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Some textbooks

-A Modern Introduction to Quantum Field Theory, Michele Maggiore (Oxford series)

-An Introduction to Quantum Field Theory, Peskin and Schroder (Addison Wesley)

-Théorie Quantique des Champs, Jean-Pierre Derendinger 
(Presses polytechniques et universitaires romandes)

In french:

Introduction to  Quantum Field Theory:

Introductory textbooks:

-Introduction to High Energy Physics, 4th edition, D. Perkins (Cambridge)

-Introduction to Elementary particles, 2nd edition, D.Griffiths (Wiley)
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Symmetries

III- Local or gauge internal symmetries

II- Global (continuous) internal symmetries

I- Continuous global space-time (Poincaré) symmetries all particles have (m, s)

-> B, L conserved

-> energy, momentum, angular momentum conserved

SU(3)c ⇥ SU(2)L ⇥ U(1)Y

-> color, electric charge conserved

IV- Discrete symmetries -> CPT

(accidental symmetries)
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Why Quantum Field theory (QFT)

A few comments on slides #20 and #21 of 1st lecture
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Schrodinger equation

Klein Gordon equation

Dirac equation

Wave equations, relativistic or not, cannot account for 
processes in which the number and type of particles change.

We need to change viewpoint, from wave equation where one quantizes a single 
particle in an external classical potential to QFT where one identifies the particles 

with the modes of a field and quantize the field itself (second quantization).
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Classical Field theory

extend lagrangian formalism 
to dynamics of fields

a system is described by S =

Z
dtL(q, q̇)
position momentum

�S = 0 --> Euler-Lagrange equations

pi =
@L
@q̇i

H(p, q) =
X

i

piq̇i � L

action principle 
determines classical 

trajectory:

conjugate momenta hamiltonian

classical mechanics & 
lagrangian formalism
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Classical Field theory and Noether theorem

Invariance of action under 
continuous global transformation --->

There is a conserved current/charge
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Scalar Field theory

Lorentz invariant 
action of a complex 

scalar field
S =

Z
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jµ = i'⇤ !@ µ'QU(1) =

Z
d

3
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Euler-Lagrange 
equation leads to 

Klein-Gordon equation

with solution a 
superposition of 

plane waves:

existence of a global U(1) 
symmetry of the action

'(x) ! e

i✓
'(x)

conserved U(1) charge



8

From first to second quantization

Basic Principle 
of Quantum 
Mechanics:

same principle can 
be applied to 

scalar field theory

where qi (t) are replaced by

and pi (t) are replaced by

'(t, x)
⇧(t, x)

To quantize a classical system  with coordinates qi and momenta pi, 
we promote qi and pi to operators and we impose  [qi , pj] =�ij

and       are promoted to operators and we impose ⇧' ['(t, x),⇧(t, y)] = i�

3(x� y)

Expand the complex 
field in plane waves:

scalar field theory is 
a collection of 

harmonic oscillators
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Z
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3
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†
e
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where ap and bp are promoted to operators+

[ap, a
†
q] = (2⇡3)�(3)(p� q) = [bp, b

†
q]

ap|0 >= 0destruction operator defines the 
vacuum state |0>

a generic state is obtained by acting on 
the vacuum with the creation operators |p1. . . pn >⌘ a†p1

. . . a†pn
|0 >
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Scalar field quantization continued

H = ⇧@0'� L =

Z
d3p

(2⇡)3
Ep

2
(a†pap + b†pbp)

the quanta of a complex scalar field are given 
by two different particle species with same 

mass created by a+ and b+ respectively 
The Klein Gordon action has 
a conserved U(1) charge due 
to invariance                       .

