Four-top events at the LHC

top-philic new physics

Géraldine SERVANT, CERN-TH

in collaboration with

• Léa Gauthier, Anne-Isabelle Etienvre (ATLAS, SPP, CEA Saclay)

paper in preparation, for a short preview see chapter 12, p.137 of 1005.1229

Four-top production in the Standard Model

+

σ_{LHC} ~ 7.5 fb @ 14 TeV σ_{LHC} ~ 0.2 fb @ 7 TeV

+

⇒ 4 top final state sensitive to several classes of new TeV scale physics e.g. SUSY (gluino pair production with $\tilde{g} \rightarrow t \, \bar{t} \, \chi_0$) top compositeness In particular, well-motivated models where new heavy resonances have a preference for the top quark

g

ecceccecce

g

Low energy effective theory approach

After integrating out heavy resonances, we are left with higher dimensional operators such as

 $\frac{1}{\Lambda^2} (\bar{t}_R \gamma^\mu t_R) (\bar{t}_R \gamma_\mu t_R)$

leading to:

[Pomarol-Serra,'08] [Lillie-Shu-Tait,'08]

Four-top events from a top-philic and Dark Matter-philic Z'

Jackson, Servant, Shaughnessy, Tait, Taoso,'09

Z' has suppressed couplings to light quarks -> no observable $t \bar{t}$ resonances

instead:

Z vi $t\bar{t} +$ $gg \to t\bar{t} + Z'$ $t\overline{t}t\overline{t}$

4-top production cross sections at the LHC

same-sign dilepton channel powerful to get rid of the ttbar bgd

promising to search for $t \bar{t}$ WW final states from pair production of heavy quarks (recently used by CDF to put bound on mass of 4th generation b')

[Contino & Servant, '08]

tttt production: similar final state but 2 additional b quarks

final state: $l^{\pm} l^{\pm} + n jets + E_{T,missing}$ (of which 4 are b-jets)

Four-top events from a top-philic Z'

Jackson, Servant, Shaughnessy, Tait, Taoso,'09 Agashe-Servant '04: Belanger-Pukhov-Servant '07

There is a new spontaneously broken U(1)'.

The only SM particle with a large coupling to the Z' is the top quark

that only the top couples sizably to a new strongly interacting sector.

Partial compositeness: Dual picture

Higgs is part of composite sector: it couples only to composite fermions

pp->ttZ'->tttt production cross section

We work with $\sqrt{s} = 14 \text{ TeV}$

We have : $\sigma = 838 \text{ fb}$ for m(Z') = 500GeV $\sigma = 61 \text{ fb}$ for m(Z')= 1 TeV

If we work with $\sqrt{s} = 7 \text{TeV}$ $\sigma = 110 \text{ fb} \text{ for } m(Z') = 400 \text{GeV}$

$t \bar{t}$ invariant mass

for random combination

t \overline{t} invariant mass versus $M_{Z'}$

top polarization

In the models of interest, 4-top production yields an excess of right-handed tops

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta} = \frac{A}{2}(1+\cos\theta) + \frac{1-A}{2}(1-\cos\theta)$$

A: fraction of RH tops

 θ is the angle between the direction of the (highest p_T) lepton in the top rest frame and the direction of the top polarisation

Spin correlations

$$\frac{1}{N}\frac{d^2N}{d\cos\theta_1.d\cos\theta_2} = \frac{1}{4}(1 - A\cos\theta_1\cos\theta_2 + b_1\cos\theta_1 + b_2\cos\theta_2)$$

