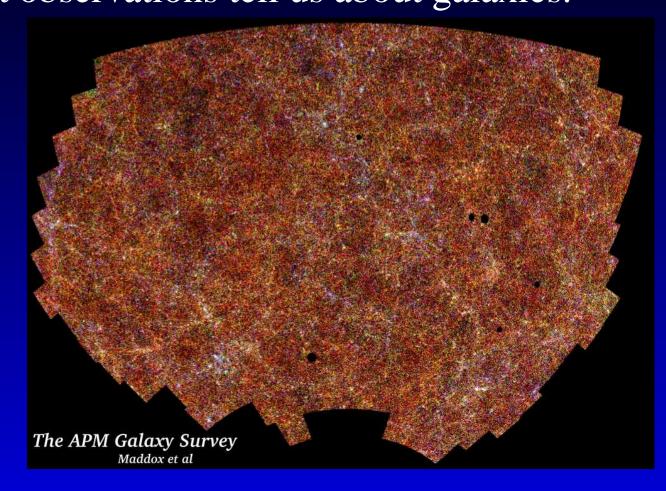
Dark Matter: Distribution

Direct observations tell us about galaxies.

Dark Matter: Distribution Direct observations tell us about galaxies.



Correlation function for uncorrelated distribution

dP(r) = ndV

Correlation function

 $dP(r) = ndV(1 + \xi(r))$

for correlated distribution

Correlation function

 $dP(r) = ndV(1 + \xi(r))$

for correlated distribution Power spectrum:

 $P(k) = FT(\xi(r))$

Cargèse 2007: Dark Matter 2 – July 2007 – p.2/39

 $\left(\frac{\delta\rho}{\rho}\right)_g = b \times \frac{\delta\rho}{\rho}_{DM}$

SO

 $\xi_g(r) = b^2 \xi_{DM}(r)$

Bias Simple bias :

$$\frac{\delta\rho}{\rho})_g = b \times \frac{\delta\rho}{\rho})_{DM}$$

SO

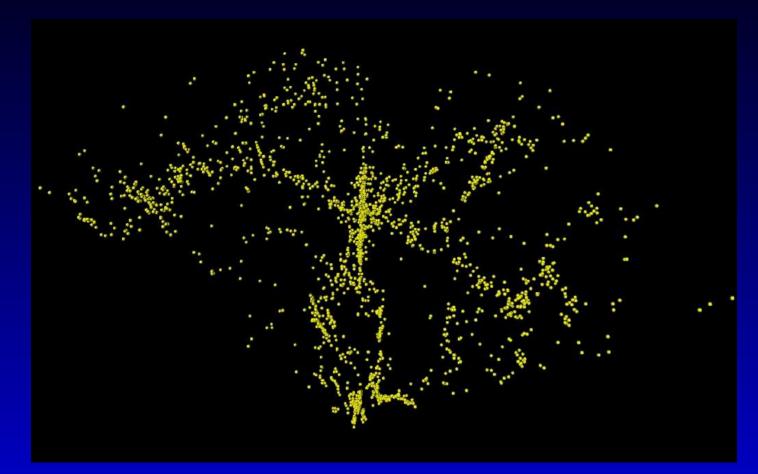
• • •

$$\xi_g(r) = b^2 \xi_{DM}(r)$$

one might have more complicated relation between galaxies and DM, and the bias can be a function of scale:

b(r)

Space distribution



Cfa Slice ~ 1000 galaxies.

Galaxy correlation function

From the smallest scale up to $10h^{-1}$ Mpc:

 $\xi(r) = (r/r_0)^{\gamma}$

with: $r_0 \approx 5.5 h^{-1}$ Mpc: $\gamma \approx -1.77$: So: $\sigma_8 = \sqrt{<\frac{\Delta N}{N}} >_{R=8h^{-1}\mathrm{Mpc}} \approx 1$

Galaxy correlation function

From the smallest scale up to $10h^{-1}$ Mpc:

 $\xi(r) = (r/r_0)^{\gamma}$

with: $r_0 \approx 5.5h^{-1}$ Mpc: $\gamma \approx -1.77$: So: $\sigma_8 = \sqrt{\langle \frac{\Delta N}{N} \rangle}_{R=8h^{-1}$ Mpc} \approx 1 (there has been some debate on the possible fractal na-

ture of the distribution)

Galaxy correlation function Improving scales by a factor of ten:

Cargèse 2007: Dark Matter 2 – July 2007 – p.6/39

Galaxy correlation function Improving scales by a factor of ten:

need for $\sim 10^6$ galaxies...

Galaxy correlation function Improving scales by a factor of ten: need for $\sim 10^6$ galaxies...

this has motivated 2dF and SDSS surveys

Galaxy correlation function Improving scales by a factor of ten: need for $\sim 10^6$ galaxies... this has motivated 2dF and SDSS surveys The correlation is weaker on large scale...

Galaxy correlation function

Improving scales by a factor of ten: need for $\sim 10^6$ galaxies...

this has motivated 2dF and SDSS surveysThe correlation is weaker on large scale...How to improve LSS measurements ?

ξ on large scales

Select red galaxies:

ξ on large scales Select red galaxies:

- They are bright: sample extends up to $z\sim 0.5$

ξ on large scales Select red galaxies:

- They are bright: sample extends up to $z\sim 0.5$
- They are biased with b = 2 so ξ is boosted by a factor 4...

