Multi Wevents at the LHC rom new heavy quarks gun W Géraldine SERVANT (CERN-TH & Saclay)

with Roberto CONTINO arXiv:0801.1679 [hep-ph], JHEP & with C. Dennis, M. Karagoz Unel & J. Tseng hep-ph/0701158

An alternative to SUSY for solving the UV sensitivity of the Higgs sector

The Higgs is the Goldstone Boson of a spontaneously broken global symmetry

e.g. little higgs models

Particularly motivated is the case in which the EWSB sector is strongly interacting

(no need of fundamental scalar)

The Higgs is a bound state of the fundamental constituents (Composite Higgs Models)

[Georgi & Kaplan, '80s]

Dual description in terms of higher-dimensional theories

Constraints on the strong sector from LEP precision tests

LEP bound
$$\Delta \rho \lesssim 2 \times 10^{-3}$$
 \rightarrow custodial symmetry S_{IS} LEP bound $\delta g_{Lb}/|g_{Lb}^{SM}| \lesssim 0.25\%$ \rightarrow custodial parity

 $SU(2)_L \times SU(2)_R \to SU(2)_C$ [Sikivie et al. NPB 173 (1980) 189]

[Agashe, DaRold, R.C., Pomarol PLB 641 (2006) 62]

• Heavy partners of (t_L, b_L) will form a (2,2)_{2/3}

[under $SU(2)_L \times SU(2)_R \times U(1)_X$]

Composite (EW symm. break.) sector:

•
$$(Q,Q') = (\mathbf{2},\mathbf{2})_{2/3}$$

$$Q = \begin{bmatrix} T \\ B \end{bmatrix}$$

[mass mixing terms between the 2 sectors] SM sector:

(t_L ,b_{L)} t_R

electric charge +5/3

$$Q' = \begin{bmatrix} T_{5/3} \\ T_{2/3} \end{bmatrix} \rightarrow "custodian"$$

 $Y_* \operatorname{Tr} \{ \overline{Q} \mathcal{H} \} \widetilde{T} + h.c \}$

•
$$(1,1)_{2/3} = \tilde{T}$$

•
$$\mathcal{H}=(\mathbf{2},\mathbf{2})_0=egin{bmatrix}\phi_0^\dagger&\phi^+\\-\phi^-&\phi_0\end{pmatrix}$$

These new fermions couple strongly to the 3rd generation SM quarks plus one W_L , Z_L or h

 Z_L/h t_R T

FCNC : absent for a 4th generation !

 $Y_* \cos \varphi_L \sin \varphi_R$

 Z_L/h , W_L^+ \tilde{T}

 $Y_* \sin \varphi_L \cos \varphi_R$

 $\frac{Y_* \operatorname{Tr} \{ \overline{\mathcal{Q}} \mathcal{H} \} \widetilde{T} + h.c}{\operatorname{after rotating}}$ $\operatorname{after rotating}_{\text{to mass eigen}}$ $\operatorname{state basis}$

 Z_L/h $T_{2/3}$ t_R

 $Y_* \sin \varphi_R$

 $Y_* \cos \varphi_L \sin \varphi_R$

 $T_{5/3}$ t_R

 $Y_* \sin \varphi_R$

Production of the heavy top (T, T,T2/3) has been studied in the literature

Azuelos et al. Eur.Phys.J. C39S2 (2005) 13 [hep-ph/0402037]

• Single production via bW fusion \rightarrow best channel: $\tilde{T} \rightarrow W^+ b \rightarrow l^+ \nu b$

LHC reach with L=300 fb⁻¹: M=2 TeV for $\lambda_T = 1$

Azuelos et al. Eur.Phys.J. C39S2 (2005) 13 [hep-ph/0402037]

• Pair production \rightarrow best channels: $\tilde{T}\bar{\tilde{T}} \rightarrow \begin{cases} W^{+}bW^{-}\bar{b} \\ W^{+}bh\bar{t} \\ W^{+}bZ\bar{t} \end{cases} \rightarrow \qquad \text{final states with} \\ 1 \text{ charged lepton} \end{cases}$ $L_{disc} = 2 (90) \text{ fb}^{-1} \text{ for } M=0.5 (1) \text{ TeV}$

