→ theoretical need for new physics at the TeV scale

(i.e what is keeping the Higgs light?)

supersymmetry, gauge-Higgs unification, Higgs as a pseudo-goldstone boson...

need new degrees of freedom & new symmetries to cancel the divergences 

Λ , the maximum mass scale 
that the theory describes

strong sensitivity on UV unknown physics

⇒ δMH ∝ Λ 2 2



Which new physics?

Electroweak 
symmetry breaking

Minimally extended 
(2 Higgs doublets)Supersymmetric

Composite, Higgs as 
pseudo-goldstone 

boson, H=A5
Higgsless, 

technicolor-like, 
5-dimensional

In all explicit examples, without unwarranted cancellations, new 
phenomena are required at a scale Λ~[3-5] × MHiggs



Which Higgs ?

Composite Higgs ?

Little Higgs ?

Littlest Higgs ?

Intermediate Higgs ?

Slim Higgs ?

Fat Higgs ?

Gauge-Higgs ?

Holographic Higgs ?

Gaugephobic Higgs ?

Higgsless ?

UnHiggs ?

Portal Higgs ?

Simplest Higgs ?

Private Higgs ?

Lone Higgs ?

Phantom Higgs ?



 Does a Higgs boson exist ?

  If yes : 

 is there only one ? 
 what are its mass, width, quantum numbers ? 
 does it generate EW symmetry breaking and give mass to 
fermions too as in the Standard Model or is something else needed ? 
 what are its couplings to itself and other particles 
 Spin determination 
 CP properties

 If no : 
               be ready for 
   • very tough searches at the (S)LHC (VLVL scattering, ...) or 
   • more spectacular phenomena such as  W’, Z’ (KK) resonances, technicolor, etc...

What questions the LHC experiments will try to answer : 
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Figure 7: Diphoton invariant mass spectrum in fb obtained with the Higgs boson plus one jet analysis
(see Section 5.2). The same procedure as in Fig. 6 in Section 5.1 is used to obtain the histograms in
Fig. 7. The same codes for signal and backgrounds are used as in Fig. 6.

Table 11: Expected cross-sections (in fb) of background for the Higgs boson plus one jet Analysis.
Results are given after the application of cuts Ia and IIa-IIc (see Section 5.2). In the last row the
expected cross-sections within a mass window of mγγ of ±2 GeV around 120 GeV are given.

Cut γγ Reducible γ j Reducible j j EW γγ j j Total
σ (fb) σ (fb) σ (fb) σ (fb) σ (fb)

Ia-IIa 9698 8498 937 99 19233
IIb 4786 4438 444 99 9768
IIc 501 824 89 71 1485

Mass Window 28 17 2.0 1.5 49

Higgs boson production mechanism after the application of cuts remains the gg→ H j process, closely
followed by the VBF mechanism. It is important to note that the gg→ H j process has been evaluated at
LO ignoring the large QCD NLO corrections.

5.3 Higgs boson plus two jets analysis

This Section considers an event selection comprising two photons in association with two high pT jets,
or tagging jets. In this analysis the tagging jets are defined as the two leading jets in the event. The V BF
Higgs boson process at LO produces two high pT and relatively forward jets in opposite hemispheres
(backward-forward). The pseudorapidity gap and invariant mass of these jets tend to be significantly
larger than those expected for background processes. The NLO description of the VBF process does not
significantly distort this picture.3

3About 10% of the VBF events display the feature that a radiated gluon coming from one of the quark lines happens to
become a tagging jet. In this class of events the pseudorapidity gap and the invariant mass of the tagging jets appears similar to
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5.1 Inclusive analysis

The inclusive analysis refers to the search for a resonance in events with two photons that pass certain
quality criteria. The analysis reported here follows closely the event selection of past studies [3, 4]. The
detector performance and optimization studies succinctly presented in Sections 3 and 4 are geared toward
maximizing the discovery potential of the inclusive analysis.

The following cuts are applied:

Ia At least two photon candidates (see Section 3.2) in the central detector region defined as |η | < 2.37
excluding the transition region between barrel and endcap calorimeters, 1.37 < |η | < 1.52 (crack in
the following). At this level it is required that the event passes the trigger selection (see Section 4).

Ib Transverse momentum cuts of 40,25 GeV on the leading and sub-leading photon candidates, re-
spectively.

The fiducial cuts in Ia are motivated by the quality of the off-line photon identification and the
fake photon rate (see Section 3.2). The values of the cuts on the transverse momentum of the photon
candidates (cut Ib) are not varied and are obtained from previous optimization studies [3].
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Figure 6: Diphoton invariant mass spectrum after the application of cuts of the inclusive analysis. Results
are presented in terms of the cross-sections in fb. The contribution from various signal and background
processes are presented in stacked histograms (see text).

Figure 6 shows the expected diphoton mass spectrum after the application of cuts Ia and Ib. The
hashed histogram in the bottom corresponds to the contributions from events with one and two fake
photons. The second hashed histogram corresponds to the irreducible backgrounds (see Section 2.2). The
background contributions are obtained with MC samples with a fast detector simulation normalized to
the cross-sections specified in Section 2.2. The fast detector simulation is corrected in order to reproduce
the aspects of the detector performance critical to the analysis, which are obtained with a full detector
simulation (see Sections 3 and 4). The expected contribution from a Higgs boson signal for mH =
120 GeV, obtained with a full detector simulation, is also shown in Fig. 6.
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A number of variables are chosen that are sensitive to the different kinematics displayed by the signal
and background processes [9]. The following is the optimized event selection after the application of cut
Ia:

IIIa Transverse momentum cuts of 50 and 25 GeV on the leading and sub-leading photon candidates,
respectively.

IIIb Presence of at least two hadronic jets in |η | < 5 with pT > 40,20 GeV for the leading and sub-
leading jet, respectively. The tagging jets must be in opposite hemispheres, η j1 ·η j2 < 0, where η j1
and η j2 correspond to the pseudorapidity of the leading and sub-leading jets, respectively. Finally,
it is required that the pseudorapidity gap between the tagging jets be large, ∆η j j > 3.6.

IIIc Photons are required to have pseudorapidity between those of the tagging jets.

IIId Invariant mass of the tagging jets, m j j > 500 GeV.

IIIe Veto on events with a third jet with pT > 20 GeV and |η | < 3.2
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Figure 8: Diphoton invariant mass spectrum obtained with the Higgs boson plus two jet analysis (see
Section 5.3).

Figure 8 displays the resulting diphoton invariant mass spectrum after the application of cuts Ia and
IIIa-IIIe.

Tables 12 and 13 display the expected cross-sections for a Higgs boson signal with mH = 120 GeV
and background events in the mass range ±2 GeV around 120 GeV after the application of cuts Ia and
IIIa-IIIe. Table 12 shows that the dominant Higgs boson production mechanism surviving the events
selection is the VBF mechanism. Unfortunately, the QCD NLO corrections to the main backgrounds
included in Table 13 are not known and therefore these results suffer from large theoretical uncertainties.

The event selections presented in this and the previous Sections have a certain degree of overlap.
This is particularly relevant for the VBF Higgs boson production mechanism. In Section 7 the signal
significance of a combined analysis is presented that takes into account the event overlap.

that displayed by a typical QCD background process. This effect is well reproduced by the HERWIG generator.
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Figure 9: Expected distribution of the invariant mass of the two photons for the signals and main back-
grounds after applying the analysis cuts for events having one lepton reconstructed in the final state.
Due to a lack of MC statistics for the diphoton and the Wγ backgrounds, their expected distribution is
approximated by showing an average of the number of events passing the analysis cuts in the mγγ mass
range shown.

Va As in Section 5.4, a cut on the transverse momentum of the most energetic photon above 60 GeV
and a cut on the second more energetic photon pT of 30 GeV are applied to suppress the diphoton
background. Events where one of the two photons is reconstructed in the crack region are then
removed.

Vb The selection is then based mostly on the requirement of high missing transverse momentum. A
cut of Emiss

T > 80 GeV suppresses almost completely the γγ background while reducing the Wγ
background by a factor 20 and the ZH→ ννγγ signal by a factor 2.

Vc In order to further suppress the Wγ background, where the electron is often reconstructed as a
converted photon, events where either of the photons appears to have converted are rejected.

Vd At this point, because of potentially significant background from QCD events, difficult to evaluate,
a cut requiring that the scalar sum of the pT of the jets in the event be larger than 150 GeV is
imposed. It suppresses the contribution from the tt̄γγ and bb̄γγ backgrounds, as well as of the tt̄H
signal.

