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The 1/R model
• Add inverse curvature term to Einstein-Hilbert action 

to get late time acceleration

•                           new Einstein equations

• Assume spatially flat FLRW-metric    new Friedman eq

• Complicated!
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Expansion history and f(R) modified gravity
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1CERN Theory Division, CH-1211, Geneva 23, Switzerland
2Department of Physics, Stockholm University,
Albanova University Center, S–106 91 Stockholm, Sweden

Abstract. We attempt to fit cosmological data using f(R) modified Lagrangians
containing inverse powers of the Ricci scalar varied with respect to the metric. While
we can confirm the a ∝ t1/2 behaviour at medium to high redshifts reported elsewhere,
the luminosity and angular distances to different reshifts between today and the last
scattering surface are not very different from ΛCDM. We confirm, however, that this
class of models are inconsistent with the data and can be ruled out most quickly by
considering the thickness of the last scattering surface.
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1. Introduction

Observations of type 1a supernovae still consistently suggest that the universe is
accelerating [1, 2, 3] (see [4] for a detailed list of references). This conclusion seems to be

supported by the fact that observations of the CMB tell us that the universe is spatially

flat [5] and that the matter which is observed in the universe from galaxy clustering is

not enough to account for this flatness [6, 7]. Furthermore, the measurement of space-

time geometry achieved by the detection of the imprint of the waves in the primordial

plasma in the galaxy correlation function [8] has caused problems for models where the
supernova data are explained by the dimming of photons [9, 10, 11].

There have been a number of different approaches trying to explain the mystery

of the acceleration of the universe. One such approach consists of a class of theories

obtained when the Einstein-Hilbert Lagrangian is modified by hand and the Ricci scalar

R is replaced with some function f(R) [12, 13]. These theories are phenomenological

in as much as it is not clear what the underlying theory that gives rise to them would
be. The motivation is that inverse powers of the curvature in the Lagrangian will

give vacuum solutions which are not Minkowski leading to late time acceleration. The

simplest theory with inverse powers of the curvature in the Lagrangian is

S =
M2

P l

2

∫

d4x
√
−g

(

R −
µ4

R

)

+

∫

d4x
√
−gLM (1)
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Expansion history and f(R) modified gravity 2

where µ is a mass scale that must be fitted to the data. Variation of this action with

respect to the metric gives new field equations
(

1 +
µ4

R2

)

Rµν −
1

2

(

1 −
µ4

R2

)

Rgµν + µ4[gµν∇α∇α −∇µ∇ν ]R
−2 =

TM
µν

M2
P l

(2)

from which it can be seen that for cosmological solutions there will exist a vacuum

solution with H ∼ µ. Such f(R) models can therefore give rise to late time acceleration

which could be responsible for the apparent dark energy.

The simplest models of this nature seem to be at odds with solar system tests
of gravity, at best containing a light degree of freedom [14] and at worst possessing

instabilities [15, 16] but one might imagine that the Lagrangian (1) is some effective

limit valid on very large scales and that some new physics on short distances could

change the theory. There are also indications that some f(R) theories may be safe in

some regions of parameter space [17, 18, 19] through a process rather similar to the

chameleon mechanism [20] although that does not appear to be the case for the ones
studied here.

It should be noted that variation of the normal Einstein-Hilbert Lagrangian with

respect to the metric or alternatively the Christoffel symbols leads to the same field

equations for gravity whereas in this class of modified Lagrangians the same is not

true. Field equations obtained using the latter Palatini approach will yield different

cosmologies and solar system constraints [21, 22, 23]. In this work we will restrict
ourselves to equations of motion obtained by varying the Lagrangian with respect to

the metric.

The solution of the field equations for a cosmological background lead to

cosmological equations with higher derivative terms, for example for the field equations

(2) the tt Friedman equation for a spatially flat universe becomes

3H2 −
µ4

12(Ḣ + 2H2)3

(

2HḦ + 15H2Ḣ + 2Ḣ2 + 6H4
)

=
ρM

M2
P l

(3)

which means that there are more degrees of freedom in the space of solutions than

solutions of Einstein gravity with a cosmological constant or the standard DGP model.
This space of solutions needs to be compared with the data.

