
Dark Matter: Distribution
Direct observations tell us about galaxies.
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Correlation function
for uncorrelated distribution

dP (r) = ndV
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Correlation function

dP (r) = ndV (1 + ξ(r))

for correlated distribution
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Correlation function

dP (r) = ndV (1 + ξ(r))

for correlated distribution

Power spectrum:

P (k) = FT (ξ(r))
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Bias
Simple bias :

δρ

ρ
)g = b ×

δρ

ρ
)DM

so
ξg(r) = b2ξDM(r)

Cargèse 2007: Dark Matter 2 – July 2007 – p.3/39



Bias
Simple bias :

δρ

ρ
)g = b ×

δρ

ρ
)DM

so
ξg(r) = b2ξDM(r)

one might have more complicated relation between
galaxies and DM, and the bias can be a function of
scale:

b(r)

...
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Space distribution

Cfa Slice∼ 1000 galaxies.
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Galaxy correlation function
From the smallest scale up to10h−1Mpc:

ξ(r) = (r/r0)
γ

with:

r0 ≈ 5.5h−1Mpc:

γ ≈ −1.77:

So:

σ8 =

√

<
∆N

N
>

R=8h−1Mpc

≈ 1
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Galaxy correlation function
From the smallest scale up to10h−1Mpc:

ξ(r) = (r/r0)
γ

with:

r0 ≈ 5.5h−1Mpc:

γ ≈ −1.77:

So:

σ8 =

√

<
∆N

N
>

R=8h−1Mpc

≈ 1

(there has been some debate on the possible fractal na-

ture of the distribution)
Cargèse 2007: Dark Matter 2 – July 2007 – p.5/39



Galaxy correlation function
Improving scales by a factor of ten:
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Galaxy correlation function
Improving scales by a factor of ten:

need for∼ 106 galaxies...

this has motivated 2dF and SDSS surveys
The correlation is weaker on large scale...
How to improve LSS measurements ?
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ξ on large scales
Select red galaxies:
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ξ on large scales
Select red galaxies:

• They are bright: sample extends up to

z ∼ 0.5
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ξ on large scales
Select red galaxies:

• They are bright: sample extends up to

z ∼ 0.5

• They are biased withb = 2 soξ is

boosted by a factor 4...
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ξ on large scales
Select red galaxies:

• They are bright: sample extends up to

z ∼ 0.5

• They are biased withb = 2 soξ is

boosted by a factor 4...

50 000 galaxies left...
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Results : ξ on large scales
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Results : ξ on large scales
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Results : ξ on large scales
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Origin of clustering
The question of the origin of structure in the Universe
is an old question.
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gravitational instability in an expanding universe.
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Origin of clustering
The question of the origin of structure in the Universe
is an old question.

• Lemaître (1933) is the first to propose and study
gravitational instability in an expanding universe.

• Turbulence...
• Cosmic explosions...
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Origin of clustering
The question of the origin of structure in the Universe
is an old question.

• Lemaître (1933) is the first to propose and study
gravitational instability in an expanding universe.

• Turbulence...
• Cosmic explosions...
• Defects...
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Gravitational instability
A key-point : seeds are needed.
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Gravitational instability
A key-point : seeds are needed.
Linear theory:

δ(z) = D(z, ...)δ0
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Gravitational instability
A key-point : seeds are needed.
Linear theory:

δ(z) = D(z, ...)δ0

D : growing mode.
Initial fluctuations are specified by (inflation ?):

• being adiabatic
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Gravitational instability
A key-point : seeds are needed.
Linear theory:

δ(z) = D(z, ...)δ0

D : growing mode.
Initial fluctuations are specified by (inflation ?):

• being adiabatic
• being Gaussian

Cargèse 2007: Dark Matter 2 – July 2007 – p.10/39



Gravitational instability
A key-point : seeds are needed.
Linear theory:

δ(z) = D(z, ...)δ0

D : growing mode.
Initial fluctuations are specified by (inflation ?):

• being adiabatic
• being Gaussian

• Pi(k) = δ̂i(k)δ̂∗i (k)
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What you get
The “final” power spectrum depends on:
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What you get
The “final” power spectrum depends on:

• The physics of fluctuations evolution
• The nature of dark matter (hot, cold, warm, ...)

this is summarized through the tranfer function:

δ̂f(k) = T (k)δ̂i(k)

giving:
Pf(k) = Pi(k) ∗ T 2(k)
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From your preferred model...
Specified your scenario:
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From your preferred model...
Specified your scenario:

• Early universe→ initial conditions and physics
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From your preferred model...
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From your preferred model...
Specified your scenario:

• Early universe→ initial conditions and physics
• Dark matter
• Dark energy

You get (through CMBfast or CAMB or ...) CMBCl

andP (k) allow to test your model!
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ΛCDM is successful...
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ΛCDM is successful...
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ΛCDM is successful...

Predictive...
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and successful!
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and successful!
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and successful!

