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Phenomenological 
requirements on SUSY



Soft SUSY breaking 
terms in the MSSM

For each term in the superpotential

we can have the “A-terms” and “B-term”

scalar masses for all scalars

gaugino mass for all three gauge factors

A(18x3)+B(2)+m(9x5+2)+M(2x3)+μ(2)=111
U(1)RxU(1)PQ removes only two phases
cf. SM has two params in the Higgs sector

107 more parameters than the SM!
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Flavor-Changing
Neutral Current

There is no tree-level vertex such as
In the Standard Model, FCNC is highly 
suppressed
e.g., 

s̄γµdZµ
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SUSY flavor violation

soft SUSY breaking parameters can violate 
flavor
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SUSY flavor violation

soft SUSY breaking parameters can violate 
flavor

(ẽ, µ̃, τ̃)
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Supersymmetric
CP problem

The relative phases of 
μ and M1,2,3 are 
physical
induces electric dipole 
moments
stringent limits on 
electron, neutron, and 
Hg atom
either mSUSY>TeV or 
phase~10-2
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Figure 3: The sensitivity of the EDMs of mercury and electron to the scale of the soft-
breaking parameters with a) maximal phase of A (θA = π/2, θµ = 0), and b) maximal phase
of µ (θA = 0, θµ = π/2). We’ve taken |µ| = |A| = mQ̃ = mŨ = mD̃ = Mλi

≡ M . The
horizontal line is the current experimental limit.
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“minimal supergravity”

At the GUT-scale 2x1016 GeV
assume all scalar masses are equal m02

assume all gaugino massses are equal M1/2

assume all trilinear couplings are equal A0

in addition, B, Bμ
calculate all SUSY breaking terms via RGE 
down from the GUT-scale
fix mZ: leaves four parameters (and sign(μ))



one-loop RGE
GUT prediction of gaugino masses

gauge interaction boosts scalar masses

Yukawa interaction suppresses scalar masses

Hu mass-squared most likely to get negative!
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Flavor-blind
Mediation Mechanisms
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Gauge Mediation 
(GMSB)



Special Model II
Mediation Mechanism

Dynamical
Supersymmetry

Breaking

Messenger
Sector

Supersymmetric
Standard

Model

µ!107 GeV

µ!105 GeV

µ!102–103 GeV

messenger U(1)

SU(3)"SU(2)"U(1)

SU(6) U(1) U(1)m U(1)R

A 15 +2 0 − 18
7

F 6 −5 0 − 18
7

F̄± 6̄ −1 ±1 16
7

F̄ 0 6̄ −1 0 16
7

S± 1 +6 ±1 16
7

S0 1 +6 0 16
7

W = AF̄+F̄− + F̄ 0(F+S− + F−S+) + FF 0S0

W = φ+φ−X + X3 + Xf̄f

Dine-Nelson-Nir-Shirman12

Gauge Mediation
⇒flavor blind



Special Model II
Mediation Mechanism

Dynamical
Supersymmetry

Breaking

Messenger
Sector

Supersymmetric
Standard

Model

µ!107 GeV

µ!105 GeV

µ!102–103 GeV

messenger U(1)

SU(3)"SU(2)"U(1)

W = φ+φ−X + X3 + Xf̄f

Dine-Nelson-Nir-Shirman13

W = 〈X〉f̄fFigure 6.4: MSSM scalar squared masses in gauge-mediated supersymmetry breaking models arise in
leading order from these two-loop Feynman graphs. The heavy dashed lines are messenger scalars, the
solid lines are messenger fermions, the wavy lines are ordinary Standard Model gauge bosons, and the
solid lines with wavy lines superimposed are the MSSM gauginos.

order Mmess ∼ yI〈S〉 for I = 2, 3. The running mass parameters can then be RG-evolved down to the
electroweak scale to predict the physical masses to be measured by future experiments.

The scalars of the MSSM do not get any radiative corrections to their masses at one-loop order.
The leading contribution to their masses comes from the two-loop graphs shown in Figure 6.4, with
the messenger fermions (heavy solid lines) and messenger scalars (heavy dashed lines) and ordinary
gauge bosons and gauginos running around the loops. By computing these graphs, one finds that each
MSSM scalar φi gets a squared mass given by:

m2
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, (6.55)

with the quadratic Casimir invariants Ca(i) as in eqs. (5.27)-(5.30). The squared masses in eq. (6.55)
are positive (fortunately!).

