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Probing " electroweak scale 

(and beyond) wi# gravity waves



Gravitational Waves interact very weakly and are not absorbed

direct probe of physical process of the very early universe

Gravitational Waves: A way to probe astrophysics
... and high energy particle physics.

Small perturbations in FRW metric:

ds2 = a2(η)(dη2 − (δij + 2hij)dxidxj) Gµν = 8πG Tµν

ḧij(k, η) +
2
η
ḣij(k, η) + k2hij(k, η) = 8πGa2(η)Πij(k, η)

anisotropic stress
Source of GW:

possible cosmological sources: 
inflation, vibrations of topological defects, excitations of xdim modes, 1st order phase transitions...
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from Maggiore
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Gρc
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GW energy 
density:
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Beyond GW of astrophysical origin, another mission of GW astronomy will be to 
search for  a stochastic background of gravitational waves of primordial origin 

(gravitational analog of the 2.7 K CMB)

Stochastic background:
isotropic, unpolarized, stationary

A huge range of 
frequencies

LIGO

BBN bound

MPlanckMTeVMQCD



Why should we be excited about mHZ freq.?

complementary to collider informations
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LISA: Could be a new window 
on the Weak Scale
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Which weak scale physics?

➾ Strong first order phase transitions

Examples:

➾     “3-brane” nucleation in Randall-Sundrum models

➾     “Standard’’ Electroweak Phase Transition

test of the dynamics of the phase transition                                  
(quite important to analyze models of EW baryogenesis)

reconstruction of the Higgs potential / study of new models 
of EW symmetry breaking (little Higgs, gauge-Higgs, composite Higgs, Higgsless...)
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2 order versus 1r& order



LHC might answer as it will shed light on the Higgs sector

Is " electroweak phase transition 1r& or 2 order?

It is timely to investigate whether the recently proposed new models 
of Electroweak symmetry breaking (gauge-higgs unification in extra 
dimensions, composite Higgs, Little Higgs, Higgsless...) can lead to a 

first order electroweak phase transition.

Question intensively studied within the Minimal 
Supersymmetric Standard Model (MSSM).

However, not so beyond the MSSM:



GW from phase transitions

Collision of bubbles walls
 Turbulent motions 
Magnetic fields

Duration of the phase transition

Speed of the bubbles walls

FIRST ORDER (e.g. ELECTROWEAK?):

L ! vbβ
−1 ! 0.01H−1

∗

β−1

vb ≤ 1
L

R

R

ḧij(k, η) +
2
η
ḣij(k, η) + k2hij(k, η) = 8πGa2(η)Πij(k, η)

anisotropic stress
Source of GW:



A not so new subject...
Early 90’s, M. Turner & al studied the production of GW produced by 
bubble collisions. Not much attention since the LEP data excluded a 
1st order phase transition within the SM.

‘01-’02: Kosowsky et al. and Dolgov et al. computed the production of 
GW from turbulence  ➾ stronger signal. Application to the (N)MSSM 
where a 1st order phase transition is still plausible.

➾    Model-independent analysis for detectability of 
GW from 1st order phase transitions

➾   Apply to Randall-Sundrum phase transition 
Randall, Servant’06

in 2(6:

Grojean, Servant ‘06

Kosowsky, Turner, Watkins’92
Kamionkowski, Kosowsky, Turner ’94

Kosowsky, Mack, Kahniashvili’02
Dolgov, Grasso, Nicolis’02
Caprini, Durrer ’06

➾    Revisit the Turner et al original calculation
Caprini, Durrer, Servant’07

first suggestion:Witten’84



bubble collisions
injection of energy into the plasma fluid        

A two parameter problem...
A 1st order phase transition proceeds by nucleation of bubbles

kinetic energy of bubbles  is transferred to GW either by

(creating a homogeneous, isotropic, fully developed and stationary turbulent regime).

