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Table 1: C harges of S tandard M odel fi elds.

interaction:

∆L = y t Q
†
L Φc t R + c.c. =

y t√
2
(t †L b †L )

(

v + h

0

)

t R + c.c. (48)

= m t (t
†
R t L + t †L t R )

(

1 +
h

v

)

= m t ¯t t

(

1 +
h

v

)

(49 )

where m t = y t v /
√

2 is the mass of the t quark.

The mass of the charged leptons follows in the same manner, y e E
†
L ΦeR + c.c., and

interactions with the H iggs boson result. In all cased the Feynman diagram for H iggs
boson interactions with the fermions at leading order is

h ¯f f : i
m f

v
. (50)

We see from this discussion several important points. First, the single H iggs
boson of the Standard Model can give mass to all Standard Model states, even to
the neutrinos as we will see in the next lecture. It did not have to be that way. It
could have been that quantum numbers of the fermions did not enable j ust one H iggs
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Left-handed versus right-handed spinors

Nature is symmetric under the group of Lorentz transformations, rotations, and 
translations which all together form the Poincaré group.

Particles are classified by spin: scalars, fermionic spinors, vector bosons.
They correspond to irreducible representations of the Poincaré group

Spinors are of two types: the fundamental (left-handed) and the anti-
fundamental (right-handed). The chirality of a spin 1/2 field refers to 
whether it is in the fundamental or the anti-fundamental and is therefore 
a label associated with a representation of the Lorentz group

 L : (
1

2
, 0)

 R : (0,
1

2
)

Weyl spinors Dirac spinor
 L

 R
[ ] =
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(thus we call the fundamental spinors the left-handed spinors and the anti-
fundamental spinors the right-handed spinors)

Chirality versus helicity

helicity  is a physical quantity: it is the projection of the spin onto the direction of motion

right-handed left-handed

 for a massless particle:  chirality= helicity

The Standard model is a chiral theory: the left-handed and right-handed spinors not only 
transform differently under the Lorentz group but also under the EW gauge group 
SU(2)L*U(1)

The left-handed fields are denoted Q=(uL, dL) and L=(nuL, eL)  while the right-handed 
fields are denoted u, d and e. 

SU(2)L
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Fermion masses

Lorentz invariant:

The Dirac equation Fermions described by 4-cpt Dirac spinors 

New 4-vector

From Euler Lagrange equation obtain the Dirac equation

The Lagrangian

U(1) symmetry

! †" 0! #!! �! L
*! R �! R

*! L Lorentz invariant

Dimension?

Feynman rules

Fermion masses

 
L = m eL

*eR � eR
* eL� � Dirac mass

Lorentz invariant

Only term allowed by charge conservation is

Lorentz invariant

Majorana mass

-> Dirac mass

-> violates EW gauge symmetry

How do a left-handed and right-handed particle of different quantum 
numbers become a single massive particle?

The key is the gauge invariant Yukawa interaction: 

2.2 Towards a realistic Lagrangian

Keeping the symmetry issue as our guiding line, we ask how one could modify the minimal gauge
Lagrangian to turn it into a realistic theory. For good reasons (See Appendix D), we want to
stick in the Lagrangian to monomials of dimension 4 at most. Following Appendix A, the only
other term that we could possibly add to L m i n is a fermion mass term of the form ΨMΨ. It is
straightforward to see, however, that the entire set of the Ψ fields in eq. (1.16), with the exception
of the singlet N(1, 1) 0 , form a chiral representation (See the definition in Appendix B) of the
SU(3)XSU(2)XU(1) gauge group. [Problem 2.2.1: Prove this statement.] The only term that
we can add is a mass for the right-handed neutrinos (This is how we call the Ni )

∆L M = −
1

2
Ni Mi j Nj + h.c. (2.3)

where we make explicit also a generation index i = 1, 2, 3. Mi j in eq. (2.3) is an arbitrary
symmetric matrix. This term, however, does not break any of the symmetries discussed in Sect.
2.1, since the Ni only enter L m i n through their free kinetic term.

Always following Appendix A, the only way that we have to try to attack this problem is by
adding new fields. The way taken by the Standard Model is to add a SU(2) doublet of complex
scalars

φ =

(

φ +

φ 0

)

≡
(

φ 1 + iφ 2

φ 3 + iφ 4

)

, (2.4)

with hypercharge chosen in such a way as to allow its possible Yukawa interactions with the Ψ
fields. With a single scalar doublet, this is possible if φ transforms as a (1, 2)1 / 2 , in which case
the most general Yukawa Lagrangian is

∆L Y = −φ(Qi λ
U
i j u

c
j + Li λ

N
i j Nj ) − φ + (Qi λ

D
i j d

c
j + Li λ

E
i j e

c
j ) + h.c. (2.5)

[Problem 2.2.2: Prove this statement.] As usual we leave implicit the gauge indices and their con-
tractions. The four 3×3 λ matrices have only an explicit index in family (or flavour) space. Finally
another term that we can include in the Lagrangian is a gauge-invariant, hermitian potential in
the fields φ,φ + , which takes the form

V = −µ 2 φ + φ+ λ(φ + φ) 2 , (2.6)

with µ 2 and λ real parameters of mass dimension 2 and zero respectively.

2.3 The accidental symmetries of the Standard Model

We have been led in this way to construct the full Lagrangian as

L ν S M = L m i n + (∆L M + ∆L Y ) − V. (2.7)

L ν S M has the non trivial property of being the most general Lagrangian, gauge invariant under
SU(3)XSU(2)XU(1), with monomials of dimension four at most and involving the fermion mul-
tiplet Ψ, as in (1.16), and the doublet scalar φ. At least, but not only, for historical reasons, it is
best to isolate in eq. (2.7) the terms which involve the right handed neutrino fields, so that

L ν S M = L S M + N̄i /∂Ni − (φLi λ
N
i j Nj +

1

2
Ni Mi j Nj + h.c) (2.8)

10

Once the Higgs condenses, these couplings become the mass of the SM fermions 
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The CKM matrix

u_L and d_L live in a doublet. There is no basis in which both components are in a 
mass eigenstate.

couplings then become matrices Y d and Y u. The element (Y d)ij makes the j -th
right-handed down quark d R j emit the neutral Higgs boson and transforms it
to the i -th left-handed down quark dLi. S imilarly, the element (Y u)ij makes
u R j emit the anti-particle of the neutral Higgs boson and transforms it to
the uLi. It has to be the anti-particle in order to conserve the hypercharge.
O nce the Higgs boson condenses, both up- and down-type quarks acquire
mass matrices ,

M u = Y u v , M d = Y d v . (16 )