Table 15 summarizes the expected cross-sections after the different cuts applied for this analysis for
signal and backgrounds. The expected mass distributions of diphotons from the associated W/Z plus
Higgs boson and from the backgrounds are shown in Fig. 10, after the application of all cuts. To account
for the Wγ → µνγ , the Wγ → eνγ background has been multiplied by two in the figure although some
double counting is introduced. The uncertainty in the background level, due to Monte Carlo statistics
only, is estimated to be 15%. The reconstructed mass resolution is 1.31 GeV. This result is expected to
be sensitive to uncertainties in the simulation and reconstruction of Emiss

T tails.
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What % ! nature of ! electroweak phase transition ?
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Φ !GeV"
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first-order           or              second-order?
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V!Φ"#v4 ⤵ 
T →

indispensable for reliable computations of electroweak baryogenesis

LHC will provide insight as it will shed light on the Higgs sector

Question intensively studied within the Minimal Supersymmetric Standard 
Model (MSSM). However, not so beyond the MSSM (gauge-higgs unification in 

extra dimensions, composite Higgs, Little Higgs, Higgsless...) 

LHC will most likely not provide the final answer



Expe&mental tests of ! Higgs self-c(pling

at a Hadron Collider

at an e+ e-  Linear Collider

... or at the gravitational wave detector LISA



Gravitational Waves interact very weakly and are not absorbed

direct probe of physical process of the very early universe

Gravitational Waves: A way to probe astrophysics
... and high energy particle physics.

Small perturbations in FRW metric:

ds2 = a2(η)(dη2 − (δij + 2hij)dxidxj) Gµν = 8πG Tµν

ḧij(k, η) +
2
η
ḣij(k, η) + k2hij(k, η) = 8πGa2(η)Πij(k, η)

anisotropic stress
Source of GW:

possible cosmological sources: 
inflation, vibrations of topological defects, excitations of xdim modes, 1st order phase transitions...

f = f∗
a∗

a0

= f∗

(

gs0

gs∗

)1/3
T0

T∗

≈ 6 × 10
−3

mHz

( g∗
100

)1/6 T∗

100 GeV

f∗
H∗

frequency 
observed today:



from Maggiore

ΩG =
〈ḣij ḣij〉

Gρc
=

∫
dk

k

dΩG(k)
d log(k)

GW energy 
density:

10!4 10!3 10!2 10!1 1 10 100
f !Hz"10!18

10!16

10!14

10!12

10!10

10!8

10!6

"GW h2

LISA

BBOCorr

EI#3 1016GeV

EI#5 1015 GeV

LIGO III

WD binaries

Beyond GW of astrophysical origin, another mission of GW astronomy will be to 
search for  a stochastic background of gravitational waves of primordial origin 

(gravitational analog of the 2.7 K CMB)

Stochastic background:
isotropic, unpolarized, stationary

A huge range of 
frequencies

LIGO

BBN bound

MPlanckMTeVMQCD



Why should we be excited about mHZ freq.?

complementary to collider informations

f = f∗
a∗

a0

= f∗

(

gs0

gs∗

)1/3
T0

T∗

≈ 6 × 10
−3

mHz

( g∗
100

)1/6 T∗

100 GeV

f∗
H∗

LISA: Could be a new window 
on the Weak Scale

10
−4

− 10
−2 Hz

LISA band:



 Which weak scale physics?
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BBOCorr
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LIGO III

<Φ>=0

<Φ>≠0

Bubble 
nucleation

Bubble 
percolation

Fluid flows

Magnetic 
fields

Stochastic background of 
gravitational radiation

turbulence

 ⇒ strong 1st order phase transition

● test of the dynamics of the phase transition

● reconstruction of the Higgs potential/study of new models of EW 
symmetry breaking (little higgs, gauge-higgs,composite higgs,higgsless...)

●  relevant to models of EW baryogenesis

violent process if vb ~O(1)



A not so new subject...
Early 90’s, M. Turner & al studied the production of GW produced by 
bubble collisions. Not much attention since the LEP data excluded a 
1st order phase transition within the SM.

‘01-’02: Kosowsky et al. and Dolgov et al. computed the production of 
GW from turbulence. Application to the (N)MSSM where a 1st order 
phase transition is still plausible.

➾    Model-independent analysis for detectability of 
GW from 1st order phase transitions

➾   Apply to Randall-Sundrum phase transition 
Randall, Servant’06

Revival in 2)6:

Grojean, Servant ‘06

Kosowsky, Turner, Watkins’92
Kamionkowski, Kosowsky, Turner ’94

Kosowsky, Mack, Kahniashvili’02
Dolgov, Grasso, Nicolis’02
Caprini, Durrer ’06

➾    Revisit the Turner et al original calculation
Caprini, Durrer, Servant’07’

first suggestion:Witten’84

Huber, Konstandin’08’



key quantities controlling the GW spectrum

 β : (duration of the phase transition)-1

α : vacuum energy density/radiation energy density

set by the tunneling probability

 α and β : entirely determined by the effective
 scalar potential at high temperature

50 100 150 200 250 300
Φ

"5#106
"2.5#106

2.5#106
5#106

7.5#106
1#107
V!Φ,T$T_n"

anisotropic stress
Source of GW:

To evaluate the GWs emitted by turbulent motion in the primordial fluid and by a
magnetic field we need to determine the tensor-type anisotropic stresses of these sources.
They source the evolution equation for the GW perturbations,

ḧij + 2Hḣij + k2hij = 8πGa2T (TT )
ij (k, t) . (5)

In this section we consider in all generality a relativistic source, and we solve the wave
equation in two cases: a long lasting source (i.e. many Hubble times), and a short lasting
one (i.e. significantly less than one Hubble time). We introduce the transverse traceless
tensor part of the energy momentum tensor of the source as

T (TT )
ij (k, t) = (ρ + p)Π̃ij(k, t) so that 8πGa2T (TT )

ij (k, t) = 4H2Π̃ij(k, t) , (6)

where we denote the dimensionless energy momentum tensor with a tilde: Π̃ij(k, t) =
(PilPjm−1/2PijPlm)T̃lm(k, t). The projection tensor PilPjm−1/2PijPlm, with Pij = δij−k̂ik̂j,
projects onto the transverse traceless part of the stress tensor. Π̃ includes any time depen-
dence other than the basic radiation-like evolution. We assume that the source is active only
during the radiation-dominated era, where p = ρ/3. During adiabatic expansion g(Ta)3 =
constant so that

ρ(t) =
ρrad,0

a4(t)

(
g0

g(t)

)1/3

and a(t) ≈ H0 Ω1/2
rad,0

(
g0

g(t)

)1/6

t (7)

where g(t) is the number of relativistic degrees of freedom at time t.

2.1 Long-lasting source

Let us first concentrate on the more general case of a long lasting source. To solve Eq. (5)
we set H = 1/t, neglecting changes in the number of effective relativistic degrees of freedom.
In terms of the dimensionless variable x = kt Eq. (5) then becomes

h′′
ij + 2

h′
ij

x
+ hij =

4

x2
Π̃ij . (8)

We consider a source that is active from time tin to time tfin, which in the long lasting case
can span a period of many Hubble times. For t > tfin, we match the solution of the above
equation to the homogeneous solution, Π̃ij = 0. Assuming further that we are only interested
in modes well inside the horizon today, x # 1, the resulting GW energy power spectrum
becomes

|h′(k, x > xfin)|2 =
8

x2

∫ xfin

xin

dx1

x1

∫ xfin

xin

dx2

x2
cos(x2 − x1)Π̃(k, x1, x2) x # 1 , (9)

x1 = kt1, x2 = kt2, and Π̃(k, x1, x2) denotes the unequal time correlator of the source,

〈Π̃ij(k, t1)Π̃
∗
ij(q, t2)〉 = (2π)3δ(k− q)Π̃(k, kt1, kt2) . (10)

5

P ∝ eβt ∝ T 4

H4
e−S3/T ∼ 1

              
~ 140S3

T
and typically 

β

H
∼ O(102 − 103)

➜  



where T~ρkin~ρrad v2

ρGW ~ h2 /16πG
.

β2

H2
*ΩGW    = 

* ρtot2
ρkin2

κ2α2v4

β2

H2
*ΩGW   

*
 κ2  α2   v4∝ 3 parameters: 

α,β,v

Estimate of the GW energy density at the emission time

δGμν=8π GTμν  β2h~8πGT h~8πGT/β
.

 (α+1)2

 κ : fraction of vacuum 
energy transformed 

into bulk fluid motions



 Fraction of ! c&tical energy density in GW today

where we used:

has to be big (≳          for LIGO/LISA

 and ≳                     for BBO)
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Spectrum of gravitational waves produced at 
1r* order phase transitions  



A phase transition at             GeV could 
be observed both at LIGO and BBO:

T ∼ 10
7



GW from phase transitions could entirely mask 
the GW signal expected from inflation: 



What to expect for ! EW

phase transition



In the SM, a 1rst-order phase transition can occurr 
due to thermally generated cubic Higgs interactions: 

mh<35 GeV would be needed to get Φ/T>1 and for 
mh >72 GeV, the phase transition is 2nd order

−ETφ3

−ETφ3
⊂ −

T

12π

∑

i

m3

i (φ)

Sum over all bosons which couple to the Higgs

In the SM:
∑

i

!

