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Abstract

In this thesis we study geometric transitions on the supergravity level. It is shown that the
duality chain suggested by Vafa has to be modified to include non–Kähler backgrounds in type
IIA. These backgrounds are non–trivially fibered due to their construction from IIB via T–
duality, which mixes metric and Neveu–Schwarz flux. We demonstrate that these non–Kähler
manifolds are not half–flat and show that a symplectic structure exists on them at least locally.

A similar method, employing T– and S–duality, is used to construct new non–Kähler back-
grounds also in type I and heterotic string theory. They can be argued to be related by geometric
transitions as well. A local toy model is provided that fulfills the flux equations of motion in
IIB and the torsional relation in heterotic theory, and that is consistent with the U–duality
relating both theories. For the heterotic theory we also propose a global solution that fulfills
the torsional relation because it is similar to the Maldacena–Nunez background.

Zusammenfassung

Diese Arbeit beschäftigt sich mit geometrischen Übergängen in Stringtheorie in der Approxi-
mation der Supergravitation. Es wird gezeigt, dass die von Vafa vorgeschlagene Dualitätskette
modifiziert werden muss, da man in Typ IIA Mannigfaltigkeiten findet, die nicht Kähler sind.
Die Kähler–Eigenschaft wird aufgrund einer nicht–trivialen Fibrierung gebrochen, welche unter
T–Dualität mit Neveu–Schwarz–Hintergrundfluss entsteht. Es wird erklärt, dass die so konstru-
ierte Mannigfaltigkeit nicht “halb–flach” ist, aber zumindest lokal eine symplektische Struktur
besitzt.

Mit ähnlichen Methoden, unter Ausnutzung von T– und S–Dualität, erzeugen wir auch
Supergravitations–Lösungen für Typ I und heterotische Theorie und führen Argumente an,
die es erlauben, auch in diesen Theorien von geometrischen Übergängen zu sprechen. In der
lokalen Näherung der Metrik wird gezeigt, dass man ein einfaches Beispiel konstruieren kann,
in dem die Hintergrundflüsse die Bewegungsgleichung in Typ IIB und die Torsionsbedingung
in heterotischer Stringtheorie erfüllen und außerdem konsistent mit der U–Dualität zwischen
Typ IIB und der heterotischen Theorie sind. Für den heterotischen Hintergrund können wir
auch eine Lösung mit globaler Metrik angeben, die die Torsionsbedingung erfüllt, da sie mit der
konsistenten Maldacena–Nunez–Lösung verwandt ist.
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Chapter 1

Introduction

String theory is the most promising candidate for a theory of quantum gravity today. There exist
five consistent, tachyon–free superstring theories with a ten dimensional target space [1, 2, 3, 4],
all of which appear to be different limits of one unique theory, called M–theory. To make
contact with our observable four–dimensional world and explain the origin of mass and coupling
parameters in the Standard Model, for example, the six extra dimensions have to be compactified
on such small length scales that they are undetectable in present day experiments. However,
string theory does not provide a principle that would single out one compactification manifold
over another. We are therefore faced with one unique theory but possibly infinitely many string
theory vacua.

On the other hand, string theory has provided many insights that are not directly related
to the quest for the ultimate theory, like gauge/gravity dualities, which can bridge the divide
between Planck scale and low energy physics. They provide a means to construct gauge the-
ories from dual supergravity backgrounds. The first example was provided by the AdS/CFT
correspondence, which relates a string theory on AdS5 × S5 to a superconformal N = 4 field
theory. However, we would like to be able to embed the (Minimally Supersymmetric) Standard
Model (MSSM) of Particle Physics into a four–dimensional, low energy effective description of
string theory, in other words we want to describe realistic gauge theories with running coupling
and less or no supersymmetry. The conformal invariance and some supersymmetry can be bro-
ken in certain models that contain D–branes extended along Minkowski space as well as the
compactified directions.

Since the gauge theories obtained in this way are asymptotically free, they are accessible to
perturbation theory in the high energy regime (UV). The strong coupling regime (IR), on the
other hand, still poses one of the greatest challenges in field theory calculations. Quantum Chro-
modynamics, for example, becomes already strongly coupled at rather high energies, typically
around 1GeV. It is therefore highly desirable to gain a better understanding of non–perturbative
phenomena and to find tools for computing strongly coupled quantities.

This thesis was motivated by the search for dualities between weakly and strongly coupled
gauge theories from a string theory perspective. Suppose a gauge theory that has a good weakly
coupled description in the UV is dual to another, strongly coupled theory. One can then analyze
the strong coupling behavior by considering only the dual, weakly coupled theory. String theory
is able to describe such gauge theory dualities by embedding them in string theory dualities,
which are called “geometric transitions” [5, 6].

The weak–strong duality in geometric transitions is a duality between different string theory
backgrounds, in particular, between different geometries. Whereas the weakly coupled gauge
theory can be described by an open string theory on D–branes, the strongly coupled theory
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8 CHAPTER 1. INTRODUCTION

is described by a closed string theory on a different background geometry. String theory then
provides quantities relevant for the supersymmetric field theories, it can for example compute
superpotentials.

The gauge theory described by [5] and [6] was N = 1 pure Super–Yang–Mills obtained from a
geometric transition on conifold geometries. Conifolds are non–compact Calabi–Yau manifolds.
It has become apparent over recent years that string compactifications (with flux) can lead to
more general (non–Kähler) manifolds. Such “flux compactifications” have some advantages over
Calabi–Yau compactifications. In particular, they can address the moduli fixing problem. It is
therefore the aim of this thesis to suggest new non–Kähler manifolds, that are also connected
by a geometric transition.

One would furthermore like to construct models that can describe more phenomenologically
interesting gauge theories. A first step in this direction is to add matter to the Super–Yang–Mills
theory, which can be achieved with certain additional D–branes. Next steps would include to
replace the non–compact “internal” manifolds with compact ones and to break supersymmetry
completely. However, the latter two topics are not part of this thesis.

This introduction serves the purpose of explaining what geometric transitions are and pro-
viding the tools we will employ to construct these new non–Kähler backgrounds. These tools are
the dualities relating the five superstring theories. To understand their action on the low energy
spectrum of the different string theories, we will first review the massless spectra and D–brane
contents in some detail and then turn toM–theory, T– and S–duality. The reader familiar with
this background material may wish to proceed directly to section 1.2 where geometric transitions
in string theory are explained.

1.1 A Brief String Theory Review

Strings, the one–dimensional objects that replace ordinary point particles, can be open or closed.
When traveling through space–time, their trajectory sweeps out a two–dimensional surface,
called the world sheet Σ. This can be an oriented or unoriented surface in the usual mathematical
sense, giving rise to oriented or unoriented strings. For closed strings Σ does not have boundaries.

There are five different consistent superstring theories in ten dimensions: type IIA and IIB
theory of oriented closed strings, type I theory of unoriented open and closed strings and two
heterotic theories, which contain oriented closed strings [1, 2, 3, 4].

The Five Superstring Theories

Let us start by considering oriented closed superstrings. This theory is quantized by promoting
bosonic and fermionic coordinates to operators, where the fermions can have either periodic
(Ramond (R)) or anti–periodic (Neveu–Schwarz (NS)) boundary conditions. The Fock space of
the theory is then constructed as the tensor product of left and right moving oscillation modes on
the string. It turns out that the bosonic oscillators do not contribute to the massless spectrum.

Depending on the choice of GSO projection in the Ramond–sector, there are two different
theories of closed oriented strings: IIA and IIB. They agree in the NS–NS sector, but the
fermions coming from the massless NS–R and R–NS sector have either the same (IIB) or opposite
spacetime chirality (IIA). The massless R–R sector gives rise to a number of antisymmetric
tensors, the so called RR gauge potentials, see table 1.1. Higher oscillation modes form a tower
of heavy states whose masses are quantized in terms of the string scale.

Taking a closer look at the type II spectrum we see that the low energy limit represents
IIA and IIB supergravity (IIA being the trivial dimensional reduction of 11–dimensional N = 1
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Theory massless bosonic states susy in d=10 gauge group
IIA gµν , φ, Bµν , Aµ, Cµνρ N = 2 U(1)
IIB gµν , φ, Bµν , χ, Cµν , Cµνρσ N = 2 –
Type I gµν , φ, Aµ, Cµν N = 1 SO(32)
Heterotic SO(32) gµν , φ, Aµ, Bµν N = 1 SO(32)
Heterotic E8 × E8 gµν , φ, Aµ, Bµν N = 1 E8 × E8

Table 1.1: The massles spectra of the five superstring theories. Only type I and heterotic contain
non–Abelian gauge bosons.

supergravity). The massless NS–NS spectrum consists of the metric gµν , a scalar φ (the dilaton)
and an antisymmetric tensor Bµν (the B–field). The fermionic sector contains two spin–3/2 and
two spin–1/2 states, the former being termed gravitini, since they are the natural superpartners
of the spin–2 graviton. Type IIA contains the RR p–forms of odd p (a U(1) gauge field Aµ and
a three-form Cµνρ), whereas IIB contains those of even p (a scalar χ, a two–form Cµν and a
four–form with self–dual field strength). We will in the following always use the symbol Cp for
the RR gauge potentials and Fp+1 = dCp for their fieldstrengths.

One can obtain unoriented closed strings by gauging type IIB by the worldsheet parity Ω,
meaning one projects out all states that are odd under orientation reversal of the worldsheet1.
This theory would only contain gµν , φ and the RR 2–form in its spectrum (as well as an even
combination of fermions). Since half of the states are projected out, this unoriented version
of type IIB has only N = 1 supersymmetry. This theory is not consistent by itself, but it
can be combined with another theory: the theory of open unoriented strings (which is also not
consistent by itself). Together they form type I.