Because the mass appears in the Hamiltonian, E =
p

~p 2 c 2 + m 2 c 4, we
need to diagonalize the mass matrix to obtain the Hamiltonian eigenstates.
The point is that we need mass-squared, and it needs to be hermitean. There
are two ways to construct hermitean mass-squared matrices, M †

u M u and
M u M

†
u. Which one do we use? Well, both. R emember M u acts on the

right-handed up quarks on the right, and M †
u then acts on the left-handed

up quarks because of the transposition. We in general need to diagonalize
both matrices on the space of right-handed and left-handed up-quarks sep-
arately. The same is true with the down quarks. Therefore, we need four
independent unitary rotations,

M †
u M u = VuR D 2

uV
†
uR

, M u M
†
u = VuL D 2

uV
†
uL

, (17 )

M †
d M d = VdR D 2

dV
†
dR

, M d M
†
d = VdL D 2

dV
†
dL

. (18 )

Here, D u, d are diagonal matrices of mass eigenvalues,

D u =

0

B@
m u 0 0
0 m c 0
0 0 m t

1

CA , D d =

0

B@
m d 0 0
0 m s 0
0 0 m b

1

CA . (19)

F our unitary matrices VuR , VuL , VdR , and VdL are all di↵erent in general.
The important point is that dL and uL live in the doublets. Therefore, we

you do VdL rotations on dL and VuL rotations on uL, there in general appears
a mismatch. In other words, there is no basis in which both components in a
given doublet are in the mass eigenstates. This is the origin of the Cabibbo–
Kobayashi– Maskawa mixing matrix in the S tandard Model. U sing the mass
eigenstates um

L and dm
L , the original doublets are given in

Qi =

 
uLi

dLi

!

=

 
(VuL)iju

m
Lj

(VdL)ijd
m
Lj

!

. (20 )
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Both up and down-type quarks acquire mass matrices

Need to be diagonalized with four independent unitary rotations:
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mass eigen values:
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8-> Cabbibo-Kobayashi-Maskawa mixing matrix of the Standard Model

If you want to go to the basis where the up-type quarks are in the mass
eigenstates in a given doublet, we look at

Qu
i = (V †

uL
)ijQj =

 
um

Lj

(V †
uL

VdL)ijd
m
Lj

!

. (21)

You can see that the combination

VCKM = V †
uL

VdL (22)

is nothing but the CKM matrix. We had introduced this matrix somewhat
arbitrarily to explain why the strange quark decays etc, but now we see that
it is a consequence of the mismatch between the eigenbases of up-type and
down-type Yukawa matrices.

Now you would wonder why we didn’t have to consider similar mixings
in the case of the leptons. The answer is that you should, but it is irrel-
evant. When you go to the basis where the lepton mass is diagonal, you
find a mixture of neutrinos as a partner of each lepton. However, as long as
neutrinos are all massless, they do not have any internal mechanism to tell
one from another. The charged lepton can “tell” neutrinos that the isopart-
ner of the electron is the electron neutrino and so on, and neutrinos don’t
complain. Even though you had considered a possible mixing among neutri-
nos, the mixing angles are simply unphysical. This situation changes once
you do consider massive neutrinos, and indeed the neutrino oscillation arises
because of such mixing.

5 Search for the Higgs Boson

Now we know the quantum number of the Higgs boson and the size of its
condensate. But what is it? In order to answer this question, we have to
produce it in the laboratory. The basic idea is that, once you pump enough
energy into the “vacuum,” you can knock out the Higgs boson out of the
condensate.

The basic idea is that the Higgs boson is the origin of mass, and hence
the coupling of the Higgs boson is stronger for more massive particles. It
is actually the other way around. If the coupling is larger, the more mass
it acquires. Nonetheless the strategy is to produce a heavy particle, and let
Higgs be produced from the coupling to that heavy particle.

9
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Dark Matter and the electroweak scale:
beyond the supersymmetric paradigm

Géraldine Servant
CERN, Physics Department, Theory Unit, CH-1211 Geneva 23, Switzerland

Despite the impressive successes of the Standard Model (SM) in describing
nearly all experimental data collected so far in particle physics, it is not
viewed as a fundamental theory but as an effective field theory valid on scales
less than at most a few TeV. The problem lies in the difficulty to understand
the relatively low values of the Higgs mass parameter |m2

H | ∼ (100 GeV)2

in a framework in which the SM is valid up to some ultra high scale, for
instance of the order of the Planck scale. This is because the Higgs boson
mass parameter receives radiative corrections (dominantly from the top loop,
the W , Z gauge bosons and from the Higgs itself) that are quadratically
divergent, and therefore proportional to Λ2 where Λ is the maximum mass
scale that the theory describes:

δm2
H =

3Λ2

8π2v2

(

2m2
W + m2

Z + m2
H − 4m2

t

)

∼ −(0.23 Λ)2 (1.1)

For large values of Λ, tree level and radiative contributions to the Higgs mass
parameter must cancel. For the SM to be valid up to 5 TeV a cancellation
by 2 orders of magnitude is already required and to reach the Planck scale
requires an adjustment finely tuned to 32 orders of magnitude. This is the
so-called hierarchy problem. Therefore, a theory with a light Higgs is not a
satisfactory effective description since it does not incorporate the dynamics
at work in the cancellation of quadratic divergences.

Over the last two decades, this hierarchy problem has been the main
driving force to think that the SM should be overthrown right around the
electroweak (EW) scale. Theories that solve this naturalness problem, i.e
in which the ratio between the EW scale and the Planck scale can be un-
derstood dynamically without recourse to fine-tunings, have been proposed,
starting with the early proposals of supersymmetry and technicolor through
to the more recent ideas of large and warped dimensions, and the little Higgs.
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that the theory describes

The hierarchy problem

As soon as we introduce a fundamental scalar field in the theory (the Higgs), 
this generates a puzzle: the so-called “hierarchy problem”.

= the fact that the Higgs self-energy receives radiative contributions that are quadratically divergent. 

To stabilise the Higgs mass at the EW scale 
against the Planck scale, we need to adjust 
the parameter of the Higgs potential at a 
level of 10-32.

strong sensitivity on high energy unknown physics
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There are examples in physics  where unexpected  and precise parameter 
cancellations were actually the signal of the existence of new particles.

 For instance, the electron self energy has a power divergence that can be cured 
only by the introduction of the positron. 

Similarly, the extreme sensitivity of the Higgs self energy with respect to physics 
at high momentum can be naturally reduced by introducing new symmetries and new 

degrees of freedom, such as supersymmetry, or extra spacial dimensions or 
additional global symmetries.