'(x) ! e

i✓
'(x) 2 different kinds of quanta: each particle has 

its antiparticle which has the same mass but 
opposite U(1) charge
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Field quantization provides a proper interpretation of “E<0 solutions”

coefficient of the positive energy solution e-ipx becomes after 
quantization the destruction operator of a particle while the coefficient 

of the eipx  becomes the creation operator of its antiparticle

ap|0>  and bp|0> represent particles with opposite charges++
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Spinor fields  

The electromagnetic field       .Aµ

L = �1

4
Fµ⌫F

µ⌫ Fµ⌫ = @µA⌫ � @⌫Aµ

Maxwell eq.

whereLorentz inv. lagrangian

@µFµ⌫ = 0

Maxwell lagrangian inv. under Aµ ! Aµ � @µ✓

Lorentz invariant lagrangian

Dirac equation

L =  ̄(i@ �m) 

(i@ �m) = 0

@ = �µ@µ

Similarly, we are led to quantize:

{ a(x, t), 
†
b(y, t)} = �

(3)(x� y)�ab
 anticommutation 

relationsfermions:      
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Summary of procedure 
for building a QFT

◆ Promote field & its conjugate to operators and impose (anti) commutation relation

 ap destroys a particle with momentum p while ap creates it
+

The space of states describes multiparticle states

|p1. . . pn >⌘ a†p1
. . . a†pn

|0 >e.g

Expanding field in plane waves, coefficients  ap, ap become operators+

crucial aspect of QFT: transition amplitudes between 
different states describe processes in which the number 

and type of particles changes

◆ Kinetic term of actions are derived from requirement of Poincaré invariance

◆

◆
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Gauge transformation and the Dirac action

Consider the transformation

it is a symmetry of the free Dirac action
if        is constant✓

no longer a symmetry if
✓ = ✓(x)

 ! eiq✓ 

 ! eiq✓ However, the following action is invariant under

Aµ ! Aµ � @µ✓

{
L =  ̄(i�µ@µ �m) 

where Dµ = (@µ + iqAµ) covariant derivative

L =  ̄(i�µDµ �m) 

We have gauged a global U(1) symmetry, 
promoting it to a local symmetry

The result is a gauge theory and
 is the gauge fieldAµ

conserved current: jµ =  ̄�µ 
conserved charge: Q =

Z
d

3
x ̄�0 =

Z
d

3
x †  electric charge

U(1) transformation 
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Electrodynamics of a spinor field

L =  ̄(i�µDµ �m) where Dµ = (@µ + iqAµ) 

Coupling of the gauge field 
 to the currentAµ jµ =  ̄�µ 

L =  ̄(i�µ@µ �m) � qAµ ̄�
µ 

Nuclear and Particle Physics Franz Muheim 6

Basic QED ProcessesBasic QED Processes

!"#$#%& %"'()#"%&(*$%$+ ,%-$#.&+(*%$#*)/ -+&%$#0#*$#.
)12-3414+"$24(.1"*+-0%$#1" 45 6(75 3 ,5
!"()-++(*,%.+ 3 7"+-8/(.1"*+-0%$#1"(0#1&%$+' )1-(%910+(
'#%8-%4*(#)(%&&(,%-$#.&+* %-+(-+%&
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From Quantum Electrodynamics to the 
electroweak theory

These transformations are 
elements of U(1) group 

 ! eiq✓ 

In the electroweak theory , more 
complicated transformations, belonging 

to the SU(2) group are involved

 ! exp(ig ⌧.�) 

where                           are  three 2*2 matrices⌧ = (⌧1, ⌧2, ⌧3)

Generalization to SU(N)

N2-1 generators
 (N!N matrices)

 (x) ! U(x) (x)

U(x) = e

ig✓

a(x)Ta

Aµ(x) ! UAµU
† � i

g

(@µU)U†



Gauge theories: Electromagnetism (EM) & Yang-Mills

EM U(1) but

EM field and covariant derivative

if

!0 if local transformations

{

the EM field keep track of the phase in 
different points of the space-time

Yang-Mills : non-abelian transformations

if

non-abelian int.

