Summary of SUSY+ Cosmology sessions

International Workshop on Linear Colliders 2010 (ECFA-CLIC-ILC Joint Meeting)

Géraldine SERVANT CERN, Theory Unit & IPhT CEA Saclay

Many talks on mass/parameter determination mostly within standard susy framework:

SUSY Prediction for the ILC

Determination of Heavy Smuon and Selectron Mass at CLIC

A Study of Light-flavored SQuark **Production** at **CLIC**

A Study of Chargino and Neutralino Masses using W and h **Energy Spectra and Threshold** Scans at CLIC.

Sven Heinemeyer,

J-J.Blaising

Peter Schade Frank Simon

N.Alster

Measuring a light neutralino mass at the ILC John Conley $M_{\chi_1^0} = a$ few GeV.

Measuring Unification

Michael Rauch

Polarized positrons for Higgs and SUSY Gudrid Moortgat-Pick

On the possibility of stop mass determination in photon-photon and e+e- collisions at ILC

A.N.Skachkova

and within less common susy

Dirac gauginos and their scalar partners

Jan Kalinowski

Bilinear R parity violation at the ILC

Benedikt Vormwald

Neutrino physics at colliders?

Sneutrino dark matter G. Bélanger

invisible higgs decay (almost 100% BR) into sneutrinos

and beyond susy (heavy gauge bosons in little higgs models)

and model-independent approaches

Model Independent WIMP Searches with Polarized Beams at the ILC

Christoph Bartels

WIMP Detection with ISR

 $e^+e^- \rightarrow \chi \chi \gamma$

Is it possible to extract Masses and J_0 from data? Required Luminosity, Polarised beams? What can we learn about the question mark?

and beyond any expectation

Dark Energy at Colliders?

Philippe Brax

Dark Matter Candidates Ω ~1

In Theory Space

On LONG-LIVED STAUS (A. Ibarra)

Scenarios with superWIMP LSP share one common feature: if R-parity is conserved, the NLSP is very long lived!

gravitino

Decay rate suppressed by the Planck mass (or more properly, by the SUSY breaking scale $F=\sqrt{3} m_{3/2} M_P$)

axinos

Decay rate suppressed by the Peccei-Quinn scale

hidden U(1) gauginos

 $\widetilde{\tau}_R$

 λ_X

Decay rate suppressed by the small kinetic mixing.

Production of long lived staus

e[−]e[−] collider

The selectron decays producing staus:

$$\begin{split} \tilde{e}_R^- &\to e^- \ \tau^{\pm} \ \tilde{\tau}_1^{\mp} \\ \tilde{e}_L^- &\to e^- \ \tau^{\pm} \ \tilde{\tau}_1^{\mp} \\ \tilde{e}_L^- &\to \nu_e \ \bar{\nu}_\tau \ \tilde{\tau}_1^- \end{split}$$

Direct production of staus

Four/Two charged fermions and two heavily ionizing tracks

Detection of long lived staus

Charged track in the detector. Very similar to a muon, but with some differences:

- Large mass. Use kinematical cuts.
- Slow. Use a good Time of Flight (ToF) device.

In a large detector (r=2m), the mean time of flight of a muon (β =1) is 6.7 ns. A heavy particle (β <1) will reach the detector later. Assuming a time of flight measurement with an error of 50ps, the cut Δ t>0.13 ns removes 99% of the muon background. \Rightarrow Efficiency in the identification 60-80% for stau masses 140-250 GeV

• Ionizing particle. Use a good Time Projection Chamber (TPC)

In contrast to muons (which lose energy mostly by radiation), heavy charged particles lose energy by ionization. Assuming a 5% resolution in the measurement of dE/dx, the cut $\frac{dE/dX - dE/dX(\text{muon})}{\sigma(dE/dX)} > 3$ provides an efficiency in the identification >90% for stau masses larger than 180 GeV.

Determine the spin of the invisible particle

Buchmuller et al. Brandenburg et al

Hidden sectors and Dark forces (B. Batell)

Secluded Dark Matter

Pospelov, Ritz, Voloshin '07

- Dark Matter is a SM gauge singlet
- Talks to SM through mediator

GeV-scale 'Dark' force

Arkani-Hamed, Finkbeiner, Slatyer, Weiner '08

Pospelov, Ritz '08

- Long range attractive force enhances $\langle \sigma v \rangle_{halo}$
- Annihilation products cannot decay to anti-protons by kinematics

Hidden sector at ILC

at ILC at $\sqrt{s} = 500 \,\text{GeV}$

for $500 \, \mathrm{fb}^{-1}$

Kumar, Wells '06

$$\mathcal{L} \supset -\frac{\kappa}{2} B_{\mu\nu} V^{\mu\nu}$$

• Direct production \Longrightarrow pay κ^2

Deviations of $e^+e^- \to \mu\bar{\mu}$

Signal significance plot of $e^+e^- \rightarrow \gamma X \rightarrow \gamma \mu \bar{\mu}$

Possible bridges to the hidden sector

Higgs portal $\mathcal{L} \supset \lambda H^{\dagger} H S^2$

- *W*, *Z*
- Higgs
- LSP, LKP, LTP, ...
- Z'
- Techni- ρ
- RS Gravitons

Exotic Higgs Decays:

- $h \rightarrow SS \rightarrow$ missing energy
- $h \rightarrow aa \rightarrow 4b, 4c, 4\tau \dots 4\gamma$

Silveira, Zee '85

Dobrescu, Landsberg, Matchev '01 Dermisek, Gunion '04 Chang, Fox, Weiner '05

Gopalakrishna, Jung, Wells '08

Bellazzini, Csaki, Falkowski, Weiler '01

• $h \to VV \to 4l$

• $h \to \eta \eta \to 4g, 4c$

Collider signatures of a top (and DM)-philic Z'

 $t\bar{t} + E$

 $t\overline{t}$ • *ff*

Z' has suppressed couplings to light quarks -> no observable $t \bar{t}$ resonances

• $ff \to Z' \to \gamma H$ $\sim \gamma$ 7'

energetic monochromatic γ

A common signature:

 $t \ \overline{t} + \text{large } \mathbb{Z}_T$

aiorand

auae

 $\chi_0 t$

 $\to \nu^{(1)'} \nu^{(1)'} t$

 $A_{H_{\mu}}t$

T

 $t^{(1)'}$

(1)

from pair-production of top partners that decay into DM

SUSY:

Little Higgs

Universal extra dimensions

Randall-Sundrum GUTs QCD top production

Z_3 symmetry in the SM:

Agashe-Servant'04

conserved in any theory where baryon number is a good symmetry

any non-colored particle that carries baryon number will be charged under Z₃

e.g warped GUTs

Z₂ versus Z₃ Dark Matter

Agashe et al, 1003.0899 Mahbubani-Servant, in prep.

Most Dark Matter models rely on a Z₂ symmetry. However, other symmetries can stabilize dark matter. Can the nature of the underlying symmetry be tested?

 Z_2 versus Z_3 Dark Matter

In rest frame of the mother particle, the maximum of the p_T distributions is different in these 2 cases:

Example:

 $M_T = 1 \text{ TeV}, M_{DM} = 400 \text{ GeV}$

Mahbubani-Servant

Conclusion

Large effort in susy studies

Little outside of the standard susy scenario.

Very little beyond susy (as far as DM is concerned)