If type 1a supernovae are good examples of standard candles as is thought, they

can in principle trace out the Hubble diagram in an unambiguous fashion. There is,

however, a need for some caution as there are presently ambiguities in the way that

one can analyse the data [24, 25] and also in which supernovae should be included in

samples to be used for cosmology [1, 2, 3]. In certain situations, these ambiguities are
leading to different predictions with regards to which dark energy models are favoured

over others [26, 27, 4].

Despite this, all of the supernova surveys seem to agree on some basic facts, namely

that the universe is accelerating and that ΛCDM, i.e. a universe composed of matter,

radiation and a constant energy density which does not change over time, fits the data

rather well, and better than many alternatives motivated by specific physical models.
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Conformal transformation

• Go from matter frame to Einstein frame for f(R) action

• New degrees of freedom now represented by effective 
scalar field σ in potential V(σ)=(Rp-f)/2p

• Equations of motion look simpler and more familiar!
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Expansion history and f(R) modified gravity 4

set by σ.

Having found the solutions in the Einstein frame for the scale factor, Hubble

parameter and the scalar field, we will transform back to the matter frame ‡ where

we will integrate H(z) and compare it with the data.

For an action of the form f(R) with ∂f/∂R > 0, we can perform a conformal

transformation to the Einstein frame [29]. The conformal transformation is written

g̃µν = pgµν ,
∂f

∂R
≡ p ≡ exp

(

√

2/3σ
)

(4)

we will continue to use both p and σ even in the same equations to keep expressions

compact despite the fact that they can be used interchangeably. The equations can now

be written in the more familiar form

R̃µν −
1

2
R̃g̃µν = (∇µσ)∇νσ −

1

2
g̃µν g̃

αβ(∇ασ)∇βσ − V (σ)g̃µν +
T̃µν

M2
P l

(5)

where the potential and the energy-momentum tensor in the Einstein frame are given

by [29]

V ≡
(sign)

2 |∂f/∂R|

(

R
∂f

∂R
− f

)

(6)

T̃µν ≡
Tµν

p
(7)

with (sign) = ∂f
∂R

/
∣

∣

∂f
∂R

∣

∣. The potential V has mass dimension 2 because we have chosen

to work with a dimensionless scalar. We denote quantities in the Einstein frame with a

tilde, for example the time coordinate in the conformal frame Robertson-Walker metric

is dt̃ =
√

pdt and the scale factor ã(t) =
√

pa(t). The equations which need to be solved
simultaneously are the equation of motion for σ and the Friedman equation. The latter

comes from the time-time component of the transformed Einstein equations

3H̃2 =
1

2
σ′2 + V (σ) +

ρ̃M

M2
P l

(8)

where a prime denotes differentiation with respect to t̃, the density ρ̃M = ρM/p2 and

H̃ = ã′/ã. The equation of motion can be obtained from the time component of the

divergence or from the covariant derivative of the stress energy tensor T̃

σ′′ + 3H̃σ′ +
∂V

∂σ
−

(1 − 3w)√
6

ρ̃M

M2
P l

= 0 (9)

Equations (8) and (9) are the ones that we need to solve to get the evolution of the

universe in these models. In order to relate the Hubble parameter H in the matter

frame and H̃ in the conformal frame, one must use

H =
√

p

(

H̃ −
σ′

√
6

)

. (10)

‡ the frame where the matter is not coupled to gravity via σ, sometimes called the Jordan frame or
more recently the string frame
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set by σ.
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tilde, for example the time coordinate in the conformal frame Robertson-Walker metric
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√

pdt and the scale factor ã(t) =
√

pa(t). The equations which need to be solved
simultaneously are the equation of motion for σ and the Friedman equation. The latter

comes from the time-time component of the transformed Einstein equations

3H̃2 =
1

2
σ′2 + V (σ) +

ρ̃M

M2
P l

(8)

where a prime denotes differentiation with respect to t̃, the density ρ̃M = ρM/p2 and