The massless spectrum for the open string consists of a vector boson and a spinor known
as gaugino since it is the superpartner of the gauge boson. This open string multiplet also
shows N = 1 supersymmetry. The open string also has to be unoriented if it is supposed to
couple to unoriented closed strings. It turns out (requiring anomaly–freeness of spacetime gauge
and coordinate symmetries) that this theory is only consistent for a gauge group SO(32). In
summary, the type I spectrum of unoriented open and closed strings containsN = 1 supergravity
(the dilaton φ, the graviton gµν and gravitino, and an antisymmetric tensor field Cµν) as well
as N = 1 super–Yang–Mills (a gauge boson in the adjoint of SO(32) and the corresponding
superpartner, a gaugino), see table 1.1.

Let us now turn to the last class of superstring theories: the heterotic string. This theory
contains only oriented closed strings, but it is fundamentally different from type II. Since in
closed strings left and right movers decouple, one can entertain a scenario in which only one
of them (right mover) is supersymmetric whereas the other one (left mover) is described by
bosonic string theory. The latter one requires d=26, the former one d=10, so the left movers
have to be compactified on a 16–dimensional, even and self–dual lattice. There are only two such
lattices, giving rise to a gauge group E8 × E8 or SO(32). The spectrum of the direct product
of non–supersymmetric left movers and supersymmetric right movers contains the graviton gµν ,
an antisymmetric (two–indices) tensor Bµν and the gravitino ψµ, which gives d=10 N = 1
supergravity, as well as the super–Yang–Mills spectrum: a gauge boson Aµ and its gaugino λα.
The gauge group depends precisely on the lattice mentioned above. The spectra are summarized
in table 1.1. For heterotic SO(32) the massless spectrum looks suspiciously close to type I theory.

1The worldsheet parity Ω is a symmetry of Type IIB, since it is non–chiral on the worldsheet.
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And indeed, both theories are connected by S–duality [7] and the heterotic string theory can be
viewed as a soliton of type I [8]. We will have more to say about this duality in section 5.3.

D–Branes

Open strings have one new feature we did not encounter for closed strings: their worldsheets have
boundaries, or in other words, these strings have endpoints, which can fulfill Dirichlet or von–
Neumann boundary conditions. Dirichlet boundary conditions in p spatial directions restrict the
string endpoint to a p–dimensional hyper–surface which has been termed Dp–brane. Dirichlet
boundary conditions were disregarded for a long time, since they do not restrict momentum flow
off the string. It was discovered in [9] that these D–branes are actually dynamical objects, they
can interact with strings and they are also charged under RR gauge potentials. The (p+1)–
dimensional worldvolume Σp+1 of a Dp–brane couples naturally to a RR (p+1)–form∫

Σp+1

Cp+1 , (1.1)

which is called “electric” coupling since it has the same form as a photon coupling to the
worldline of a point particle. Note that the fundamental strings do not carry any RR charge.
They are only charged electrically under BNS2. This implies, that type IIA contains Dp–branes
with p = even and for IIB p = odd, since these theories should in addition to the RR gauge
fields also contain their sources.

Type I contains the RR two–form which couples to a D1–brane. But since it is a theory
of open strings (whose endpoint are free to move through the (9+1)–dimensional target space),
type I also contains space–time filling D9–branes. Note that due to the absence of RR gauge
fields in the heterotic spectrum, there cannot be any D–branes in heterotic string theory. There
are, however, the equivalents for the NS field, so–called NS5–branes.

D–branes can also be viewed as magnetic sources for RR fields. Like the photon fieldstrength
F = dA creates a flux through a two–dimensional (Gaussian) surface, an RR fieldstrength
Fp = dCp−1 creates a flux through a (8-p)–dimensional hypersurface. This implies that a
Dp–brane is an electric source for the same field for whom a D(6-p) brane is the magnetic
source. Type I for example also contains D5–branes in addition to D1–branes. This is simply
an expression of Hodge duality in d=10 for RR fieldstrengths. For example, if the fieldstrength
F7 is the Hodge dual of a 3–form fieldstrength F3 one can write (with Hodge star operator ∗ in
10 dimensions)

F7 = dC6 = ∗F3 = ∗(dC2) , so C6 is dual to C2 . (1.2)

Since D–branes are electrically charged they repel each other. This force is balanced by their
gravitational attraction, so a system of parallel D–branes is stable and preserves the same
supersymmetry as a single D–brane.

The concept of anti–D–branes with opposite charge has also been introduced. These would
attract D–branes and eventually annihilate each other. Such systems break supersymmetry and
are of particular interest for cosmology [10]. On compact manifolds one often seeks a mechanism
to cancel D–brane charges, since there cannot be any net charge in a compact space. Apart from
anti–D–branes one can consider orientifold planes (O–planes), which also carry negative charge
but are non–dynamical objects. They arise in orientifolds, which combine gauging by a spacetime
symmetry (orbifold) with the worldsheet parity Ω, see e.g. [11]. Each fixed “point” of such a

2Considering tadpole amplitudes one can also show that the string is not electrically charged under Cµν , the
RR 2–form, although the dimensions would fit.
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symmetry is actually a hyperplane, this is the orientifold plane3. Orientifold planes have been
used successfully in compactifications with D–branes [12]–[19], but since this thesis deals with
non–compact manifolds, we are not required to introduce a charge–cancellation mechanism.

D–branes interact by exchanging gravitons (closed strings). But a closed string can fuse
with a brane and split into an open string with both endpoints on this brane. This heuristics
argument shows that a closed string theory with branes must also contain open strings. Since
type II theories contain RR p–forms and their sources, D(p-1)–branes, they should also contain
open strings in addition to the closed oriented strings. But we have seen above that open strings
contain only half as much supersymmetry as closed oriented strings. This is explained by the
D–branes themselves being BPS states that preserve half the supersymmetry. In the bulk the
theory is essentially type II whereas on the brane it is (an oriented version of) type I.

D–branes provide the possibility of obtaining interesting gauge theories from type II, because
they have non–Abelian gauge theories on their worldvolume. Depending on whether the strings
ending on the D–branes are oriented or unoriented, they give rise to different gauge groups. In
the simple case of open strings between N parallel D–branes (a so–called stack of D–branes) the
gauge group is either U(N) or SO(N) for oriented or unoriented strings4, respectively. Letting
the D–branes extend along (3+1) Minkowski space results in a gauge theory in our “observable
universe”. One can engineer phenomenologically interesting gauge theories depending on the
internal compactification manifold and the orientation the D–branes take in these extra dimen-
sions. Engineering Standard–Model like gauge groups from intersecting D–brane scenarios has
also been quite successful, see for example [20]–[25].

String Theory Compactifications

So far we have only considered strings in flat 10–dimensional Minkowski space. To make contact
with experimental observations, one needs to explain why the six extra dimensions are not
detected. The usual approach is to assume them to be compactified on such small length scales
that they are not detectable in present day experiments. To preserve 4d Poincaré invariance,
one assumes the 10-dimensional space to be a direct product of (warped) (3+1)–dimensional flat
Minkowski space and a six–dimensional internal manifold, i.e. the metric of the internal space
does not depend on external coordinates.

We are especially interested in the case where these compactifications preserve some super-
symmetry. Let us first discuss the case where all vacuum expectation values of the antisymmetric
NS and RR tensors, these are called “fluxes”, are set to zero. Then the supersymmetry condi-
tion in 4d translates into the existence of a covariantly constant spinor on the internal manifold,
which characterizes a Calabi–Yau manifold. A Calabi–Yau is a complex manifold with SU(3)
holonomy, in other words it is Kähler and Ricci–flat (see e.g. [28, 29] for a review on complex
geometry). In this case the external space is simply given by flat (3+1) Minkowski space. Com-
pactification of type II theories on a six–dimensional Calabi–Yau manifold preserves N = 2 in
4d and N = 1 for type I/heterotic. The corresponding low energy effective actions (for type II)
have been worked out for example in [26, 27].

However, a larger class of compactification manifolds is possible if one allows for vacuum
expectation values of the NS and RR fieldstrengths. This idea was already raised many years
ago [30, 31, 32]. In such “flux compactifications” the ten–dimensional space is a product of

3On the orientifold plane the theory is unoriented and half the states are projected out from an oriented theory.
In this sense, type I can be understood as type IIB with spacetime filling D9–branes (to introduce open strings
whose endpoints can move freely in all directions) and O9–planes (to render them unoriented).

4For unoriented strings a gauge group Sp(N) is also possible [2].
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warped (3+1) Minkowski space and an internal manifold, which is no longer a Calabi–Yau.
In contrast to the Calabi–Yau case, supersymmetry now only requires a no–where vanishing
globally defined spinor, which characterizes a manifold with SU(3) structure, but not SU(3)
holonomy, see chapter 4 for details. These manifolds are in general non–Kähler, but they are
often not even complex. See [33] for a comprehensive review of flux compactifications.

Flux compactifications have another major advantage: They often allow one to fix some
moduli of the theory [13, 19], [34]–[40]. Moduli are scalar fields in the effective field theory that
arise during compactification, they describe for example deformations of the complex structure of
the compactification manifold or result from the Kaluza–Klein reduction of the ten–dimensional
fields. Since their values are generally not fixed, they parameterize a continuous family of vacua.
The space of all possible background values for these fields is called the moduli space. As these
scalars are not observed in four–dimensional physics, they have to become sufficiently massive,
for example by acquiring a vacuum expectation value. Fluxes can generate potentials for some
moduli in the effective theory that fix those expectation values.

