

Géraldine SERVANT, CERN-TH
in collaboration with

- Léa Gauthier, Anne-Isabelle Etienvre (ATLAS, SPP, CEA Saclay)
paper in preparation,
for a short preview see chapter 12, p. 137 of 1005.1229

Four-top production in the Standard Model

88 \%

$$
\begin{gathered}
\sigma_{L H C} \sim 7.5 \mathrm{fb} @ 14 \mathrm{TeV} \\
\sigma_{L H C} \sim 0.2 \mathrm{fb} @ 7 \mathrm{TeV}
\end{gathered}
$$

$\Rightarrow 4$ top final state sensitive to several classes of new TeV scale physics
e.g. SUSY (gluino pair production with $\tilde{g} \rightarrow t \bar{t} \chi_{0}$) top compositeness

In particular, well-motivated models where new heavy resonances have a preference for the top quark

Low energy effective theory approach
After integrating out heavy resonances, we are
left with higher dimensional operators such as $\frac{1}{\Lambda^{2}}\left(\bar{t}_{R} \gamma^{\mu} t_{R}\right)\left(\bar{t}_{R} \gamma_{\mu} t_{R}\right)$
leading to:

Four-top events from a top-philic and Dark Matter-philic Z^{\prime}
Jackson, Servant, Shaughnessy,Tait, Taoso,'09
Z' has suppressed couplings to light quarks
-> no observable $t \bar{t}$ resonances
instead:

4-top production cross sections at the LHC

same-sign dilepton channel powerful to get rid of the ttbar bad

promising to search for $t \bar{t} W W$ final states from pair production of heavy quarks (recently used by CDF to put bound on mass of 4th generation b^{\prime})

$\dagger \dagger \dagger \dagger$ production: similar final state but 2 additional b quarks
final state: $\ell^{ \pm} \ell^{ \pm}+$n jets $+E_{T, \text { missing }}$
(of which 4 are b-jets)

Four-top events from a top-philic Z^{\prime}

A very simple effective theory

There is a new spontaneously broken $U(1)^{\prime}$.
The only SM particle with a large coupling to the Z^{\prime} is the top quark

$$
\begin{aligned}
\mathcal{L} & =\mathcal{L}_{S M}-\frac{1}{4} F_{\mu \nu}^{\prime} F^{\prime \mu \nu}+M_{Z^{\prime}}^{2} Z_{\mu}^{\prime} Z^{\prime \mu}+i \frac{i \bar{\nu} \gamma^{\mu} D_{\mu} \nu}{D M}+g_{R}^{t} \bar{t} \gamma^{\mu} P_{R} Z^{\prime \mu} t+\frac{\chi}{2} F_{\mu \nu}^{\prime} F_{Y}^{\mu \nu} \\
D^{\mu} & \equiv \partial_{\mu}-i\left(g_{R}^{\nu} P_{R}+g_{L}^{\nu} P_{L}\right) Z^{\prime \mu}
\end{aligned}
$$

This model is inspired by the Randall-Sundrum setup (warped extra dimension): to RH top quark
(light) SM fields
live here
\qquad

Composite sector

RH top
is here (as well as Higgs and DM)
$d s^{2}=e^{-2 k y} d x^{\mu} d x^{\nu} \eta_{\mu \nu}-d y^{2}$

More generally, in models of partial fermion compositeness, natural to expect that only the top couples sizably to a new strongly interacting sector.

Partial compositeness: Dual picture

Higgs is part of composite sector: it couples only to composite fermions

SM sector

 elementary fermions: χ
strong

 sectorEWSB
Higgs
heavy fermions: ψ vector resonances: ρ
zero mode mass eigen state is mixture of elementary and composite

- massless
\mid light $>_{L}=\cos \phi \mid \chi_{L}>+\sin \phi \dot{t} \psi_{L}>$ amount of compositeness in the light dof
- massive

$$
\begin{gathered}
\mid \text { heavy }>_{L}=-\sin \phi\left|\chi_{L}>+\cos \phi\right| \psi_{L}> \\
\mid \text { heavy }>_{R}=\mid \psi_{R}>
\end{gathered}
$$

$$
\tan \phi=\frac{\Delta}{M_{*}}
$$

Yukawa hierarchy comes from the hierarchy of compositeness

$p p-\lambda+\ddagger Z^{\prime}->\dagger \ddagger \dagger \mp$ production cross section

Cross section versus $M_{\mathbf{z}}$, for $p p->t t \overline{t t}$

We work with $\sqrt{ } \mathrm{s}=14 \mathrm{TeV}$

We have :
$\sigma=838 \mathrm{fb}$ for $m\left(Z^{\prime}\right)=500 \mathrm{GeV}$
$\sigma=61 \mathrm{fb} \quad$ for $\mathrm{m}\left(\mathrm{Z}^{\prime}\right)=1 \mathrm{TeV}$

If we work with $\sqrt{\mathrm{S}}=7 \mathrm{TeV}$ $\sigma=110 \mathrm{fb}$ for $m\left(Z^{\prime}\right)=400 \mathrm{GeV}$

\dagger † invariant mass

for random combination

top polarization

In the models of interest, 4-top production yields an excess of right-handed tops

$$
\frac{1}{\sigma} \frac{d \sigma}{d \cos \theta}=\frac{A}{2}(1+\cos \theta)+\frac{1-A}{2}(1-\cos \theta)
$$

A: fraction of RH tops
θ is the angle between the direction of the (highest p_{T}) lepton in the top rest frame and the direction of the top polarisation

Spin correlations

$$
\frac{1}{N} \frac{d^{2} N}{d \cos \theta_{1} \cdot d \cos \theta_{2}}=\frac{1}{4}\left(1-A \cos \theta_{1} \cos \theta_{2}+b_{1} \cos \theta_{1}+b_{2} \cos \theta_{2}\right)
$$