H̃ = ã′/ã. The equation of motion can be obtained from the time component of the

divergence or from the covariant derivative of the stress energy tensor T̃

σ′′ + 3H̃σ′ +
∂V

∂σ
−

(1 − 3w)√
6

ρ̃M

M2
P l

= 0 (9)

Equations (8) and (9) are the ones that we need to solve to get the evolution of the

universe in these models. In order to relate the Hubble parameter H in the matter

frame and H̃ in the conformal frame, one must use

H =
√

p

(

H̃ −
σ′

√
6

)

. (10)

‡ the frame where the matter is not coupled to gravity via σ, sometimes called the Jordan frame or
more recently the string frame



Hubble expansion in 1/R
• Solve EOM in Einstein frame and transform back to 

matter frame to get 

• Free parameters: 

• Need                      to calculate luminosity & angular 
distances
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Expansion history and f(R) modified gravity 6

Figure 1. Look back times (age of the universe) for f(R) = R − µ4/R cosmologies.
We label different cosmologies using the value of the effective scalar σ and its time
derivative in the Einstein frame dσ/dτ at redshift z = 0. These two parameters plus
the matter density (this plot is for ΩM = 0.3) provide three of the four parameters
necessary to determine the cosmology. The fourth is the Hubble constant which is
integrated over in cosmological fits. Look-back times are in years in the matter frame
assuming a Hubble constant of 65 kms−1Mpc−1. In cosmologies above the line labeled
’big bang’, the scalar field goes over the top of the potential too quickly (see text).
The red region is the 99% region fitting to supernova data, the blue region is the same
for BAO.

potential and falls to σ = 0 relatively recently in cosmological terms, which signals that

R → ∞ in the matter frame. That region beyond the curve labeled with the words

“big-bang” is therefore not included in the analysis and χ2 values are not calculated
there.

Also plotted are the 99% confidence bands for the supernova data in red and the

baryon oscillation data in blue. These regions overlap each other for certain values of

ΩM and therefore seem compatible with the model.

The best fit χ2 values are all rather close to the dividing line to the region where

these maximum age cosmologies exist. In these models, the scalar field runs back from

the top of the potential so that σ → ∞, R → 0 and the effective total equation of state
w → 1/3. Speaking purely in terms of expansion history, the universe therefore becomes

effectively radiation dominated very recently as we go back in time, not because of the

energy density of any radiation, but simply because of the modified gravity giving rise
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Expansion history and f(R) modified gravity 9

Figure 4. Comparison of f(R) = R−µ4/R with data. The top left hand panel is the
effective potential in the Einstein frame, while the other three plots are the values of
σ0 and dσ/dτ |0 favoured by the supernova data in red and the BAO data in blue (see
caption of figure 1 for more details explaining the plot). The three plots correspond to
different matter densities - ΩM = 0.2, 0.25, 0.3.

able to explain the supernova data and the CMB data simultaneously.

To summarize this section, universes which fit the data in the 1/R model lead to

the scale factor a ∝ t1/2 at high redshift. Despite this, the universes obtained are old
enough to accommodates globular clusters. Also, because the integrals over 1/H(z) are

dominated at low redshifts, it is possible to fit the supernova, baryon oscillation and

CMB data.

4. Thickness of the Last Scattering Surface.

So far it has been shown that in models of modified gravity of the form 1/R and 1/R2,

the expansion of the universe can fit the supernova data, the angular size of the observed

baryon oscillations and also the angular size of the peak in the CMB, assuming that

the position of the CMB peak is not distorted due to different early universe physics.

This is not contradictory because at low redshift the f(R) universe is not behaving like
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Expansion history and f(R) modified gravity 5

To compare these models with the data, we need H(z)/H0 in the matter frame, or rather
∫

dz
H(z)/H0

. There are more free parameters than ΛCDM so we restrict ourselves to the

case k = 0. For a flat universe, our free parameters are ΩM as defined in the original

matter frame, the mass scale µ and the values today of σ and σ′. To write these in

dimensionless form, let us introduce the time-variable τ = H̃0t̃ and the parameters

