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Motivation

Studies of Dark Energy are hindered by the lack of specific
alternatives to Λ.

Once we allow that the DE density varies with time, how it evolves
appears often as a free function
⇒ The dynamical evolution of DE is quantified by phenomenological
fitting models
But these models have often little theoretical motivation and may be
misleading or difficult to explain (e.g. cross the phantom divide)

We develop a description of DE based on the dynamics of the
scalar field exact in the limit w → −1
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Quintessence

Quintessence: a scalar field φ rolling down its potential V (φ)
that comes to dominate energy density of the Universe (C. Wetterich
1988, B. Ratra & P.J.E. Peebles, 1988)

The evolution of DE is determined by V (φ): for every w(z) there is a V (φ)
able to produce it but not any V (φ) is equally likely
⇒ in Bayesian statistics contest what priors to put on the functional space
of w(z)?
We might expect that relevant ∆L ∼ ∆φ ∼ some”smoothness scale” M
V (φ0) ∼M2

PH
2
0 (present energy density) and V ′′(φ0) . H2

0

⇒We can introduce the ”smoothness scale” M by defining:

V (φ) = M2
PH

2
0f(φ/M)

assuming that f and its derivatives are of order ≤ 1
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Field space parametrisation of Dark Energy

Inflation
The dynamics is independent of the initial condition⇒ define slow roll
parameters that substantially describe the evolution:

ε ∝ (V ′/V )2

η ∝ V ′′/V

Late Universe
Quintessence is effectively late time inflation, but Dark Matter makes things
more complicated

φ̈+ 3Hφ̇+ V ′(φ) = 0,
6H2 = ρm + ρφ,

The acceleration term β ≡ φ̈

3Hφ̇
is not negligible any more.
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Field space parametrisation of Dark Energy

1 + w ≡ 1 +
pφ
ρφ

=
φ̇2

ρφ
=

2
3

V ′2

6H2(1 + β)2ρφ
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Field space parametrisation of Dark Energy

Typically in thawing models β moves smoothly from 1/2 during matter
domination to 0 during DE domination⇒ we can assume κ(φ) small

Only a small region ∆φ of phase space is probed by observation:

1� 1 + w(φ) =
φ̇2

ρφ
=

(∆φ)2

6Ωφ

⇒ recently the field has moved little in Planck units

Linear approximation

κ(φ) = κ0 + κ1(φ− φ0)

κ(a) = κ0

[
ΩΛ(a)
a3Ωφ0

]2κ1/3

ρφ ∝ exp[I(a)]

Where I ' 1
2κ1

(κ2(a)− κ2
0)
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Thawing vs freezing models

Quintessence models have been separated into two classes (R.R. Caldwell &
E.V. Linder, 2005):

Thawing models
The field is fixed at early times at w = −1 and only begins to ”thaw” recently
towards w > −1.
Typically V (φ) ∝ φn.
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Quintessence models have been separated into two classes (R.R. Caldwell &
E.V. Linder, 2005):

Thawing models
The field is fixed at early times at w = −1 and only begins to ”thaw” recently
towards w > −1.
Typically V (φ) ∝ φn.

Freezing models
The field begins at w > −1 and rolls quickly down a potential at early times,
and now starts to slow down as the potential flattens towards w = −1.
Typically V (φ) ∝ 1/φn.

Our parametrisation works well for the thawing models. In fact...
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Thawing vs freezing models

solid blue→ exact integration for a quadratic potential

dashed red→ slow roll parametrisation

dot–dashed→ linear (w(a) = w0 + wa(1− a)) parametrisation
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Comparison with a linear parametrisation

We can convert from our field space variables to redshift space variables:

w(z = 0) = −1 +
2 Ωφ0κ

2
0

3
dw

d ln a

∣∣∣∣
z=0

=
2
3
κ2

0Ωφ0[3− Ωφ0(3 + 4κ1)] .
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2
0

3
dw

d ln a

∣∣∣∣
z=0

=
2
3
κ2

0Ωφ0[3− Ωφ0(3 + 4κ1)] .

With this conversion we can compare our parametrisation with a very used
linear one (M. Chevallier & D. Polarski, 2001, E.V. Linder. 2003):

w(a) = w0 + wa(1− a)

where dw
d ln a
|z=0 = −wa.
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Comparison with a linear parametrisation
Constant likelihood contours
resulting from SN (Astier et al., 2005), CMB (Spergel et al., 2006) and BAO
(Eisenstein et al., 2005) data, fixing for simplicity Ωφ0 = 0.74 and imposing κ0

and κ1 to be between 0 and 1.
left linear (w(a) = w0 + wa(1− a)) model for the equation of state

of DE
right our scalar field motivated parametrisation
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Comparison with a linear parametrisation

left prior from a uniform prior in κ0 − κ1 space = Jacobian of the
transformation from our parametrisation to the linear,
|J | ∝ [Ωφ0(1 + w)]−3/2,

right posterior = prior × likelihood
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Conclusions

Approaching cosmological constant behaviour the evolution of
quintessence DE is constrained by the requirement of a smooth
potential

We developed a physical parametrisation apt to search for small
deviations from Λ
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Conclusions

Approaching cosmological constant behaviour the evolution of
quintessence DE is constrained by the requirement of a smooth
potential
We developed a physical parametrisation apt to search for small
deviations from Λ

Future work

The assumptions about w(z) can affect dramatically the conclusions
about DE (see B.A. Bassett, P.S. Corasaniti & M. Kunz, 2004)⇒ use this
parametrisation for projections of future experiments
Extend the parametrisation to models with coupling DE–DM (e.g. L.
Amendola (2000), M. Gasperini, F. Piazza & G. Veneziano (2002)) or exotic
kinetic term.
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