ξ on large scales Select red galaxies:

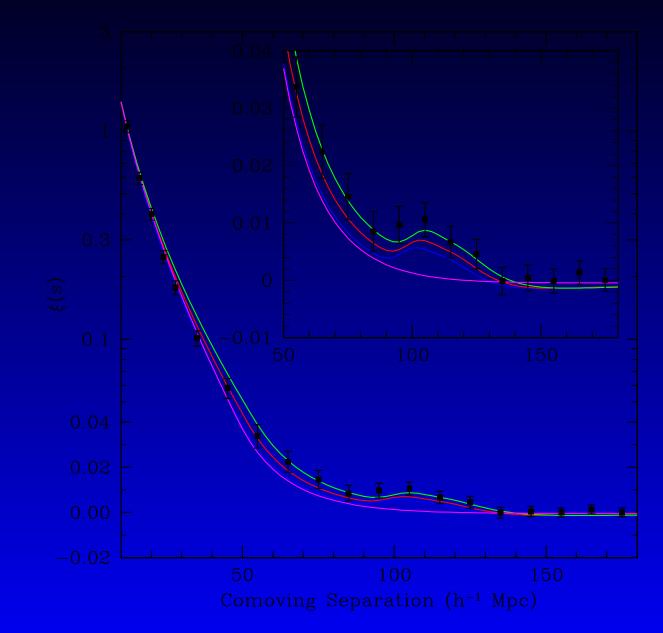
- They are bright: sample extends up to $z \sim 0.5$

They are biased with b = 2 so ξ is
boosted by a factor 4...

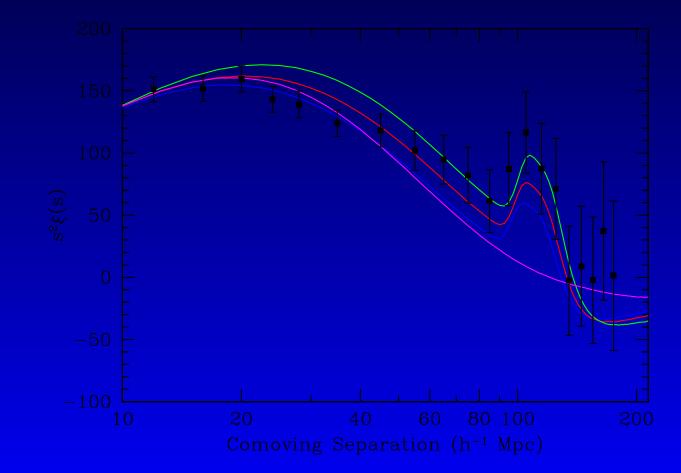
50 000 galaxies left...

Results : ξ on large scales

Results : ξ on large scales



Results : ξ on large scales



The question of the origin of structure in the Universe is an old question.

• Lemaître (1933) is the first to propose and study gravitational instability in an expanding universe.

- Lemaître (1933) is the first to propose and study gravitational instability in an expanding universe.
- Turbulence...

- Lemaître (1933) is the first to propose and study gravitational instability in an expanding universe.
- Turbulence...
- Cosmic explosions...

- Lemaître (1933) is the first to propose and study gravitational instability in an expanding universe.
- Turbulence...
- Cosmic explosions...
- Defects...

A key-point : seeds are needed.

A key-point : seeds are needed. Linear theory:

 $\delta(z) = D(z, \dots)\delta_0$

A key-point : seeds are needed. Linear theory:

$$\delta(z) = D(z, \dots)\delta_0$$

D : growing mode.

A key-point : seeds are needed. Linear theory:

$$\delta(z) = D(z, \dots)\delta_0$$

D : growing mode. Initial fluctuations are specified by (inflation ?):

A key-point : seeds are needed. Linear theory:

$$\delta(z) = D(z, \dots)\delta_0$$

D : growing mode. Initial fluctuations are specified by (inflation ?):

• being adiabatic

A key-point : seeds are needed. Linear theory:

$$\delta(z) = D(z, \dots)\delta_0$$

D : growing mode. Initial fluctuations are specified by (inflation ?):

- being adiabatic
- being Gaussian

A key-point : seeds are needed. Linear theory:

$$\delta(z) = D(z, \dots)\delta_0$$

D : growing mode. Initial fluctuations are specified by (inflation ?):

- being adiabatic
- being Gaussian
- $P_i(k) = \hat{\delta}_i(k)\hat{\delta}_i^*(k)$

What you get

The "final" power spectrum depends on:

What you get

The "final" power spectrum depends on:

• The physics of fluctuations evolution

What you get

The "final" power spectrum depends on:

- The physics of fluctuations evolution
- The nature of dark matter (hot, cold, warm, ...)