The terms au, ad, ae arise first at two-loop order, and are suppressed by an extra factor of αa/4π
compared to the gaugino masses. So, to a very good approximation one has, at the messenger scale,

au = ad = ae = 0, (6.56)

a significantly stronger condition than eq. (5.19). Again, eqs. (6.55) and (6.56) should be applied at
an RG scale equal to the average mass of the messenger fields running in the loops. However, evolving
the RG equations down to the electroweak scale generates non-zero au, ad, and ae proportional to the
corresponding Yukawa matrices and the non-zero gaugino masses, as indicated in section 5.5. These
will only be large for the third-family squarks and sleptons, in the approximation of eq. (5.2). The
parameter b may also be taken to vanish near the messenger scale, but this is quite model-dependent,
and in any case b will be non-zero when it is RG-evolved to the electroweak scale. In practice, b can be
fixed in terms of the other parameters by the requirement of correct electroweak symmetry breaking,
as discussed below in section 7.1.

Because the gaugino masses arise at one-loop order and the scalar squared-mass contributions
appear at two-loop order, both eq. (6.53) and (6.55) correspond to the estimate eq. (6.27) for msoft, with
Mmess ∼ yI〈S〉. Equations (6.53) and (6.55) hold in the limit of small 〈FS〉/yI〈S〉2, corresponding to
mass splittings within each messenger supermultiplet that are small compared to the overall messenger
mass scale. The sub-leading corrections in an expansion in 〈FS〉/yI〈S〉2 turn out [143] to be quite small
unless there are very large messenger mass splittings.

The model we have described so far is often called the minimal model of gauge-mediated supersym-
metry breaking. Let us now generalize it to a more complicated messenger sector. Suppose that q, q

59
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Gauge Mediation
⇒flavor blind



SUSY QCD
SU(Nc), SO(Nc), Sp(Nc)

SUSY SM

New Generic Scheme

Mf̄fmQQ̄Q

1
MPl

Q̄Qf̄f

no U(1)R symmetry imposed
most general superpotential

wide choice of gauge groups, matter content
Nc < Nf <

3
2
Nc
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HM, Nomura



How it works

SUSY SU(Nc) QCD Nc<Nf<3Nc/2
low-energy free magnetic theory (mQ<Λ)

SUSY breaking @
Local minimum with long lifetime

Generates SUSY breaking in f, fbar
their loops⇒gauge mediation

W = mij
QQ̄iQj

W = mij
QΛMij + Mij q̄

iqj

W =
1

MPl
Q̄Qf̄f
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Mij = 0, ∂W
∂Mij

= mij
Q != 0

Intriligator, Seiberg, Shih



Gaugino Mediation 
(χMSB)

DSB in another brane
Gauge multiplet in the 
bulk
Gauge multiplet learns 
SUSY breaking first, 
obtains gaugino mass
MSSM at the 
compactification scale 
with gaugino mass only
Scalar masses generated 
by RGE

Kaplan, Kribs, Schmaltz
Chacko, Luty, Nelson, Ponton



Anomaly Mediation 
(AMSB)

no direct coupling between 
two sectors
Supersymmetry breaking in 
the chiral compensator <S>=1
+θ2m3/2

can be scaled away ϕ→ϕ/S
but the UV cutoff acquires 
S: ΛUV→ΛUVS
SUSY breaking through 
cutoff dependence: 
superconformal anomaly

Z
d4θSS̄φ∗φ+

Z
d2

(
S3λi jkφiφ jφk +

1
g2WαW α

)

Randall, Sundrum
Giudice, Luty, HM, Rattazzi



Surprising result: depends only on physics at 
the energy scale of interest
No matter how complicated the UV physics 
is, including flavor physics with O(1) 
generation-dependent couplings, they all 
disappear from low-energy soft SUSY 
breaking
e.g., decouple a massive matter field:

Changes the beta function
one-loop threshold correction precisely 
account for the change in gaugino mass
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2g2
i

m3/2, m2

i = −
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4
m2
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, Aijk = −

1

2
(γi + γj + γk)m3/2

UV insensitivity



Two problems
negative slepton 
mass-squared
can’t have a light bulk 
moduli of m~O(m3/2)

cause additional terms 
of O(m3/2

2/m)~O(m3/2)

common fixes:
add m02

add DY and DB-L

m2

l̃
= −0.344M2,

m2
ẽc = −0.367M2,

m2
q̃ = 11.6M2,

m2
ũc = 11.7M2,

m2

d̃c
= 11.8M2,

M =
m3/2

(4π)2

What’s the catch?
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SUSY spectra

Peskin

χMSB
mSUGRA



WIMP paradigm



Energy Budget 
of the Universe

Stars and galaxies are only ~0.5%
Neutrinos are ~0.1–1.5%

Rest of ordinary matter 
(electrons, protons & neutrons) are 4.4%
Dark Matter 23%
Dark Energy 73%
Anti-Matter 0%
Dark Field ~1062%??

stars baryon
neutrinos dark matter
dark energy



Search for MACHOs
(Massive Compact Halo Objects)

Large Magellanic Cloud

Not enough of them!

