Chiral Asymmetry from a 5D Higgs Mechanism

Alberto Salvio

EPF of Lausanne, Switzerland

Cargèse Summer School, July-August 2007

Based on M. Shaposhnikov and A. S., arXiv:0707.2455

Chiral asymmetry and Higgs Mechanism in the SM

Higgs mechanism:

 $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_C \times U(1)_{em}$

 $U(1)_{em}$ generated by $Q_{em} = T^3 + Y$

 $\psi \sim (\mathbf{R_3},\mathbf{R_2})_{\mathbf{Y}}$

Unbroken gauge symmetry representations are vector-like Spontaneously broken gauge symmetry representations are chiral

Chiral asymmetry and Higgs Mechanism in the SM

Higgs mechanism:

 $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_C \times U(1)_{em}$

 $U(1)_{em}$ generated by $Q_{em} = T^3 + Y$

 $\psi \sim (\mathbf{R_3}, \mathbf{R_2})_{\mathbf{Y}}$

Unbroken gauge symmetry representations are vector-like Spontaneously broken gauge symmetry representations are chiral

SM fermion quantum numbers

Chirality and extra dimensions

$$\begin{split} \Psi & \supset \quad \sum_{i,j} \psi_L^i \oplus \psi_R^j, \quad i = 1, ..., n_L, \ j = 1, ..., n_R \\ \gamma^5 \psi_L^i = \psi_L^i, \quad \gamma^5 \psi_R^j = -\psi_R^j \end{split}$$

Before dimensional reduction $n_L = n_R$

Chirality and extra dimensions

$$\begin{split} \Psi \quad \supset \quad \sum_{i,j} \psi_L^i \oplus \psi_R^j, \quad i = 1, ..., n_L, \ j = 1, ..., n_R \\ \gamma^5 \psi_L^i = \psi_L^i, \quad \gamma^5 \psi_R^j = -\psi_R^j \end{split}$$

Before dimensional reduction $n_L = n_R$

After dimensional reduction (D=4) it can happen $n_L \neq n_R$ for $E \ll M_{KK}$; e. g. in both

- Old KK scenarios (with compact internal manifold)
 N. S. Manton (1981)
- Brane worlds (with infinite or compact internal manifold)
 - V. A. Rubakov and M. E. Shaposhnikov (1983)

⇒Dynamical origin of chiral asymmetry

Chirality and extra dimensions

$$\Psi \supset \sum_{i,j} \psi_L^i \oplus \psi_R^j, \quad i = 1, ..., n_L, \ j = 1, ..., n_R$$
$$\gamma^5 \psi_L^i = \psi_L^i, \quad \gamma^5 \psi_R^j = -\psi_R^j$$

Before dimensional reduction $n_L = n_R$

After dimensional reduction (D=4) it can happen $n_L \neq n_R$ for $E \ll M_{KK}$; e. g. in both

- Old KK scenarios (with compact internal manifold)
 N. S. Manton (1981)
- Brane worlds (with infinite or compact internal manifold)
 - V. A. Rubakov and M. E. Shaposhnikov (1983)

Do the chiral asymmetry and the mass have a common origin?

Charged 5D fermion on domain walls

A very simple model:

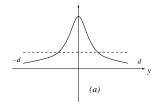
- a 5D spinor field $\Psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$ $n_L = 1, n_R = 1$
- a U(1) 5D gauge field A_M , M = 0, 1, 2, 3, y
- a domain wall configuration $\varphi = \varphi(y)$

Fermion action

$$S_F = \int d^5 X \left(\overline{\Psi} \Gamma^M D_M \Psi + \varphi \overline{\Psi} \Psi \right), \quad \text{where} \quad D_M \Psi = \left(\partial_M + i e_f A_M \right) \Psi$$

The 4D fermion spectrum (masses and wave functions) depends on φ

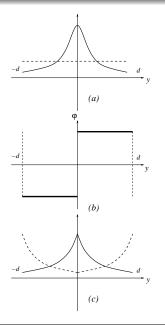
S^1 -compactification: $y \sim y + 2d$



Plot (a): 4D gauge field profile along y

- Dashed line: v = 0.
 The profile is constant
- Continuous line: $v \neq 0$

S^1 -compactification: $y \sim y + 2d$



Plot (a): 4D gauge field profile along y

- Dashed line: v = 0.
 The profile is constant
- Continuous line: $v \neq 0$

Plot (b): Two domain wall configuration

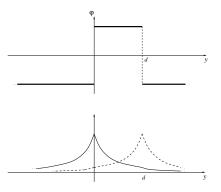
$$arphi(y) = h(2 heta(y)-1), \quad heta(y) = \left\{egin{array}{c} 1, \ ext{for} \ y > 0 \ -1, \ ext{for} \ y < 0 \end{array}
ight.$$