What you get

The "final" power spectrum depends on:

• The physics of fluctuations evolution

• The nature of dark matter (hot, cold, warm, ...) this is summarized through the transfer function:

$$\hat{\delta}_f(k) = T(k)\hat{\delta}_i(k)$$

giving:

 $P_f(k) = P_i(k) * T^2(k)$

Specified your scenario:

Specified your scenario:

• Early universe \rightarrow initial conditions and physics

Specified your scenario:

- Early universe \rightarrow initial conditions and physics
- Dark matter

Specified your scenario:

- Early universe \rightarrow initial conditions and physics
- Dark matter
- Dark energy

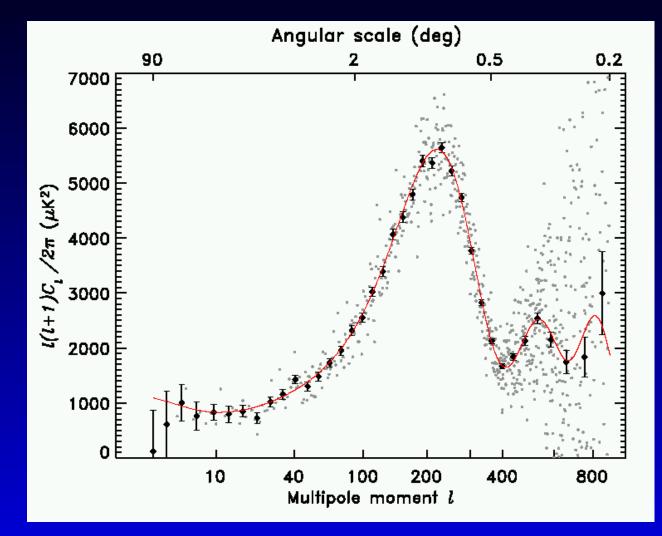
Specified your scenario:

- Early universe \rightarrow initial conditions and physics
- Dark matter
- Dark energy

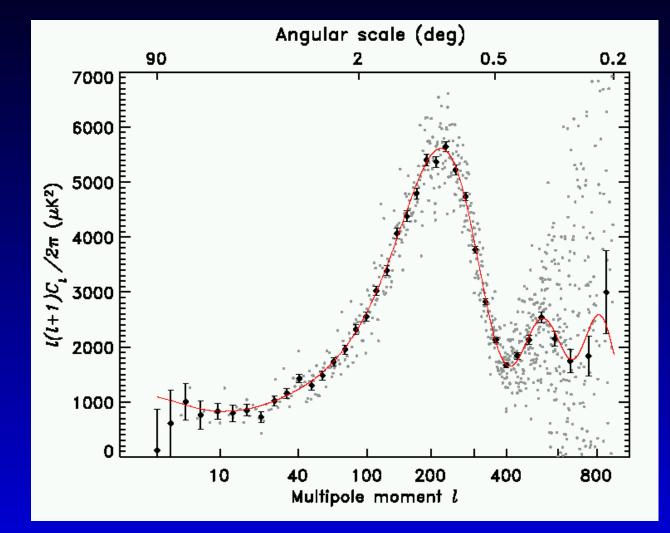
You get (through CMBfast or CAMB or ...) CMB C_l and P(k) allow to test your model!

Λ **CDM is successful...**

Λ **CDM is successful...**



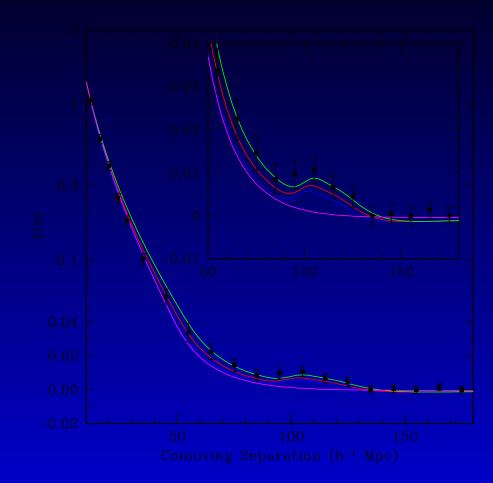
Λ **CDM is successful...**



Predictive...

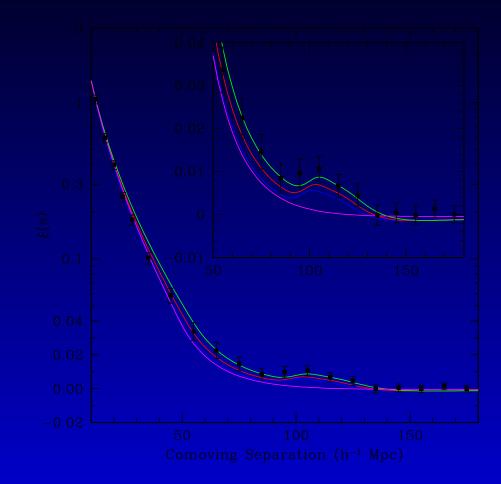
and successful!

and successful!



Cargèse 2007: Dark Matter 2 – July 2007 – p.14/39

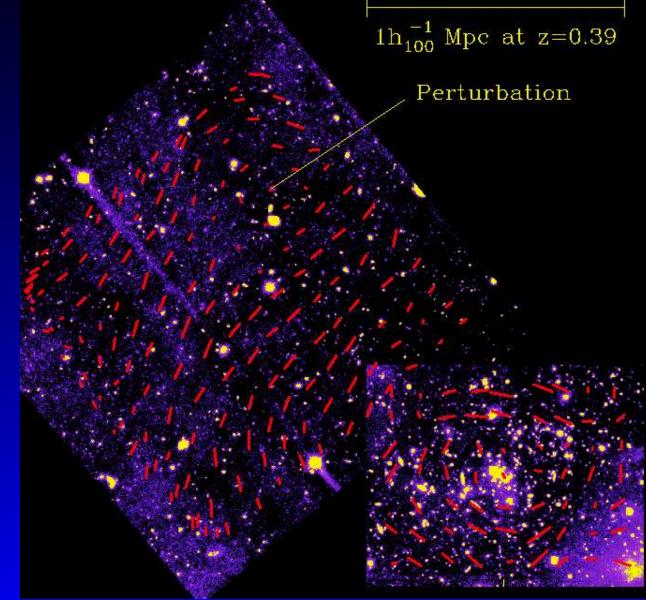
and successful!