Dim Stars?

MACHO

95% cl
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!
7
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It is probably WIMP 
(Weakly Interacting 
Massive Particle)

Stable heavy particle 
produced in early 
Universe, left-over 
from near-complete 
annihilation

MACHO ⇒ WIMP



thermal relic
thermal equilibrium when 
T>mχ

Once T<mχ, no more χ 
created
if stable, only way to lose 
them is annihilation
but universe expands and χ 
get dilute
at some point they can’t 
find each other
their number in comoving 
volume “frozen”

G. Jungman et al. JPhysics Reports 267 (1996) 195-373 221 

Using the above relations (H = 1.66g$‘2 T 2/mpl and the freezeout condition r = Y~~(G~z~) = H), we 

find 

(n&)0 = (n&f = 1001(m,m~~g~‘2 +JA+) 

N 10-S/[(m,/GeV)((~A~)/10-27 cm3 s-‘)I, (3.3) 

where the subscript f denotes the value at freezeout and the subscript 0 denotes the value today. 

The current entropy density is so N 4000 cmm3, and the critical density today is 

pC II 10-5h2 GeVcmp3, where h is the Hubble constant in units of 100 km s-l Mpc-‘, so the 

present mass density in units of the critical density is given by 

0,h2 = mxn,/p, N (3 x 1O-27 cm3 C1/(oAv)) . (3.4) 

The result is independent of the mass of the WIMP (except for logarithmic corrections), and is 

inversely proportional to its annihilation cross section. 

Fig. 4 shows numerical solutions to the Boltzmann equation. The equilibrium (solid line) and 

actual (dashed lines) abundances per comoving volume are plotted as a function of x = m,/T 
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Fig. 4. Comoving number density of a WIMP in the early Universe. The dashed curves are the actual abundance, and 

the solid curve is the equilibrium abundance. From [31]. 



Freeze-out

WIMP freezes out 
when the annihilation 
rate drops below the 
expansion rate

Yield Y=n/s constant 
under expansion

stronger annihilation 
⇒ less abundance 

H ≈ g1/2
∗

T 2

MPl

Γann ≈ 〈σannv〉n
H(Tf ) = Γann

n ≈ g1/2
∗

T 2
f

MPl〈σannv〉
s ≈ g∗T

3

Y =
n

s
≈ g−1/2

∗
1

MPlTf 〈σannv〉
Ωχ =

mχY s0

ρc

≈ g−1/2
∗

xf

M3
Pl〈σannv〉

s0

H2
0



Order of magnitude

“Known” Ωχ=0.23 
determines the WIMP 
annihilation cross 
section

simple estimate of the 
annihilation cross 
section

weak-scale mass!!!

Ωχ ≈ g−1/2
∗
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Pl〈σannv〉

s0

H2
0

〈σannv〉 ≈ 1.12× 10−10GeV−2xf

g1/2
∗ Ωχh2

∼ 10−9GeV−2

〈σannv〉 ≈ πα2

m2
χ

mχ ≈ 300 GeV



thermal relic

Solve the Boltzmann equation

assume Maxwell distribution, 1=2=χ, E1=E2=mχ

Note momentum dependence may be 
important close to thresholds, resonances
reproduce the estimate with
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WIMP

A stable particle at the weak scale with 
“EM-strength” coupling naturally gives the 
correct abundance
This is where we expect new particles 
because of the hierarchy problem!
Many candidates of this type: SUSY, little 
Higgs with T-parity, Universal Extra 
Dimensinos, etc
If so, we may even create dark matter at 
accelerators



Example
exchange of Majorana 
fermions with a 
relative minus sign

P-wave annihilation
Final state J=1
L=0, S=1 not possible
L=1, S=1 allowed
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A little too much

You get the right 
order of magnitude!