∑

W,Z
not enough 

V (φ, T ) ≈
1

2
(−µ2

h + cT 2)φ2 +
λ

4
φ4



Strength of the transition in the SM:

➾
〈φ(Tc)〉

Tc

=
2 E v2

0

λ v2
0

=
4 E v2

0

m2
h

v0 ≈ 246 GeV and E =
2

3

2m3
W

+ m3
Z

4πv3
0

∼ 6.3 × 10−3

〈φ(Tc)〉

Tc

>
∼ 1 mh

<
∼ 47 GeV

〈φ(Tc)〉 =
2 E Tc

λ



Effective field "eory a,roach
 add a non-renormalizable Φ6 term to the  SM Higgs  potential and allow a negative quartic coupling

 “strength” of the transition does not rely on the one-loop 
thermally generated negative self cubic Higgs coupling
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Figure 4: Plot of the ratio ξn = 〈φ(Tn)〉/Tn characterizing the strength of the phase transition
using the thermal mass approximation of [2] (left) and the complete one-loop potential
(right). The contours are for ξn = {1, 2, 3, 4} from top to bottom. f is the decay constant
of the strong sector the Higgs emerges from, and mh is the physical Higgs mass.

detailed in this article. We compare these results with the sensitivities of current gravity
wave detectors, and of proposed gravity wave detectors of the future.

3.2.1 Characterizing the spectrum

Previous studies [24, 25, 26] of the gravity wave spectrum culminate in showing that it can
be fully characterized by the knowledge of only two parameters derived ultimately from the
effective potential6. The first one is the rate of time-variation of the nucleation rate, named
β. Its inverse gives the duration of the phase transition, therefore defining the characteristic
frequency of the spectrum. The second important parameter, α, measures the ratio of the
latent heat to the energy density of the dominant kind, which is radiation at the epoch
considered: α ≡ ε/ρrad. They are both numerically computed from the effective action S3/T
at the nucleation temperature as follows. The time-dependence of the rate of nucleation is
mainly concentrated in the effective action and β is defined by β ≡ −dSE/dt

∣∣
tn

. Using the

6This conclusion is valid under the assumption of detonation. However, in practice the bubble expand in
a thermal bath and not in the vacuum and friction effects taking place in the plasma slow down the bubble
velocity. Therefore, it might be important to consider the deflagration regime as in Ref. [27]. When the
phase transition is weakly first order, we obtained under the approximations of [28] a wall velocity lower
than the speed of sound. However, in the interesting region where the phase transition gets stronger, we
approach the detonation regime and the approximations of [28] have to be refined to accurately compute the
wall velocity.
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transition is 1st order

V (Φ) = µ2
h|Φ|2 − λ|Φ|4 +
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strong enough 
for EW baryogenesis 

if Λ      1.3 TeV!

Delaunay-Grojean-Wells ’08
Grojean-Servant-Wells ’04



Λ 
(G

eV
) 5x10-3

0.1

10-2

0.5

5x10-2

2000

1750

1500

1250

1000

750

500

250

100 125 150 175 200 225 250 275

mh (GeV)

α

f 
(G

eV
) 105

200

103
104

2000

1750

1500

1250

1000

750

500

250

100 125 150 175 200 225 250 275

mh (GeV)

β H

f 
(G

eV
)

Figure 5: The panel on the left contains contours of the latent heat α =
{5.10−3, 10−2, 5.10−2, 0.1, 0.5} from top to bottom. The panel on the right draws contours of
the parameter, β/Hn, measuring the duration of the phase transition. From above one has
β/Hn = {105, 104, 103, 200}. f is the decay constant of the strong sector the Higgs emerges
from, and mh is the physical Higgs mass.

adiabaticity of the universe one obtain the following dimensionless parameter:

β

Hn
= Tn

d

dT

(
S3

T

) ∣∣∣
Tn

, (44)

where Hn is the expansion rate when nucleation starts. The latent energy is the sum of the
amount of energy ∆V seperating the metastable vacuum to the stable one and the entropy
variation ∆S between these two phases. Hence one has:

ε = −∆V − T∆S =

[
−∆V + T

∂V

∂T

] ∣∣∣
Tn

. (45)

The left and right panels of Fig. 5 show contours of constant α and β/Hn, respectively, at
the time of nucleation.

3.2.2 Observability at interferometry experiments

Future interferometry experiments could offer us a way to observe the EWPT. A detailed
analysis of the potential to directly see gravitational waves from the first-order phase tran-
sition can be compared with the sensitivity expected from the correlated third generation
LIGO detector on earth and the LISA and BBO detectors in space. A general analysis that
we utilize has been presented in [22], where both bubble collisions and turbulent motions
were considered. Qualitatively, gravity-wave detectors will give us a better chance to observe
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Figure 5: The panel on the left contains contours of the latent heat α =
{5.10−3, 10−2, 5.10−2, 0.1, 0.5} from top to bottom. The panel on the right draws contours of
the parameter, β/Hn, measuring the duration of the phase transition. From above one has
β/Hn = {105, 104, 103, 200}. f is the decay constant of the strong sector the Higgs emerges
from, and mh is the physical Higgs mass.

adiabaticity of the universe one obtain the following dimensionless parameter:

β

Hn
= Tn

d

dT

(
S3

T

) ∣∣∣
Tn

, (44)
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] ∣∣∣
Tn

. (45)

The left and right panels of Fig. 5 show contours of constant α and β/Hn, respectively, at
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Figure 6: Example of gravity wave spectrum produced during the EW phase transition both
by turbulence (left peak) and collision effects (right peak slightly emerging from the tail of
the turbulence spectrum). This plot is for mh = 115 GeV and f ! 600 GeV where α = 0.51,
β/H = 89 and Tn = 39 GeV. Note that suitable values of α, β/H to get a strong signal
always imply a small nucleation temperature (< 100 GeV) due to important overcooling
effects that drag the peak below the lower bound of the space-based detectors frequency
band (! 10−4 Hz), making the gravity waves delicate to observe.

the phase transition today if the latent heat energy released is large and the emission lasts
a long time. This can be understood easily by recalling that the power spectrum is given
by the square of the quadrupole moment of the source which in turns scales as the kinetic
energy over the time of emission [29]. In other words, typically α has to be O(1) and β/H
as small as O(100) to get a sufficiently high energy density Ωh2 ! 10−10.

Relying on our effective (nonrenormalizable) potential approach, we find that generically
the dynamics of the first order EWPT beyond the SM generate too weak gravity waves
to observe except for a tiny region of the parameter space. Namely, by looking closely at
Figs. 5 one can see that for a Higgs mass slightly above the LEP2 bound, mh ! 115 GeV,
and a relatively low scale, f ∼ 650 GeV, we get at best α ∼ 0.5 and β/H ∼ 100. The
corresponding nucleation temperature in this region is about 50 GeV, according to Fig 3.
For such a temperature scale, only LISA and BBO will be sensitive to the emitted spectrum
of gravity waves, according to the results presented in Figs. 3 and 4 of [22]. Its detectability
is probably beyond the capability of LISA. This result is in qualitative agreement with the
results of [30]. Indeed LISA requires at least values of α > 0.6 for β/H ∼ 100 in order to
see the characteristic peak from turbulence while the collision peak starts to be probed for
α > 0.8. On the other hand, BBO should be able to observe both peaks if α is around 0.3
(keeping β/H ∼ 100).

Thus it seems that one will have to wait until the launching of the second generation
of space-based interferometers to really study the EWPT through gravity wave detectors
within this framework. Moreover this would be possible only in the maximizing case where
the Higgs mass is close to its current experimental bound and the composite scale of the
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BUT...

  

Toy model
In the SM, the electroweak breaking happens by a cross-over and a 
first-order transition signals beyond SM physics.