History repeats itself?



9

 Classical/Quantum Electromagnetism  & Antimatter

Weisskopf ‘39

300 H. Murayama

Fig. 2. The Coulomb self-energy of the electron.

Fig. 3. The bubble diagram which shows the fluctuation of the vacuum.

The resolution to this problem came from the discovery of the anti-particle of
the electron, the positron, or in other words by doubling the degrees of freedom
in the theory. The Coulomb self-energy discussed above can be depicted by a dia-
gram Fig. 2 where the electron emits the Coulomb field (a virtual photon) which
is absorbed later by the electron (the electron “feels” its own Coulomb field).5
But now that we know that the positron exists (thanks to Anderson back in 1932),
and we also know that the world is quantum mechanical, one should think about
the fluctuation of the “vacuum” where the vacuum produces a pair of an electron
and a positron out of nothing together with a photon, within the time allowed by
the energy-time uncertainty principle !t ∼ !/!E ∼ !/(2mec

2) (Fig. 3). This is
a new phenomenon which didn’t exist in the classical electrodynamics, and modi-
fies physics below the distance scale d ∼ c!t ∼ !c/(2mec

2) = 200×10−13 cm.
Therefore, the classical electrodynamics actually did have a finite applicability
only down to this distance scale, much earlier than 2.8 × 10−13 cm as exhibited
by the problem of the fine cancellation above. Given this vacuum fluctuation pro-
cess, one should also consider a process where the electron sitting in the vacuum
by chance annihilates with the positron and the photon in the vacuum fluctuation,
and the electron which used to be a part of the fluctuation remains instead as a
real electron (Fig. 4). V. Weisskopf [10] calculated this contribution to the elec-
tron self-energy, and found that it is negative and cancels the leading piece in the

5The diagrams Figs. 2, 4 are not Feynman diagrams, but diagrams in the old-fashioned perturba-
tion theory with different T -orderings shown as separate diagrams. The Feynman diagram for the
self-energy is the same as Fig. 2, but represents the sum of Figs. 2, 4 and hence the linear divergence
is already cancelled within it. That is why we normally do not hear/read about linearly divergent
self-energy diagrams in the context of field theory.

Physics beyond the standard model and dark matter 301

Fig. 4. Another contribution to the electron self-energy due to the fluctuation of the vacuum.

Coulomb self-energy exactly:6

!Epair = − 1
4πε0

e2

re
. (2.5)

After the linearly divergent piece 1/re is canceled, the leading contribution in the
re → 0 limit is given by

!E = !ECoulomb + !Epair = 3α

4π
mec

2 log
!

mecre
. (2.6)

There are two important things to be said about this formula. First, the correction
!E is proportional to the electron mass and hence the total mass is proportional
to the “bare” mass of the electron,

(mec
2)obs = (mec

2)bare

[
1 + 3α

4π
log

!
mecre

]
. (2.7)

Therefore, we are talking about the “percentage” of the correction, rather than
a huge additive constant. Second, the correction depends only logarithmically
on the “size” of the electron. As a result, the correction is only a 9% increase
in the mass even for an electron as small as the Planck distance re = 1/MPl =
1.6 × 10−33 cm.

The fact that the correction is proportional to the “bare” mass is a consequence
of a new symmetry present in the theory with the antiparticle (the positron): the
chiral symmetry. In the limit of the exact chiral symmetry, the electron is mass-
less and the symmetry protects the electron from acquiring a mass from self-
energy corrections. The finite mass of the electron breaks the chiral symmetry
explicitly, and because the self-energy correction should vanish in the chiral sym-
metric limit (zero mass electron), the correction is proportional to the electron
mass. Therefore, the doubling of the degrees of freedom and the cancellation

6An earlier paper by Weisskopf actually found two contributions to add up. After Furry pointed
out a sign mistake, he published an errata with no linear divergence. I thank Howie Haber for letting
me know.

�E =
1

4⇥�0

e2

re
�E = � 1

4⇥�0

e2

re

�E =
3�

4⇥
mec

2 log
�

remec

new states ! softer UV behavior, small correction to the mass

antimatter comes to rescue the 19th century “electron crisis”

an electron makes an electric field which carries an energy

and interacts back to the electron and contributes to its mass

classical size of the electron

electric charge
�ECoulomb =

1

4⇥�0

e2

re

�mc2 = �ECoulomb

��m � me
re �

e2

4⇥�0mec2
� 10�13 m

The electron repels itself due to its charge, how to keep electric charge in a small pack?
electron point like!
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What is cancelling the divergent diagrams?What is cancelling the divergent diagrams?

⇒ δMH ! Λ 
2 2

The hierarchy problem: What is keeping the Higgs boson light?

a problem that arises for any elementary SCALAR particle

does not arise for fermions (protected by chiral symmetry) or 
gauge bosons (protected by the gauge symmetry)

the  “hierarchy problem”: the main motivation for building the LHC

A light Higgs calls for New Physics at the TeV scale

we need new degrees of freedom to cancel !2 divergences 
and ensure the stability of the weak scale
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 Addressing the hierarchy problem 

with a new symmetry

H � H + �

H massless: 
protected by a 

global symmetry

scalar

�� ei⇥�5 �

fermion

Ψ massless: 

protected by 
chiral symmetry

Ψ <---> HΨ <---> HSUSY

Aµ � Aµ + ⇥�

vector

Aμ  massless: 

protected by 
gauge invariance

In 5 dimensions: H=A5 

Supersymmetry
Extra dimensions new global 

symmetry

�m2
h

��
1�loop

⇠ � y2
t

8⇡2
⇤2
UV

 Addressing the hierarchy problem 

with a new symmetry
�m2

h

�����
1�loop

⇠ � y2
 Addressing the hierarchy problem 

2
 Addressing the hierarchy problem 

t

8⇡2
⇤2
UV

(                                 )



12

"e Minimal Supersymmet"e Minimal Supersymmet" #e Minimal Supersymmet#e Minimal Supersymmet c Standard Model #c Standard Model #

Why at the weak scale?
SUSY can solve the (“big”) hierarchy problem

thanks to its special renormalization properties

Power-dependence on SUSY-breaking masses
only mild logarithmic dependence on cutoff

Naturalness preserved up to very high scales
if superparticle masses are at the weak scale

[qualitative here,
more details below]

Supersymmetry can solve the “big” hierarchy and naturalness is preserved up to 
very high scales if superparticle masses are at the weak scale 

c Standard Model 

Supersymmetry can solve the “big” hierarchy and naturalness is preserved up to 

(MSSM)0 50 100 150 200 250 300
Hu  [GeV]

0

20

40

60

H
d  [

G
eV

]

Figure 7.1: A contour map of the Higgs potential, for a typical case with tan β ≈ − cot α ≈ 10.
The minimum of the potential is marked by +, and the contours are equally spaced equipotentials.
Oscillations along the shallow direction, with H0

u/H0
d ≈ 10, correspond to the mass eigenstate h0, while

the orthogonal steeper direction corresponds to the mass eigenstate H0.