Despite those advancements we are still faced with the problem that there might be an
infinite number of vacua that can arise from string theory compactifications. It seems there is a
“landscape” [41] of four–dimensional vacua with a few inhabitable islands. Based on statistical
analyses it has been suggested recently that the chances of finding an MSSM compatible vacuum
might be one in a billion [42].

As geometric transitions provide a duality between a background with D–branes and a
background with only flux, they may also serve as a mechanism to explain the origin of the
fluxes in flux compactifications that do not use D–branes. The appearance of flux can be
naturally understood in the dual theory which contains their sources, the D–branes.

M–Theory, F–Theory and Dualities

The five superstring theories described above are related by a web of dualities. They are therefore
believed to be different limits of one unique theory, M–theory, see e.g. [2, 43, 44, 45] and
references therein. We already noted that they all contain supergravity multiplets in their
massless spectrum and that type IIA contains precisely the N = 2 d=10 supergravity multiplet
that one obtains by trivial dimensional reduction of N = 1 d=11 supergravity. One might
therefore suspect that M–theory, whatever it may be, reduces to N = 1 d=11 supergravity in
its low energy limit. This interpretation ofM–theory as an 11–dimensional theory can be made
more precise by considering the strong coupling regime of type IIA, in which its BPS spectrum
(of D0 branes) looks like a Kaluza–Klein tower. M–theory can therefore also be viewed as the
strong coupling limit of type IIA in which an extra dimension with radius R ∼ gs opens up, gs
being the string coupling in IIA.

Reducing 11–dimensional supergravity on an interval S1/Z2 one can obtain heterotic E8×E8

similarly as a weak coupling limit. At each end of the interval (whose length is proportional to
the string coupling) there are space–time filling 9–planes with gauge group E8 on them. One
brane is usually called the hidden sector, the other one carries our observable world.

This establishes type IIA and heterotic E8 × E8 as limits of the same theory. T–duality
relates both type II and both heterotic theories to each other, and S–duality relates type I to
heterotic SO(32). Roughly speaking, T–duality states5 that a theory compactified on a circle
with radius R is dual to another theory on a circle with radius 1/R. S–duality is a strong–
weak coupling duality that relates one theory at coupling gs to another one at 1/gs. IIB is

5A more thorough discussion of this duality is relegated to appendix B. The reader not familiar with T–duality
is urged to consult this appendix first, as it will be fundamental to the understanding of this thesis.
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actually self–dual under this symmetry (since S–duality is part of the SL(2,Z) symmetry of
IIB), whereas heterotic SO(32) is dual to type I. It might seem peculiar that heterotic and type
I can be dual, since their fundamental objects (open versus closed strings, D1 and D5–branes
versus NS5–branes) are so distinct. But in the strong coupling limit of type I its D1 branes
become light and its fundamental strings become heavy, so that the D1–branes of type I can
actually be interpreted as the fundamental strings of heterotic theory [7]. It is amazing that
this duality can relate an oriented to an unoriented theory.

11d SuGra

M

II A
II B

Type I

Het SO(32)

Het E8 × E8TT

S1 S1/Z2

SΩ

Figure 1.1: The M–theory “mountain” with N = 1 supergravity in the low energy limit. One
finds the ten–dimensional string theories at the base of the mountain connected by a chain of
dualities.

The only missing link in the duality web is then the one between type IIB and type I, but
we established that when discussing the unoriented closed string: we can obtain type I as an
orientifold limit of type IIB. This web of dualities is depicted in figure 1.1. Although we still lack
a precise description ofM–theory, we know that its low energy limit reduces to 11–dimensional
supergravity. By dimensional reduction one finds IIA supergravity and can then follow the chain
of dualities to reach the other four string theories. We will make extensive use of this “duality
chasing” to obtain one supergravity solution from another.

Eleven–dimensional supergravity contains the metric and a three–form gauge potential in
its bosonic spectrum. This implies that the fundamental objects in M–theory are no longer
strings but membranes (by electric–magnetic duality there are also five–dimensional objects,
called M5–branes). One of their directions has to be along the eleventh direction in order for
their dimensional reduction to produce strings. But they can also give rise to D2–branes in IIA.
D4 and NS5–branes can be found from dimensional reduction of M5–branes and D0 and D6–
branes are obtained from purely geometrical backgrounds, gravitational waves or Kaluza–Klein
monopoles (Taub–NUT spaces), respectively, see e.g. [46] for an overview. T–duality produces
all odd dimensional D–branes, because T–duality along a direction parallel to the Dp–brane
turns it into a D(p-1) brane; T–duality along a direction transverse to the Dp–brane turns it
into a D(p+1)–brane.

There is another relation between type IIA and IIB: mirror symmetry [47]–[51]. It states that
compactifying IIA on a manifold X is equivalent to compactifying IIB on the mirror manifold of
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X. Not only does this produce agreement of the low energy effective actions, but both theories
are actually equivalent on the quantum level of the SCFT. The two mirror manifolds are non–
trivially related, their Hodge numbers are interchanged. Since IIA and IIB are already related
by T–duality one might suspect that their could be a relation between T–duality and mirror
symmetry. This turns out to be correct, as shown by Strominger, Yau and Zaslow [52], and we
will return to this important relation in section 2.1.

F–theory is a possible 12–dimensional theory that is related to 10–dimensional type IIB
theory by interpreting the two extra dimensions as a compact torus. The complex structure
parameter τ of the torus is identified with the complex scalar λ = χ+ ie−φ in IIB [53]. Here φ is
the dilaton and χ is the RR zero–form (axion). The F–theory torus can be non–trivially fibered
over the ten–dimensional base giving rise to singularities on the base. We will see in section 3.1
that these singular points are accompanied by orientifold planes and D–branes and determine a
IIB orientifold.

F–theory is rather geometrical in nature and does not play the same role as M–theory,
since type IIB supergravity is not a Kaluza–Klein reduction of 12–dimensional supergravity.
(There is no supergravity theory with 32 supercharges in d=12.) It has been suggested [53] as a
geometrical interpretation of the SL(2,Z) symmetry of type IIB. More details are to be found
in section 3.1 and [11, 53, 54].

After reviewing the dualities that will enables us to “chase” backgrounds that are valid string
theory solutions, we now have to explain what geometric transitions are in the context of string
theory. We will do this on the well understood example of the conifold transition.

1.2 The Conifold Transition

Conifolds are non–compact Calabi–Yau threefolds. Generically, one speaks of a conical singu-
larity if the metric takes (in some local region) the form

ds2 = dr2 + r2 ds2T (1.3)

for some base T . The point r = 0 is then often called the conical point or the tip of the cone.
We are interested in the case where the base T is given by

T = T 1,1 = (SU(2)× SU(2)) /U(1) . (1.4)

As explained in appendix A, this base is topologically equivalent to S2 × S3. There are two
distinct ways to smooth the singularity at r = 0, one can either blow up an S3 or an S2. The
former manifold is then called “deformed conifold”, the latter “resolved conifold” [55]. The
transition from one geometry to the other is called a “conifold transition” and can be pictured
as shrinking the size of the S3 to a point and then blowing up an S2:

S
3

S
2

S
3

S
2

S
3

S
2

Although these manifolds are non–compact and therefore not suited for string theory com-
pactification, they provide a useful mechanism to construct gauge theories6, as has been noted

6To obtain phenomenologically relevant theories one could construct compact manifolds with conical singular-
ities.
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in a series of papers [56, 57, 58]. Placing N parallel D3–branes at the tip of the conifold pro-
duces an SU(N) × SU(N) superconformal gauge theory on the world volume of the D–branes
[56], which extend along external Minkowski space. This conformal invariance can be broken
by “wrapping” branes on cycles in the internal manifold [57]. Consider for example D6–branes
which extend along three internal directions. If these internal directions are compact, one uses
the term “wrapping”. The system preserves supersymmetry when the D6–branes wrap the S3 of
the (deformed) conifold7 or when D5–branes wrap the S2 of the (resolved) conifold. As shown in
[57], the resulting gauge theory exhibits a logarithmically running coupling. Since the Calabi–
Yau breaks 3/4 of the supersymmetry and the D–branes another 1/2, the gauge theory in four
dimensions has N = 1 supersymmetry.

The notion of a geometric transition in string theory was introduced in [5, 6]. The basic
idea is that a gauge theory constructed as in the last paragraph is dual to another theory which
results from a different string theory. Let us illustrate this with the Klebanov–Strassler model
[5]. They constructed a theory that flows in the IR towards a strongly coupled SU(N) Super–
Yang–Mills (SYM) theory by wrapping branes on the singular conifolds (in other words the
D–branes are wrapping a vanishing cycle). It has been known for a long time that SYM confines
and the IR behavior is governed by the Veneziano–Yankielowicz [59] superpotential8

W (S) = N

[
log

S

Λ3
− S

]
, (1.5)

where the chiral superfield S is given by

S = TrWαWα , (1.6)

Wα being the field strength of the vector multiplet, it contains the gaugino λα in its bottom
component. Minimizing the superpotential (1.5) leads to a vacuum expectation value for the
gaugino bilinear in the bottom component of S

〈S〉 = 〈λα λα〉 = Λ3 e2πik/N , k = 1, . . . , N , (1.7)

in other words, the confining theory shows gaugino condensation. Λ is the scale of the gauge
theory. There are N different vacua and the gaugino vacuum expectation value leads to chiral
symmetry breaking. The original SU(N) SYM has a chiral U(1) symmetry, but the vacuum
breaks this to Z2.