A simple toy model for a strong electroweeak phase transition is given 
by the Standard Model equipped with a higher-dimensional operator in 
the Higgs potential

XX X

For smaller M
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the LISA range
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Gravitational Waves from  

Warped Extra-Dimensional Geometry

Randall-Servant ’07



Space-time is a slice of AdS5

ds2
= e−2kyηµνdxµdxν

− dy2

y = 0
y = πR

The effective 4D energy scale varies with position along 5th dimension

4D 
graviton

Planck 
brane

IR 
brane

M
2

Pl ∼

M3
5

k

 RS1 (has two branes)     versus   RS2 (only Planck brane)

[Randall, Sundrum ‘99]



Solution to the Planck/Weak scale hierarchy 
The Higgs (or any alternative EW breaking) is localized at 

y=πR, on the TeV (IR) brane

y = 0 y = πR

Planck 
brane

4D 
graviton

TeV 
brane

 EW

After canonical normalization of the Higgs:

kπR ∼ log(
MPl

TeV
)

Exponential hierarchy from O(10) hierarchy in the 5D theory

Radius stabilisation using bulk scalar (Goldberger-Wise mechanism)

veff = v0e
−kπR

parameter in the 5D lagrangian 

Warped hierarchies are radiatively stable as 
cutoff scales get warped down near the IR brane

One Fondamental scale : M5 ∼ MPl ∼ k ∼ Λ5/k ∼ r−1

kr =
4

π

k2

m2
ln

[

vh

vv

]

∼ 10



Randall-Sun1um phase transition

At high T: AdS-Schwarzchild BH solution with event horizon shielding the TeV brane

At low T: usual RS solution with stabilized radion and TeV brane

Assuming the universe started at T>> Tc, the PT has to take place if we 
want a  RS set-up at low T.

!2k    |y|

Higgs or

alternative

dynamics for

breaking

TeV

brane

Planck

brane

4d graviton

 Gauge fields and fermions in the bulk

y = 

!

ds   = dx  + r  dy

EW symmetry

2

Slice of AdS

 5

y = 0
rπ

2 22

L R
SU(2)           SU(2)             U(1)

5

π
e Creminelli-Nicolis-Rattazzi ’01 

Cosmology of the Randall-Sundrum model

Natural stabilisation 
of radius

à la Goldberger-
Wise :

kr =
4

π

k2

m2
ln

[

vh

vv

]

∼ 10

Start with a black brane, nucleate “gaps” in the horizon which then 
grow until they take over the entire horizon. 



but we can treat this as bubble nucleation in four dimensions 
 a five-dimensional set-up

Low energies: radion dominates potential

High energies:  holography

Need N large(M/k)3 ∼ N2/16π2

Completion of the phase transition



Goldberger-Wise mechanism

Veff =

∫ z1

z0

dz
√

g[−(∂φ)2 − m2φ2]

Λ5 = −24M
3
k

2L =

∫
dx4dz

√
−g[2M3R− Λ5]Start with the bulk 5d theory

and the orbifold extends from z=z0=L (Planck brane) to z=z1 (TeV brane)

ds2 = (kz)−2(ηµνdxµdxν + dz2)The metric for RS1 is  where                   is the AdS curvaturek = L
−1

z = k
−1

e
ky= e−2kyηµνdxµdxν

+ dy2

Which mechanism naturally selects z1  >> z0 ? simply a bulk scalar field φ can do the job:
∫

d4xdz
(√

g[−(∂φ)2 − m2φ2] + δ(z − z0)
√

g0L0(φ(z)) + δ(z − z1)
√

g1L1(φ(z))
)

φ = Az4+ε
+ Bz−ε

φ has a bulk profile satisfying the 5d Klein-Gordon equation

ε =
√

4 + m2L2
− 2 ≈ m2L2/4where

Plug this solution into 

VGW = z−4

1

[

(4 + 2ε)

(

v1 − v0

(

z0

z1

)

ε
)2

− εv2
1

]

+ O(z4
0/z8

1)

z1 ≈ z0

(

v0

v1

)1/ε
~ scale invariant fn modulated by a 
slow evolution through the z-ε term

= z
−4

1
P (z−ε)1

similar to Coleman-Weinberg mechanism



0 0.1 0.2 0.3 0.4
!Ε!

5
10

50
100

500
1000

S3"Tc , S4 N"3, v1"1, ∆T1"$0.5 v1
2

S3"Tc , thin wall

S3"Tc , thick wall

S4 , thick wall

S3"Tc , exact

S4 , exact

0 0.1 0.2 0.3 0.4
!Ε!

5
10

50
100

500
1000

S3"Tc , S4 N"3, v1"1, ∆T1"$2 !Ε! v1
2

S3"Tc , thin wall

S3"Tc , thick wall

S4 , thick wall

S3"Tc , exact

S4 , exact

Figure 2: Comparison of the thin and thick wall approximations (dotted lines) with the
exact solutions obtained by solving for the bounce numerically (solid lines).
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the radion potential with temperature. The height of the barrier falls off as T goes down.
For T below Tc/2, it is a very good approximation to use the zero temperature potential to
compute the bounce.
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Randall-Servant’06

 typically strong first-order PT, large supercooling

near conformal dynamics -> Tn << μTeV , large α, small β/H
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Conclusion

We might be learning something about the Higgs/radion 
by looking at the sky



Expected shape of the GW spectrum 
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~ f3

dΩG

d ln k
=

k3|ḣ|2

Gρc

hij(k, η) =
∫ η

ηin

dτG(τ, η)Πij(k, τ)

large scale part 
of the GW 
spectrum

white noise for the anisotropic stress -> k3 for the energy density

CAUSAL PROCESS: source is uncorrelated at scales larger than the peak scale



GW spectrum due to bubble collisions from 
numerical simulations: high frequency slope
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FIG. 3: Several spectra of gravitational radiation according to the old and new formulas. The

parameters are taken from ref. [8] and given in table I with α decreasing from top to bottom. In

the shaded region, the sensitivity of LISA and BBO is expected to drop considerably.

set α β/H T∗ / GeV

1 0.03 1000 130

2 0.05 300 110

3 0.07 100 85

4 0.1 60 80

5 0.15 40 75

6 0.2 30 70

TABLE I: Sets of parameters used in Fig. 3.

IV. CONCLUSIONS

We reexamined the spectrum of gravitational wave radiation generated by bubble col-

lisions during a first-order phase transition in the envelope approximation. Using refined

numerical simulations, our main finding is that the spectrum falls off only as f−1.0 at high

frequencies, considerably slower than appreciated in the literature. This behavior is most

probably related to the many small bubbles nucleated at a later stage of the phase tran-

sition [31]. This result is especially interesting in the light of recent investigations [7, 8]

that indicate that in the case of a first-order electroweak phase transition (obtained by a

Kosowsky et al, ’93 Huber-Konstandin,’08

derived from:

simulations with many 
bubbles and high accuracy 
too demanding in the 90ies

f-2  ➔     f-1

f-2 f-1

Kosowsky et al, ‘93



Expected shape of the GW spectrum from bubble collisionsGeneral form of the GW power spectrum

k3

low frequency 
tail : causality 
of the source
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k∗ ! β high frequency 
tail : depends on 
both power 
spectrum and 
time correlation 

 if thin wall and 
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Caprini-Durrer-Konstandin-Servant’09 

Comparison between analytic results of Caprini-Durrer-Servant’07 and numerical 
simulations of Huber-Konstandin’08 discussed in Caprini-Durrer-Konstandin-Servant’09 

Note: Slope of high-frequency tail is different for GW from turbulence (see Caprini-Durrer-Servant’09)



In general, c2
s depends on the EoS for the plasma, being c2

s = 1/3 in the bag case. In the
general case, c2

s will be ξ-dependent, although in many cases of interest deviations from 1/3
will be small.

Eq. (27) can then be solved (with the appropriate boundary conditions) to yield the
velocity profile v(ξ) of the plasma. Subsequently, eqs. (26) can be integrated to yield

w(ξ) = w0 exp

[

∫ v(ξ)

v0

(

1 +
1

c2
s

)

γ2 µ dv

]

. (29)

In the calculation of the gravitational radiation produced in the phase transition one
needs to compute the kinetic energy in the bulk motion of the plasma. We have now all
ingredients necessary to perform such calculation. The ratio of that bulk kinetic energy over
the vacuum energy gives the efficiency factor κ as

κ =
3

εξ3
w

∫

w(ξ)v2γ2 ξ2 dξ , (30)

where ξw is the velocity of the bubble wall. Notice that this definition coincides with the
expression used in the gravitational wave literature, that is given by κ = 3

εR3
w

∫

w v2γ2 R2dR,

but differs from the definition used in ref. [5] by a factor ξ3
w.