Need to move large mass rapidly ➾
detonation regime: bubble walls propagate 

faster than the speed of sound

the GW background is controlled by two quantities

α ∼

false vacuum energy density – latent heat

plasma thermal energy density

β ∼ rate of time variation of the nucleation rate Γ (Γ = Γ0e
−βt)

∼ (duration of transition)−1

The stronger is the transition, 
the larger is α and the smaller is β 

=
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Shape of the potential at the nucleation temperature

 α and β : entirely determined by the effective
 scalar potential at high temperature



Γ ∝ e
−S3(T )/T

S3(T ) = 4π

∫

dr r2

[

1

2

(

dφb

dr

)2

+ V (φb, T )

]

 Compute rate of bubble nucleation

: euclidean action for a critical bubble

Overshooting-undershooting method 
to search for the bounce solution

d2φb

dr2
+

2

r

dφb

dr
−

∂V

∂φb

= 0

Nucleation occurs when the probability
 for the nucleation of 1 bubble 
per 1 horizon volume  is ~ O(1)

➾ translates into S3(T∗)/T∗ ! 140

dφb

dr

∣

∣

∣

∣
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 Fraction of " c)tical energy density in GW today

where we used:
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where T~ρkin~ρrad v2

ρGW ~ h2 /16πG
.

β2

H2
*ΩGW    = 

* ρtot2
ρkin2

κ2α2v4

β2

H2
*ΩGW   

*
v4∝

3 parameters: 
α,β,v

Estimate of the GW energy density at the emission time

δGμν=8π GTμν  β2h~8πGT h~8πGT/β
.



Spectrum of gravitational waves produced at 
1r& order phase transitions  



A phase transition at             GeV could 
be observed both at LIGO and BBO:

T ∼ 10
7



GW from phase transitions could entirely mask 
the GW signal expected from inflation: 



What to expect for " EW

phase transition



In the SM, a 1rst-order phase transition can occurr 
due to thermally generated cubic Higgs interactions: 

mh<35 GeV would be needed to get Φ/T>1 and for 
mh >72 GeV, the phase transition is 2nd order

−ETφ3

−ETφ3
⊂ −

T

12π

∑

i

m3

i (φ)

Sum over all bosons which couple to the Higgs

In the SM:
∑

i

!

∑

W,Z
not enough 

V (φ, T ) ≈
1

2
(−µ2

h + cT 2)φ2 +
λ

4
φ4



Strength of the transition in the SM:

➾
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Our a*roach:

➾  Can induce a strong 1rst-order phase transition if 

V (Φ) = µ2

h|Φ|2 − λ|Φ|4+
|Φ|6

Λ2

<
∼

Λ 1 TeV

Grojean-Servant-Wells ’04

✔  Does not rely on the thermally generated negative self cubic Higgs

✔  Instead, we add a non-renormalizable Φ^6 term to the  SM Higgs 

interactions

potential and allow a negative quartic coupling :



Strength of the transition in the SM:
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The blue region 
corresponds to  
a first order 

phase transition

A &rongly 1r& order phase transition compatible 

wi# lar+ Higgs masses



A concrete example of the possible origin  of the       term  |Φ6|

➾ Decouple a massive scalar singlet coupled to the Higgs via

3

FIG. 3: Sphaleron energy at zero temperature in units of
4πv0/g = 4.75 TeV.

vc/Tc
>∼ 1. Knowing whether the right-hand side of this

inequality is 1 or 1.5 is crucial in deriving the result-
ing bound on the Higgs mass, and this depends, among
other things, on the precise sphaleron energy. The fact
that Esph is larger than the cutoff scale allowing for a
first-order phase transition is not inconsistent with the
calculation of the rate of baryon number violation at Tc.
Indeed, Esph is large because the sphaleron is an extended
object, but its local energy density is always smaller than
the cutoff scale. While a large amount of energy has to be
pumped into the thermal bath to build a sphaleron con-
figuration, this does not involve any local physics beyond
the cutoff scale.

Precision electroweak constraints: The theory we
have presented above is the SM with a low-scale cutoff. It
is minimal in that no new particles have been introduced
to achieve the desired out-of-equilibrium first-order phase
transition needed for baryogenesis. However, this does
not mean that the phenomenology of this model is indis-
tinguishable from that of the SM.

The non-renormalizable operators of this theory can
significantly affect observables. If the only additional
terms are those given by eq. (1), there would be no
phenomenological constraints on this scenario to worry
about. However, a low-scale cutoff for other dimension-
six operators can be problematic for precision elec-
troweak observables [21]. As an example, let us consider
the following four dimension-six operators suppressed by
the cutoff scale Λ:

∆L =
εΦ
Λ2

(Φ†DµΦ)2 +
εW

Λ2
(DρW

a
µν)2 +

εB

Λ2
(∂ρBµν)2

+
εF

Λ2
ν̄µγαPLµēγαPLνe.