It is difficult to compete with $\Lambda CDM...$

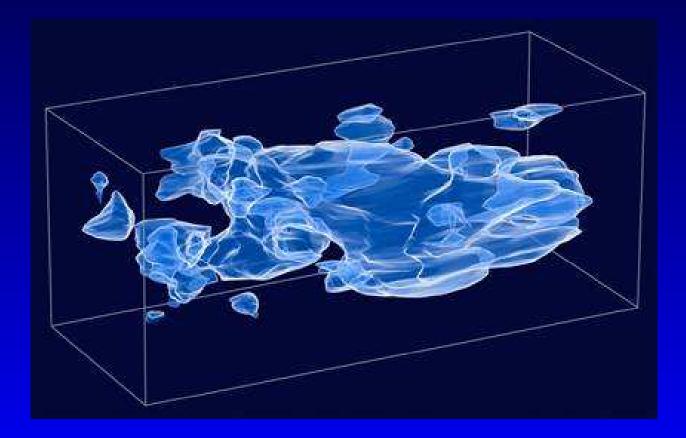
reconstruction of DM field

reconstruction of DM field



reconstruction of DM field

Weak shear surveys.



• LSS

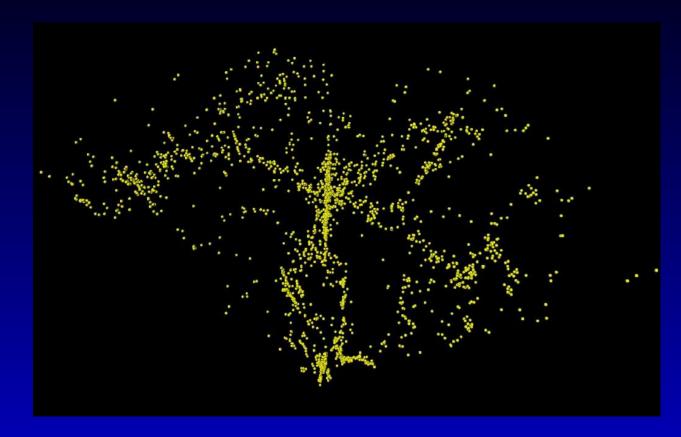
- LSS
- Clusters

- LSS
- Clusters
- Galaxies

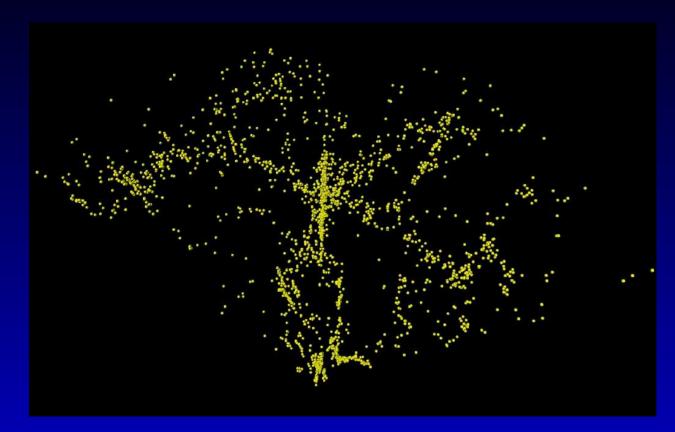
- LSS
- Clusters
- Galaxies
- Stars

Cargèse 2007: Dark Matter 2 – July 2007 – p.16/39

Understanding structures formation?



Understanding structures formation?



connection between LSS and galaxy formation ?

Cargèse 2007: Dark Matter 2 – July 2007 – p.17/39

• Planar solution (Zel'dovich, 1970)

- Planar solution (Zel'dovich, 1970)
- Spherical Collapse (Lemaître, 1933)

• Planar solution (Zel'dovich, 1970)

• Spherical Collapse (Lemaître, 1933)

Could this be transformed in an useful approximation?

Perturbative approach

Perturbative approach Troubles : non-linear features are extremely rapid and complex.

Perturbative approach Troubles : non-linear features are extremely rapid and complex.

Illustration: the spherical model.

Perturbative approach Troubles : non-linear features are extremely rapid and complex.

Illustration: the spherical model.

In GR Birkoff's theorem is an analog of Gauss theorem: Under spherical symmetry the dynamics of a region(< R) is independent of what is outside (and of the inner profile).

$\Omega_M > 1$ solution

No cosmological constant, no pressure.

$\Omega_M > 1$ solution

No cosmological constant, no pressure. R(t) can be developped as :

$$H_0 t = \frac{\Omega_0}{2(\Omega_0 - 1)^{3/2}} (\phi - \sin(\phi))$$

$$\frac{1}{1+z} = \frac{R(t)}{R_0} = \frac{\Omega_0}{2(\Omega_0 - 1)} (1 - \cos(\phi))$$

$\Omega_M > 1$ solution

No cosmological constant, no pressure. R(t) can be developped as :

$$H_0 t = \frac{\Omega_0}{2(\Omega_0 - 1)^{3/2}} (\phi - \sin(\phi))$$

$$\frac{1}{1+z} = \frac{R(t)}{R_0} = \frac{\Omega_0}{2(\Omega_0 - 1)} (1 - \cos(\phi))$$

Also describes the evolution of a spherical perturbation.