But in detail, a little 
too much beyond the 
collider limits
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LSP
The lightest Supersymmetric Particle is one 
of the best candidates for dark matter 
(assuming R-parity conservation)
In the “Minimal Supergravity” or CMSSM, the  
LSP is bino-like
Its annihilation cross section tends to be too 
small, abundance too large because it is P-
wave suppressed
Coannihilation region 
Funnel region where annihilation goes 
through a Higgs resonance.
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B̃τ̃ → γτ
B̃B̃ → e+e−



100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

mh  = 114 GeV

m
0
 (

G
e
V

)

m1/2 (GeV)

tan ! = 10 ,  µ > 0

m"±  = 104 GeV

100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

mh  = 114 GeV

m
0
 (

G
e
V

)

m1/2 (GeV)

tan ! = 10 ,  µ < 0

100 1000 2000

0

1000

100 1000 2000

0

1000

m
0
 (

G
e
V

)

m1/2 (GeV)

tan ! = 35 ,  µ < 0

mh  = 114 GeV

100 1000 2000 3000

0

1000

1500

100 1000 2000 3000

0

1000

1500

mh  = 114 GeV

m
0
 (

G
e
V

)

m1/2 (GeV)

tan ! = 50 ,  µ > 0

Figure 1: The (m1/2, m0) planes for (a) tan β = 10, µ > 0, (b) tanβ = 10, µ < 0, (c)
tan β = 35, µ < 0, and (d) tan β = 50, µ > 0. In each panel, the region allowed by the older
cosmological constraint 0.1 ≤ Ωχh2 ≤ 0.3 has medium shading, and the region allowed by the
newer cosmological constraint 0.094 ≤ Ωχh2 ≤ 0.129 has very dark shading. The disallowed
region where mτ̃1 < mχ has dark (red) shading. The regions excluded by b → sγ have medium
(green) shading, and those in panels (a,d) that are favoured by gµ − 2 at the 2-σ level have
medium (pink) shading. A dot-dashed line in panel (a) delineates the LEP constraint on the
ẽ mass and the contours mχ± = 104 GeV (mh = 114 GeV) are shown as near-vertical black
dashed (red dot-dashed) lines in panel (a) (each panel).
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sample spectrum
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ũR, d̃L

g̃

t̃1

t̃2

b̃1

b̃2

h0

H0, A0 H±

m0 = 100, m1/2 = 250, A0 =−100, tanβ = 10, µ > 0

SPS1a

bulk
region



sample spectrum

0

200

400

600

800

1000

1200

1400

1600

1800

m [GeV]

!̃, ν̃ τ̃

χ̃0

1

χ̃0

2

χ̃0

3

χ̃0

4

χ̃±
1

χ̃±
2

q̃

g̃

t̃1

t̃2 b̃1

b̃2

h0

H0, A0 H±

m0 = 1450, m1/2 = 300, A0 = 0, tanβ = 10, µ > 0

SPS2

focus
point
region



sample spectrum
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Caveat

The dark matter abundance is very sensitive 
to the superparticle spectrum, and hence on 
the mechanism of supersymmetry breaking

“Minimal Supergravity” not well motivated 
theoretically, and its extension modifies the 
prediction

Be careful about any strong claims!



Colliders



Collision of high-energy 
particles mimic Big Bang
We hope to create Dark 
Matter particles in the 
laboratory
Look for events where energy 
and momenta are unbalanced 

“missing energy” Emiss

Something is escaping the 
detector
electrically neutral, weakly 
interacting

⇒Dark Matter!?

4.8Gev EC
19.Gev HC

YX hist.of BA.+E.C.
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Producing Dark Matter 
in the laboratory
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Concordance model
of Dark Matter?

cosmological measurement of dark matter
⇒ abundance ∝ (annihilation cross section)-1

detection experiments
⇒ scattering cross section
production at colliders
⇒ mass, couplings 
⇒ can calculate cross sections
Will know what Dark Matter is
Will understand universe back to t~10-10sec

just like BBN!



Stau coanihillation

LHC data are not sensitve 
to mass difference 

betewnn LSP and stau

ILC@1TeV give 

important imformation

!!

167% (LHC@300fb^-1)

18% (ILC@500fb^-1)

Shimizu, taken from E. Baltz et al



Dark Matter
direct cross sectionabundance



400Kyr

13.7Byr

1m
in10 -10sec



Conclusions
Supersymmetry is still the best solution to 
the hierarchy problem
To be present at TeV, it needs to be flavor-
blind, quite possible in many models
It provides a very good candidate for dark 
matter
It may help us understand the dark energy
It connects string theory, unification, collider 
physics, cosmology, astrophysics in a 
remarkable way
We may see if it is true in the next year!


