Kaluza-Klein Dark Matter: a review

Géraldine SERVANT

Service de Physique Théorique-CEA/Saclay

Based on work with -Tim Tait: hep-ph/0206071 (NPB) hep-ph/0209262 (New J.Phys.) -Bertone & Sigl: hep-ph/0211342 (PRD)

> -Kaustubh Agashe: hep-ph/0403143 (PRL) hep-ph/0411254 (JCAP)

-Dan Hooper: hep-ph/0502247

WIMP KK dark matter

So far, two working models :

Universal Extra Dimensions (UED) WIMP = Lightest KK particle (LKP) stability symmetry = KK parity

Warped GUTs WIMP = Lightest Z₃ charged particle (LZP) stability symmetry = Z₃ symmetry + a potential link between the LZP and baryogenesis...

Literature on KK dark matter: the complete list

Kolb & Slansky '84

Thought about it, but in 1984 R⁻¹~TeV was inconceivable...

Dienes, Dudas & Gherghetta '99 Mohapatra& Perez-Lorenzana '02

mentionned the idea in passing

Servant & Tait '02 Detailed relic density calculation Cheng, Feng & Matchev '02 Direct and indirect detection Servant & Tait '02 Direct detection Majumdar '02 Direct detection Prospects for neutrino telescopes Hooper & Kribs '02 Bertone, Servant & Sigl '02 Indirect detection Hooper & Kribs '04 **Positron** excess Bergstrom, Bringmann, Eriksson & Gustafsson '04 Indirect detection Baltz & Hooper '04 Bergstrom, Bringmann, Eriksson & Gustafsson II '04 Kakizaki, Matsumoto, Sato & Senami '05 A 2nd look at the relic density calculation + superWimp KK graviton papers

Agashe & Servant '04 Agashe & Servant II '04 Hooper & Servant '05

Model building, relic density, direct detection, collider signatures ...

Indirect detection

KK dark matter in UED

Warped KK dark matter

LKP dark matter in Universal Extra Dimensions

UED : ALL SM particles propagate into flat dimensions

Translational invariance along the 5th dimension \Rightarrow Conservation of Kaluza-Klein number in the interactions of the effective 4D theory

For instance:

Consequence: n=1 KK excitations can only be produced by pairs

 \Rightarrow Collider constraints on 1/R are weak

Symmetry is broken by the orbifold but there remains a discrete symmetry called Kaluza-Klein Parity: (-1)ⁿ

by the orbifold we impose to recover a chiral theory

K.K number is Conserved at the level but broken at loop level # (2m-m) (m-m) = (m-n) r can change by an EVEN number only KK PARITY: [-1]^m: preserved at all orders. mo Any interactions between an EVEN number of ODD KK modes Mal . the Lightert KK particle (LKP)

Odd KK modes can only couple by pairs
The Lightest KK mode (LKP) is stable

The Kaluza-Klein photon is an excellent dark matter candidate Phenomenology is very similar to supersymmetry with conserved R-parity

> All KK particles decay into the LKP

1-loop spectrum of 1rst KK modes

Cheng, Matchev & Schmaltz'02

assuming:1/R=500 GeV, $\Lambda R=20, m_h=120~$ GeV and vanishing boundary terms at the cutoff Λ

 \longrightarrow LKP: most likely a γ^1 (actually a B^1) Another intriguing possibility: LKP=KK graviton (see Feng & al.)

Relic density predictions

 $\Omega h^2 \approx \frac{10^9}{m_{el}} \frac{\alpha_F}{\sqrt{g_{\pi}}} \frac{GeV'}{\langle \sigma_{eff} v \rangle}$ REMINDER : $\Omega h^2 \approx 0.11 \sim (5 fi-1 pb)$ (2 = 25-35

Annihilation cross sections $B^{(n)} \longrightarrow f$ $B^{(n)} \longrightarrow f$ $B^{(n)} \longrightarrow f$ φ⁽¹⁾ φ

Coannihilation effects

Possible effect of additional dimension

Effect of 2nd KK modes

"natural KK resonance" Kakizaki & al, hep-ph/0502059

Direct detection

Experimental limits :

LKP signal :

Particle physics model building in warped space

2005 FAVOURITE SET-UP:

hierarchy pb
fermion masses
High scale unification
FRW cosmology

Now embed this into a GUT + solve proton stability

✓ Dark matter

In GUTs ⇒

where $M_{X,Y} \sim \text{few TeV}$ \Rightarrow very fast proton decay

Solution: Break GUT by boundary conditions which split GUT multiplets SM fermions

Mass spectrum of KK fermions

Depends on:

 type of boundary conditions on TeV and Planck branes
 c-parameter (=5D bulk mass) (=localization of zero-mode wave function)

For certain type of boundary conditions on fermions, there can be a hierarchy between the mass of KK fermion and the mass of KK gauge bosons

 \Rightarrow Not a single KK scale

and smallest c: c of the top quark

LZP belongs to the multiplet containing SM top quark

There exists a very light KK fermion as a consequence of the heaviness of the top guark

zero modes= SM fermions

Relic density predictions

Agashe-Servant '04

Direct detection

Collider Signatures: examples

4 W + 2 b+ ∉_

6 W + 4 b+ ∉

Indirect detection in neutrino telescopes

Large elastic scattering cross section: large capture rate in the Sun Efficient production of neutrinos in annihilations

Cosmic positrons from LZP annihilations

Fit of the HEAT data from LZP annihilations

40 GeV LZP

50 GeV LZP

Galactic antiprotons from LZP annihilation

Barreau & al '05

Our dark matter candidate carries baryon number! (B=1/3)

Assume an asymmetry between t and \overline{t} is created via the out-of-equilibrium and CP-violating decay :

Baryon number conservation leads to:

 $\frac{1/3 (n_{\overline{LZP}} - n_{LZP}) = n_{b} - n_{\overline{b}}}{Assuming efficient annihilation between LZP} and \overline{LZP}, and b and \overline{b} :$ $\rho_{DM} = m_{LZP} n_{DM} \approx 6\rho_{b} \longrightarrow m_{LZP} \approx 2 \text{ GeV}$

	LKP	LZP	LSP
nature	gauge boson	Dirac fermion	Majorana fermion
symmetry	KK parity (-1) ⁿ	$ \begin{bmatrix} Z_3 \\ B_{-}(n_c - \bar{n}_c) \\ 3 \end{bmatrix} $ related to proto	R-parity 3(B-L)+25 (-1) n stability
mass , range	~600-1000 GeV	20 GeV-few TeV	~50 GeV-1 TeV
annihilation	r S-Wave	s-wave	helicity suppressed (p-wave)
favourite detection	 LHC Indirect detection 	 Direct detection LHC! Indirect detection entire parameter space is testable 	n! Image: Contract of the second

To conclude

Abundance of experimental activity related to dark matter detection:

- Colliders
- Direct detection: CDMS, Edelweiss, Dama, Cresst, Zeplin, Xenon, Naiad ...
- Indirect detection:
 - Gamma-ray telescopes: Hess, Veritas, Glast, Magic
 - Neutrino telescopes: Amanda, IceCube, Antares
 - Cosmic positron experiments: HEAT, Pamela, AMS-2

It is timely to study the distinctive signatures expected in different dark matter scenarios.

LKPs, LZPs: viable alternatives to LSPs