α =
H0

µ
β = 1 −

1√
6

∂σ

∂τ

∣

∣

∣

∣

0

(11)

where the subscript 0 denotes the values today at redshift z = 0. If we also introduce

the dimensionless potential U(σ) so that

V (σ) = µ2U(σ) (12)

then the ττ Friedman equation becomes

H̃2

H̃2
0

=
1

6

(

∂σ

∂τ

)2

+
1

3

p0β2

α2
U(p) +

ΩMβ2

√
p0p

(

ã0

ã

)3

(13)

while the equation of the motion for the scalar field is written

∂2σ

∂τ 2
+ 3

H̃

H̃0

∂σ

∂τ
+

p0β2

α2

∂U

∂σ
−

√

3

2

ΩMβ2

√
p0p

(

ã0

ã

)3

= 0. (14)

By solving (13) and (14) numerically, we can recover the evolution of the Hubble

expansion in the Einstein frame and can convert this back to the matter frame using

σ(τ). One of the parameters can be written in terms of the others using (13) with z = 0

α2 =
p2

0βU(p0)

3(2p0 − p0β − ΩMβ)
(15)

We therefore choose to label the parameter space of solutions of H(z)/H0 with the three

variables ΩM , σ0 and dσ/dτ |0.

3. The data vs. f(R) = R − µ4/R and f(R) = R − µ6/R2

The potential U(σ) for the f(R) = R − µ4/R model is plotted in the first diagram of

figure 4, it rises from zero to a maximum and then falls back to zero as σ goes to infinity.

Figure 1 shows the combined best fit regions for the supernova, BAO and CMB data

for ΩM = 0.3 plotted as a function of σ0 and dσ/dτ |0. Plotted also are look back times for
the age of the universe in this model assuming a Hubble constant H0 = 65kms−1Mpc−1

(or more precisely the elapsed time in the matter frame since a redshift of z = 20) and

a line labeled “big bang” which divides the parameter space between the grey region of

solutions where the scalar field σ → 0 too quickly in the past, which corresponds to a

curvature singularity.

This can be understood in the following way, for a given value of σ0, increasing
values of dσ/dτ push σ higher up the effective potential as one moves into the past,

which means that the rapidly redshifting contribution from ΩM can be reduced and

the universe expands more slowly in the past, making it older. This increase in age

with dσ/dτ |0 ends abruptly for some value of dσ/dτ |0 where σ goes over the top of the
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To compare these models with the data, we need H(z)/H0 in the matter frame, or rather
∫

dz
H(z)/H0

. There are more free parameters than ΛCDM so we restrict ourselves to the

case k = 0. For a flat universe, our free parameters are ΩM as defined in the original

matter frame, the mass scale µ and the values today of σ and σ′. To write these in

dimensionless form, let us introduce the time-variable τ = H̃0t̃ and the parameters
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∣

∣

∣

∣

0
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where the subscript 0 denotes the values today at redshift z = 0. If we also introduce

the dimensionless potential U(σ) so that

V (σ) = µ2U(σ) (12)

then the ττ Friedman equation becomes
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√

3

2

ΩMβ2

√
p0p

(

ã0

ã

)3
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By solving (13) and (14) numerically, we can recover the evolution of the Hubble

expansion in the Einstein frame and can convert this back to the matter frame using

σ(τ). One of the parameters can be written in terms of the others using (13) with z = 0

α2 =
p2

0βU(p0)

3(2p0 − p0β − ΩMβ)
(15)

We therefore choose to label the parameter space of solutions of H(z)/H0 with the three

variables ΩM , σ0 and dσ/dτ |0.

3. The data vs. f(R) = R − µ4/R and f(R) = R − µ6/R2

The potential U(σ) for the f(R) = R − µ4/R model is plotted in the first diagram of

figure 4, it rises from zero to a maximum and then falls back to zero as σ goes to infinity.

Figure 1 shows the combined best fit regions for the supernova, BAO and CMB data

for ΩM = 0.3 plotted as a function of σ0 and dσ/dτ |0. Plotted also are look back times for
the age of the universe in this model assuming a Hubble constant H0 = 65kms−1Mpc−1

(or more precisely the elapsed time in the matter frame since a redshift of z = 20) and

a line labeled “big bang” which divides the parameter space between the grey region of

solutions where the scalar field σ → 0 too quickly in the past, which corresponds to a

curvature singularity.