This behavior of the gauge theory should somehow be visible in the underlying string theory.
The string background Klebanov and Strassler considered was the singular conifold, which can
be written as an embedding in four dimensional complex space as

4∑
i=1

(zi)2 = 0 , zi ∈ C4 . (1.8)

This background has an obvious U(1) symmetry under zi → eiαzi, for some complex phase α. It
should be this precise U(1) that is broken by gaugino condensation. Therefore, [5] suggested that
the IR limit of this theory should rather be given by a string theory on the deformed conifold

4∑
i=1

(zi)2 = µ2 , µ ∈ R , (1.9)

7Supersymmetry requires such wrapped submanifolds to be special Lagrangian.
8Extensions for this superpotential have been proposed [60, 61, 62], but they shall not concern us here.
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as the residual symmetry here is a Z2 that acts as zi → −zi. The constant µ is called the
deformation parameter and governs the size of the blown up S3.

This is one concrete example of the interplay between gauge theories and geometry. One
should not think of the KS model as a flow from one geometry to the other, but it is rather
a duality between the singular and the deformed background, in the UV the former is the
appropriate description, whereas in the IR the latter one is relevant.

The term “geometric transition” in the string theory context is used for models like that
developed by Vafa [6], who made the statement of the KS model more precise: The theory with
D–branes wrapping a cycle in the resolved conifold is dual to a theory without D–branes but
fluxes on the deformed conifold. The branes disappear in this “transition”, as the cycle they
wrap shrinks to zero size, but the dual cycle is blown up with the corresponding fluxes on it.

For example, in IIA one starts with N D6–branes wrapping the S3 of the deformed geometry,
which creates an SU(N) SYM theory on the leftover (3+1) external dimensions. In the IR this
describes a confined theory, the dual string theory background is the resolved conifold with
blown–up S2 and RR flux (that correspond to the branes before transition) on it. Gopakumar
and Vafa [63] showed that this is more than just a transition on a purely geometric level. They
showed that both theories (before and after transition) actually compute the same topological
string amplitudes, see appendix C.3 for details. In the following we will focus on the target
space perspective of these models.

What we just described has a mirror in IIB. Resolved and deformed conifolds are (approxi-
mately) mirror to each other. Mirror symmetry on Calabi–Yaus exchanges their Hodge numbers
h1,1 and h2,1 that represent the dimension of the cohomology classes H1,1 and H2,1. For a blown
up S2 one finds h1,1 = 1 and h2,1 = 0, whereas the blown up S3 has h1,1 = 0 and h2,1 = 1.
But there is one subtlety [64]: whereas the deformed conifold has only one compact 3–cycle,
the resolved conifold has two compact even cycles, a 2–cycle and a 0–cycle. But in the limit
when the size of the blown up S2 and S3 are small, i.e. we are at the “transition point” from
one geometry to the other the mirror of the resolved conifold becomes effectively the deformed
conifold9 [64]. This means that in IIB the UV picture is given by D5–branes wrapping the S2

of the resolved conifold, the IR picture is given by the deformed conifold with RR flux on the
blown up S3.

For obvious reasons, this duality is called open/closed duality, since after the transition there
are no open strings in the theory anymore. It can also be interpreted as a large N duality (N
is the number of D–branes), see [6, 63] or the discussion in appendix C.3.

There is one last relation between deformed and resolved conifold that we need to exploit.
They can both be obtained via dimensional reduction from a G2–holonomy manifold that is a
cone over S3 × S̃3 [66], where S̃3 indicates a three–sphere that remains finite at the tip of the
cone, the other one has vanishing size. Basically, the deformed conifold, a cone over S2 × S̃3,
can be found by reducing on a U(1) fiber that is part of the vanishing S3. The six–dimensional
manifold then possesses a blown up S̃3. The resolved conifold can also be obtained by a circle
reduction, but this time one reduces along a U(1) fiber belonging to S̃3, so that the geometry
one obtains is a cone over S3 × S̃2, but this time it is the two–sphere that is blown up10. Both
geometries are related by a “flop” in the G2 manifold, which simply exchanges S3 ↔ S̃3, we will

9Strictly speaking the mirror of the resolved conifold has some variables in C∗ = R+ × U(1) instead of C. It
is given by x1 + x2 + x1x2e

−t + 1− uv = 0, where x1,2 ∈ C∗ and u, v ∈ C, t is the Kähler parameter or size of S2

[64, 65].
10Taking fluxes and D–branes into account one actually reduces on twisted fibers and the G2 manifold is a cone

over S3 × eS3/ZN .
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give a more detailed description in section 3.3. All these ingredients can be connected to what
we will call “Vafa’s duality chain” throughout this thesis, see figure 1.2.

IIB D5–branes
on resolved
conifold

IIB fluxes
on deformed
conifold

geometric
transition

6
mirror

IIA D6–branes
on deformed
conifold

6
lift

G2 holonomy
manifold
in M–theory

-flop
G2 holonomy
manifold
in M–theory

?
descent

IIA fluxes
on resolved
conifold

geometric
transition

?
mirror

Figure 1.2: Vafa’s duality chain. By following the arrows through a series of mirror symmetry
and flop transition we can verify the geometric transition as conjectured for IIA and IIB.

1.3 Outline of this Thesis

It is one of the goals of this thesis to verify the duality chain in figure 1.2 for a complete
supergravity background including metric and all fluxes. Although geometric transitions have
been embedded in dual brane solutions [67, 68], an explicit supergravity analysis has not been
performed yet. This can be done by following the arrows in figure 1.2 and requires a series of
T–dualities and a flop.

In chapter 2 we discuss the first step in the duality chain, the mirror symmetry between
resolved and deformed conifold. After that we will follow the whole duality chain in chapter
3 and we will discover non–Kähler backgrounds in type IIA whose torsion classes are analyzed
in chapter 4. We can furthermore use the idea of duality chasing to find new non–Kähler
backgrounds in type I and heterotic that are also connected by a geometric transition. This will
be presented in chapter 5.

Already the first step in this duality chain raises a puzzle: the mirror symmetry between
resolved and deformed conifold. As we will explain in section 2.1, mirror symmetry can be
understood as three successive T–dualities, if the manifold admits a T 3 fibration. This is the
well–known Strominger–Yau–Zaslow (SYZ) conjecture [52]. But as we will see, resolved and
deformed conifold do not have the same number of isometries, it seems therefore contradictory
that they should be mirrors. It is another aim of this thesis to resolve this puzzle and we provide
one possible resolution in chapter 2. This will require some non–trivial manipulations to the
metric of the resolved conifold and we can only recover a semi–flat version of the deformed
conifold. In particular, we have to boost the complex structure of the resolved conifold, which
is in agreement with anticipations from [52], that the large complex structure limit can be used
in the absence of proper isometry directions. The large complex structure limit we impose is in
general a non–trivial action on the resolved conifold, but if we restrict ourselves to a local limit
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of the coordinates, this boost can be interpreted as a coordinate redefinition. In this sense, we
can establish the mirror symmetry between resolved and deformed conifold only in a local limit.

Another question arises immediately when one considers the complete supergravity solution
for D5–branes on the resolved conifold. It has been shown in [58, 57] that these wrapped branes
(also called fractional branes, since they do not only act as D5–branes but also couple to fields
that seem to be created by D3–branes) give rise to NS flux. Therefore, we do not only have
to find the mirror of a resolved conifold, but we have to find its mirror in the presence of NS
flux. As already considered in [6, 69, 70], this leads to non–Kähler manifolds and seems to
indicate that the duality chain 1.2 needs to be modified. We will show in chapter 2 that this is
true and the mirror is actually a “non–Kähler version” of the deformed conifold. It differs from
the deformed conifold in a very precise way, by the same “twisting of fibers” as advocated in
[70], but we do not find half–flat manifolds like in [70]. The non–Kähler manifold we find only
admits a symplectic, but no half–flat structure. This is not in contradiction with the literature,
since the solution from [70] actually also admits a symplectic structure and we will give several
arguments in section 2.4 that favor the symplectic interpretation.

In chapter 3 we will follow all the steps linking the duality chain and we will demonstrate that
it contains two non–Kähler backgrounds in IIA that we will argue also to be geometric transition
duals. Therefore, already the duality chain as originally suggested by Vafa, gives necessarily rise
to non–Kähler backgrounds. We will argue for the consistency of our calculation with the fact
that we recover a Kähler background in IIB at the very end of the duality chain, which looks
locally like a deformed conifold. An analysis of the global properties of these backgrounds will
have to be pursued elsewhere. We will only present a local analysis, since the background we
start with in type IIB is an F–theory orientifold whose global metric is unknown (it will contain
singularities due to D7–branes and O7–planes). One reason we use this setup is that there
is no known supergravity solution for D5–branes on the resolved conifold that would preserve
supersymmetry. But as will become clear from the analysis in chapter 2, if we aim for a IIA
mirror background that is close to the deformed conifold, we are restricted to the local limit
anyway.

The F–theory setup has another advantage apart from providing a supersymmetric solution
for D5–branes on the resolved conifold. It enables us to suggest a generalization of Vafa’s duality
chain that includes additional D–branes which act as a global symmetry in the underlying gauge
theory. In other words, we find a gauge theory with flavors in the fundamental representation
of SU(2)16. The emergence of this additional symmetry is a convenient by–product of the
supersymmetric solution we seek from F–theory. This will be explained in section 3.2. The
influence of these additional branes on the gauge theory superpotential could be determined
once we know a global supergravity solution.