∆(m2
h0) =

h0

t

+
h0

t̃

+ h0

t̃

Figure 7.2: Contributions to the MSSM lightest Higgs mass from top-quark and top-squark one-loop
diagrams. Incomplete cancellation, due to soft supersymmetry breaking, leads to a large positive
correction to m2

h0 in the limit of heavy top squarks.

and is traditionally chosen to be negative; it follows that −π/2 < α < 0 (provided mA0 > mZ). The
Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model quarks and
leptons and the electroweak vector bosons, as well as to the various sparticles, have been worked out
in detail in ref. [182, 183].

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow with b/ sin(2β).
In contrast, the mass of h0 is bounded above. From eq. (7.20), one finds at tree-level [184]:

mh0 < mZ | cos(2β)| (7.23)

This corresponds to a shallow direction in the scalar potential, along the direction (H0
u−vu,H0

d −vd) ∝
(cos α,− sin α). The existence of this shallow direction can be traced to the fact that the quartic Higgs
couplings are given by the square of the electroweak gauge couplings, via the D-term. A contour map
of the potential, for a typical case with tan β ≈ − cot α ≈ 10, is shown in figure 7.1. If the tree-level
inequality (7.23) were robust, the lightest Higgs boson of the MSSM would have been discovered at
LEP2. However, the tree-level formula for the squared mass of h0 is subject to quantum corrections
that are relatively drastic. The largest such contributions typically come from top and stop loops, as
shown‡ in fig. 7.2. In the simple limit of top squarks that have a small mixing in the gauge eigenstate
basis and with masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a large positive

one-loop radiative correction to eq. (7.20):

∆(m2
h0) =

3

4π2
cos2α y2

t m
2
t ln

(
mt̃1

mt̃2
/m2

t

)
. (7.24)

This shows that mh0 can exceed the LEP bounds.

‡In general, one-loop 1-particle-reducible tadpole diagrams should also be included. However, they just cancel against
tree-level tadpoles, and so both can be omitted, if the VEVs vu and vd are taken at the minimum of the loop-corrected
effective potential (see previous footnote).
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Fermions

Bosons force carriers

matter particles

fermions repel 
each other

bosons can pile up

[Enrico Fermi 1901-1954]

[Satyendra Bose 1894-1974]

13

Fermions
2 categories of particles:

An elegant solution to the hierarchy pb: Supersymmetry

http://en.wikipedia.org/wiki/Satyendra_Nath_Bose
http://en.wikipedia.org/wiki/Satyendra_Nath_Bose
http://en.wikipedia.org/wiki/Enrico_Fermi
http://en.wikipedia.org/wiki/Enrico_Fermi
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Atom
electrons + nucleus

Nucleus
quarks (Super)String

(Hair)
(observable universe) (Earth)

String Theory

10�10m 10�17m 10�35m

unnification of the Standard Model forces with gravity



Extra Dimensions
String theories are (well) defined only in spacetime with 10 or 11 dimensions

These extra dimensions are assumed to be curled up
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Good reason for unification :
Anomaly cancellation in the Standard Model

Highly non-trivial cancellation and suggestive 
connection between quarks and leptons 

There are gauge groups for which the anomalies 
automatically cancel, e.g. SO(10)

The Standard Model as a remnant of a Grand Unified Theory ?

Qe = T3 + Y
Quantum numbers and anomaly cancellation

1 SU(N)–G2: TG = 1, so need
∑

R TrTA
R = 0, trivial for N > 1

U(1)Y:
∑

fermions Y = (+1/6) · 2 · 3 + (−2/3) · 3 + (+1/3) · 3
+(−1/2) · 2 + 1 = 0! Quarks and leptons cancel separately.

2 SU(3)3 automatic: QCD is vectorlike (# of 3 = # of 3)
3 SU(2)3 automatic: 1

8

∑

doublets Tr σA{σB ,σC} = 1
4δ

BCTr σA = 0
4 U(1)3Y:

∑

fermions Y 3 =
(+1/6)3 · 2 · 3 + (−2/3)3 · 3 + (+1/3)3 · 3 + (−1/2)3 · 2 + 13 = 0

Cancellation between quarks and leptons in each generation!

5 SU(3)2–U(1)Y: ∝
∑

quarks Y = 0 (just like gravitational anomaly)
6 SU(2)2–U(1)Y:

∝
∑

doublets Y Tr{σB ,σC} ∝
∑

doublets Y = (+1/6) · 3 + (−1/2) = 0

Cancellation between quarks and leptons again!

The need to cancel anomalies explains why charges are quantized in
the fractions they are, i.e. defines generations.

Homework: Prove there are exactly 3 generations. . . just kidding

Zack Sullivan ( IIT) The Standard Model CTEQ Summer School 2011 14 / 24

Anomaly cancellation
a consequence of current conservation

Recall gauge invariance implies current conservation, ∂µJµ = 0

q

p1

p2

J µ

qµJµ = u(p1)/qv(p2)

= u(p1)(/p1 + /p2)v(p2)

= 0

u(p1)/p1 = 0, /p2v(p2) = 0

J µ

J ν

J ρ

+ J µ

J ν

J ρ

Need ∂µJµ = ∂νJ
ν = ∂ρJ

ρ = 0

This is not satisfied unless
∑

R TrTA
R {TB

R , TC
R } = 0, where

TA
R is a generator of rep. R.

Homework: Show a vector-like gauge theory is always anomaly-free.

Zack Sullivan ( IIT) The Standard Model CTEQ Summer School 2011 13 / 24
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Good reason for unification II :
Charge quantization

simple unification group -> charge quantization

Eigen values of the generators of the abelian U(1) are continuous 
e.g. in the symmetry of translational invariance of time, "
there is no restriction in the (energy) eigen values.

Eigen values of the generators of a simple non-abelian group are discrete 

e.g. in SO(3) rotations, the eigen values of the third component of angular 
momentum can take only integers or 1/2 integers values. In SU(5), since 
the electric charge is one of the generators, its eigen values are discrete 
and hence quantized.

Qe = T3 + Y

How come is the electric charge quantized?