We also numerically check energy conservation: Integration of T00 over a region larger
than the bubble (including the shock front) is constant in time, giving

∫
[

(γ2 −
1

4
)w −

3

4
wN

]

ξ2dξ =
ε

3
ξ3
w, (31)

where wN denotes the enthalpy at nucleation temperature far in front of the wall. This
implies that the energy which is not transformed into kinetic bulk motion, but is used
instead to increase the thermal energy, is

1 − κ =
3

εξ3
w

∫

3

4
(w − wN)ξ2dξ =

3

εξ3
w

∫

(e − eN)ξ2dξ. (32)

3 Detonations, deflagrations and hybrids

We can now use the previous fluid equations to describe the different kinds of solutions for
the motion of the plasma disturbed by the moving phase transition wall. In the discussion
below, the sound velocity in the plasma plays a very relevant role. This velocity will in general
depend on ξ and it is convenient to distinguish its asymptotic values in the symmetric and
broken phases. We denote those two velocities by c±s . In many cases, we expect the bag EoS
to hold in the symmetric phase and therefore c+

s = 1/
√

3.
Before embarking in the discussion of the different types of velocity profiles, it proves use-

ful to study first in more detail the profile eq. (27) without worrying about physical boundary
conditions. The different curves in Fig. 2 are obtained by solving for ξ as a function of v
[instead of the more physically meaningful v(ξ), the plasma velocity profile] using arbitrary
boundary conditions and setting cs = 1/

√
3. This procedure has the advantage that ξ(v) is

8

ΩGW ∼ κ2(α, vb)
(

H

β

)2 (
α

α + 1

)2

  

Efficiency coefficient

bulk flow and 
hydrodynamics

Espinosa, TK, No, Servant 'xx

Bulk flow & hydrodynamics

-> all boils down to calculating 
the fluid velocity profile in the 

vicinity of the bubble wall

higgs vaccuum energy is converted into :

- heating
-bulk motion 
-kinetic energy of the higgs, 

fraction that goes 
into kinetic energy 

fluid velocity

wall velocity



3.1 Detonations

A pictorial representation of a typical detonation is depicted in Fig. 3, right plot. The
corresponding velocity profile is as in Fig. 4, lower left plot. More precisely, in detonations
the phase transition wall moves at supersonic speed ξw (ξw > c+

s ) hitting fluid that is at rest
in front of the wall. In the wall frame, the symmetric-phase fluid is moving into the wall at
v+ = ξw and entering the broken phase behind the wall where it slows down so that v− < v+.
In the rest frame of the bubble center, the fluid velocity right after the wall passes jumps to
v(ξw) = µ(v+, v−) (the Lorentz transformation (28) from the frame of the wall to the rest
frame of the center of the bubble) and then slows down until it comes to a stop, at some
ξ < ξw, forming a rarefaction wave behind the wall. From the previous discussion we know
that v will go to zero smoothly at ξ = c−s .

deflagration

!
w

 < c
s

!
w

 > c
s

!
w

 > c
s

hybrid detonation

Figure 3: Pictorial representation of expanding bubbles of different types. The black circle is the
phase interface (bubble wall). In green we show the region of non-zero fluid velocity.

In order to obtain a consistent solution in the region c−s < ξ < ξw, one needs 0 < ∂ξv < ∞
which, using eq. (27), requires µ(ξ) > µ(ξw) ≥ c−s behind the wall. Consequently, detonation
solutions are confined to the lower right corner of fig. 2, as indicated. Boosting to the wall
frame this implies v− ≥ c−s , since v− = µ(ξw, v(ξw)). Therefore, detonations can be divided
into Jouguet detonations (v− = c−s ) and weak detonations (v− > c−s ); strong detonations
(v− < c−s ) are not consistent solutions of the fluid equations, see fig. 1.2

Fig. 4 shows also the enthalpy profile (bottom right) for a detonation. Concerning this
profile, remember that the matching conditions across the wall give

wN = w+ = w−

(

1 − ξ2
w

ξw

) (

v−
1 − v2

−

)

, (34)

where the subscript N denotes the plasma at the temperature of nucleation far in front of

2As c−
s

can be different from 1/
√

3 in the most general case, the forbidden region v
−

< c−
s

, shaded in
Fig. 1, will be shifted in those cases.
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Fig. 1, will be shifted in those cases.
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Figure 4: Examples of the fluid velocity (in the plasma rest frame), enthalpy and entropy profiles
for a subsonic deflagration, a deflagration with rarefaction wave (hybrid) and a detonation, for
a−/a+ = 0.85. The bubble of broken phase is in gray. For detonations, the fluid kinetic energy
and thermal energy are concentrated near the wall but behind it i.e. inside the bubble, while they
are located outside (mostly outside) of the bubble for deflagrations (hybrids).

the wall. Then, eq. (29) transforms into

w(ξ) = wN

(

ξw

1 − ξ2
w

)(

1 − v2
−

v−

)

exp

[

−
∫ v(ξw)

v(ξ)

(

1 +
1

c2
s

)

γ2 µ dv

]

. (35)
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the wall. Then, eq. (29) transforms into

w(ξ) = wN

(

ξw

1 − ξ2
w

)(

1 − v2
−

v−

)

exp

[

−
∫ v(ξw)

v(ξ)

(

1 +
1

c2
s

)

γ2 µ dv

]

. (35)
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Depending on the boundary conditions at the bubble front, there are three possible solutions:
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the wall. Then, eq. (29) transforms into

w(ξ) = wN

(

ξw

1 − ξ2
w

)(

1 − v2
−

v−

)

exp

[

−
∫ v(ξw)

v(ξ)

(

1 +
1

c2
s

)

γ2 µ dv

]

. (35)
11

Espinosa, Konstandin, No, Servant’10



and the ratio ω+/ωN cannot be made arbitrarily large. Inspection of the deflagration profiles
in Fig. 2 shows that ω+/ωN will be maximized by the case with strongest shock-front, which
corresponds to the highest possible v(ξw), that is, v(ξw) = ξw. In the wall frame this gives
v+ = 0 and, using the matching conditions (9), this case also has ω− → 0, i.e. a−T 4

− → 0.
Physically this would represent a limiting case for which the transition is such that the broken
phase inside the bubble is empty: the plasma is swept away by the wall (thus leading to the
strongest possible shock-front) and larger values of η cannot be realized microscopically. The
same matching conditions also give us ω+ → 4ε, which represents a fixed upper bound for ω+.
Going now to the shock rest frame and matching there one gets ωN = ωshc2

s(1−ξ2
sh)/(ξ2

sh−c4
s).

The quantities ωsh and ξsh can be obtained once the boundary condition v(ξw) = ξw is fixed
and lead to the minimal value of ωN . The resulting upper bound on αN can be fitted
numerically as a function of the wall velocity, and one gets

αmax
N |

defla.
#

1

3

1

(1 − ξw)−13/10
, (38)

as derived in Appendix A.
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Figure 5: Fluid velocity profiles (in the plasma rest frame) for deflagrations, hybrids and detona-
tions, for different wall velocities and αN = 0.3.

3.3 Hybrids

From the previous discussion of velocity jumps it is clear that it should be possible to com-
bine detonation and deflagration solutions into a new velocity profile that is a superposition
of both types (thus the name hybrid), provided the wall is supersonic. In fact, it is known
from hydrodynamics simulations [19] that supersonic deflagrations are not stable but develop
a rarefaction wave, identical to the detonation profile discussed earlier. A pictorial repre-
sentation of a typical hybrid bubble is depicted in Fig. 3, central plot. The corresponding
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fluid velocity profile for different wall velocities

 vwall   increases
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Figure 8: The efficiency coefficient κ as a function of the wall velocity ξw for fixed αN . The
dashed and dashed-dotted lines mark the transitions from deflagrations to hybrids and further to
detonations. The dashed-dotted line corresponds to Jouguet detonations (the only case used in
the literature, although with a missing 1/ξ3

w factor). Analytical fits for κ(αN , ξw) are provided in
Appendix A.

velocity ξw and the parameter α+ (or αN) the velocity profile is determined and κ can be
calculated using eq. (30) independently from further assumptions on friction and microscopic
physics in the plasma close to the wall (which are relevant to fix ξw).

The results are shown in Fig. 8 which gives κ as a function of the wall velocity for
several values of the vacuum energy αN . Note also that for large values of αN , small wall
velocities are impossible, see Fig. 7 and the discussion about deflagrations in Sec. 3. The
efficiency increases with αN and is maximal for the hybrid solutions. Nevertheless, according
to numerical simulations, the detonation solutions are the only supersonic modes that are
globally stable for small values of αN and realistically the maximal efficiency corresponds
to the Jouguet case in this regime. The gravity wave literature focused on the Jouguet
detonations (dashed-dotted line) and hence overestimated the efficiency κ. However, we
stress that this effect is mostly compensated by the missing factor ξ3

w in the formula of κ(α)
we mentioned before. In appendix A, we give fits to the efficiency κ shown in Fig. 8 as a
function of the parameters αN and ξw.