-	$Z^{\prime}(500 \mathrm{GeV})$	$\mathrm{Z}^{\prime}(1 \mathrm{TeV})$	$\mathrm{Z}^{\prime}(1.5 \mathrm{TeV})$	SM
A	-0.14 ± 0.29	-0.22 ± 0.27	-0.26 ± 0.23	-0.11 ± 0.3
b_{1}	0.43 ± 0.32	0.56 ± 0.32	0.64 ± 0.29	-0.0051 ± 0.29
b_{2}	0.53 ± 0.32	0.61 ± 0.31	0.57 ± 0.33	-0.03 ± 0.29

(a)

(b)

background in same-sign dilepton channel @LHC

final state: $\ell^{ \pm} \ell^{ \pm}+n$ jets $+E_{T}^{\prime} T$

 (of which 4 are b-jets)| process | $\sigma[\mathrm{fb}]$ | $\sigma . \mathrm{BR}(\pm \pm \not \pm)[\mathrm{fb}]$ |
| :--- | :--- | :--- |
| signal $m\left(Z^{\prime}\right)=500 \mathrm{GeV}$ | 838.18 | 17.5 |
| signal $m\left(Z^{\prime}\right)=1 \mathrm{TeV}$ | 61.19 | 1.3 |
| tttt | 7.52 | 0.15 |
| ttWW | 120.8 | 5.1 |
| $\mathrm{ttW}+(0,1,2)$ jets | 595 | 18.4 |
| WWW $+(0,1,2)$ jets | 603 | 18.7 |
| WWW $+(0,1,2,3,4)$ jets | 324 | 15.5 |

$\dagger \bar{\dagger}+j e t s$ with charge mis-ID not included here (but will be)

\# of jets

four-top events from a top-philic Z' @LHC in same-sign dilepton channel

with b-tagging efficiency of 60\%

with only the very simple cuts:

$$
n_{j} \geq 6, p_{T}>30 \mathrm{GeV}, \quad n_{\mathrm{b} \text { jets }} \geq 3
$$

preliminary
$M_{Z^{\prime}}=500 \mathrm{GeV} \quad 5 \sigma$ excess luminosity $\sim 150 \mathrm{pb}^{-1}$
$\left(g_{t_{R}}^{Z^{\prime}}=3\right)$
$M_{Z^{\prime}}=1 \mathrm{TeV}$
5σ excess luminosity $\sim 25 \mathrm{fb}^{-1}$
$\Lambda=500 \mathrm{GeV}$
5σ excess luminosity~ $15 \mathrm{fb}^{-1}$

Max of $\mathbf{H}_{\mathbf{T}}$ versus $\mathbf{M}\left(\mathbf{Z}^{\prime}\right)$

Top reconstruction

challenge of assigning 12 final state fermion particles to the 4 top candidates.

Fig. 8: The probability as a function of resonance mass that final state fermions are correctly assigned to top and anti-top quarks in $t \bar{t}$ production (open circles) and $t \bar{t} t \bar{t}$ production. The filled circles (triangles) indicate the probability to find two (four) correctly paired top quarks. The central panel shows the invariant mass distribution of the two top quarks with highest p_{T} in SM $t \bar{t} t \bar{t}$ production (filled histogram) and for production through a 1.5 TeV KK gluon. The rightmost panel shows the invariant mass of the two reconstructed clusters with highest p_{T}. (from 1005.1229)

Jackson, Servant, Shaughnessy,Tait, Taoso,'09

Dirac Dark Matter annihilation into $\mathrm{\gamma} \mathrm{H}$

$\sim O(1)$ couplings

Hiiggs in Space!

γ-ray lines from the Galactic Center $\Delta \Omega=10^{-5} \mathrm{sr}$

Spectra for parameters leading to correct relic density and satisfying direct detection constraints

Collider signatures of a top (and DM)-philic Z^{\prime}

- $f \bar{f} \rightarrow Z^{\prime} \rightarrow t \bar{t}$
light $t \bar{t}$ resonances

- $f \bar{f} \rightarrow Z^{\prime} \rightarrow \gamma H$

energetic monochromatic γ
four-top events at Multi-TeV e+e-colliders
Battaglia-Servant 1005.4632

$e^{+} e^{-} \rightarrow \mathrm{t} \overline{\mathrm{t}}+\mathrm{E}^{t} \mathrm{~T} @ 3 \mathrm{TeVCLIC}$

$$
\begin{aligned}
& \sigma_{\text {ttveve }}=4.1 \mathrm{fb} \\
& \sigma_{4+\text { in }} s M=0.03 \mathrm{fb} \\
& \left(g_{t_{R}}^{Z^{\prime}}=g_{D M}^{Z^{\prime}}=3\right)
\end{aligned}
$$


```
e+}\mp@subsup{e}{}{-}->\mp@subsup{t}{}{-}+\mp@subsup{t}{}{-}@3\mathrm{ TeV CLIC
```


$$
\begin{gathered}
\mathrm{Mz}^{\prime}=360 \mathrm{GeV} \\
\left(g_{t_{R}}^{Z^{\prime}}=3\right)
\end{gathered}
$$

Summary

four-top events: in a large class of BSM models (susy, top composite models, top-philic resonances)
four-tops: key channel to probe top compositeness (although not at 7 TeV)
so far, there was no detailed study
we found good prospects in the very clean 2 same-sign dilepton channel
b-tagging crucial to probe the $O(10 \mathrm{fb})$ cross sections
future plans: full ATLAS simulation
(events already generated at 7 TeV)