In chapter 4 we demonstrate how the torsion classes of the IIA non–Kähler manifolds can
be determined. The analysis remains somewhat preliminary, since we are restricted to the local
limit, which does not contain any information about global properties of the manifold. But we
can nevertheless show with a quite generic ansatz for the (almost) complex structure that the
local metric admits a symplectic but no half–flat structure.

We can also use the concept of “duality chasing” (meaning to obtain one string solution
from another one by applying a number of T– or S–dualities) to find type I and heterotic string
backgrounds. Starting with a IIB orientifold containing O7–planes we obtain a type I background
with O9–planes after two T–dualities. Another S–duality then takes us to heterotic. We can do
this with a IIB background before and after transition, so we find pairs of backgrounds in type
I and heterotic. As shown in chapter 5, this will also lead to non–Kähler backgrounds because
they are obtained from T–dualities with NS field. Since they are via a long duality chain related
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to an M–theory flop, they can also be called geometric transition duals. We will provide a toy
example in section 5.3 that is consistent with the IIB supergravity equations of motion for RR
and NS flux, their change under T–duality and the torsional relation for heterotic backgrounds.

This implies a duality between heterotic string theory with NS5 branes and another heterotic
theory with only flux. It would be intersting to find out what this means at the topological string
level. Since there are no open heterotic strings, the interpretation as an open/closed duality fails.
In this sense, the interpretation of the geometric transition we propose for heterotic strings is
not as clear as that for type II theories.

Although most analyses in this thesis are confined to the local limit, we will be able to propose
a global solution for the heterotic background after transition by exploiting similarities with the
Maldacena–Nunez [71] background, which is a valid heterotic solution. We will therefore argue
that our solution is the local limit of a quite generic background that matches with MN for a
specific choice of parameters. We will also verify the torsional relation for this background.

Remaining open questions and future directions will be discussed in section 6.2. The nec-
essary background material is provided in a variety of appendices. This thesis is based on
[72, 73, 74], but uses the insights from [74] to repeat the calculations from [72] under new
assumptions. We also provide some new interpretations, especially with regard to the mirror
symmetry between resolved and deformed conifold in the local limit.
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Chapter 2

Mirror Symmetry on Conifolds

We begin this chapter by reviewing mirror symmetry between IIA and IIB compactified on a
pair of mirror Calabi–Yaus. Repeating the arguments from [75] it is demonstrated that RR flux
does not alter the mirror symmetry between the two Calabi–Yaus (if the backreaction of the
fluxes on the geometry is neglected), but NS flux has non–trivial consequences [70]. The mirror
of a Calabi–Yau with NS flux is not a Calabi–Yau anymore. This can be understood using
the Strominger–Yau–Zaslow (SYZ) conjecture which states that mirror symmetry is the same
as three successive T–dualities on a supersymmetric T 3 fiber inside the Calabi–Yau. T–duality
mixes B–field and metric components, so the mirror of a Calabi–Yau with NS flux acquires a
twisting in the T 3 fiber due to the B–field.

After reviewing this background material, we first discuss how resolved and deformed conifold
can be mirror to each other in the sense of SYZ although they do not possess the same number
of isometry directions. We will show that we have to impose some non–trivial boost on the
complex structure of the resolved conifold to find a mirror that resembles the deformed conifold.
Furthermore, as anticipated by SYZ, we can establish the mirror symmetry only for the semi–flat
limit of the metrics. If we furthermore turn on NS flux we find a non–Kähler manifold as the
mirror that, apart from a B–field dependent fibration, still resembles the deformed conifold. We
baptize this manifold the “non–Kähler deformed conifold” and argue that it is not half–flat.

2.1 Mirror Symmetry and Strominger–Yau–Zaslow

Compactification of type II theories on a six–dimensional Calabi–Yau manifold preserves N = 2
in four dimensions and N = 1 for type I/heterotic, see e.g. [1, 3]. The fascinating aspect
of these compactifications is the fact that the resulting four–dimensional theory is determined
by the properties of the internal manifold. Let us consider type II theories compactified on a
Calabi–Yau X that is characterized by its Hodge numbers, which represent the dimensions of
different cohomology classes, hp,q = dimHp,q(X,C). The IIA Kaluza–Klein reduction contains
h1,1 vector multiplets, h1,2 hypermultiplets and one tensor multiplet in the four–dimensional
theory, whereas the type IIB reduction contains h1,2 vector multiplets, h1,1 hypermultiplets and
one tensor multiplet [26, 27]1.

Mirror symmetry is an expression of the fact that the theory obtained from IIA compactified
on a Calabi–Yau 3–foldX is equivalent to IIB compactified on Y , ifX and Y are mirror manifolds

1The reason why Hodge numbers are the relevant quantities in this compactification is the fact that that all
fields are expanded in harmonic forms on X and harmonic p–forms (ωp such that ∆ωp = (d+ ∗d∗)2ωp = 0) are
in one–to–one correspondence with the cohomology group Hp(X), see e.g. [28, 29].

21
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[47]–[51]. This does not only mean that one obtains the same low energy effective action in both
compactified theories, but also agreement on the quantum level of the SCFT. This relates the
mirror manifolds in a non–trivial way, e.g. their Hodge numbers are interchanged

h1,1(X) = h1,2(Y ) , h1,2(X) = h1,1(Y ) . (2.1)

Mirror symmetry holds on the supergravity level when we allow for RR fluxes to be turned
on (but their backreaction is neglected) [75]. In order to preserve four–dimensional Poincaré
invariance, we only allow for vacuum expectation values of RR fields along internal directions,
i.e. on the Calabi–Yau. Recall that IIA allows for even p–form fieldstrengths Fp and IIB for
odd p–form fieldstrengths to be turned on. There is a peculiarity about the cohomologies of
Calabi–Yaus. Recall the Hodge diamond of a Calabi–Yau

1
0 0

0 h1,1 0
1 h1,2 h2,1 1

0 h2,2 0
0 0

1

(2.2)

where, as for all Kähler manifolds of complex dimension dimCX = 3, one finds the identities
h1,1 = h2,2 and h2,1 = h1,2. The dimensions of certain cohomology classes vanish, in particular

dim(H1(X)) = dim(H5(X)) = 0 , (2.3)

this implies that there can be no 1– or 5–form flux turned on, since they would have to be
expanded in a basis of harmonic 1– or 5–forms on X. Therefore, IIB can only have 3–form flux
turned on whereas IIA allows for 0, 2, 4 and 6–form fluxes2. And indeed, counting dimensions
one finds 2(h1,2 + 1) 3–forms for type IIB and 2(h1,1 + 1) even p–forms for IIA. It was shown
explicitely in [75] that the low energy effective actions obtained with these RR fluxes agree.
So, even and odd RR form fluxes can be mapped precisely under mirror symmetry with the
interchange of h1,1(X)↔ h1,2(Y ).

What happens to this analysis if we also allow for NS 3–form flux HNS to be turned on?
If we follow the same reasoning as for RR fluxes (and as advocated in [70]) we encounter the
following puzzle: both IIA and IIB have NS flux, which corresponds to the cohomology class
H3(X) and H3(Y ), respectively. But mirror symmetry maps even to odd cohomology classes
and vice versa. So how can 3–form flux in IIA be mapped to any even form flux in IIB? NS flux
does not get mapped to RR flux, since the RR mapping discussed above is already complete.
The NS sector contains the metric and dilaton besides HNS , but no antisymmetric tensors which
could be interpreted as even degree p–forms. The only explanation seems to be that the metric
and dilaton have to account for the “missing cohomologies”. It was therefore suggested [70],
that mirror symmetry in the presence of NS flux does not lead to another Calabi–Yau manifold,
but a non–Kähler (in fact even non–complex) manifold whose intrinsic torsion provides for the
mirror of NS 3–form flux. Similar observations were made in [6, 69].

The “geometric part” of H2(X,C) in IIA is given by the fundamental two–form J (which
is the Kähler form on a complex manifold if it is closed). This is combined with BNS to form

2Note that for compact internal manifolds these fluxes are quantized, so they are actually governed by the
integral cohomology classes Hp(X,Z). The conifold geometries we consider a not compact, but have some compact
cycles. This will cause the NS flux not to be quantized, but the RR flux still is.
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the complexified Kähler modulus t = J + iBNS . In type IIB the corresponding quantity is the
holomorphic three–form Ω3,0 ∈ H3(Y,C) which is also closed on a Calabi–Yau. But it is also
clear that mirror symmetry must exchange the two. If we now allow for dBNS 6= 0, i.e. the
imaginary part of the complex Kähler modulus to be non–closed, this should translate into the
imaginary part of Ω3,0 = Ω+ + iΩ− being non–closed as well. This led the authors of [70] to
suggest that the correct mirror manifold should be given by a so–called “half–flat” manifold,
which are manifolds with SU(3) structure characterized by3

dΩ− 6= 0 , but dΩ+ = d(J ∧ J) = 0 . (2.4)

It was also demonstrated to hold true in a toroidal compactification. We will return to this issue
in the discussion 2.4 and in chapter 4.

The Strominger–Yau–Zaslow Conjecture

Above discussion focused on topological quantities (cohomology classes) of the compactification
manifolds. Our focus is rather on the target space perspective, i.e. we are interested in the
metric of internal manifolds. Fortunately, the work of Strominger, Yau and Zaslow (SYZ) [52]
provides a way of finding the mirror of a large class of manifolds by simply applying T–duality,
which only requires knowledge of the metric.