Finally, it is interesting to estimate the thickness of the plasma shell near the bubble
wall where the kinetic energy in the plasma is concentrated (as this is relevant for GW
production). In Fig. 9 we give the thickness ∆ξ of a shell around the transition wall such
that it contains a given fraction of the kinetic energy, ∆κ/κ, as indicated. For each type
of bubble we choose the shell so as to maximize that fraction. That is, for detonations the
shell is (ξw, ξw − ∆ξw); for deflagrations (ξw − ∆ξw, ξw) and in-between for hybrids. The
dots in each line mark the boundaries between different regimes (deflagrations, hybrids and
detonations, in order of increasing wall velocity). We see that, especially for hybrid solutions,
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In general, c2
s depends on the EoS for the plasma, being c2

s = 1/3 in the bag case. In the
general case, c2

s will be ξ-dependent, although in many cases of interest deviations from 1/3
will be small.

Eq. (27) can then be solved (with the appropriate boundary conditions) to yield the
velocity profile v(ξ) of the plasma. Subsequently, eqs. (26) can be integrated to yield

w(ξ) = w0 exp

[

∫ v(ξ)

v0

(

1 +
1

c2
s

)

γ2 µ dv

]

. (29)

In the calculation of the gravitational radiation produced in the phase transition one
needs to compute the kinetic energy in the bulk motion of the plasma. We have now all
ingredients necessary to perform such calculation. The ratio of that bulk kinetic energy over
the vacuum energy gives the efficiency factor κ as

κ =
3

εξ3
w

∫

w(ξ)v2γ2 ξ2 dξ , (30)

where ξw is the velocity of the bubble wall. Notice that this definition coincides with the
expression used in the gravitational wave literature, that is given by κ = 3

εR3
w

∫

w v2γ2 R2dR,

but differs from the definition used in ref. [5] by a factor ξ3
w.

We also numerically check energy conservation: Integration of T00 over a region larger
than the bubble (including the shock front) is constant in time, giving

∫
[

(γ2 −
1

4
)w −

3

4
wN

]

ξ2dξ =
ε

3
ξ3
w, (31)

where wN denotes the enthalpy at nucleation temperature far in front of the wall. This
implies that the energy which is not transformed into kinetic bulk motion, but is used
instead to increase the thermal energy, is

1 − κ =
3

εξ3
w

∫

3

4
(w − wN)ξ2dξ =

3

εξ3
w

∫

(e − eN)ξ2dξ. (32)

3 Detonations, deflagrations and hybrids

We can now use the previous fluid equations to describe the different kinds of solutions for
the motion of the plasma disturbed by the moving phase transition wall. In the discussion
below, the sound velocity in the plasma plays a very relevant role. This velocity will in general
depend on ξ and it is convenient to distinguish its asymptotic values in the symmetric and
broken phases. We denote those two velocities by c±s . In many cases, we expect the bag EoS
to hold in the symmetric phase and therefore c+

s = 1/
√

3.
Before embarking in the discussion of the different types of velocity profiles, it proves use-

ful to study first in more detail the profile eq. (27) without worrying about physical boundary
conditions. The different curves in Fig. 2 are obtained by solving for ξ as a function of v
[instead of the more physically meaningful v(ξ), the plasma velocity profile] using arbitrary
boundary conditions and setting cs = 1/

√
3. This procedure has the advantage that ξ(v) is

8

Efficiency can be quite different than from the 
Jouguet detonations which were usually assumed

 Jouguet detonations

Espinosa, Konstandin, No, Servant’10

fraction κ of vacuum energy density ε 
converted into kinetic energy

(wall velocity)

=wall velocityξw

v:fluid velocity

ξ =r/t where r is distance 
from the bubble center and 

t is time since nucleation

ω=enthalpy



The velocity of the bubble wall can be determined by solving:

friction 
coefficient

!φ +
∂F
∂φ

− TN η̃ uµ∂µφ = 0

driving force. There is however a resistance to this expansion from the surrounding plasma,
which exerts a friction force that grows with the velocity of the moving wall. Eventually, an
equilibrium between these two forces is reached after a short time of expansion and, since
then on, the bubble wall keeps expanding in a steady state at a constant terminal velocity.
As explained in the last sections, hydrodynamics alone cannot be used to determine this
terminal wall velocity and one has to analyze the mechanism of entropy production and
friction in the wall.

5.1 EoM for the Higgs field and the friction parameter η

We take into account entropy production and friction through the equation of motion of the
Higgs field

!φ +
∂V0

∂φ
+

∑

i

dm2
i

dφ

∫

d3p

(2π)32Ei
fi(p) = 0 . (43)

By decomposing
fi(p) = f eq

i (p) + δfi(p) , (44)

where f eq
i = 1/[exp (Ei/T ) ∓ 1] is the equilibrium distribution function of particle species

i with E2
i = p2 + m2

i , eq. (43) takes the simple form (see also ref. [16] and more recently
ref. [26])

!φ +
∂F
∂φ

−K(φ) = 0 , (45)

where the second term gives the force driving the wall and K(φ) stands for the friction term

K(φ) = −
∑

i

dm2
i

dφ

∫

d3p

(2π)32Ei
δfi(p) . (46)

Friction is therefore due to deviations of particle distributions from equilibrium. In prin-
ciple, calculation of K(φ) requires solving a coupled system involving Boltzmann equations
for particle species with a large coupling to the Higgs field. This intricate calculation has
been performed in the Standard Model [15] and in the MSSM [20] and under the assumption
that the deviation from thermal equilibrium is small, i.e. δfi(p) # fi(p), which is only true
for weakly first-order phase transitions.

In this paper, we want to follow a more phenomenological and model-independent ap-
proach. In refs. [16, 26] a particularly simple choice for K(φ) was used:

K(φ) = TN η̃ uµ∂µφ , (47)

(where TN is inserted just to make η̃ dimensionless). This Lorentz invariant choice is mo-
tivated by similar approaches in the inflationary context but, as we will see in the next
section, it does not lead to the correct behavior for highly relativistic bubble wall velocities:
this friction force could increase without bounds, due to the γ factor appearing through
uµ∂µφ, but we know from ref. [27] that at large wall velocities the friction term approaches
a constant (see next section).

Friction comes from out-of-equilibrium effects and the assumption that it depends lo-
cally only on the plasma four-vector uµ and a Lorentz scalar η is too simplistic. In our
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phenomenological approach we ensure that the friction force grows with v and not γv. Such
behavior could arise from a friction term in the Higgs equation of motion of the form

K(φ) = TN η̃
uµ∂µφ

√

1 + (λµuµ)2
, (48)

where the Higgs background is parametrized by a four-vector λµ [such that φ(λµxµ) and λµ

is (0, 0, 0, 1) in the wall frame]. One can show that the entropy production from such a term
is always positive, as it should be.

Assuming then that in the steady state the bubble is large enough so that we can use
the planar limit, using (48) in eq. (45) we get, in the wall frame,

∂2
zφ −

∂F
∂φ

= −TN η̃v∂zφ , (49)

where z is the direction of the wall velocity. Note that the right-hand side would be multiplied
by γ if we use (47) instead of (48). If we multiply this differential equation by ∂zφ on both
sides and integrate across the wall, we get

∫

dz ∂zφ
∂F
∂φ

= TN η̃

∫

dz v (∂zφ)2 . (50)

The integration of the force term could be simply performed if the free energy F did not have
an implicit dependence on z via the change in the temperature, T (z), with T (±∞) = T±.
Using dF/dz = (∂F/∂φ)∂zφ+(∂F/∂T )∂zT , one can rewrite the driving force of the bubble
expansion as:

Fdr ≡
∫

dz ∂zφ
∂F
∂φ

= F|+
−
−

∫

dz ∂zT
∂F
∂T

, (51)

and, using ε± and a(z) as defined in eqs. (16) and (17), one gets, without making assumptions
on the plasma equation of state:

Fdr = ε+ − ε− −
1

3

∫

da T 4 . (52)

By making further use of the definition of a(z) and assuming that the distribution functions
for particle species are the equilibrium ones one can rewrite eq. (52) as

Fdr = ∆V0 +
∑

i

|Ni|
∫

dz
dm2

i

dz

∫

d3p

(2π)3

f eq
i

2Ei
, (53)

where ∆V0 is the T = 0 part of ε+ − ε−, that is, the difference in (T = 0) potential energy
between the symmetric and broken minima (ε, for the bag equation of state). This expression
for the driving force will be useful in sect. 6.