This can be understood in the following way, for a given value of σ0, increasing
values of dσ/dτ push σ higher up the effective potential as one moves into the past,

which means that the rapidly redshifting contribution from ΩM can be reduced and

the universe expands more slowly in the past, making it older. This increase in age

with dσ/dτ |0 ends abruptly for some value of dσ/dτ |0 where σ goes over the top of the
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How to rule out the model?
• Peak difference from ΛCDM 

at z~5 - no observations

• Perturbation growth? 
Nucleosynthesis? ...?
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Figure 2. Comparison of the best fit version of f(R) = R−µ4/R vs. ΛCDM, in both
cases ΩM = 0.3. On the left H(z)/H0 and on the right the total effective equation of
state w defined in equation (16).

to what looks like, from the FRW perspective, an energy density with equation of state

w = 1/3. This has been noticed by other authors [30, 31].
On the right of figure 2 is plotted the effective total equation of state that one would

obtain if the same expansion was due to some energy density rather than a different

theory of gravity, in other words

w =
2

3

(1 + z)

H

dH

dz
− 1 (16)

and it can be seen that at high redshifts, w → 1/3 which is the same as pure radiation.

On the left of figure 2 we can see that H(z)/H0 is similar in both cases at low
redshifts where the supernova and baryon oscillation data is fitted, then the H(z) for

the f(R) model dips below, then rises above, the H(z) for ΛCDM. This means that

the luminosity/angular distance integrals in both cases can fit the CMB. This point is

made clearer by looking at figure 3 which shows the fractional difference between the

luminosity distance§ for the f(R) model and the ΛCDM model. The difference between

the two is rather small at very low and high redshifts but peaks around z ∼ 5.
Better knowledge of the Hubble diagram around redshifts of z ∼ 1 − 5 would

therefore probably differentiate between the models, but since we only have good data at

z < 1.5 from supernovae and at z ∼ 1100 from the CMB we are not able to differentiate

between them using only these data sets.

Figure 4 shows the comparison of the data with the f(R) = R − µ4/R model for

different values of ΩM , σ0 and dσ/dτ |0. Plotted are the banded constraints corresponding
to the supernova data and to the baryon oscillation data. A large region of the

parameter space is ruled out as it corresponds to regions where σ → 0 too quickly

in the past, corresponding to a curvature singularity which would be too recent to

accommodate the early universe physics that we know must take place (last scattering

§ and therefore also the angular distance since they are related by a factor of 1 + z
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Expansion history and f(R) modified gravity 8

Figure 3. Difference between the luminosity distance as a function of redshift for flat
ΛCDM and the best fit 1/R model when ΩM is taken to be 0.3.

R − µ4/R R − µ6/R2

ΩM = 0.2 0.25 0.3 0.2 0.25 0.3

χ2
min(SNe+flat) 155 155 155 156 156 156

χ2
min(SNe+CMB+flat) 185 180 177 173 163 158

χ2
min(SNe+BAO+flat) 169 156 156 175 159 156

χ2
min(SNe+BAO+CMB+flat) 201 182 179 186 164 159

Table 1. The best fit values of χ2 (204 d.o.f.) for the −µ4/R and the −µ6/R2

modifications of the Einstein-Hilbert Lagrangian. The vertical columns correspond to
different values of ΩM while each row corresponds to a different subset of the data.
Flatness is assumed throughout.

surface, nucleosynthesis etc.). The best fit values of χ2 for different values of ΩM are

listed in table 1 and they show that the model works well in fitting the supernova and

the baryon oscillation data. Addition of the CMB data makes the fit worse but it is still

possible to fit the data with a χ2 per degree of freedom which is less than one. Also the
look back time is consistent with the age of globular clusters [32].

The same analysis has been carried out for the f(R) = R−µ6/R2 model of gravity

and the results are listed in figure 5 and the best fit values of χ2 are listed in table 1.