Evolution

From this one can compute the contrast density at maximum (within $\Omega_M = 1$ background):

$$1 + \Delta = \frac{9\pi^2}{16} \sim 5.55$$

while the linear amplitude is 1.01.. (linear regime : $\delta = \delta_0/(1+z)$) =

Evolution

From this one can compute the contrast density at maximum (within $\Omega_M = 1$ background):

$$1 + \Delta = \frac{9\pi^2}{16} \sim 5.55$$

while the linear amplitude is 1.01.. (linear regime : $\delta = \delta_0/(1+z)$) =

At time $2t_m$, ρ is diverging...while the linear amplitude is 1.68

At that \sim time, the collapse reaches an equilibrium configuration, "virialized state".

At that \sim time, the collapse reaches an equilibrium configuration, "virialized state".

Energy conservation:

$$E_c - \frac{GM}{R_f} = -\frac{GM}{R_i}$$

Virial theorem:

$$E_c = -\frac{E_p}{2}$$

At that \sim time, the collapse reaches an equilibrium configuration, "virialized state".

Energy conservation:

$$E_c - \frac{GM}{R_f} = -\frac{GM}{R_i}$$

Virial theorem:

$$E_c = -\frac{E_p}{2}$$

so that:

$$R_f = \frac{R_i}{2}$$

and :

 $1 + \Delta = 18\pi^2 \sim 178$

As soon as first gravitational N-body code was available, it was used for numerical simulations in an expanding universe...

As soon as first gravitational N-body code was available, it was used for numerical simulations in an expanding universe...

Peebles (1970, with 50 particules...) validated the simple spherical collapse model.

As soon as first gravitational N-body code was available, it was used for numerical simulations in an expanding universe...

Peebles (1970, with 50 particules...) validated the simple spherical collapse model.

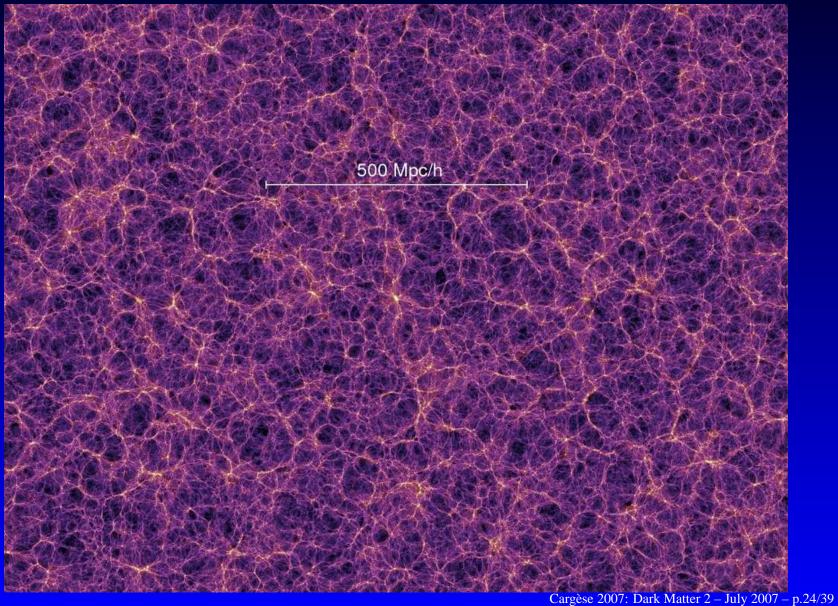
Now simulations can comprise $\sim 10^{10}$ particles, allowing movies and to include non-gravitational physics.

Results

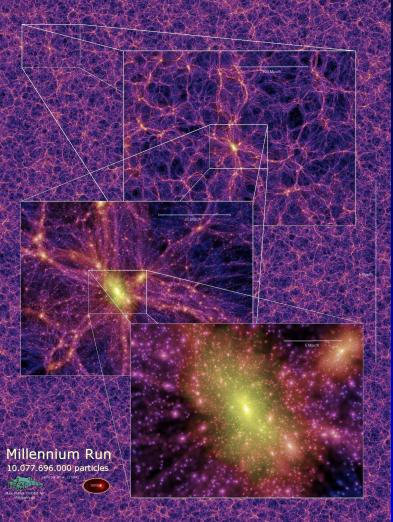
Millenium simulation.

Results

Millenium simulation.

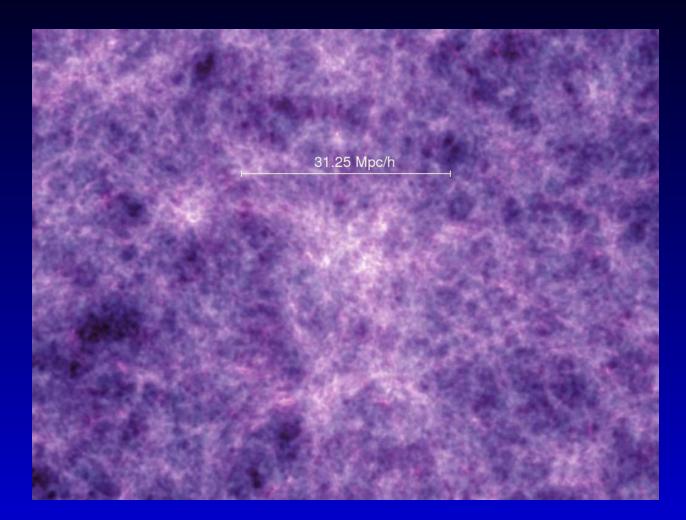


Millenium simulation.