Notice that this force does not coincide with the latent heat Λ, given by

Λ ≡ e+ − e− =
(

ε + a T 4
)
∣

∣

+

−
. (54)

nor with the free energy (pressure) difference

∆F ≡ p− − p+ =
(

ε −
a

3
T 4

)
∣

∣

∣

+

−

. (55)
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our parameter η can be written as

η ∼
η̂

10 a+

1

TN lw

(

φN

TN

)4

(66)

The coefficient η̂ was determined in the SM [15] (η̂ ≈ 3) and in the MSSM [20] (η̂ ! 100 with
a sizable dependence on tanβ). A particularly interesting case is given by the parameter
region of the MSSM that allows for viable electroweak baryogenesis. The bound on sphaleron
wash-out implies φN/TN " 1 and using TN lw ≈ 10, η̂ ≈ 100 one finds η ≈ 1/30. Due to a
small difference in free energies, this leads to subsonic wall velocities 〈v〉 = 0.05 ÷ 0.1 [20]
as required for the diffusion of CP-violating particle densities into the symmetric phase in
front of the wall. This corresponds to a very weak phase transition with a value of αN just
slightly above its lower bound (that depends on a−/a+). Note that for models with a similar
particle content the friction η is not expected to change much, while the strength of the
phase transition can increase significantly. This is for example the case in singlet extensions
of the SM and MSSM which can easily lead to detonations or runaway solutions.

In this section we have assumed that the bubble wall reaches at some (not too late) stage
of the expansion a constant velocity. In this case the fraction of energy transformed into
kinetic energy of the Higgs field becomes negligible, since it only scales with the surface of
the bubble, while the similarity solutions of bulk motion scale with the volume. This can
change in cases in which the wall keeps accelerating without reaching a terminal velocity, as
discussed in the next section.

6 Runaway walls

It was recently argued [27] that the friction exerted on the Higgs wall by the plasma might
be too small and the wall might continuously accelerate. In this case a constant fraction of
the free vacuum energy is transformed into kinetic and gradient energies of the wall. In this
section we analyze the energy balance and the efficiency coefficient in this situation.

Let us first quickly present the main result of [27] that is based on the analysis of refs. [29–
31]. The passing phase-transition wall disturbs the distribution functions of particles in the
plasma. As discussed in the previous section, if we knew such non-equilibrium distributions,
fi(p, z), for each particle species, we could write, for the total force acting on the wall per
unit area and including friction:

Ftot = Fdr − Ffr = ∆V0 +
∑

i

|Ni|
∫

dz
dm2

i

dz

∫

d3p

(2π)3

fi

2Ei
. (67)

This has the same form as eq. (53) for the driving force Fdr but with the replacement f eq
i → fi.

Now, the ultra-relativistic case is particularly simple: to leading order in 1/γw, the wall
induces a sudden change in particle masses, m2

i,+ → m2
i,−, but leaves particle distribution

functions as they were in the symmetric phase fi = f eq
i,+ (which are not the equilibrium ones

in the broken phase). This allows the z-integral in (67) to be performed and one obtains

Ftot = ∆V0 −
∑

i

|Ni|∆m2
i

∫

d3p

(2π)3

f eq
i,+

2Ei,+
, (68)
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driving force:

Ftot > 0 : runaway

the wall velocity grows until the friction force equilibrates and a steady state is reached

[Bodecker-Moore ’09]
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Figure 11: A sketch of the friction force as a function of the wall velocity showing the saturation
at 〈v〉 → 1. The behavior for intermediate velocities is largely unknown. The arrows indicate two
possible values for the driving force that would lead to steady or runaway bubble expansion, as
indicated.

where the diamond operator is defined as

$ =
←−
∂ x

−→
∂ p −

←−
∂ p

−→
∂ x. (75)

In the semi-classical limit, the operator ei!/2 can be expanded in gradients and the real/imaginary
parts of the equations become, at first order,

(p2 − m2
i )G

<
i = 0, (76)

(p2 − m2
i ) $ G<

i = 0. (77)

The gradient expansion is justified in the present case because in the wall frame the particles
have momenta of order γT , which is large compared to the inverse wall thickness. Using the
ansatz

G<
i = 4π δ(p2 − m2

i )fi(x
µ, pµ) , (78)

this yields for the particle distribution function the equation
[

p · ∂x +
1

2
(∂ζm

2
i )λ · ∂p

]

fi(x
µ, pµ) = 0. (79)

We introduced again a four-vector λµ to parametrize the motion of the wall [that is, λµ =
(0, 0, 0, 1) in the frame moving with the wall] and ζ ≡ λ ·x. Notice that the first term in (79)
is the flow term of a Boltzmann equation while the second term represents the force from
the wall acting on the plasma. In front of the wall the distribution function is given by the
equilibrium one. E.g., for a bosonic degree of freedom

f eq
i,+ =

θ(p0)

exp[β(u · p)] − 1
, (80)

26

the friction force saturates at a finite value for v->1

contribution to the pressure is similar in both phases. Particles that are heavy in both
phases do not contribute much to either pressure difference or free energy. Hence, mostly
the particles that become heavy during the phase transition produce a pressure difference
along the wall. Using this, one obtains for an accelerated wall the criterion

∆Tzz =
T 2

N

24

∑

light→heavy

ci |Ni|m2
i =

T 2
N

24
〈φ〉2

∑

light→heavy

ci |Ni| y2
i < ε , (88)

with ci = 1 (1/2) for bosons (fermions), |Ni| are the corresponding numbers of degrees
of freedom, yi are the coupling strengths to the Higgs boson and 〈φ〉 the Higgs vacuum
expectation value in the broken phase. Using the relation ε = αN(aNT 4

N) we get that a
runaway wall is in principle possible for

αN > α∞ ≡
30

π2

(

〈φ〉
TN

)2
∑

light→heavy ci |Ni| y2
i

∑

light c
′
i |Ni|

, (89)

with c′i = 1 (7/8) for bosons (fermions). This equation serves as the definition of α∞. In
extensions of the SM, eventually more particles contribute to the pressure difference, but
typically not many new light particles are in thermal equilibrium. One hence can deduce
that for

αN > 1.5 × 10−2

(

〈φ〉
TN

)2

, (90)

runaway walls are possible depending on the details of the model. It is interesting to note
that models which lead to sizable gravitational wave production typically satisfy the runaway
condition and this should be taken into account when calculating the GW signal.

Next, we make contact with the case of a constant wall velocity, discussed in the last
section.

7 Energy budget of first-order phase transitions

The analysis in the last section assumed that the system was time-independent in the wall
frame, which leads to the fact that the Higgs field only contributes a pressure component
from the vacuum energy to the energy momentum tensor
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Such relations lead to the matching conditions (9) used as boundary conditions in the hydro-
dynamic analysis of the plasma. In the case of a highly relativistic plasma, these boundary
conditions can be derived explicitly from the particle distribution functions. Following the
same calculation as in the previous section, for T plasma
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For strong 1st order PT, the wall keeps accelerating
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Figure 10: Contour plots of κ and ξw as functions of η and αN (for a−/a+ = 0.85). The blue lines
mark the transition to regions without solutions. The green lines mark the boundaries between
stationary and runaway solutions. The red lines mark the transition from subsonic to supersonic
deflagrations (hybrids). We superimposed the detonation region in the lower plots as a gray band.

plasma velocity, which in general is a very good approximation. For η̃ fixed, the boundary
conditions (say at z = −∞) for T (z) and v(z) cannot be chosen freely: e.g. if one fixes
T (+∞) = T+ (in general different from TN) only one particular v(+∞) = v+ is selected
and then all profiles φ(z), T (z), v(z) can be determined. Detonation solutions will have
v(+∞) = v+ = ξw > v(−∞) = v− and one should choose T (+∞) = TN . Deflagrations
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Figure 10: Contour plots of κ and ξw as functions of η and αN (for a−/a+ = 0.85). The blue lines
mark the transition to regions without solutions. The green lines mark the boundaries between
stationary and runaway solutions. The red lines mark the transition from subsonic to supersonic
deflagrations (hybrids). We superimposed the detonation region in the lower plots as a gray band.

plasma velocity, which in general is a very good approximation. For η̃ fixed, the boundary
conditions (say at z = −∞) for T (z) and v(z) cannot be chosen freely: e.g. if one fixes
T (+∞) = T+ (in general different from TN) only one particular v(+∞) = v+ is selected
and then all profiles φ(z), T (z), v(z) can be determined. Detonation solutions will have
v(+∞) = v+ = ξw > v(−∞) = v− and one should choose T (+∞) = TN . Deflagrations
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Model-independent       contoursκ
Using the fact that the number of effective degrees of freedom decreases continuously in the
wall, the last integral in (52) is bounded as

1

3
(a+ − a−)T 4

min ≤
1

3

∫

da T 4 ≤
1

3
(a+ − a−)T 4

max , (56)

where Tmin = Min{T−, T+} and Tmax = Max{T−, T+}. For weak phase transitions one
typically has T+ ≈ T− and the concrete choice of the profiles in the wall are not important.
For very strong phase transitions, the free energy is dominated by the vacuum contribution
and the plasma contribution is rather small altogether:

Fdr ≈ ∆F ≈ ε+ − ε− − (a+ − a−)
T 4

3
(for weak phase transitions) (57)