The most sensitive precision electroweak observ-
ables are sin2 θeff

W , mW , Γl = Γ(Z → l+l−),
and ΓZ . The percent shifts to these observables
∆Oi = {sin2 θeff

W ,mW (GeV),Γl(MeV),ΓZ(GeV)} in-
duced by ∆L are

%
(

∆O
O

)

i

=





8.57 6.19 −1.47 4.29
−4.31 −0.55 −0.55 −0.65
−7.20 1.69 0.93 −3.61
−7.90 1.00 1.08 −3.93
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where ε̃i = εi (1 TeV)2/Λ2. We can compare the experi-
mental values of the observables [11] with the dimension-
six operator shifts induced by the cutoff scale Λ. The
(Φ†DµΦ)2 operator appears to have the most substan-
tial effect on the precision electroweak observables. This
operator is a pure isospin breaking operator and is equiv-
alent to a positive shift in the T parameter in the Peskin–
Takeuchi framework (T $ −7.8 ε̃Φ).

Barring some nontrivial cancellations of multiple εi

contributions to the precision electroweak observables, it
appears that εΦ <∼ 10−2 is necessary if Λ <∼ 1 TeV. There-
fore, if this framework is to be viable there must be a
small hierarchy between the 1/Λ2 coefficient of eq. (1)
and the εi/Λ2 coefficients of eq. (7). In the absence
of a UV completion of the theory, this little hierarchy
of high-dimensional operators remains unexplained. We
note in passing that the operators can have substantially
different conformal weights if the theory at the cutoff
is a strongly coupled theory where each field gets large
anomalous dimensions. Perhaps this distinguishing prop-
erty of the operators is a key to the needed hierarchy.

As a concrete example of a possible origin of the non-
renormalizable Higgs self-interaction, we note that a |Φ|6
term can be generated by decoupling a massive degree of
freedom. For instance, in a manner similar to ref. [14] we
can consider a scalar singlet φs coupled to the Higgs via

∆V =
1
2
m2

sφ
2
s + mφsΦ†Φ +

1
2
aφ2

sΦ
†Φ. (7)

Assuming that the mass of the singlet is higher than the
weak scale, integrating out this scalar degree of freedom
gives rise to the additional Higgs interactions:

Vnew = − m2

2m2
s

|Φ|4 +
am2

2m4
s

|Φ|6 + O
(

a2m4|Φ|8

m6
s

)
. (8)

We assume that m and ms are of the same order to be
able to neglect the higher-order terms in the expansion.
Therefore, if the mass scale in the singlet sector is around
a TeV a φ6 term as well as a negative φ4 term are gen-
erated in the Higgs potential. Meanwhile, the custodial
invariant interactions of eq. (8) will not lead to any of
the dangerous operators eq. (7).

Higgs self-couplings as test: Future colliders have
the opportunity to test this idea directly by experi-
mentally probing the Higgs potential. When a low-
scale cutoff theory alters the Higgs potential with non-
renormalizable operators, those same operators will con-
tribute to a shift in the Higgs self-couplings. Expand-
ing around the potential minimum at zero tempera-
ture we can find the physical Higgs boson self couplings
(L = m2

HH2/2 + µH3/3! + ηH4/4! + · · ·)

µ = 3
m2

H

v0
+ 6

v3
0

Λ2
, η = 3

m2
H

v2
0

+ 36
v2
0

Λ2
. (9)

The SM couplings are recovered as Λ→∞. In Fig. 4 we
plot contours of µ/µSM − 1 in the Λ vs. mH plane.

No experiment to date has meaningful bounds on the
H3 coupling. It is estimated that for the Higgs masses
in the range needed for the first-order phase transition
presented above, a measurement of the H3 coupling could
be done to within a factor of one at the LHC at

√
s =

14 TeV with 300 fb−1 integrated luminosity [22]. This

3

FIG. 3: Sphaleron energy at zero temperature in units of
4πv0/g = 4.75 TeV.
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where ε̃i = εi (1 TeV)2/Λ2. We can compare the experi-
mental values of the observables [11] with the dimension-
six operator shifts induced by the cutoff scale Λ. The
(Φ†DµΦ)2 operator appears to have the most substan-
tial effect on the precision electroweak observables. This
operator is a pure isospin breaking operator and is equiv-
alent to a positive shift in the T parameter in the Peskin–
Takeuchi framework (T $ −7.8 ε̃Φ).