The SYZ conjecture states that any Calabi–Yau X that has a mirror possesses a supersym-
metric T 3–fibration (with in general singular fibers) over a base B. The mirror Calabi–Yau Y
is then given as the moduli space of the T 3 fibers and their flat connection. Mirror symmetry is
equivalent to T–duality along these T 3 fibers.

Mirror symmetry can be viewed as a symmetry between BPS states. Consider D0–branes
in type IIA on X and D3–branes in type IIB on a T 3 inside the mirror manifold Y . The
moduli space of the D0–branes is of course all of X, so by mirror symmetry there must be an
object in IIB on Y which also has moduli space X. The D3–brane moduli space is generated
by deformations of the 3–cycle T 3 within Y and the flat U(1) connection4 on it. Both of these
are generated by harmonic 1–forms on the three–cycle and it turns out that their moduli space
(which has to match X) is also a T 3 fibration. One would actually reach the same conclusion
if one would start with a generic supersymmetric three–cycle in Y without assuming from the
beginning that the D3–branes wrap a T 3. With this logic, both X and Y are T 3 fibrations over
the same base B.

This led to the SYZ–conjecture: “Mirror symmetry is three T–dualities”. The simple argu-
ment is that three T–dualities turn D0– into D3–branes and vice versa and that such T–dualities
can be performed on the supersymmetric T 3 fibrations without changing the moduli space. Con-
sider a six–torus as a simple example. This is a trivial T 3 fibration over T 3. T–duality will invert
the size of the T 3 fiber, but the mirror is again a T 3 × T 3. The SYZ argument is non–trivial at
points where the fibers become singular. There are no isometries5 and constructing the moduli
space of D3–branes is complicated by instantons.

3We use a different notation compared to [70], which states that dΩ+ 6= 0, but the assignment of real and
imaginary part is completely arbitrary.

4Supersymmetry requires the three–cycle to be a special Lagrangian submanifold, that means the Kähler form
restricted to this cycle as well as the imaginary part of the holomorphic 3–form vanish, and the U(1) connection
on it to be flat.

5The T–duality action still exists in the case without isometries [76], although we cannot simply apply Buscher’s
rules from appendix B.
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This problem can be avoided in the large complex structure, or semi–flat, limit where one
considers the base B to be large compared to the T 3 fibers. Semi–flat means that the metric
only depends on the base coordinates yi, i.e. away from the singular fibers one can write [52, 70]

ds2 = gij dy
i dyj + hαβ (dxα + ωα(y)) (dxβ + ωβ(y)) (2.5)

where xα parameterize the T 3 fiber and ωα are one–forms on the base that describe the twisting
of the fiber as one moves along the base. In this semi–flat limit xα are still isometry directions,
so we can explicitely perform T–dualities. However, it is expected that the equivalence between
mirror symmetry and T–duality on T 3 holds not only in the semi–flat limit [52].

The influence of NS flux on this picture was discussed in [70]. As already explained on the
ground of cohomology–arguments, the mirror of a Calabi–Yau with NS–flux will no longer be
a Calabi–Yau. The B–field leads to an additional twisting of the T 3–fibers. We will see this
explicitely in section 2.3. Let us first discuss mirror symmetry between resolved and deformed
conifold in the absence of any flux.

2.2 The Mirror of the Resolved Conifold

Recall from section 1.2 (see also appendix A) that the resolved and deformed conifold describe
asymptotically a cone over S2×S3, but the singularity at r = 0 is smoothed out to an S2 or S3,
respectively. The Ricci–flat Kähler metric of the resolved conifold has been derived in [55, 77]

ds2res = γ̃′ dr̃2 +
γ̃′

4
r̃2
(
dψ̃ + cos θ̃1 dφ̃1 + cos θ̃2 dφ̃2

)2
+
γ̃

4
(
dθ̃2

1 + sin2 θ̃1 dφ̃
2
1

)
+
γ̃ + 4a2

4
(
dθ̃2

2 + sin2 θ̃2 dφ̃
2
2

)
, (2.6)

where (φ̃i, θ̃i) are the usual Euler angles on S2, ψ̃ = 0 . . . 4π is a U(1) fiber over these two spheres
and γ̃ is a function of r̃ that goes to zero as r̃ → 0, see (A.16) for its definitions. The constant a
is called resolution parameter, because it produces a finite size prefactor for the (φ̃2, θ̃2)–sphere
at r̃ = 0. This metric has clearly 3 isometries related to shift symmetries in the coordinates
ψ̃, φ̃1 and φ̃2. These are indeed the appropriate Killing directions as the metric was constructed
to be invariant under SU(2)× SU(2)× U(1) [55], see appendix A for a brief review.

The deformed conifold metric on the other hand is given by [78, 79]

ds2def = Γ̂
[

4 dr̃2

r̃2(1− µ4/r̃4)
+
(
dψ̃ + cos θ̃1 dφ̃1 + cos θ̃2 dφ̃2

)2
]

+
γ̂

4

[(
sin θ̃2

1 dφ̃
2
1 + dθ̃2

1

)
+
(
sin θ̃2

2 dφ̃
2
2 + dθ̃2

2

)]
(2.7)

+
γ̂µ2

2 r̃2
[
cos ψ̃

(
dθ̃1 dθ̃2 − sin θ̃1 sin θ̃2 dφ̃1 dφ̃2

)
+sin ψ̃

(
sin θ̃1 dφ̃1 dθ̃2 + sin θ̃2 dφ̃2 dθ̃1

)]
,

with the deformation parameter µ and a similar function6 γ̂(r̃), Γ̂ can be read off from equation
(A.30). This metric exhibits the same structure of a ψ̃–fibration over two spheres, but there
are additional cross–terms in the last line. We see that ψ̃ does not correspond to an isometry
anymore. The U(1) symmetry associated to shifts ψ̃ → ψ̃+k is absent. This is not a peculiarity

6The function γ̂ is related to the Kähler potential F̂ as γ̂ = er2F̂ , and similar for eγ, see (A.16).
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of our coordinate choice but an inherent property of the deformed conifold. As discussed in
section 1.2, the deformed conifold breaks the U(1) symmetry of the singular conifold (which also
the resolved conifold exhibits, compare (A.5) with (A.24))7.

How can both manifolds then be mirror in the sense of SYZ? The answer lies within the
above mentioned semi–flat limit. We can still apply SYZ if the base is large compared to the
T 3 fiber. If we identify (r̃, θ̃1, θ̃2) as the base coordinates and (ψ̃, φ̃1, φ̃2) as the coordinates of
the T 3 fiber in the resolved metric, we can T–dualize along the latter. What we recover can of
course not be the deformed conifold, since it lacks the T 3–fibration, but only a semi–flat limit
that still possesses an isometry along ψ̃. Moreover, as we will show now, simply T–dualizing
along the 3 isometry directions is not enough. We have to impose the condition of a large base
“by hand”.

To simplify our calculation, and with some foresight to following sections, we define local
coordinates. We restrict our analysis to a small neighborhood of (r0, 〈z〉, 〈φ1〉, 〈φ2〉, 〈θ1〉, 〈θ2〉)
by introducing

r̃ = r0 +
r√
γ̃′0
, ψ̃ = 〈z〉+ 2z√

γ̃′0 r0

φ̃1 = 〈φ1〉+
2x√

γ̃0 sin〈θ1〉
, φ̃2 = 〈φ2〉+

2y√
(γ̃0 + 4a2) sin〈θ2〉

θ̃1 = 〈θ1〉+
2θ1√
γ̃0

, θ̃2 = 〈θ2〉+
2θ2√

(γ̃0 + 4a2)
, (2.8)

where γ̃0 is constant, namely γ̃(r̃) evaluated at r̃ = r0. The coordinates (r, z, x, y, θ1, θ2) are
small fluctuations around these expectation values and we will call them “local coordinates”
henceforth. In these local coordinates the metric on the resolved conifold takes a very simple
form (in lowest order in local coordinates)

ds2 = dr2 + (dz +Adx+B dy)2 + (dx2 + dθ2
1) + (dy2 + dθ2

2) , (2.9)

where we have defined the constants

A =

√
γ̃′0
γ̃0

r0 cot〈θ1〉 , B =

√
γ̃′0

(γ̃0 + 4a2)
r0 cot〈θ2〉 . (2.10)

This is easily T–dualized along x, y and z (which correspond to the former isometry directions
ψ̃, φ̃1, φ̃2) with the help of Buscher’s rules from (B.11). In the absence of B–field they read for
T–duality along y

G̃yy =
1
Gyy

, G̃µν = Gµν −
GµyGνy
Gyy

(2.11)

where the tilde indicates the metric after T–duality. Applying these three times one finds the
mirror

ds̃2 = dr2 + α−1 (dz − αAdx− αB dy)2 + dθ2
1 + dθ2

2

+α(1 +B2) dx2 + α(1 +A2) dy2 − 2αAB dxdy , (2.12)

where we have introduced
α = (1 +A2 +B2)−1 . (2.13)

7On the other hand, both singular and deformed conifold are symmetric under the exchange of the two S2:
(φ1, θ1) ↔ (φ2, θ2), a symmetry that is broken in the resolved conifold, since one S2 is blown up.
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The metric (2.12) does not resemble a deformed conifold, as for example the cross–term dθ1 dθ2
is missing. This can be cured by boosting the complex structure of the resolved base. Consider
again (2.9), which can be written as

ds2 = dr2 + (dz +Adx+B dy)2 + |dχ1|2 + |dχ2|2 , (2.14)

with the two tori
dχ1 = dx+ τ1 dθ1 , dχ2 = dy + τ2 dθ2 . (2.15)

In (2.9) the complex structures are simply τ1 = τ2 = i. Note, that these tori are just local
versions of the spheres in (2.6), since locally a sphere resembles a degenerate torus8. The large
complex structure limit is then given by letting

τ1 −→ i− f1 , τ2 −→ i− f2 (2.16)

with real and large f1,2. We define them with some forsight as

fi =
βi√
ε

(2.17)

with finite βi. The only other change to the metric (2.9) that we will make is to shift the
component gzz = 1 → (1 − ε). Then letting ε → 0 in gzz and f1,2 simultaneously will be our
“regularization scheme”. These transformations might seem a little ad hoc, but we will explain
in more detail why we chose this particular boost of the complex structure9.