The situation is completely analogs to the −µ4/R modifications. Again, the models are
• Feature of best fit 1/R models: effective radiation domination 

more recently



Thickness of LSS!
• Know                       from temperature of CMB

• Best fit 1/R at high redshift corresponds to

• Calculate thickness of last scattering surface (changing radiation 
density without changing temperature) using
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Figure 6. Thickness of the LSS as a function of the effective radiation like energy
density. The red line runs from the value predicted from the CMB in ΛCDM to the
value which best fits the high redshift expansion for the 1/R model which best fits the
data.

is the era of recombination (gradual with respect to redshift rather than time) and the

larger the thickness of the LSS. The redshift of the LSS also changes, but the fractional

change in the thickness is much greater. The thickness derived from observations by

WMAP is ∆z = 195 ± 2 [37], however we find that the thickness of the LSS increases

to ∆z ∼ 350 when the 1/R cosmology is studied.

The first effect of a shift of the last scattering surface to earlier times would be a
different sound horizon size at decoupling, so that the peaks of the CMB would change

position [38]. At the same time, the increase in the thickness of the LSS would increase

photon diffusion within the surface, blurring out features with a physical size much

smaller than the LSS. Suppression at high multipoles would therefore be brought down

to much lower multipoles [39].

Constraints upon the total number of relativistic species present which are not
chemically coupled to the plasma have been obtained and refined by running codes like

CMBFAST which take into account both the effect of ths shift in the peak and the

supression of higher mulipoles (see [38] and references therein). Those studies show

that an increase in the number of relativistic degrees of freedom of factor ∆N = 13.37

can be ruled out at 2-σ by looking at the resulting fit to the CMB data alone. Since

the modified gravity solutions which fit the data found in this paper correspond to an
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However, it is simpler and easier to consider the epoch of recombination and to

look at the way that the added expansion at redshifts of order z ∼ 1000 will affect the

thickness of the CMB.

The re-combination of protons and electrons which occurs as the universe cools

is the process responsible for making the universe transparent. In normal cosmologies

where the universe is still matter dominated at this epoch, the electrons, photons and
protons remain rather close to thermal equilibrium throughout the process. The physics

is therefore less dependent upon the expansion rate of the universe but more upon the

temperature. However, the effective radiation density that one obtains at high redshifts

in the f(R) models considered here is approximately two orders of magnitude larger

than the energy density of radiation implied from the temperature of the CMB.

The density of radiation implied by looking at the 2.7K background radiation is
of the order of Ωγ ∼ 10−4 so that matter radiation equality occurs at redshifts around

a few times 104. The effective radiation density that fits the H(z) at high redshift

correspondent to the best fit 1/R model (plotted in the left hand panel of Figure 2) is

Ωw=1/3 ∼ 0.034. The expansion rate around z ∼ 1000 is therefore changed considerably,

and recombination takes longer to occur.

The equation which needs to be solved in order to calculate the rate of reionisation
is [35, 36]

dxe

dz
=

1

H(1 + z)

[

αnpx
2
e − β(1 − xe) exp

(

−
B1 − B2

kT

)]

C (17)

where α is the recombination coefficient, β is the ionization coefficient and Bn is the

binding energy of the n−th level of the hydrogen atom. The factor C is given by

C =
1 + KΓ(1 − xe)

1 + K(Γ + β)(1 − xe)
(18)

where Γ is the decay rate of the 2s excited state to the ground state via the emission of

2 photons. The ionisation coefficient β is given by

β = α

(

2πmekT

h2

)3/2

exp

(

−
B2

kT

)

(19)

and the recombination coefficient α is described by the expression

α = Σn,l
(2l + 1)8π

c2

(

kT

2πme

)3/2

exp

(

Bn

kT

)
∫

∞

Bn/kT

σnly2dy

exp(y) − 1
(20)

Solution of equation (17) gives the ionisation fraction as a function of redshift. Following

[35], we approximate α to be α ∝ T−0.5 and normalise it so that it gives rise to the

correct redshift for ionization as observed by WMAP. The thickness of the CMB Last

Scattering Surface (LSS) can then be found by looking at the probability for finding a

photon reaching us from a redshift z, g(z) = e−τdτ/dz. We then define the thickness as
being the full width at half the maximum of this function g(z). In this way we obtain

a thickness for the CMB of ∆z = 197 rather close to the WMAP value ∆z = 195.