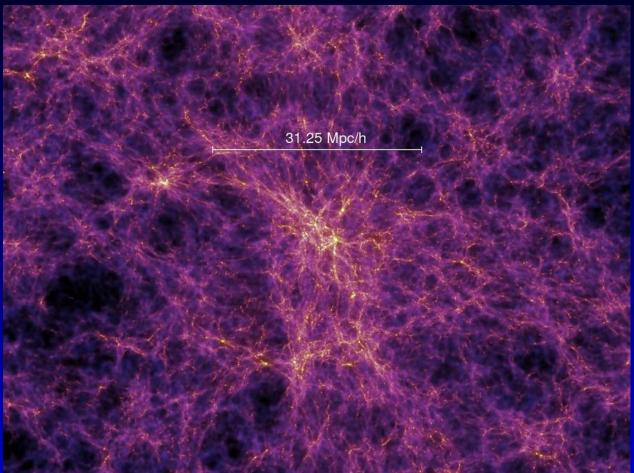
Zooming

Millenium simulation. Zooming



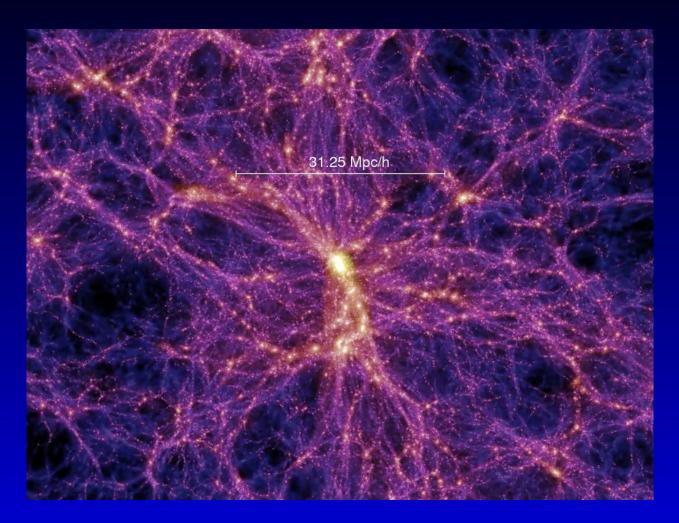
z = 18

Cargèse 2007: Dark Matter 2 – July 2007 – p.27/39

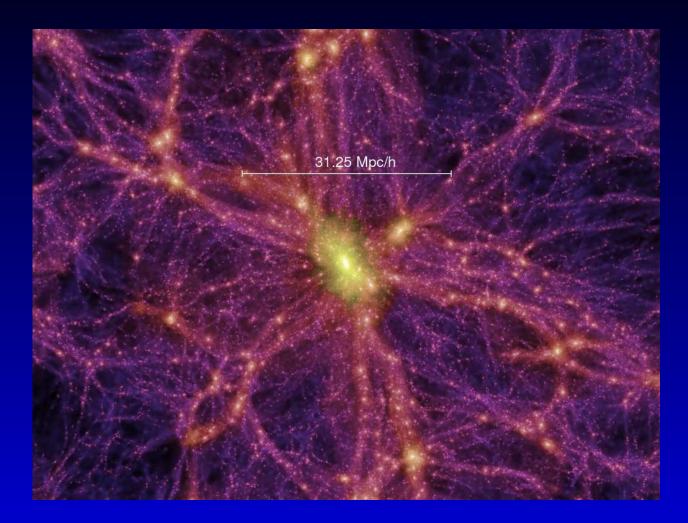


z = 5.7

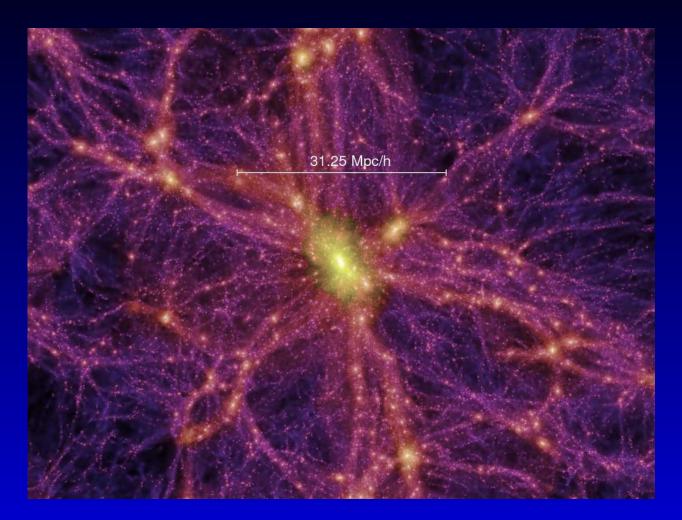
Cargèse 2007: Dark Matter 2 – July 2007 – p.27/39



z = 1.4



z = 0



hierarchical structure formation

Cargèse 2007: Dark Matter 2 – July 2007 – p.27/39

Hamilton, Kumar, Lu, Matthews (1991)

Hamilton, Kumar, Lu, Matthews (1991) Spherical collapse in $\Omega_m = 1$:

$$\Delta = F(\delta)$$

(self similar in time)but radius changes (and mass is conserved):

$$(1+\Delta)r^3 = (1+\delta)r_0^3 \approx r_0^3$$

(δ is the linear amplitude).