After three T–dualities along x, y, z and letting ε→ 0 one arrives at the local mirror metric10

ds̃2 = dr2 + α−1 (dz − αAdx− αB dy)2 + α(1 +B2) dx2

+α(1 +A2) dy2 + (1−A2β2
1) dθ2

1 + (1−B2β2
2) dθ2

2

− 2ABβ1β2 dθ1dθ2 − 2αAB dxdy , (2.18)

which we now compare to the deformed conifold metric (2.7). We also have to introduce local
coordinates on the deformed conifold. These coordinates will be similar to (2.8), but the precise
coefficients will differ. We therefore leave some coefficients ai, bi generic. The local deformed
metric reads

ds2def = a0 dr
2 + a1 (dz + b1 dx+ b2 dy)

2 + a2 (dx2 + dθ2
1) + a3 (dy2 + dθ2

2)
+ 2a4 [cos〈z〉 (dθ1 dθ2 − dx dy) + sin〈z〉 (dx dθ2 + dy dθ1)] , (2.19)

Comparing this metric to (2.18) one makes the following observations

• The semi–flat limit of the local deformed metric can be achieved by setting 〈z〉 = 0, then
the isometry along z is restored. In this case the (dx dθ2 + dy dθ1) term does not appear
and both metrics have the same functional dependence.

• The dθ1 dθ2 cross term in (2.18) should have the same prefactor as the dx dy cross term
apart from a minus sign.

8The appearance of tori instead of spheres is also consistent with dual brane pictures constructed in [80, 81].
9See [72] for more attempts to restore the dθ1 dθ2–term that did not work.

10The attentive reader might have noticed that the complex structure boost (2.16) introduces additional cross
terms into the metric. Those will lead to B–field components under T–duality which have been properly taken
into account when calculating the result (2.18). We postpone the discussion of the B–field to the next section.
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• In order for the torus structure to be preserved one would expect dθ2
1 to have the same

coefficient as dx2 (and similarly for dθ2
2 and dy2). This is identical to the statement that

the two S2 in the deformed metric (2.7) are “unsquashed”.

Let us see if all three conditions from the last two bullets can be met simultaneously by fixing
the two constants β1 and β2. First, require

−2ABβ1β2 = 2αAB (2.20)

to match the crossterms in the last line in (2.18). This simply implies that

β1β2 = −α . (2.21)

Requiring dθ2
1 to have the same coefficient as dx2 (and similarly for dθ2

2 and dy2) gives the
following conditions

α(1 +B2) = (1−A2β2
1)

α(1 +A2) = (1−B2β2
2) . (2.22)

Remembering that α = (1 + A2 + B2)−1 gives the surprisingly simple solutions β2
1 = β2

2 = α,
which together with (2.21) has two possible solutions

{
β1 =

√
α, β2 = −

√
α
}

or
{
β1 = −

√
α, β2 =

√
α
}
. (2.23)

In both cases, the mirror metric in type IIA finally reads

ds̃2 = dr2 + α−1 (dz − αAdx− αB dy)2

+α(1 +B2) (dx2 + dθ2
1) + α(1 +A2) (dy2 + dθ2

2) (2.24)
+ 2αAB (dθ1dθ2 − dx dy) ,

which matches indeed the 〈ψ〉 = 0 limit of (2.19) with appropriate identifications of ai and bi.
So we have shown that the mirror of the local resolved metric is the semi–flat limit of a local
deformed conifold, if we impose an additional boost of the complex structure to make the T 3

fiber small compared to the base.
In local coordinates we can restore the dx dθ2 and dy dθ1 cross terms. We can rotate the

(y, θ2) torus (
dy
dθ2

)
−→

(
cos z − sin z
sin z cos z

) (
dy
dθ2

)
. (2.25)

This does not change the term (dy2 + dθ2
2), but the last term in (2.24) changes as

dθ1 dθ2 − dx dy −→ cos z
(
dθ1 dθ2 − dx dy

)
+ sin z

(
dx dθ2 + dy dθ1

)
,

exactly as required for a deformed conifold metric! This implies of course also a change in the
z–fibration (dz − αAdx − αB dy). This change cannot be absorbed by a shift in other coor-
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dinates11 unless we rotate by a constant value 〈z〉 instead of z. Then we can define a new
z–coordinate as z → z−αB(cos〈z〉−1) y+αB sin〈z〉 θ2 which leaves the form of the z–fibration
invariant. This is similar to the approach taken in [82], where the “delocalized limit” of the
deformed metric is given by choosing ψ = 〈z〉 = constant. So we may also adopt the point of
view that the mirror metric we obtained is precisely the delocalized limit of a deformed conifold
with 〈z〉 = 0. We therefore conjecture the local resolved conifold (2.9) to be mirror dual to a
local deformed conifold with metric

ds̃2 = dr2 + α−1 (dz − αAdx− αB dy)2

+α(1 +B2) (dx2 + dθ2
1) + α(1 +A2) (dy2 + dθ2

2) (2.26)
+ 2αAB [cos〈z〉 (dθ1dθ2 − dx dy) + sin〈z〉 (dx dθ2 + dy dθ1)] .

This agrees with the local limit (2.19), but there is one difference: in the Ricci–flat Kähler metric
(2.7) both S2 have the same size. This is not the case in (2.26), since in general 1+A2 6= 1+B2.
This statement is of course not very meaningful in the local limit, since we could absorb these
constants into a rescaling of coordinates, but it should be clear that when A and B are not
merely understood as constants, but as functions of r, θ1, θ2 (recall (2.10) for their definition),
the two spheres will have different size. Actually, both spheres will have the same size if we
choose 〈θ1〉 = 〈θ2〉 and let a → 0, then A = B. This is perfectly consistent with the statement
that the deformed conifold is only the mirror of the resolved conifold in the limit when the
resolution parameter becomes vanishingly small.

However, some deviations from the deformed conifold metric should be expected, since, as
was noted before, resolved and deformed conifold metric are not exactly mirror to each other
[64, 65]. They become mirror when both are close to the “transition point”. However, in this
limit neither the base nor the fiber are large, on the contrary, the blown up S2 or S3 shrink
to zero size. This explains why we are unable to recover the deformed conifold with the SYZ
procedure: SYZ can only work when the base is large and we are away from the singular fiber.
This is opposite to the limit when both manifolds are mirror. We therefore suggest that the
“trick” we performed by boosting the complex structure of the local tori (x, θ1) and (y, θ2) can be
given a more rigorous physical interpretation: our choice of local coordinates can be interpreted
as one way of taking us close to the transition point12, but we also need a large base to be able
to perform the SYZ procedure. Therefore, we have to boost the complex structure “by hand”
as in (2.16). This boost is to be understood as being large only in the local framework, not on
the global manifold. This discussion should also clarify that we cannot leave the local limit by
re–introducing global coordinates on the mirror manifold and then claim that this is the mirror
of the global resolved conifold. The assumption that we work in a small patch on the manifold
entered explicitely into our calculations.

One can, of course, apply three T–dualities to the global resolved metric (2.6), since it exhibits
three isometries. The result has to be another Calabi–Yau that is also a T 3 fibration over some
three–dimensional base, but it will not be the deformed conifold. We will call any metric that
has in the local limit the form (2.26) a “deformed conifold” and specifically indicate when we
mean the Calabi–Yau.

11This is precisely the reason why a coordinate transformation like (2.25) cannot produce an additional isometry
on the global deformed conifold. One might be tempted to use the inverse of this coordinate transformation on
the deformed global metric (2.7) as it would eliminate the cosψ and sinψ terms. But it is not possible to preserve
the dψ–fibration at the same time and one does not recover an additional U(1) symmetry.

12Note how in (2.9) the resolution parameter is not visible anymore. The metric of the singular conifold (A.5)
has the same local limit as the resolved conifold.
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2.3 The Mirror in the Presence of NS–Flux

We would like to confirm Vafa’s duality chain, see figure 1.2, by starting in the bottom left
corner: D5–branes on the resolved conifold in IIB. Three T–dualities will take us to the mirror
in IIA which has now D6–branes on the deformed conifold. This statement is of course to be
understood in the local framework we used in the last section.

However, wrapping D5–branes on the resolved conifold (2.6) is not trivial. First, the back-
reaction of the branes on the metric will create a warp factor and second, such a solution with
fractional branes13 also has to include NS flux [58, 57]. In [77] an attempt was made to find the
supergravity solution describing D5–branes wrapping the (blown up) S2 of the resolved coni-
fold. Although they solved the supergravity equations of motion, it was shown in [83] that their
solution breaks supersymmetry completely (because of non–primitive fluxes). So far, no explicit
supersymmetric solution (including metric, dilaton and all fluxes) for D5–branes on the resolved
conifold exists.