Plot (c): Fermion 4D zero mode profiles

- Dashed line: right-handed fermion
- Continuous line: left-handed fermion
- D. B. Kaplan and M. Schmaltz (1996)
- C. D. Fosco and R. C. Trinchero (1999)

Infinite fifth dimension

Again a two brane setup



$$\varphi(y) = h\theta(y) \left[1 - \theta(y - d)\right] - m$$

The lightest fermion mode is massive, but

- left-handed chirality on y = 0
- right-handed chirality on y = d

d: distance between the "left and right handed branes"

d large may lead to $g_L \gg g_R$ as well as with a compact fifth dimension

A simple bosonic completion

Some problems:

- I How can we dynamically obtain such a 4D gauge field profile?
- 3 Is there a chiral anomaly in D = 4?
- In case, is it a gauge or a global anomaly?

A simple bosonic completion

Some problems:

- How can we dynamically obtain such a 4D gauge field profile?
- **2** Is there a chiral anomaly in D = 4?
- In case, is it a gauge or a global anomaly?

We introduce a *dynamical* 5D gauge field A_M and a charged scalar ϕ , and

$$S_B = \int d^5 X \left\{ -\frac{\Delta(y)}{4} F_{MN} F^{MN} - \Delta_S(y) \left[(D_M \phi)^* D^M \phi + V(\phi) \right] \right\}$$

$$F_{MN} = \partial_M A_N - \partial_N A_M$$

$$D_M\phi = (\partial_M + ieA_M)\phi$$

$$V(\phi) = \lambda \left(|\phi|^2 - v^2
ight)^2, \ \lambda \ {
m and} \ v \ {
m real}, \ \lambda > 0$$

Gauge fixing and perturbations

$$\mathcal{L}_{GF} = -rac{\Delta}{2}\left[rac{1}{\Delta}\partial_{M}\left(\Delta A^{M}
ight) + \sqrt{2}evrac{\Delta_{S}}{\Delta}\eta
ight]^{2}$$

4D spin-1 and spin-0 sectors decouple

e.g.
$$\Delta(y) = \exp\left(-\frac{1}{2}\mathcal{M}^2 y^2\right), \qquad \Delta_S(y) = \frac{\delta^2}{8}y^2 \exp\left(-\frac{1}{2}\mathcal{M}^2 y^2\right)$$

 ${\mathcal M}$ turns out to be the KK mass scale

Spin-1 sector $A_{\mu}(x, y) = \sum_{n} A_{\mu}^{(n)}(x) f_{n}(y)$ $f_{0}(y) = N_{0} \exp\left[-\frac{1}{4}\mathcal{M}^{2}\left(\sqrt{1+\epsilon^{2}}-1\right)y^{2}\right]$ $M_{0}^{2} = \frac{1}{2}\mathcal{M}^{2}\left(\sqrt{1+\epsilon^{2}}-1\right)$

$$\epsilon^2 \equiv e^2 v^2 \delta^2 / \mathcal{M}^4$$

$$\epsilon^2 \sim \frac{M_0^2}{\mathcal{M}^2} \ll 1$$

Gauge fixing and perturbations

$$\mathcal{L}_{GF} = -rac{\Delta}{2}\left[rac{1}{\Delta}\partial_{M}\left(\Delta A^{M}
ight) + \sqrt{2}evrac{\Delta_{S}}{\Delta}\eta
ight]^{2}$$

4D spin-1 and spin-0 sectors decouple

e.g.
$$\Delta(y) = \exp\left(-\frac{1}{2}\mathcal{M}^2 y^2\right), \qquad \Delta_S(y) = \frac{\delta^2}{8}y^2 \exp\left(-\frac{1}{2}\mathcal{M}^2 y^2\right)$$

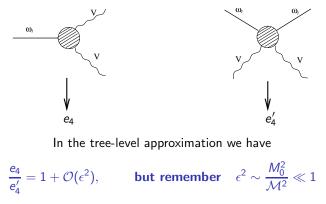
 ${\mathcal M}$ turns out to be the KK mass scale

Low-energy degrees of freedom

- A vector field $V \equiv A^{(0)}$
- A physical Higgs field ω_1
- A would-be Goldstone boson ω_2

Small explicit breaking of gauge invariance

Two ways to measure the 4D gauge constant (that should coincide in a gauge invariant theory)



Consequences

- No gauge symmetry in the 4D effective theory
- This mechanism cannot be described by a purely 4D gauge invariant language

Remarks

Summary

- We related the chiral asymmetry to the Higgs mechanism in a higher dimensional model
- In our model we found an (explicit but very small) breaking of the gauge invariance at low energies

Outlook

- Is there a chiral anomaly in the 4D effective theory?
- Extension to a realistic model
- Inclusion of gravity and dynamical origin for φ , Δ , Δ_S , ...