SM matter content fits nicely into SU(5)

Christophe Grojean Beyond the Standard Model HCPSS, CERN, June 2o11

SU(3)cxSU(2)LxU(1)Y: SM Matter Content 

SU(3)cxSU(2)LxU(1)Y ! SU(5) 

SU(5)
Adjoint rep.

additional U(1) factor that 
commutes with SU(3)xSU(2)

@ MGUT

148

Quarks carry 1/3 of the lepton charge because they have 3 colors.
The SU(5) theory provides a rationale basis! for understanding !
particle charges and the weak hypercharge assignment in the SM

relation between color SU(3) and electric charge.



Cla$ical %ysics: the forces depend on distances

Quantum %ysics : the charges depend on distances

The electromagnetic coupling decreases 
at large distances.

 Charge screening (vacuum polarization) 
due to virtual fermion-antifermion pairs

18

%
Evolution of coupling constants

At t h e Z pe a k, A0
LR m e a s u r e s t h e a v e r a g e i n i t i a l l e p t o n p o l a r i z a t i o n , Pe , w i t h o u t a n y n e e d f o r fi n a l

pa r t i c l e i de nt i fi c a t i o n , w h i l e A0,f
FB,LR p r o v i d e s a d i r e c t d e t e r m i n a t i o n o f t h e fi n a l f e r m i o n p o l a r i z a t i o n .

Pf i s a v e r y s e ns i t i v e f u n c t i o n o f sin

2 ✓W . Sm a l l h i g h e r - o r d e r c o r r e c t i o n s c a n p r o d u c e l a r g e
v a r i a t i on s on t he p r e d i c t e d l e p t o n p o l a r i z a t i o n b e c a u s e |vl| = 1

2 |1 � 4 sin

2 ✓W | ⌧ 1. Th e r e f o r e , Pl

pr o vi de s a n i nt e r e s t i n g w i n d o w t o s e a r c h f o r e l e c t r o w e a k q u a n t u m e f f e c t s .

5.2 QED and QCD corrections

Fig. 17: The p hot o n v a c u u m p o l a r i z a t i o n ( l e f t ) g e n e r a t e s a c h a r g e s c r e e n i n g e f f e c t , m a k i n g ↵(s) s m a l l e r a t l a r g e r
di s t a nc e s .

B e f or e t r yi ng t o a n a l y s e t h e r e l e v a n c e o f h i g h e r - o r d e r e l e c t r o w e a k c o n t r i b u t i o n s , i t i s i n s t r u c t i v e
t o c o ns i d e r t he n u m e r i c a l i m p a c t o f t h e w e l l - k n o w n Q ED a n d Q CD c o r r e c t i o n s . Th e p h o t o n p r o p a g a t o r
ge t s v a c uum pol a r i z a t i o n c o r r e c t i o n s , i n d u c e d b y v i r t u a l f e r m i o n – a n t i f e r m i o n p a i r s . Th i s k i n d o f Q ED
l o op c or r e c t i ons c a n b e t a k e n i n t o a c c o u n t t h r o u g h a r e d e fi n i t i o n o f t h e Q ED c o u p l i n g , w h i c h d e p e n d s
on t he e ne r gy s c a l e . Th e r e s u l t i n g Q ED r u n n i n g c o u p l i n g ↵(s) d e c r e a s e s a t l a r g e d i s t a n c e s . Th i s c a n
be i n t ui t i v e l y un d e r s t o o d a s t h e c h a r g e s c r e e n i n g g e n e r a t e d b y t h e v i r t u a l f e r m i o n p a i r s ( Fi g . 1 7 ) . Th e
ph ys i c a l Q ED v a c u u m b e h a v e s a s a p o l a r i z e d d i e l e c t r i c m e d i u m . Th e h u g e d i f f e r e n c e b e t w e e n t h e
e l e c t r on a nd Z m a s s s c a l e s m a k e s t h i s q u a n t u m c o r r e c t i o n r e l e v a n t a t LEP e n e r g i e s [ 1 5 , 34 , 35 ] :

↵(m2
e)

�1
= 137.035 999 084± 0.000 000 051 > ↵(M2

Z)
�1

= 128.95± 0.05 . ( 1 0 4 )

Th e r un ni ng e f f e c t g e n e r a t e s a n i m p o r t a n t c h a n g e i n Eq . ( 9 2) . Si n c e GF i s m e a s u r e d a t l o w
e ne r g i e s , w hi l e MW i s a h i g h - e n e r g y p a r a m e t e r , t h e r e l a t i o n b e t w e e n b o t h q u a n t i t i e s i s m o d i fi e d b y
v a c uum - pol a r i z a t i o n c o n t r i b u t i o n s . Ch a n g i n g ↵ b y ↵(M2

Z) , o n e g e t s t h e c o r r e c t e d p r e d i c t i o n s :

sin

2 ✓W = 0.231 , MW = 79.96GeV . ( 1 0 5 )

The e xpe r i m e nt a l v a l u e o f MW i s i n t h e r a n g e b e t w e e n t h e t w o r e s u l t s o b t a i n e d w i t h e i t h e r ↵ o r ↵(M2
Z) ,

s ho w i ng i t s s e ns i t i v i t y t o q u a n t u m c o r r e c t i o n s . Th e e f f e c t i s m o r e s p e c t a c u l a r i n t h e l e p t o n i c a s y m m e t r i e s
a t t he Z pe a k . The s m a l l v a r i a t i o n o f sin2 ✓W f r o m 0 . 21 2 t o 0 . 231 i n d u c e s a l a r g e s h i f t o n t h e v e c t o r
Z c oupl i ng t o c ha r g e d l e p t o n s f r o m vl = �0.076 t o �0.038 , c h a n g i n g t h e p r e d i c t e d a v e r a g e l e p t o n
pol a r i z a t i on Pl b y a f a c t o r o f t w o .