Number of neighbours in excess :

$$N_b = \int_0^r \xi(r) dV$$

SO

 $\Delta \equiv \overline{\xi}$

Number of neighbours in excess :

$$N_b = \int_0^r \xi(r) dV$$

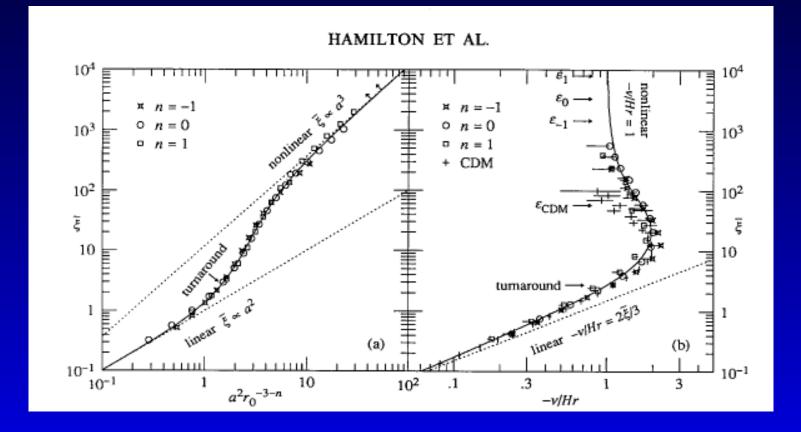
SO

$$\Delta \equiv \overline{\xi}$$

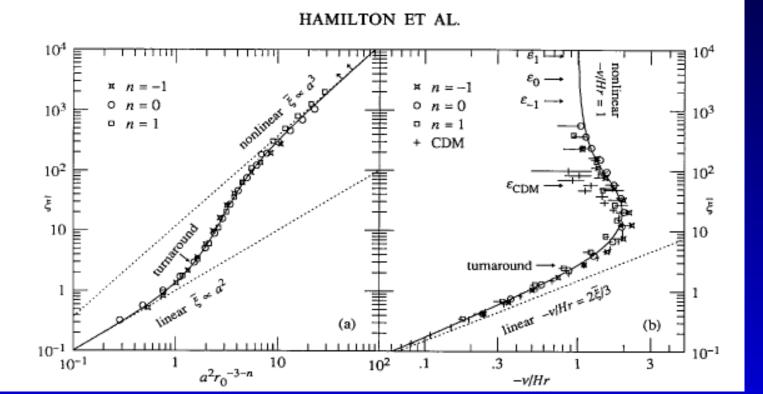
Anzatz:

$$\overline{\xi}r^3 = F(\overline{\xi}_0 r_0^3)$$

HKLM prescription Comparison with numerical simulations:



HKLM prescription Comparison with numerical simulations:



Peacock and Dodds have reformulated this in Fourier Space...and provide formula for arbitrary cosmology.

Back to the correlation function Why is the correlation function is a power law?

Back to the correlation function Why is the correlation function is a power law? CDM provide the appropriate shape to explain both the (power law) non-linear shape

of ξ and the linear shape on large scale.

Cargèse 2007: Dark Matter 2 – July 2007 – p.31/39

NFW profile

From numerical simulations DM halo appear to be well fitted by the so-called NFW profile:

$$\frac{\rho(r)}{\rho_c} = \frac{\delta_c}{(r/r_c)(1.+r/r_c)^2}$$

Two parameters: mass in some radius (for instance $\Delta = 200$) and one parameter: the concentration c: $r_c = r_{200}/c$

NFW profile

From numerical simulations DM halo appear to be well fitted by the so-called NFW profile:

$$\frac{\rho(r)}{\rho_c} = \frac{\delta_c}{(r/r_c)(1.+r/r_c)^2}$$

Two parameters: mass in some radius (for instance $\Delta = 200$) and one parameter: the concentration c: $r_c = r_{200}/c$

Prediction: halos are more or less identical...

Scaling laws

From the simple spherical model and mass-radius relation:

 $\overline{M} \propto \Delta \overline{\Omega}_m \rho_c (1+z)^3 R_v^3$

or

$$R_v \propto \left(\frac{M}{\Delta(\Omega_m,...)\Omega_m}\right)^{1/3} \frac{1}{1+z}$$

Scaling laws

From the simple spherical model and mass-radius relation:

 $M \propto \Delta \Omega_m \rho_c (1+z)^3 R_v^3$

or

$$R_v \propto \left(\frac{M}{\Delta(\Omega_m, \dots)\Omega_m}\right)^{1/3} \frac{1}{1+z}$$

one can infer the scaling of velocity dispersion with mass and redshift:

$$V^2 \propto \frac{GM}{R} \propto \Omega_m \Delta M^{2/3} (1+z)$$

and it works...