{
— Ghost propagator

a b
=

iδab

k2 + i0
. (5)

• Three-gluon vertex

a
α

k1

b
β

k2

c
γ

k3

= −gfabc
[

gαβ(k1 − k2)
γ + gβγ(k2 − k3)

α + gγα(k3 − k1)
β
]

. (6)

• Four-gluon vertex

a
α b

β

c
γd

δ

= −ig2







fabef cde(gαγgβδ − gαδgβγ)

+ facef bde(gαβgγδ − gαδgγβ)

+ fadef bce(gαβgδγ − gαγgδβ)







. (7)

• Quark-gluon vertex

a

µ

i f

j f ′

= −igγµ × δf ′

f × (ta)ji . (8)
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— Ghost propagator

a b
=

iδab

k2 + i0
. (5)

• Three-gluon vertex

a
α
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b
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c
γ
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= −gfabc
[

gαβ(k1 − k2)
γ + gβγ(k2 − k3)
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β
]

. (6)

• Four-gluon vertex

a
α b

β

c
γd

δ

= −ig2







fabef cde(gαγgβδ − gαδgβγ)

+ facef bde(gαβgγδ − gαδgγβ)

+ fadef bce(gαβgδγ − gαγgδβ)
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
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. (7)

• Quark-gluon vertex

a

µ

i f

j f ′

= −igγµ × δf ′

f × (ta)ji . (8)

2

� � ei�� ⇤µ⇥ � ei� (⇤µ⇥) + i(⇤µ�)⇥

⇥µ�+ ieAµ� � ei�(⇥µ�+ ieAµ�)

Aµ ⇥ Aµ � 1

e
⇥µ�

Fµ⇥ = �µA⇥ � �⇥Aµ

� � U�

⇥µ�+ igAµ� � U(⇥µ�+ igAµ�) Aµ ⇥ UAµU
�1 � i

g
U�µU

�1

Fµ⇥ = ⇥µA⇥ � ⇥⇥Aµ + ig[Aµ, A⇥ ]
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the elementary blocks:

quarksleptons

each of the 6 
quarks 

exists in three 
colors

+ an!par!cle"

 no composite states
 made of leptons baryons

mesons

composite states
proton

neutron

p = (u, u, d)

n = (u, d, d)

(white objects)

The Standard Model: matter

electron

e−
νe

muon

νµ

µ−

tau

ντ

τ
−

ma!

�
�

x200

x20

quarks

ma!

� �
x1000

x1000



The Standard Model : interactions

U(1)Y electromagnetic interactions

SU(2)L weak interactions

SU(3)C strong interactions 

Photon γ

bosons W±, Z0

gluons ga

light

atoms

molecules

decayβ

n
W±
−→ p + e− + ν̄e

atomic nuclei
decayα

238
92 U → 234

90 Th + 4
2He

strength

1

10−2

10−6{
{

{



Interactions between particles 

Elementary particles interact with each other by 
exchanging gauge bosons

γ

e−

e−e−

e−



The beauty of the SM comes from the the identification of a unique 
dynamical principle describing interactions that seem so different 

from each others 

gauge theory = spin-1 
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• The most general renormalizable 
Lagrangian with the given particle content

L = � 1
4g�2 Bµ�Bµ� � 1

4g2
W a

µ�W aµ� � 1
4g2

s

Ga
µ�Gaµ�

+Q̄ii⇥DQi + ūii⇥Dui + d̄ii⇥Ddi + L̄ii⇥DLi + ēii⇥Dei

+Y ij
u Q̄iujH̃ + Y ij

d Q̄idjH + Y ij
l L̄iejH + |DµH|2

�⇤(H†H)2 + ⇤v2H†H +
⇥

64⌅2
�µ�⇥⇤Ga

µ�Ga
⇥⇤

The most general lagrangian given the particle content

What about baryon and lepton numbers? -> accidental symmetries!