Barring some nontrivial cancellations of multiple εi

contributions to the precision electroweak observables, it
appears that εΦ <∼ 10−2 is necessary if Λ <∼ 1 TeV. There-
fore, if this framework is to be viable there must be a
small hierarchy between the 1/Λ2 coefficient of eq. (1)
and the εi/Λ2 coefficients of eq. (7). In the absence
of a UV completion of the theory, this little hierarchy
of high-dimensional operators remains unexplained. We
note in passing that the operators can have substantially
different conformal weights if the theory at the cutoff
is a strongly coupled theory where each field gets large
anomalous dimensions. Perhaps this distinguishing prop-
erty of the operators is a key to the needed hierarchy.

As a concrete example of a possible origin of the non-
renormalizable Higgs self-interaction, we note that a |Φ|6
term can be generated by decoupling a massive degree of
freedom. For instance, in a manner similar to ref. [14] we
can consider a scalar singlet φs coupled to the Higgs via
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We assume that m and ms are of the same order to be
able to neglect the higher-order terms in the expansion.
Therefore, if the mass scale in the singlet sector is around
a TeV a φ6 term as well as a negative φ4 term are gen-
erated in the Higgs potential. Meanwhile, the custodial
invariant interactions of eq. (8) will not lead to any of
the dangerous operators eq. (7).

Higgs self-couplings as test: Future colliders have
the opportunity to test this idea directly by experi-
mentally probing the Higgs potential. When a low-
scale cutoff theory alters the Higgs potential with non-
renormalizable operators, those same operators will con-
tribute to a shift in the Higgs self-couplings. Expand-
ing around the potential minimum at zero tempera-
ture we can find the physical Higgs boson self couplings
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The SM couplings are recovered as Λ→∞. In Fig. 4 we
plot contours of µ/µSM − 1 in the Λ vs. mH plane.

No experiment to date has meaningful bounds on the
H3 coupling. It is estimated that for the Higgs masses
in the range needed for the first-order phase transition
presented above, a measurement of the H3 coupling could
be done to within a factor of one at the LHC at

√
s =

14 TeV with 300 fb−1 integrated luminosity [22]. This

➾

    

m ∼ ms v0>Assuming



./ scena)o pre!cts lar+ deviations to " Higgs self-c0plings

L =
m2

H

2
H2 +

µ

3!
H3 +

η

4!
H4 + ... where µ = 3

m
2
H

v0

η = 3
m

2
H

v2
0

+ 36
v
2
0

Λ2

+ 6
v
3
0

Λ2

deviations between a factor 0.7 and 2

The dotted lines 
delimit the region for 
a strong 1rst order 

phase transition



Expe)mental tests of " Higgs self-c0pling

at a Hadron Collider

at an e+ e-  Linear Collider

... or at the gravitational wave detector LISA



Gravitational Waves from  

Warped Extra-Dimensional Geometry



Space-time is a slice of AdS5

ds2
= e−2kyηµνdxµdxν

− dy2

y = 0
y = πR

The effective 4D energy scale varies with position along 5th dimension

4D 
graviton

Planck 
brane

IR 
brane

M
2

Pl ∼

M3
5

k

 RS1 (has two branes)     versus   RS2 (only Planck brane)



Solution to the Planck/Weak scale hierarchy 
The Higgs (or any alternative EW breaking) is localized at 

y=πR, on the TeV (IR) brane

y = 0 y = πR

Planck 
brane

4D 
graviton

TeV 
brane

 EW

After canonical normalization of the Higgs:

kπR ∼ log(
MPl

TeV
)

Exponential hierarchy from O(10) hierarchy in the 5D theory

Radius stabilisation using bulk scalar (Goldberger-Wise mechanism)

veff = v0e
−kπR

parameter in the 5D lagrangian 

Warped hierarchies are radiatively stable as 
cutoff scales get warped down near the IR brane

One Fondamental scale : M5 ∼ MPl ∼ k ∼ Λ5/k ∼ r−1

kr =
4

π

k2

m2
ln

[

vh

vv

]

∼ 10



Randall-Sun2um phase transition

At high T: AdS-Schwarzchild BH solution with event horizon shielding the TeV brane
Temperature is too high to experience weak scale phenomena

At low T: usual RS solution with stabilized radion and TeV brane

Assuming the universe started at T>> Tc, the PT has to take place if we 
want a  RS set-up at low T.