Fdr ≈ ∆F ≈ Λ ≈ ε+ − ε− (for strong phase transitions) (58)

For simplicity, let us approximate the integral in eq. (56) by the expression involving T+.
For other approximations the results would not change qualitatively. In this case, the Higgs
equation of motion gives

α+ −
1

3

(

1 −
a−

a+

)

=
η̃TN

a+T 4
+

∫

dz v (∂zφ)2 . (59)

In the SM, the second term in (59) is roughly (1− a−/a+)/3 = 0.05. For small values of α+

the left hand side of (59) is negative and no bubbles can nucleate (for nucleation one can
consider T+ = T−, in which case Fdr = F+ − F−, so that the wrong sign of the free-energy
difference is the reason that prevents the phase transition). For larger values of α+, the
left-hand side of the equation is positive and has to be balanced by the friction force so as
to obtain a constant wall velocity, as already explained. We will rewrite the right hand side
of (59) as

η̃TN

a+T 4
+

∫

dz v (∂zφ)2 ≡ η
α+

αN
〈v〉 , (60)

which serves as the definition of η. Here 〈v〉 denotes the fluid velocity average across the
wall (in the wall frame), that we approximate as

〈v〉 ≡
∫

dz v (∂zφ)2

∫

dz (∂zφ)2
'

1

2
(v+ + v−) . (61)

In this way, (59) is simply written as4

α+ −
1

3

(

1 −
a−

a+

)

= η
α+

αN
〈v〉 . (62)

Eq. (62) reproduces the correct behavior for small and very large wall velocities, even
though the parameter η will not be the same in these two limits. This simple phenomenolog-
ical approach already reproduces almost all qualitative features found in the hydrodynamic

4Compared to ref. [26], our velocity average does not include a γ factor and we use a different expression
for the driving force.
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Figure 10: Contour plots of κ and ξw as functions of η and αN (for a−/a+ = 0.85). The blue lines
mark the transition to regions without solutions. The green lines mark the boundaries between
stationary and runaway solutions. The red lines mark the transition from subsonic to supersonic
deflagrations (hybrids). We superimposed the detonation region in the lower plots as a gray band.

plasma velocity, which in general is a very good approximation. For η̃ fixed, the boundary
conditions (say at z = −∞) for T (z) and v(z) cannot be chosen freely: e.g. if one fixes
T (+∞) = T+ (in general different from TN) only one particular v(+∞) = v+ is selected
and then all profiles φ(z), T (z), v(z) can be determined. Detonation solutions will have
v(+∞) = v+ = ξw > v(−∞) = v− and one should choose T (+∞) = TN . Deflagrations
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mark the transition to regions without solutions. The green lines mark the boundaries between
stationary and runaway solutions. The red lines mark the transition from subsonic to supersonic
deflagrations (hybrids). We superimposed the detonation region in the lower plots as a gray band.

plasma velocity, which in general is a very good approximation. For η̃ fixed, the boundary
conditions (say at z = −∞) for T (z) and v(z) cannot be chosen freely: e.g. if one fixes
T (+∞) = T+ (in general different from TN) only one particular v(+∞) = v+ is selected
and then all profiles φ(z), T (z), v(z) can be determined. Detonation solutions will have
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T (+∞) = T+ (in general different from TN) only one particular v(+∞) = v+ is selected
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ηMSSM ∼ 10−2

ηSM ∼ 10−3

v ∼ 0.05− 0.1



Energy budget of the phase transition
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Figure 12: The energy budget for η = 0.2 and η = 1.0. The different contributions (from top
to bottom) are thermal energy, bulk fluid motion and energy in the Higgs field. The last two
components can potentially produce anisotropic stress in the plasma and subsequently gravity
waves.

Hence, in the runaway case, with αN > α∞ the solutions for the fluid motion are identical
to the ones with αN = α∞, according to the distribution functions determined close to the
wall. At the same time the Higgs field cannot be time-independent anymore and energy
momentum conservation implies that the remaining energy is used to accelerate the wall.

We observed in section 4 that, in the limit of large wall velocities, the efficiency factor
does not depend on the wall velocity but is given by (42). This means that, in the runaway
case,

κ∞ !
α∞

0.73 + 0.083
√

α∞ + α∞

(runaway). (94)

In summary, in the runaway regime and for given αN , a portion α∞ of the initial αN produces
bulk motion with efficiency κ∞, as given by eq. (94), while the remaining portion, αN −α∞,
is transformed directly into kinetic/gradient energy of the Higgs field with efficiency κ =
1. These two components can potentially produce anisotropic stress in the plasma and
subsequently gravity waves while the thermal energy in the plasma can not. Figure 12
shows the energy budget of the phase transition for two choices of the friction coefficient η
as a function of αN in different regimes of bubble expansion.

8 Summary

The bubble wall velocity ξw in first-order phase transitions is a key quantity entering the
calculation of the baryon asymmetry in electroweak baryogenesis and its derivation has been
discussed extensively in the literature. However, it has been treated in detail only in specific
models (corresponding to weak first-order phase transitions) and a general account of the
problem was lacking. In this work, we attempted to gather all the important information
in a self-consistent manner and in a model-independent approach. We presented a unified

29

0.1 1 10
!
N

0

0.2

0.4

0.6

0.8

1

" = 0.2

0.1 1 10
!
N

0

0.2

0.4

0.6

0.8

1

" = 1.0

deflagration run-awaydetonation deflagration detonation run-away

thermal

bulk

Higgs

Higgs

bulk

thermal

Figure 12: The energy budget for η = 0.2 and η = 1.0. The different contributions (from top
to bottom) are thermal energy, bulk fluid motion and energy in the Higgs field. The last two
components can potentially produce anisotropic stress in the plasma and subsequently gravity
waves.

Hence, in the runaway case, with αN > α∞ the solutions for the fluid motion are identical
to the ones with αN = α∞, according to the distribution functions determined close to the
wall. At the same time the Higgs field cannot be time-independent anymore and energy
momentum conservation implies that the remaining energy is used to accelerate the wall.

We observed in section 4 that, in the limit of large wall velocities, the efficiency factor
does not depend on the wall velocity but is given by (42). This means that, in the runaway
case,
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0.73 + 0.083
√
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(runaway). (94)

In summary, in the runaway regime and for given αN , a portion α∞ of the initial αN produces
bulk motion with efficiency κ∞, as given by eq. (94), while the remaining portion, αN −α∞,
is transformed directly into kinetic/gradient energy of the Higgs field with efficiency κ =
1. These two components can potentially produce anisotropic stress in the plasma and
subsequently gravity waves while the thermal energy in the plasma can not. Figure 12
shows the energy budget of the phase transition for two choices of the friction coefficient η
as a function of αN in different regimes of bubble expansion.

8 Summary

The bubble wall velocity ξw in first-order phase transitions is a key quantity entering the
calculation of the baryon asymmetry in electroweak baryogenesis and its derivation has been
discussed extensively in the literature. However, it has been treated in detail only in specific
models (corresponding to weak first-order phase transitions) and a general account of the
problem was lacking. In this work, we attempted to gather all the important information
in a self-consistent manner and in a model-independent approach. We presented a unified
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Determination of energy budget is important since gravity wave 
spectra from bubble collisions and turbulence are different



Summary

Discussion applies trivially to any other 1st order phase transition (only shift 
peak frequency, amplitude and shape of signal do not depend on the absolute 

energy scale of the transition)

The nature of the EW phase transition is unknown & it will take time before we 
can determine whether  EW symmetry breaking is purely SM-like or there are 
large deviations in the Higgs sector which could have led to a first-order PT 

It is an interesting prospect that some TeV scale physics could potentially be 
probed by LISA  
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Figure 16: Sensitivities of LISA, AGIS, BBO and Advanced LIGO (orange) compared with two
GW spectra (black) generated by MHD turbulence from a phase transition at respectively T∗ = 100
GeV with β/H∗ = 100, and T∗ = 5.106 GeV with β/H∗ = 50; ΩS∗/Ωrad∗ = 2/9, vb = 0.87, γ = 2/7,
and xc = 1. The Advanced LIGO sensitivity is optimized by making use of correlations between
two ground-based detectors [69].

A Analytical expressions for Section 2.3

Here we give the full expression for Eqs. (19) and (22).
• Incoherent constant source

F (tin, tfin, ∆t) =






(
g0

gfin

) 1
3 8

[
1− tfin

∆t log
(

tfin
tfin−∆t/2

)
− tin

∆t log
( tin+∆t/2

tin

)]

"
(

g0

gfin

) 1
3 ∆t

tin
long-lasting,

(
g0

g∗

) 1
3 (2π)2

3

(
∆t
tin

)2
short-lasting.

(97)
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