Figure 6 shows us the thickness of the CMB as a function of the effective radiation

density. The greater the expansion of the universe at last scattering, the more gradual
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Solution of equation (17) gives the ionisation fraction as a function of redshift. Following

[35], we approximate α to be α ∝ T−0.5 and normalise it so that it gives rise to the

correct redshift for ionization as observed by WMAP. The thickness of the CMB Last

Scattering Surface (LSS) can then be found by looking at the probability for finding a

photon reaching us from a redshift z, g(z) = e−τdτ/dz. We then define the thickness as
being the full width at half the maximum of this function g(z). In this way we obtain

a thickness for the CMB of ∆z = 197 rather close to the WMAP value ∆z = 195.

Figure 6 shows us the thickness of the CMB as a function of the effective radiation

density. The greater the expansion of the universe at last scattering, the more gradual
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However, it is simpler and easier to consider the epoch of recombination and to

look at the way that the added expansion at redshifts of order z ∼ 1000 will affect the

thickness of the CMB.

The re-combination of protons and electrons which occurs as the universe cools

is the process responsible for making the universe transparent. In normal cosmologies

where the universe is still matter dominated at this epoch, the electrons, photons and
protons remain rather close to thermal equilibrium throughout the process. The physics

is therefore less dependent upon the expansion rate of the universe but more upon the

temperature. However, the effective radiation density that one obtains at high redshifts

in the f(R) models considered here is approximately two orders of magnitude larger

than the energy density of radiation implied from the temperature of the CMB.

The density of radiation implied by looking at the 2.7K background radiation is
of the order of Ωγ ∼ 10−4 so that matter radiation equality occurs at redshifts around

a few times 104. The effective radiation density that fits the H(z) at high redshift

correspondent to the best fit 1/R model (plotted in the left hand panel of Figure 2) is

Ωw=1/3 ∼ 0.034. The expansion rate around z ∼ 1000 is therefore changed considerably,

and recombination takes longer to occur.

The equation which needs to be solved in order to calculate the rate of reionisation
is [35, 36]

dxe

dz
=

1

H(1 + z)

[

αnpx
2
e − β(1 − xe) exp

(

−
B1 − B2

kT

)]

C (17)

where α is the recombination coefficient, β is the ionization coefficient and Bn is the

binding energy of the n−th level of the hydrogen atom. The factor C is given by

C =
1 + KΓ(1 − xe)

1 + K(Γ + β)(1 − xe)
(18)

where Γ is the decay rate of the 2s excited state to the ground state via the emission of

2 photons. The ionisation coefficient β is given by

β = α

(

2πmekT

h2

)3/2

exp

(

−
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)

(19)

and the recombination coefficient α is described by the expression

α = Σn,l
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exp
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)
∫
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Bn/kT
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Solution of equation (17) gives the ionisation fraction as a function of redshift. Following

[35], we approximate α to be α ∝ T−0.5 and normalise it so that it gives rise to the

correct redshift for ionization as observed by WMAP. The thickness of the CMB Last

Scattering Surface (LSS) can then be found by looking at the probability for finding a

photon reaching us from a redshift z, g(z) = e−τdτ/dz. We then define the thickness as
being the full width at half the maximum of this function g(z). In this way we obtain

a thickness for the CMB of ∆z = 197 rather close to the WMAP value ∆z = 195.

Figure 6 shows us the thickness of the CMB as a function of the effective radiation

density. The greater the expansion of the universe at last scattering, the more gradual

• Compare with WMAP value 
Δz=195±2

• Our value: Δz~350 

• 1/R ruled out!



Conclusion & outlook

• We have put cosmological constraints on the simplest  
f(R) modified gravity model that can give dark energy

• 1/R solutions that fit supernova data give rise to a 
radiation-like expansion at high redshifts and can be 
ruled out in a simple way using the thickness of the 
LSS

• Could f(R) models that are gravitationally stable at 
high curvatures and in better agreement with solar 
system tests explain cosmological data?