So f a r , w e h a v e t r e a t e d q u a r k s a n d l e p t o n s o n a n e q u a l f o o t i n g . Ho w e v e r , q u a r k s a r e s t r o n g -
i nt e r a c t i ng pa r t i c l e s . The g l u o n i c c o r r e c t i o n s t o t h e d e c a y s Z ! q̄q a n d W� ! ūidj c a n b e d i r e c t l y
i nc or por a t e d i nt o t h e f o r m u l a e g i v e n b e f o r e b y t a k i n g a n ‘ e f f e c t i v e ’ n u m b e r o f c o l o u r s :

NC =) NC

n

1 +

↵s

⇡
+ . . .

o

⇡ 3.115 , ( 1 0 6 )

w he r e w e ha v e us e d t h e v a l u e o f ↵s a t s = M2
Z , ↵s(M2

Z) = 0.1184± 0.0007 [ 9 , 4 5 ] .
Not e t ha t t he s t r o n g c o u p l i n g a l s o ‘ r u n s ’ . Ho w e v e r , t h e g l u o n s e l f - i n t e r a c t i o n s g e n e r a t e a n a n t i -

s c r e e ni ng e f f e c t , t h r o u g h g l u o n - l o o p c o r r e c t i o n s t o t h e g l u o n p r o p a g a t o r w h i c h s p r e a d o u t t h e Q CD
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THE STANDARD MODEL OF ELECTROWEAK INTERACTIONS

23

excess of negative 
charges around the 
positron: screening

The vacuum behaves as a polarized dielectric medium
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5.2 QED and QCD corrections

Fig. 17: Th e p h o t o n v a c u u m p o l a r i z a t i o n ( l e f t ) g e n e r a t e s a c h a r g e s c r e e n i n g e f f e c t , m a k i n g ↵(s) s m a l l e r a t l a r g e r
d i s t a n c e s .

B e f o r e t r y i n g t o a n a l y s e t h e r e l e v a n c e o f h i g h e r - o r d e r e l e c t r o w e a k c o n t r i b u t i o n s , i t i s i n s t r u c t i v e
t o c o n s i d e r t h e n u m e r i c a l i m p a c t o f t h e w e l l - k n o w n Q ED a n d Q CD c o r r e c t i o n s . Th e p h o t o n p r o p a g a t o r
g e t s v a c u u m p o l a r i z a t i o n c o r r e c t i o n s , i n d u c e d b y v i r t u a l f e r m i o n – a n t i f e r m i o n p a i r s . Th i s k i n d o f Q ED
l o o p c o r r e c t i o n s c a n b e t a k e n i n t o a c c o u n t t h r o u g h a r e d e fi n i t i o n o f t h e Q ED c o u p l i n g , w h i c h d e p e n d s
o n t h e e n e r g y s c a l e . Th e r e s u l t i n g Q ED r u n n i n g c o u p l i n g ↵(s) d e c r e a s e s a t l a r g e d i s t a n c e s . Th i s c a n
b e i n t u i t i v e l y u n d e r s t o o d a s t h e c h a r g e s c r e e n i n g g e n e r a t e d b y t h e v i r t u a l f e r m i o n p a i r s ( Fi g . 1 7 ) . Th e
p h y s i c a l Q ED v a c u u m b e h a v e s a s a p o l a r i z e d d i e l e c t r i c m e d i u m . Th e h u g e d i f f e r e n c e b e t w e e n t h e
e l e c t r o n a n d Z m a s s s c a l e s m a k e s t h i s q u a n t u m c o r r e c t i o n r e l e v a n t a t LEP e n e r g i e s [ 1 5 , 34 , 35 ] :

↵(m2
e)

�1
= 137.035 999 084± 0.000 000 051 > ↵(M2

Z)
�1

= 128.95± 0.05 . ( 1 0 4 )

Th e r u n n i n g e f f e c t g e n e r a t e s a n i m p o r t a n t c h a n g e i n Eq . ( 9 2) . Si n c e GF i s m e a s u r e d a t l o w
e n e r g i e s , w h i l e MW i s a h i g h - e n e r g y p a r a m e t e r , t h e r e l a t i o n b e t w e e n b o t h q u a n t i t i e s i s m o d i fi e d b y
v a c u u m - p o l a r i z a t i o n c o n t r i b u t i o n s . Ch a n g i n g ↵ b y ↵(M2

Z) , o n e g e t s t h e c o r r e c t e d p r e d i c t i o n s :

sin

2 ✓W = 0.231 , MW = 79.96GeV . ( 1 0 5 )

Th e e x p e r i m e n t a l v a l u e o f MW i s i n t h e r a n g e b e t w e e n t h e t w o r e s u l t s o b t a i n e d w i t h e i t h e r ↵ o r ↵(M2
Z) ,

s h o w i n g i t s s e n s i t i v i t y t o q u a n t u m c o r r e c t i o n s . Th e e f f e c t i s m o r e s p e c t a c u l a r i n t h e l e p t o n i c a s y m m e t r i e s
a t t h e Z p e a k . Th e s m a l l v a r i a t i o n o f sin2 ✓W f r o m 0 . 21 2 t o 0 . 231 i n d u c e s a l a r g e s h i f t o n t h e v e c t o r
Z c o u p l i n g t o c h a r g e d l e p t o n s f r o m vl = �0.076 t o �0.038 , c h a n g i n g t h e p r e d i c t e d a v e r a g e l e p t o n
p o l a r i z a t i o n Pl b y a f a c t o r o f t w o .

So f a r , w e h a v e t r e a t e d q u a r k s a n d l e p t o n s o n a n e q u a l f o o t i n g . Ho w e v e r , q u a r k s a r e s t r o n g -
i n t e r a c t i n g p a r t i c l e s . Th e g l u o n i c c o r r e c t i o n s t o t h e d e c a y s Z ! q̄q a n d W� ! ūidj c a n b e d i r e c t l y
i n c o r p o r a t e d i n t o t h e f o r m u l a e g i v e n b e f o r e b y t a k i n g a n ‘ e f f e c t i v e ’ n u m b e r o f c o l o u r s :

NC =) NC

n

1 +

↵s

⇡
+ . . .

o

⇡ 3.115 , ( 1 0 6 )

w h e r e w e h a v e u s e d t h e v a l u e o f ↵s a t s = M2
Z , ↵s(M2

Z) = 0.1184± 0.0007 [ 9 , 4 5 ] .
No t e t h a t t h e s t r o n g c o u p l i n g a l s o ‘ r u n s ’ . Ho w e v e r , t h e g l u o n s e l f - i n t e r a c t i o n s g e n e r a t e a n a n t i -

s c r e e n i n g e f f e c t , t h r o u g h g l u o n - l o o p c o r r e c t i o n s t o t h e g l u o n p r o p a g a t o r w h i c h s p r e a d o u t t h e Q CD
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because of the non-abelian nature of the underlying SU(3) gauge symmetry: 
the gauge boson self-interactions  generate an anti-screening effect 

through gauge boson loops. This effect is larger than the one from fermion 
loops --> the strong coupling decreases at short distances

quarks behave as free particles when the energy becomes very large

An opposite effect for the strong coupling

!s      when d 

property of ‘asymptotic freedom’

⌅�s

⌅ logE
= ⇥(�s) =

�2
s

⇤

�
�11Nc

6
+

Nf

3

⇥

↵s = g2s/4⇡
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The evolution of gauge couplings is controlled 
by the renormalization group equations

1 G U T s

1.1 G au g e cou p l i ng u ni fi cati on

The evolution of gauge couplings is controlled by the renormaliz ation group eq uations
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where we have added a � i term to account for threshold corrections from the GUT and
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At one loop:

So couplings vary logarithmically 
as a function of the energy scale:

bi : defined by the particle content

i = SU(3), SU(2), U(1)

Evolution of gauge couplings
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i i

i

↵i = g2i /4⇡

we observe different couplings 
but it looks like a low energy 

artefact

Figure 2: values of b ⇥ (�1) in various models.
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Figure 3: O ne-loop evolution of gauge couplings in the SM (black), in SUSY (blue), in split-
SUSY (green) and in composite higgs and composite top models i.e. SM�( t R , H ) (magenta).