−2k    |y|

Higgs or

alternative

dynamics for

breaking

TeV

brane

Planck

brane

4d graviton

 Gauge fields and fermions in the bulk

y = 

−

ds   = dx  + r  dy

EW symmetry

2

Slice of AdS

 5

y = 0
rπ

2 22

L R
SU(2)           SU(2)             U(1)

5

π
e Creminelli-Nicolis-Rattazzi ’01 

Cosmology of the Randall-Sundrum model

Natural stabilisation 
of radius

à la Goldberger-
Wise :

kr =
4

π

k2

m2
ln

[

vh

vv

]

∼ 10

Start with a black brane, nucleate “gaps” in the horizon which then 
grow until they take over the entire horizon. 



High-T Phase: AdS-S Black hole Low-T Phase : RS1 geometry

Radion field determines spacing between branes

Require that  radion is stabilized around TeV

FAdS-S = −2π
4(ML)3T 4

Tc =

(

−8Vmin

π2N2

)1/4

Key is stabilising mechanism

−εv2
1µ4 + δT1µ

4 + O(µ8/µ4
0)

FRS = (4 + 2ε)µ4(v1 − v0(µ/µ0)
ε)2

Vmin ≈ −ε3/2v2
1µ4

TeV

Second brane emerges at T~TeV

i.e. radion starts at 
and evolves to 

µ = 0

µ = µTeV

µ = e−kπrMPl

ds2
=

(

ρ2

L2
−

ρ4

h/L2

ρ2

)

dt2 +
dρ2

ρ2

L2 −

ρ4

h
/L2

ρ2

+
ρ2

L2

∑

i

dx2

i

reduces to pure AdS metric for ρh = 0

Th ≡

ρh

πL2

both local minima of free energy

Below       , expect first-order phase transitionTc

From 4D perspective , expect transition through bubble nucleation
From 5D perspective , spherical  brane patches on horizon

(ML)3 = N2/16π2

by holography:



Goldberger-Wise mechanism

Veff =

∫ z1

z0

dz
√

g[−(∂φ)2 − m2φ2]

Λ5 = −24M
3
k

2L =

∫
dx4dz

√
−g[2M3R− Λ5]Start with the bulk 5d theory

and the orbifold extends from z=z0=L (Planck brane) to z=z1 (TeV brane)

ds2 = (kz)−2(ηµνdxµdxν + dz2)The metric for RS1 is  where                   is the AdS curvaturek = L
−1

z = k
−1

e
ky= e−2kyηµνdxµdxν

+ dy2

Which mechanism naturally selects z1  >> z0 ? simply a bulk scalar field φ can do the job:
∫

d4xdz
(√

g[−(∂φ)2 − m2φ2] + δ(z − z0)
√

g0L0(φ(z)) + δ(z − z1)
√

g1L1(φ(z))
)

φ = Az4+ε
+ Bz−ε

φ has a bulk profile satisfying the 5d Klein-Gordon equation

ε =
√

4 + m2L2
− 2 ≈ m2L2/4where

Plug this solution into 

VGW = z−4

1

[

(4 + 2ε)

(

v1 − v0

(

z0

z1

)

ε
)2

− εv2
1

]

+ O(z4
0/z8

1)

z1 ≈ z0

(

v0

v1

)1/ε

= z
−4

1
P (z−ε)

Similar to Coleman-Weinberg 
mechanism



but we can treat this as bubble nucleation in four dimensions 
 a five-dimensional set-up

Low energies: radion dominates potential

High energies:  holography

Need N large(M/k)3 ∼ N2/16π2

Completion of the phase transition



Computation of the tunneling rate Γ ∼ T
4

c e
−S

under the approximation Tc << μTeV  : 
only the radion mode contributes 

significantly to the action

justified if v1 and ε are small: in which case potential is shallow and most of 
the action comes from the RS side as μ changes from 0 to μTeV

The contribution from the AdS-S side to the thermal bounce is neglected

(i.e large N)