Inspired from Press and Schechter (1974) The density field $\rho(x)$ has to be smoothed:

$$\tilde{\delta}(x) = \int \delta(x+u) W_R(u) du$$

and

$$\overline{\tilde{\delta}^2(x)} = \sigma^2(R)$$

Inspired from Press and Schechter (1974) The density field $\rho(x)$ has to be smoothed:

$$\tilde{\delta}(x) = \int \delta(x+u) W_R(u) du$$

and

$$\overline{\tilde{\delta}^2(x)} = \sigma^2(R)$$

For a top hat window (!):

$$M(R) = \frac{4\pi}{3}R^3\overline{\rho}$$

dV will be included in a NL object with mass greater than M if included in a fluctuation of radius > R and witch is satisfying the non linear criteria.

$$\int_{M}^{+\infty} mn(m)dm = \overline{\rho} \int \mathcal{F}_{\delta}(\delta)s(\delta)d\delta \sim \overline{\rho} \int_{\delta_{NL}}^{+\infty} \mathcal{F}_{\delta}(\delta)d\delta$$

dV will be included in a NL object with mass greater than M if included in a fluctuation of radius > R and witch is satisfying the non linear criteria.

$$\int_{M}^{+\infty} mn(m)dm = \overline{\rho} \int \mathcal{F}_{\delta}(\delta)s(\delta)d\delta \sim \overline{\rho} \int_{\delta_{NL}}^{+\infty} \mathcal{F}_{\delta}(\delta)d\delta$$

for a sharp threshold:

$$\int_{M}^{+\infty} mn(m)dm = \overline{\rho} \int_{\nu_{NL}}^{+\infty} \mathcal{F}(\nu)d\nu$$

Following the spherical model:

$$\nu_{NL} = \frac{\delta_{NL}}{\sigma(M)}$$

Just derive against M:

$$N(M) = -\frac{\rho}{M^2 \sigma(M)} \delta_{NL} \frac{\ln \sigma}{\ln M} \mathcal{F}(\nu_{NL})$$

Following the spherical model:

$$\nu_{NL} = \frac{\delta_{NL}}{\sigma(M)}$$

Just derive against M:

$$N(M) = -\frac{\rho}{M^2 \sigma(M)} \delta_{NL} \frac{\ln \sigma}{\ln M} \mathcal{F}(\nu_{NL})$$

Press and Schechter use a Gaussian:

$$\mathcal{F}(\nu) = \sqrt{\frac{2}{\pi}} \exp(-\frac{\nu^2}{2})$$

Cargèse 2007: Dark Matter 2 – July 2007 – p.36/39

Following the spherical model:

$$\nu_{NL} = \frac{\delta_{NL}}{\sigma(M)}$$

Just derive against M:

$$N(M) = -\frac{\rho}{M^2 \sigma(M)} \delta_{NL} \frac{\ln \sigma}{\ln M} \mathcal{F}(\nu_{NL})$$

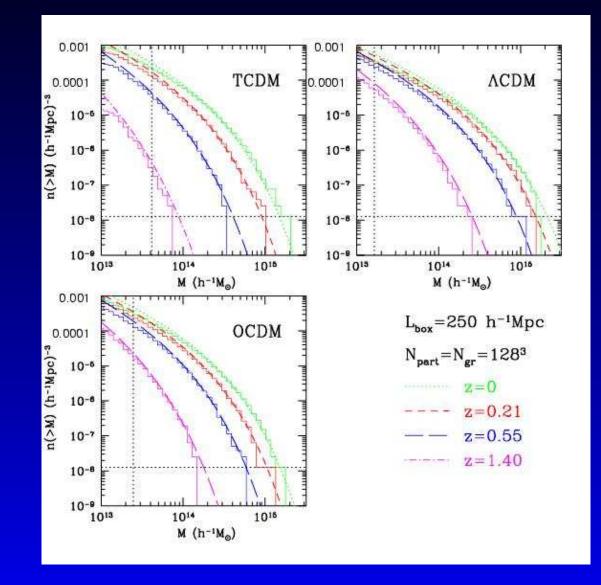
Press and Schechter use a Gaussian:

$$\mathcal{F}(\nu) = \sqrt{\frac{2}{\pi}} \exp(-\frac{\nu^2}{2})$$

and test it against numerical simulations...

But...

But...



It actually works!

Jenkins formula

More recent expression for \mathcal{F} from Jenkins et al. (2001):

$$\mathcal{F}(\nu) = \sqrt{\frac{2A}{\pi}} C \exp(-0.5A\nu^2) (1. + (1./(A\nu)^2)^Q)$$

with $A = 0.707 \ C = 0.3222 \ Q = 0.3$.

Jenkins formula

More recent expression for \mathcal{F} from Jenkins et al. (2001):

$$\mathcal{F}(\nu) = \sqrt{\frac{2A}{\pi}} C \exp(-0.5A\nu^2)(1. + (1./(A\nu)^2)^Q)$$

with $A = 0.707 \ C = 0.3222 \ Q = 0.3$. Allows to investigate structure formation: History of individual structure is missing: merging tree \rightarrow semi-analytical method "SAM" in order to model galaxy formation:assembly/evolution.

Conclusions

 There is a convincing modeling of dark matter distribution and evolution in both linear and non-linear regimes to constrain cosmological scenario.

Conclusions

- There is a convincing modeling of dark matter distribution and evolution in both linear and non-linear regimes to constrain cosmological scenario.
- Warning: data come through "light" which is coming from baryons and this was almost not discussed in these lectures...