Higgses into some complete SU(5) multiplets, and then somehow make the extra fields much
heavier than the doublet. However, this seems very di�cult: one needs to give a mass to
the extra fields that are 1014 times larger than the doublets. For example in the simplest
case the two Higgs doublets are embedded as Hu = 2? 5,Hd = 2? ? ? 5. In this case we had
to add an extra triplet and anti-tripletof SU(3), which have to be very heavy, while the
doublets from the same multiplet light. This is another naturalness problem that is specific
to SUSY GUTs. If the mass of the triplet was too low, the beta functions would change,
and unification of couplings would not occur.

Even if one can somehow arrange naturally for the triplets to be heavy (there are some
nice natural solutions to the doublet-triplet splitting problem), they still contribute to proton
decay at a rate that is usually too large. The reason is that due to supersymmetry and grand
unification the fermionic partners of heavy color triplet Higgses necessarily couple to the SM

3
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Good reason for unification
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SM matter content fits nicely into SU(5)
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SU(5) adjoint rep.
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1 Gauge coupling unification

The evolution of gauge couplings is controlled by the renormalization group equations
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We have three equations and two unknowns (↵GUT and MGUT ). Using
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x 3/5

from 
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from 
Higgs

So in the SM:

universal contribution coming from 
complete SU(5) representations 

(4NF/3 in SM in 4NF/3 *3/2 in susy)
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Standard Model beta functions
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Only the Higgs and the SM gauge bosons can affect the relative running 

In the MSSM, extra contributions from the higgsinos and gauginos
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+ � i (6)

where we have added a � i term to account for threshold corrections from the GUT and
weak scales and the e↵ects of P lanck suppressed operators and b i are defined by the particle
content as

b =
11

3
T 2(spin-1) � 2

3
T 2(chiral spin-1/ 2) � 1

3
T 2(complex spin-0) (7 )

T r ( T a ( R ) T b ( R )) = T 2( R )� a b T 2(fund) =
1

2
T 2(adj ) = N (8 )

So, in the SM:

b 3 =
11

3
⇥ N c � 2

3
⇥ N f

✓
1

2
⇥ 2 +

1

2
⇥ 1 +

1

2
⇥ 1

◆
= 7 (9 )

b 2 =
11

3
⇥ 2 � 2

3
⇥ N f

✓
1

2
⇥ 3 +

1

2
⇥ 1

◆
� 1

3
⇥ 1

2
=

19

6
(10)

b Y = �2

3
⇥ N f

✓
(
1

6
)2 ⇥ 2 ⇥ N c + (

�2

3
)2 ⇥ N c + (

1

3
)2 ⇥ N c + (

�1

2
)2 ⇥ 2 + (1)2

◆

�1

3
(
1

2
)2 ⇥ 2 = �41

6
�! b 1 = b Y ⇥ 3

5
= �41

10
(11)
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1-loop evolution of gauge couplings
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Baryon number is violated via the exchange of GUT gauge bosons with 
GUT scale mass resulting in effective interactions suppressed by 1/M2

GUT

The proton lifetime is given by:

A very interesting observation is that there exist another way to achieve beautiful uni-
fication: In the SM, one can restore the gauge coupling unification without gauginos and
higgsinos but if the third generation is partly composite! The value of B is approximately
within 10% of the experimental value while the SM prediction leads to a 40% discrepancy.
Remarkably the contribution from the partly composite third generation fermion sector has
restored the low energy prediction to a level that can be realistically by threshold and higher
loop e↵ects

split susy: everybody heavy except higgs,higgsino and gaugino.

Figure 1: comparison

1.2 Proton decay

Baryon number is violated via the exchange of GUT gauge bosons with GUT scale mass
resulting in dimension 6 operators suppressed by 1/M2
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The region satisfying this bound is shown in light red in Fig. 4-b. naively, the situation
looks safer in susy. However, this is because we have imposed an extra symmetry to prevent
dangerous contributions coming from dimension-5 and dimension 4 operators! SUSY pbs:

The SM matter fields fall into complete SU(5) multiplets, however the two Higgs doublets
of the MSSM do not. Thus if one takes the GUT idea seriously one needs to embed the
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15% baryonic matter (1% in stars, 14% in gas)

85% dark unknown matter

}}

}}

Some invisible transparent matter (that does not interact with photons)  which 
presence is deduced through its gravitational effects

The Dark Matter of the universe

 energy density of the universe stored in dark matter
total energy density of the universe

!DM= ~ 25 %

~ 5 %!SM=
!dark energy ~ 70 %
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Dark matter can’t be explained by the Standard Model
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Matter Forces
charged/unstable

baryonic

massless

contribution to the energy  
budget of the universe

radius of circle is 
proportional to the mass

Particule � type
Baryons 4 - 5 % froid

Neutrinos < 2 % chaud
Matière noire 20 - 26 % froid

Particle � type
Baryons 4 - 5 % cold

Neutrinos < 2 % hot
Dark matter 20 - 26 % cold

1
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⇒ "anni ! 1 pb

" ! !2/m2   

 ⇒ m ! 100 GeV

Thermal relic: !DM " 1/"anni

XX � ff

XX ff

XX ff

Thermal Relics !

Chemical equilibrium is maintained!
as long as annihilation rate exceeds!
the Hubble expansion rate!

‘Freeze-out’ occurs when annihilation rate:!

becomes comparable to the expansion rate!

                where g ~ # relativistic species  !

i.e. ‘freeze-out’ occurs at T ~ mN /45, with: !

However the observed ratio is 109 times bigger for baryons, and there are no 
antibaryons, so we must invoke an initial asymmetry:!
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Thermal Relics!

Chemical equilibrium is maintained!
as long as annihilation rate exceeds!
the Hubble expansion rate!

‘Freeze-out’ occurs when annihilation rate:!

becomes comparable to the expansion rate!

                where g ~ # relativistic species  !

i.e. ‘freeze-out’ occurs at T ~ mN /45, with: !