 Phase transition only completes in borderline perturbativity region
k large ,     large ,ε v1 ∼ N

Transition rate Γ ∼ T
4

c e
−N

2

2

√

log
MPl

Tc

N ≤

i.e if Tc  ~ 1 TeV  ➔  N ≤ 12
(ML)3 = N2/16π2



Evolution of radion potential 
with temperature

The transition does not take place until the temperature is sufficiently low so that we 
enter in the thick wall regime. 
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S3"Tc , thin wall

S3"Tc , thick wall
S4 , thick wall

S3"Tc , exact
S4 , exact

- in thin wall and thick wall (μnucl ≠ μTeV) approximations

Calculation of S: S3 ∝
µ3

TeV
√

|V |
N3

Comparison of thin wall and thick wall approximations with exact solution:



- in thin wall and thick wall (μnucl ≠ μTeV) approximations
- for both ε>0 and ε<0
- for large supercooling: O(4) symmetric bubbles

Calculation of S: S3 ∝
µ3

TeV
√

|V |
N3

- effect of modified TeV brane tension

In region where transition can take place :
 strong gravity wave signal 
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Effect of increasing N
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Gravitational Wave signal 
as a function of nucleation temperature

β

H
=

{

S3(Tn)
Tn

×
3a

4
−1

1−a4 ≈ 140 ×
3a

4
−1

1−a4 for O(3) sol.

S4(Tn) × 4a
4

1−a4 ≈ 140 ×
4a

4

1−a4 for O(4) sol.
α =

|∆V±|

π2N2T 4/8
=

T 4
c
− T 4

n

T 4
n



We can play " same game #at we played wi# " Higgs potential

 and determine " values of  α  and  β/H

as a function of " parameters desc)bing " ra!on potential
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Particular model:



10!4 10!3 10!2 10!1 1 10 100
f !Hz"10!18

10!16
10!14
10!12
10!10
10!8

"GW h2 Ε$!0.25 , N$12 , Μ$ 5 TeV , ∆T1 $!0.5 v12 , v1 # N $ 0.7

LISA

BBO Corr

EI'3 1016GeV

EI'5 1015 GeV
10!4 10!3 10!2 10!1 1 10 100
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Signal versus LISA’s sensitivity
    Gravitational Waves  from “3-brane” nucleation:

Signature in GW is generic,

i.e. does not depend whether Standard Model is in bulk or on TeV brane

but crucially depends on the radion properties



Conclusion 1

We might be learning something about the Higgs/radion 
by looking at the sky



Gravity wave 3ectrum 

from bubble coll/ions

Caprini-Durrer-Servant 
astro-ph/0711.2593



Stochastic background of GWs
GW power spectrum:

hij(k, η) =
∫ η

ηin

dτG(τ, η)Πij(k, τ)Wave equation:

〈Πij(k, τ1)Π∗
ij(q, τ2)〉 = δ(k− q)Π(k, τ1, τ2)Anisotropic stress

power spectrum:

Energy momentum tensors:

Gaussianity Power spectra

dΩG

d ln k
=

k3|ḣ|2

Gρc
〈ḣij(k, η)ḣ∗ij(q, η)〉 = δ(k− q)|ḣ|2(k, η)

Πij = P lm
ij Tlm energy squared

TB
ij =

1
8π

∫
d3qBi(|k− q|)Bj(q)

4 point correlation function



intrinsically stochastic approach

provide a model for the bubble velocity power spectrum

peak frequency is higher by a factor 2/v                                

resolution of wave equation, shape of spectrum derived 

extension to deflagration case (velocity shell)

signal from just collisions is typically not observable unless β/H~10

ḧij(k, η) +
2
η
ḣij(k, η) + k2hij(k, η) = 8πGa2(η)Πij(k, η)

anisotropic stress
Source of GW:

transverse traceless 
component of energy-

momentum tensorCaprini-Durrer-Servant astro-ph/0711.2593, PRD:

Peak frequency is associated with the bubble size, i.e.the length scale at which the velocity correlation 
function goes to zero. The same length scale determines the peak in the GW power spectrum  
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Still a bit too premature to apply existing 
formulae for the GW spectrum from phase 
transitons to your favorite particle physics 

model. Wait until

1)  spectrum from MHD turbulence better under control

2) reliable bubble wall velocity calculation available

Conclusion 2