It is difficult to compete withΛCDM...
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reconstruction of DM field
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reconstruction of DM field
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reconstruction of DM field

Weak shear surveys.
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Beyond linear regime
Motivation: Understanding structure

formation
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Beyond linear regime
Motivation: Understanding structure

formation

• LSS

• Clusters

• Galaxies
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Beyond linear regime
Motivation: Understanding structure

formation

• LSS

• Clusters

• Galaxies

• Stars
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Understanding structures for-
mation?

Cargèse 2007: Dark Matter 2 – July 2007 – p.17/39



Understanding structures for-
mation?

connection between LSS and galaxy formation ?

Cargèse 2007: Dark Matter 2 – July 2007 – p.17/39



Exact solutions
1D solutions:
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• Planar solution (Zel’dovich, 1970)

• Spherical Collapse (Lemaître, 1933)
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Exact solutions
1D solutions:

• Planar solution (Zel’dovich, 1970)

• Spherical Collapse (Lemaître, 1933)

Could this be transformed in an useful ap-
proximation ?
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Perturbative approach
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Perturbative approach
Troubles: non-linear features are extremely

rapid and complex.
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Perturbative approach
Troubles: non-linear features are extremely

rapid and complex.

Illustration: the spherical model.

In GR Birkoff’s theorem is an analog of

Gauss theorem:
Under spherical symmetry the dynamics of a
region(< R) is independent of what is outside
(and of the inner profile).
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ΩM > 1 solution
No cosmological constant, no pressure.
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ΩM > 1 solution
No cosmological constant, no pressure.

R(t) can be developped as :

H0 t =
Ω0

2(Ω0 − 1)3/2
(φ − sin(φ))

1

1 + z
=

R(t)

R0

=
Ω0

2(Ω0 − 1)
(1 − cos(φ))
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ΩM > 1 solution
No cosmological constant, no pressure.

R(t) can be developped as :

H0 t =
Ω0

2(Ω0 − 1)3/2
(φ − sin(φ))

1

1 + z
=

R(t)

R0

=
Ω0

2(Ω0 − 1)
(1 − cos(φ))

Also describes the evolution of a spherical perturba-

tion.
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Evolution
From this one can compute the contrast density at
maximum (withinΩM = 1 background):

1 + ∆ =
9π2

16
∼ 5.55

while the linear amplitude is 1.01.. (linear regime :
δ = δ0/(1 + z)) =
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Evolution
From this one can compute the contrast density at
maximum (withinΩM = 1 background):

1 + ∆ =
9π2

16
∼ 5.55

while the linear amplitude is 1.01.. (linear regime :
δ = δ0/(1 + z)) =

At time 2tm, ρ is diverging...while the linear
amplitude is 1.68
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Virialization
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Virialization
At that∼ time, the collapse reaches an equlibrium configuration,

“virialized state”.
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Virialization
At that∼ time, the collapse reaches an equlibrium configuration,

“virialized state”.

Energy conservation:

Ec −
GM

Rf

= −
GM

Ri

Virial theorem:

Ec = −
Ep

2
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Virialization
At that∼ time, the collapse reaches an equlibrium configuration,

“virialized state”.

Energy conservation:

Ec −
GM

Rf

= −
GM

Ri

Virial theorem:

Ec = −
Ep

2

so that:

Rf =
Ri

2

and :

1 + ∆ = 18π2
∼ 178
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Simulations
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Simulations
As soon as first gravitational N-body code was
available, it was used for numerical simulations in an
expanding universe...
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Simulations
As soon as first gravitational N-body code was
available, it was used for numerical simulations in an
expanding universe...

Peebles (1970, with 50 particules...) validated the
simple spherical collapse model.
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Simulations
As soon as first gravitational N-body code was
available, it was used for numerical simulations in an
expanding universe...

Peebles (1970, with 50 particules...) validated the
simple spherical collapse model.

Now simulations can comprise∼ 1010 particles,
allowingmoviesand to include
non-gravitational physics.
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Results
Millenium simulation.
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Results
Millenium simulation.
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Results
Millenium simulation.
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Zooming
Millenium simulation.Zooming
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Following formation
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Following formation

z = 18
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Following formation

z = 5.7
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Following formation

z = 1.4
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Following formation

z = 0
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Following formation

hierarchical structure formation
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HKLM prescription
Hamilton, Kumar, Lu, Matthews (1991)
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HKLM prescription
Hamilton, Kumar, Lu, Matthews (1991)

Spherical collapse inΩm = 1 :

∆ = F (δ)

(self similar in time)

but radius changes (and mass is conserved):

(1 + ∆)r3 = (1 + δ)r3
0 ≈ r3

0

(δ is the linear amplitude).
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HKLM prescription
Number of neighbours in excess :

Nb =

∫ r

0

ξ(r)dV

so

∆ ≡ ξ
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HKLM prescription
Number of neighbours in excess :

Nb =

∫ r

0

ξ(r)dV

so

∆ ≡ ξ

Anzatz:

ξr3 = F (ξ0r
3
0)
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HKLM prescription
Comparison with numerical simulations:

Cargèse 2007: Dark Matter 2 – July 2007 – p.30/39



HKLM prescription
Comparison with numerical simulations:

Peacock and Dodds have reformulated this in Fourier Space...and

provide formula for arbitrary cosmology.
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Back to the correlation function
Why is thecorrelationfunction is a power

law?
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Back to the correlation function
Why is thecorrelationfunction is a power

law?
CDM provide the appropriate shape to ex-
plain both the (power law) non-linear shape
of ξ and the linear shape onlarge scale.
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NFW profile
From numerical simulations DM halo appear to be
well fitted by the so-calledNFW profile:

ρ(r)

ρc
=

δc

(r/rc)(1. + r/rc)2

Two parameters: mass in some radius (for instance
∆ = 200) and one parameter:the concentrationc :
rc = r200/c
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NFW profile
From numerical simulations DM halo appear to be
well fitted by the so-calledNFW profile:

ρ(r)

ρc
=

δc

(r/rc)(1. + r/rc)2

Two parameters: mass in some radius (for instance
∆ = 200) and one parameter:the concentrationc :
rc = r200/c

Prediction: halos are more or less identical...
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Scaling laws
From the simple spherical model and mass-radius
relation:

M ∝ ∆Ωmρc(1 + z)3R3
v

or

Rv ∝

(

M

∆(Ωm, ...)Ωm

)1/3
1

1 + z
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Scaling laws
From the simple spherical model and mass-radius
relation:

M ∝ ∆Ωmρc(1 + z)3R3
v

or

Rv ∝

(

M

∆(Ωm, ...)Ωm

)1/3
1

1 + z

one can infer the scaling of velocity dispersion with
mass and redshift:

V 2
∝

GM

R
∝ Ωm∆M 2/3(1 + z)

andit works...
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The mass function
Inspired from Press and Schechter (1974)
The density fieldρ(x) has to be smoothed:

δ̃(x) =

∫

δ(x + u)WR(u)du

and

δ̃2(x) = σ2(R)
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The mass function
Inspired from Press and Schechter (1974)
The density fieldρ(x) has to be smoothed:

δ̃(x) =

∫

δ(x + u)WR(u)du

and

δ̃2(x) = σ2(R)

For a top hat window (!):

M(R) =
4π

3
R3ρ
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The mass function
dV will be included in a NL object with mass greater
thanM if included in a fluctuation of radius> R and
witch is satisfying the non linear criteria.
∫ +∞

M

mn(m)dm = ρ

∫

Fδ(δ)s(δ)dδ ∼ ρ

∫ +∞

δNL

Fδ(δ)dδ
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The mass function
dV will be included in a NL object with mass greater
thanM if included in a fluctuation of radius> R and
witch is satisfying the non linear criteria.
∫ +∞

M

mn(m)dm = ρ

∫

Fδ(δ)s(δ)dδ ∼ ρ

∫ +∞

δNL

Fδ(δ)dδ

for a sharp threshold:
∫ +∞

M

mn(m)dm = ρ

∫ +∞

νNL

F(ν)dν
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The mass function
Following the spherical model:

νNL =
δNL

σ(M)

Just derive againstM :

N(M) = −
ρ

M 2σ(M)
δNL

ln σ

ln M
F(νNL)
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The mass function
Following the spherical model:

νNL =
δNL

σ(M)

Just derive againstM :

N(M) = −
ρ

M 2σ(M)
δNL

ln σ

ln M
F(νNL)

Press and Schechter use a Gaussian:

F(ν) =

√

2

π
exp(−

ν2

2
)
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The mass function
Following the spherical model:

νNL =
δNL

σ(M)

Just derive againstM :

N(M) = −
ρ

M 2σ(M)
δNL

ln σ

ln M
F(νNL)

Press and Schechter use a Gaussian:

F(ν) =

√

2

π
exp(−

ν2

2
)

and test it against numerical simulations...
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But...
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But...

It actually works!
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Jenkins formula
More recent expression forF from Jenkins et al.
(2001):

F(ν) =

√

2A

π
C exp(−0.5Aν2)(1. + (1./(Aν)2)Q)

with A = 0.707 C = 0.3222 Q = 0.3.
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Jenkins formula
More recent expression forF from Jenkins et al.
(2001):

F(ν) =

√

2A

π
C exp(−0.5Aν2)(1. + (1./(Aν)2)Q)

with A = 0.707 C = 0.3222 Q = 0.3.
Allows to investigate structure formation:

History of individual structure is missing: merging tree

→ semi-analytical method “SAM” in order to model

galaxy formation:assembly/evolution.
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Conclusions
• There is a convincing modeling of dark

matter distribution and evolution in both

linear and non-linear regimes to

constrain cosmological scenario.
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Conclusions
• There is a convincing modeling of dark

matter distribution and evolution in both

linear and non-linear regimes to

constrain cosmological scenario.

• Warning: data come through “light”

which is coming from baryons and this

was almost not discussed in these

lectures...
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