However the observed ratio is 109 times bigger for baryons, and there are no 
antibaryons, so we must invoke an initial asymmetry:!

freese-out :

~

!DM! O(1) pb
σanni

→ a particle with a typical EW-scale cross section  a particle with a typical EW-scale cross section 

σanni ! 1 pb leads to the correct dark matter abundance. 

⇒ m  100 GeV
The “WIMP miracle”

The relic abundance of a stable particle follows from the generic 
thermal freeze-out mechanism in the expanding universe

annihilation 
rate of 
particle
rate of 
particle
rate of 

expansion 
rate of 

expansion 
rate of 

expansion 
universe



29

Producing Dark Matter at LHC =  “Missing Energy” events

what is seen 
in the detector
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Figure 1: The EmissT and effective mass distributions for the background processes and for an example
SUSY benchmark point (SU3) in the one-lepton mode for an integrated luminosity of 1 fb�1. The black
circles show the SUSY signal. The hatched histogram show the sum of all Standard Model backgrounds;
also shown in different colours are the various components of the background.

4. estimation of that same double leptonic t t̄ background from a control sample derived by a cut on a
new variable HT2 (section 2.3.4);

5. estimation of tt̄ background by Monte Carlo redecay methods (section 2.3.5);

6. estimation of W and tt̄ background using a combined fit to control samples (section 2.3.6).

2.3.1 Creating a control sample by reversing the MT cut

The transverse mass MT is constructed from the identified lepton and the missing transverse energy. In
the narrow-width limit MT is constrained to be less than mW for the semileptonic tt̄ and the W± processes.
Figure 2 shows that MT is only weakly dependent on EmissT . This variable is therefore suitable for the
estimation of the background distribution itself. Events with small MT (< 100 GeV) are selected as the
control sample, in which the t t̄ (∼ 84%) and W± (∼ 16%) processes are enhanced over the SUSY and
the other background processes. The large MT (> 100 GeV) region is referred to as the signal region.
Since, for the control sample, the other selection criteria are identical to those for events in the signal
region, the same kinematic distributions including EmissT can be obtained. The number of events for the
various processes in signal region and control sample is summarized in the Table 1.

Table 1: Number of background events and estimated numbers for t t̄, W± and QCD processes without
SUSY signal, normalized to 1 fb�1.

Signal Region Control Sample
tt̄(!!qq̄) 51 (25%) 1505 (77%)
tt̄(!!!!) 140 (70%) 132 (7%)
W±(!!) 10 (5%) 305 (16%)
SUSY(SU3) 450 317

The normalization factor is obtained from the event numbers of the signal region and the control
sample (100 < EmissT < 200 GeV), in which the SUSY signal contribution is expected to be relatively

4

SUPERSYMMETRY – DATA-DRIVEN DETERMINATIONS OF W , Z AND TOP BACKGROUNDS . . .

16

1528
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 Direct Detection

for example, “EDELWEISS”:

Laura Baudis, University of Zurich, SUSY10, August 26, 2010
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alphas: much higher energy depositions, but 

recoiling nuclei a problem if " energy not seen in 

active detector volume
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even though WIMPs are weakly interacting, this flux is large enough so that a 
potentially measurable fraction will elastically scatter off nuclei

WIMP flux on Earth: ~ 105 cm-2s-1 (for a 100 GeV WIMP)

X

X
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WIMP indirect detection

6

Figure 1. A diagrammatic flow of how gamma rays are produced by annihilation
of dark matter and elements of the analysis chain used by the GLAST collaboration
to detect them. The double question mark in the simulation chain indicates high
uncertainty in the models of dark matter density and the new particle theories
discussed in the paper. The single question mark over the cosmic ray propagation and
interaction models indicates lesser, although significant, uncertainty in those models
that generate backgrounds to the potential dark matter gamma ray signal. In this
paper GALPROP (section 3.2) is used to estimate those backgrounds. In the next step,
γ-ray detection is simulated using standard detector simulation packages (GEANT 4).
Finally,these simulated LAT events are treated by various analysis software programs
(event reconstruction and statistical analysis) to generate the results presented in this
work. The same procedure is applied to the smoking gun signal of χχ → γγ, except
that in this case hadronization does not have to be taken into account.

transverse information about the energy deposition pattern §. The calorimeter’s depth

and segmentation enable the high-energy reach of the LAT and contribute significantly

to background rejection. The ACD is the LAT’s first line of defense against the charged

cosmic ray background. It consists of 89 different size plastic scintillator tiles and

9 ribbons with wave-length shifting fiber readout. The segmentation is necessary to

suppress self-veto effects caused by secondary particles emanating from the calorimeter
showers of high energy γ-rays [18].

2.1. LAT Exposure

For this paper, simulations of LAT all-sky “exposures” of 2 months, 1 year, 5 years

and 10 years are used in the analyses. LAT exposure is defined as the amount of cm2

s the LAT effective area integrates over many orbits, which is a complex calculation.

§ With the tracker the LAT presents 10 radiation lengths for normal incidence.

Anti-matter
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 Indirect Detection
4. Les expériences

Détection indirecte de neutrinos

AMANDA

ANTARES

4. Les expériences

Détection indirecte d’antiprotons : exemple d’AMS

Search for neutrinos in the South Pole
In the Mediterranean

Search for antiprotons in space

IceCube

Antarès

AMS
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Fermi

Hess

Search for dark matter photons on  Earth

and in space
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Ma&Ma&Ma er Anti-ma&er Anti-ma& &er Anti-ma&er Anti-ma er asymmetry of &er asymmetry of & 'er asymmetry of 'er asymmetry of  universe:' universe:'
characterized in terms of the 

baryon to photon ratio

er asymmetry of er asymmetry of 

η ≡
nB − n

B

nγ
~ 6. 10-10

 10 000 000 001
Matter

 The  great annihilation between 
nucleons & anti-nucleons

 10 000 000 000
Anti-matter

1
(us)

n + n̄� ⇥ + ⇥ � � + � + ...

� � (mNT )3/2e�mN /T /m2
� � H � ⇥g⇥T

2/mPl
which become 

ineffective  when

corresponding to a freeze-out temperature TF ~ 20 MeV�� H

� � H

�� H

n N

s
≈ 7 × 10

−20

s
109 times smaller than observed, 

and there are no antibaryons
-> need to invoke an initial asymmetry

1

 In absence of 
an asymmetry:an asymmetry:

How much nucleons would there be in a symmetric universe?
nucleon and anti-nucleon densities are maintained by annihilation processes

The Standard Model is unable to explain this aymmetry.The Standard Model is unable to explain this aymmetry.