J.A. Aguilar-Saavedra PoS TOP2006:003,2006 [hep-ph/0603199] and refs. therein

Production of the heavy bottom (B) studied only recently

Note:

No direct bound on M_B from Tevatron (no searches for $B \rightarrow tW$)

CDF bound on heavy bottom quarks b', Mb' >268 GeV, assumes b' decays exclusively to bZ

Triggering on one lepton

Dennis, Karagoz Unel, Tseng & Servant, hep-ph/0701158

Skiba, Tucker-Smith, hep-ph/0701247

additional strategy: look for highly boosted top and W and cut on single jet invariant mass

• works only for heavy masses $M_B \gtrsim 1 \text{ TeV}$

• results depend on the jet energy algorithm used

Look for $B\overline{B}$ and $T_{5/3} \overline{T}_{5/3}$ in same-sign dilepton final states

✓ $t\bar{t} + jets$ is not a background anymore [except for charge mis-ID] ✓ For the T_{5/3} case one can reconstruct the resonant (tW) invariant mass

Single versus pair-production

~ 2.5 pb

Signal & background simulation (final state: $\ell^{\pm} \ell^{\pm} + n jets + E_{T}$)

		σ [fb]	$\sigma \times BR(l^{\pm}l^{\pm})$ [fb]
	$T_{5/3}\overline{T}_{5/3}/B\overline{B} + jets \ (M = 500 \text{ GeV})$	2.5×10^3	104
	$T_{5/3}\overline{T}_{5/3}/B\overline{B} + jets (M = 1 \text{ TeV})$	37	1.6
($t\bar{t}W^+W^- + jets \ (\supset t\bar{t}h + jets)$	121	5.1
$M_h = 180 \text{ GeV} $	$t\bar{t}W^{\pm} + jets$	595	18.4
	$W^+W^-W^{\pm} + jets \ (\supset hW^{\pm} + jets)$	603	18.7
	$W^{\pm}W^{\pm} + jets$	340	15.5

Signal and SM background have been simulated using:

- MadGraph/MadEvent [MatrixElement] + Pythia [Showering no hadronization or underlying event]
- Parton/Jet matching performed following MLM prescription
- * Jets reconstructed with a cone algorithm (GetJet) with $\Delta R=0.4$, $E_T^{min}=30\,{
 m GeV}$
- Jet energy and momentum smeared by

to simulate the detector resolution

Other backgrounds

★ Events where one lepton comes from a b-decay these leptons are soft: completely removed by our cut $p_T(l) \ge 25 \text{ GeV}$

★ $t\bar{t} + jets$ events where the charge of one lepton is mis-identified charge mis-ID probability ϵ_{mis} strongly depends on the lepton's p_T and η

for $t\bar{t} + jets$ the hardest lepton has $p_T(l) \sim 100 \,\text{GeV}$ $\Rightarrow \epsilon_{mis} \sim 10^{-4}$ seems possible $\Rightarrow t\bar{t} + jets$ negligible

★ $Wl^+l^- + jets$ events where one lepton is lost

technically difficult to simulate with all the needed jets

 \rightarrow we estimate it to be ≤ 20 % of the sum of the included backgrounds

jets with two different cone sizes

jet invariant mass with two different cone sizes

Strategy @ main cuts

- ★ For $\Delta R = 0.4$ only the M=1 TeV signal has one "double" jet from boosted W's
- ★ Reference luminosities: 10 fb^{-1} for M = 500 GeV 100 fb^{-1} for M = 1 TeV

Main Cuts:

$l^{\pm}l^{\pm} + n \; jets + \not\!\!E_T \; (n \ge 5)$	p⊤ (any jet) ≥ 30 GeV	
$\underline{\text{jets}}: \begin{cases} p_T(1\text{st}) \ge 100 \text{ GeV} \\ p_T(2\text{nd}) \ge 80 \text{ GeV} \\ n_{jet} \ge 5, \eta_j \le 5 \end{cases}$	$\underline{\text{leptons}} : \begin{cases} p_T(1\text{st}) \ge 50 \text{ GeV} \\ p_T(2\text{nd}) \ge 25 \text{ GeV} \\ \eta_l \le 2.4 , \Delta R_{lj} \ge 0.4 \end{cases}$	$\not\!\!\!E_T \ge 20 \; {\rm GeV}$

	signal (M = 500 GeV)	signal (M = 1 TeV)	$t\bar{t}W$	ttWW	WWW	$W^{\pm}W^{\pm}$
Efficiencies (ϵ_{main})	0.42	0.43	0.074	0.12	0.008	0.01
$\sigma [\mathrm{fb}] \times BR \times \epsilon_{main}$	44.2	0.67	1.4	0.62	0.15	0.16