	Z'(500 GeV)	Z'(1 TeV)	Z'(1.5 TeV)	SM
Α	-0.14 ± 0.29	-0.22 ± 0.27	-0.26 ± 0.23	-0.11 ± 0.3
b_1	0.43 ± 0.32	$0.56 {\pm} 0.32$	$0.64{\pm}0.29$	-0.0051 ± 0.29
b_2	$0.53 {\pm} 0.32$	$0.61 {\pm} 0.31$	$0.57 {\pm} 0.33$	-0.03 ± 0.29

background in same-sign dilepton channel @LHC

final state: $l^{\pm} l^{\pm} + n jets + E_{T}$ (of which 4 are b-jets)

process	σ [fb]	σ .BR(l±l±) [fb]
signal m(Z') = 500GeV	838.18	17.5
signal m(Z') = 1 TeV	61.19	1.3
tttt	7.52	0.15
ttWW	120.8	5.1
ttW + (0,1,2) jets	595	18.4
WWW + (0,1,2) jets	603	18.7
WW + (0,1,2,3,4) jets	324	15.5

tt+jets with charge mis-ID not included here (but will be)

of jets

four-top events from a top-philic Z' @LHC in same-sign dilepton channel

$$n_j \ge 6, p_T > 30 \ {
m GeV}$$

 $M_{Z'} = 1 \ {
m TeV} \ {
m preliminary}$ $n_{
m b \ jets} \gtrsim 3$

 $M_{Z'} = 500 \text{ GeV}$

with b-tagging efficiency=1

with b-tagging efficiency of 60%

with only the very simple cuts: $n_j \geq 6, \, p_T > 30~{
m GeV}$, $n_{
m b~jets} \gtrsim 3$

preliminary

 $M_{Z'} = 500 \text{ GeV}$ 5σ excess luminosity~ 150 pb⁻¹ $(g_{t_R}^{Z'} = 3)$ 5σ excess luminosity~ 25 fb⁻¹ $M_{Z'} = 1 \text{ TeV}$ 5σ excess luminosity~ 25 fb⁻¹ $\Lambda = 500 \text{ GeV}$ 5σ excess luminosity~ 15 fb⁻¹

Top reconstruction

challenge of assigning 12 final state fermion particles to the 4 top candidates.

Fig. 8: The probability as a function of resonance mass that final state fermions are correctly assigned to top and anti-top quarks in $t\bar{t}$ production (open circles) and $t\bar{t}t\bar{t}$ production. The filled circles (triangles) indicate the probability to find two (four) correctly paired top quarks. The central panel shows the invariant mass distribution of the two top quarks with highest p_T in SM $t\bar{t}t\bar{t}$ production (filled histogram) and for production through a 1.5 TeV KK gluon. The rightmost panel shows the invariant mass of the two reconstructed clusters with highest p_T . (from 1005.1229)

[figures from Marcel Vos]

he top quark-Dark Matter

Jackson, Servant, Shaughnessy, Tait, Taoso,'09

Dirac Dark Matter annihilation into y H

liggs in Space!

 γ -ray lines from the Galactic Center $\Delta\Omega$ = 10⁻⁵ sr

Collider signatures of a top (and DM)-philic Z'

• $ff \to Z' \to t\bar{t}$ $\left(\text{light } t\bar{t} \text{ resonances} \right)$ $gg \rightarrow t\bar{t} + Z'$ $t\bar{t}t\bar{t}$

• $ff \to Z' \to \gamma H$ $e \\ q$ $\sim \gamma$ Z'

energetic monochromatic γ

four-top events at Multi-TeV e+e- colliders

Battaglia-Servant 1005.4632

 $e^+ e^- \rightarrow t\bar{t} + \not E_T @ 3 TeV CLIC$

 σ_{ttveve} = 4.1 fb $\sigma_{4t \text{ in SM}} = 0.03 \text{ fb}$ $(g_{t_R}^{Z'} = g_{DM}^{Z'} = 3)$

e⁺ e⁻ → tttt @ 3 TeV CLIC

four-top events: in a large class of BSM models (susy, top composite models, top-philic resonances) four-tops: key channel to probe top compositeness (although not at 7 TeV) so far, there was no detailed study we found good prospects in the very clean 2 same-sign dilepton channel b-tagging crucial to probe the O(10 fb) cross sections

future plans: full ATLAS simulation (events already generated at 7 TeV)