Discovery plots M=500 GeV

further confirmation of $T_{5/3}$ pair-production with approximate edge in transverse mass distribution of (IIvvj)

Transverse mass of the (llvvj) system

(llj) = same-sign leptons + jet closest to the softest lepton

M = 1 TeV

with same cut as before:

dotted and dashed curves: M_{inv} (hardest 3 jets+b-jet)

 $T_{5/3} + B : L_{disc} \approx 15 \text{ fb}^{-1}$ B only : $L_{disc} \approx 50 \text{ fb}^{-1}$

Discovery potential

Transverse mass of the (llvvj) system

(llj) = same-sign leptons + jet closest to the softest lepton

Mass reconstruction M=500 GeV

 $|M(jj) - m_W| \le 20 \text{ GeV}$

 $\Delta R_{jj}(1 \text{st pair}) \leq 1.5$ $|\vec{p}_T(\text{1st pair})| \ge 100 \text{ GeV}$

 ΔR_{jj} (2nd pair) ≤ 2.0 $|\vec{p}_T(\text{2nd pair})| \ge 30 \text{ GeV}$

2. Reconstruct 1 top (t=Wj) $|M(Wj) - m_t| \le 25 \text{ GeV}$

 $l^+ \nu l^+ \nu$

W

 $T_{5/3}$

 $\bar{T}_{5/3}$

00000

700000 99999

	signal (M = 500 GeV)	$t\bar{t}W$	$t\bar{t}WW$	WWW	WW
ϵ_{2W}	0.62	0.36	0.49	0.29	0.15
ϵ_{top}	0.65	0.56	0.64	0.35	0.35

Mass reconstruction M=1 TeV

Strategy modified since signal events often contain one double jet (a W jet)

1. Reconstruct 1 or 2 W's

 $|M(jj) - m_W| \le 20 \text{ GeV}$

 $\Delta R_{jj}(\text{1st pair}) \le 0.7$ $|\vec{p}_T(\text{1st pair})| \ge 250 \text{ GeV}$

 $\Delta R_{jj}(\text{2nd pair}) \le 1.5$ $|\vec{p}_T(\text{2nd pair})| \ge 80 \text{ GeV}$

2. Reconstruct 1 top (t=Wj) i) t=Wj using events with 2 W ii) t=Wj using events with 1 W iii) t=jj using events with 1 W

also replace extra "discovery" cuts by :

 $M_{inv}(\text{tot}) \ge 1500 \text{ GeV}$ $p_T(1\text{st jet}) \ge 200 \text{ GeV}$ $p_T(2\text{nd jet}) \ge 100 \text{ GeV}$ $p_T(1\text{st lepton}) \ge 100 \text{ GeV}$

T_{5/3} reconstruction for M=1 TeV

resonant peak seen for all three methods

Single-lepton trigger (D B mass reconstruction & with C. Dennis, M. Karagoz Unel & J. Tseng hep-ph/0701158

Dilepton trigger:

-> Evidence for 3W events

B Mass reconstruction M=500 GeV

preliminary (2 B-species present, renormalize accordingly) B Mass reconstruction using single jet mass technique

B Mass reconstruction

out of 3 jets M=750 GeV out of 2 jets M=1 TeV

Conclusion

→ Heavy partners of the top are a robust and well-motivated prediction of a large class of non-supersymmetric models

→ Same-sign dilepton final states are very promising not only for reconstructing the exotic $T_{5/3}$ but also for the discovery of the B

→ early discovery less than ~ 100 pb⁻¹ needed for discovery if M=500 GeV 15 fb⁻¹ M=1 TeV

 \rightarrow « b' » searches more promising than « t' » searches, require less luminosity

→ Full ATLAS and CMS simulations underway

- →include W l⁺ l⁻ + jets and tt̄ + jets backgrounds
 - → full reconstruction techniques
 - → Study reach for heavy masses: Single production (work in progress)

→ single lepton trigger and b' reconstruction studies under completion