We will circumvent this problem in the next chapter by using an F–theory setup that by
construction delivers a supersymmetric IIB solution. In this section we solely focus on the effect
of NS flux on mirror symmetry.

The standard brane solution describes a warped product of the flat world–volume times the
flat transverse space. Our case is different, since we want to wrap D–branes (that also extend
along Minkowski space) on a compact cycle inside a non–compact Calabi–Yau. However, the
backreaction of branes on this type of non–compact manifolds has been studied, see for example
[57, 79, 84]. One finds again a warped product, where the warp factor is a function of the
non–compact direction r. If the internal manifold is Ricci–flat with metric gmn and coordinates
y one can construct the following 10–dimensional D–brane solution

ds210 = h−1/2(y) ds2R1,3 + h1/2(y) gmn(y) dym dyn . (2.27)

In the case of regular D3–branes along Minkowski space R1,3, h would be a harmonic function on
the internal manifold. For fractional D3–branes h is determined from the trace of the Einstein
equations [5, 58, 77]14, R = −1

2∆h. For us, gmn will be the Ricci–flat Kähler metric of the
resolved conifold (2.6), which is of the form gmn = dr2 + r2 gij dy

i dyj for some 5–dimensional
base gij . For this class of manifolds h is a function of r only [84]. The solution will also include
RR flux (three and five–form fieldstrengths, since fractional D3–branes carry both the charge of
D3–branes and of the D5–branes that they really are) and NS flux. We will neglect the RR flux
for the time being since it does not affect the metric under T–duality.

The supergravity solution for metric and NS flux found in [77] reads

ds2 = h(r̃)−1/2 ds2R1,3 + h(r̃)1/2
[
γ̃′ dr̃2 +

γ̃′

4
r̃2
(
dψ̃ + cos θ̃1 dφ̃1 + cos θ̃2 dφ̃2

)2
+
γ̃

4
(
dθ̃2

1 + sin2 θ̃1 dφ̃
2
1

)
+
γ̃ + 4a2

4
(
dθ̃2

2 + sin2 θ̃2 dφ̃
2
2

)]
(2.28)

BNS = b1(r̃) dθ̃1 ∧ sin θ̃1 dφ̃1 + b2(r̃) dθ̃2 ∧ sin θ̃2 dφ̃2 . (2.29)

Clearly, this solution (or the accompanying RR flux) has to be modified if we want to preserve
supersymmetry. But as we will show in the next chapter, all possible solutions for the metric
of D5–branes on the resolved conifold have the same local limit. We therefore introduce local

13The equivalence of wrapped D5–branes and fractional D3–branes was shown in [57].
14These cases use some symmetry properties of conifolds and should not be generalized to arbitrary gmn.
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coordinates by generalizing (2.8) slightly as to incorporate the warpfactor h(r̃), which will in
the local neighborhood also be interpreted as a constant h0 = h(r0). We define

r̃ = r0 +
r√

γ̃′0
√
h0

, ψ̃ = 〈z〉+ 2z√
γ̃′0
√
h0 r0

φ̃1 = 〈φ1〉+
2x√

γ̃0

√
h0 sin〈θ1〉

, φ̃2 = 〈φ2〉+
2y√

(γ̃0 + 4a2)
√
h0 sin〈θ2〉

θ̃1 = 〈θ1〉+
2θ1√
γ̃0

√
h0

, θ̃2 = 〈θ2〉+
2θ2√

(γ̃0 + 4a2)
√
h0

. (2.30)

This gives the following ansatz for the local metric of D5–branes on the resolved conifold

ds2 = dr2 + (dz +Adx+B dy)2 + (dx2 + dθ2
1) + (dy2 + dθ2

2) , (2.31)

which is precisely the same as (2.9). A and B remain as defined in (2.10).
For the NS flux we make the most generic ansatz possible, with one exception: we only allow

for electric NS–flux (magnetic NS flux leads in general to non–geometrical solutions [85, 86, 87]),
i.e. B–field components that have only one leg along T–duality directions15:

BIIB
NS = bzi dz ∧ dθi + bxj dx ∧ dθj + byk dy ∧ dθk . (2.32)

In general, the coefficients bzi, bxj and byk can depend on all base coordinates (r, θ1, θ2) to
preserve the background’s isometries, although [77] seems to indicate they should be functions
of r only.

This B–field has now non–trivial consequences when we perform T–dualities along x, y and
z. We will not merely find a local version of the deformed conifold, but a manifold with twisted
fibers, that is clearly the local limit of a non–Kähler version of the deformed conifold.

The reason why mirror symmetry with NS field gives rise to a non–Kähler manifold is actually
very easy to illustrate in the SYZ picture. T–duality mixes B–field and metric. In the presence
of NS flux, Buscher’s rules (B.11) read

G̃yy =
1
Gyy

, G̃µy =
Bµy
Gyy

G̃µν = Gµν −
GµyGνy −BµyBνy

Gyy
(2.33)

B̃µν = Bµν −
BµyGνy −GµyBνy

Gyy
, B̃µy =

Gµy
Gyy

,

so cross terms in the metric are traded against the corresponding components in BNS and vice
versa. Therefore, the T 3 fibers acquire a twisting by BNS–dependent one–forms as

dx −→ dx̂ = dx− bxi dθi
dy −→ dŷ = dy − byi dθi (2.34)
dz −→ dẑ = dz − bzi dθi

under T–duality. Apart from this modification, we perform the same steps as in the last section:
15Without loss of generality we do not include components involving dr since components of the 3–form field-

strength like dr ∧ dx ∧ dθi can easily be obtained from ∂rbxi(r) dr ∧ dx ∧ dθi.
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we boost the complex structure as in (2.16) and take the limit ε→ 0. We then fix the constants
βi (their values do not change) and we restore the sin〈z〉 and cos〈z〉 dependence via the rotation
(2.25) or by adapting the point of view that the mirror is in the delocalized limit where 〈z〉 = 0.

Then we find the mirror in IIA to be

ds̃2 = dr2 + α−1 [(dz − bzi dθi)− αA (dx− bxi dθi)− αB (dy − byi dθi)]2

+ α(1 +B2)
[
dθ2

1 + (dx− bxi dθi)2
]

+ α(1 +A2)
[
dθ2

2 + (dy − byi dθi)2
]

+ 2αAB cos〈z〉
[
dθ1dθ2 − (dx− bxi dθi)(dy − byi dθi)

]
(2.35)

+ 2αAB sin〈z〉
[
(dx− bxi dθi) dθ2 + (dy − byi dθi) dθ1

]
,

with α defined in (2.13). We therefore conjecture the local resolved conifold to be mirror dual
to a local “non–Kähler deformed conifold” with twisted fibers that make this metric inherently
non–Kähler.

In the absence of B–field this is clearly a Kähler background, since in this local version all
coefficients in the metric are constants. With B–field dependent fibration the fundamental two–
form will in general not be closed anymore, because it will depend on derivatives of bij . A more
thorough analysis of this geometry will be attempted in chapter 4, but it remains somewhat
incomplete because we lack the knowledge of a global background. Strictly speaking, a metric in
a small patch does not carry any information about the manifold. We can, however, make some
predictions on what we expect for the global solution, since supersymmetry poses restrictions
on allowed non–Kähler manifolds.

As mentioned earlier, cross terms in the metric induce a B–field under T–duality. Due to
the boost of complex structures (2.16) we introduced new cross terms of the form dx dθ1 and
dy dθ2. We do therefore also recover a B–field in the mirror IIA. It has a peculiar scaling16 with
ε, but can nevertheless be determined to√

ε

α
B̃IIA
NS = (dx− bxi dθi) ∧ dθ1 − (dy − byi dθi) ∧ dθ2

−A (dz − bzi dθi) ∧ dθ1 +B (dz − bzi dθi) ∧ dθ2 , (2.36)

where we have without loss of generality assumed that β1 = −β2 =
√
α, otherwise there would

be an overall minus sign. To be consistent with the metric we should also here perform the
rotation (2.25), which changes above result to√

ε

α
B̃IIA
NS = (dx− bxi dθi) ∧ dθ1 − (dy − byi dθi) ∧ dθ2 −A (dz − bzi dθi) ∧ dθ1 (2.37)

+B cos〈z〉 (dz − bzi dθi) ∧ dθ2 +B sin〈z〉 (dz − bzi dθi) ∧ (dy − byi dθi) .

This seems to indicate that we can have a magnetic flux (the dx ∧ dy component in B̃IIA
NS ), but

this term vanishes if we would want to reverse the T–dualities. Because then we would have
to take the semi–flat limit of the IIA background either by choosing 〈z〉 = 0 or by reversing
above rotation. In any case, it shows that mirror symmetry can only be realized in the semi–flat
limit where 〈z〉 = 0. This is of course due to the restrictions of Buscher’s rules, which require
isometry directions. See [76] for discussions on T–duality in the absence of isometries.

16This comes from the introduction of the boost f1,2, in other words without this boost there would be no
B–field in IIA. We will comment on the “physicality” of this flux in the next chapter.
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2.4 Discussion

We would like to compare our result to the half–flat manifolds obtained in [70]. There are some
obvious similarities, like the B–field dependent twist that enters into the T 3 fibers. But there
are also some fundamental differences. Several arguments lead us to believe that the mirror of
the resolved conifold with fluxes is not a half–flat manifold.

• As will be demonstrated in chapter 4, we could not find a half–flat structure for our local
IIA metric, but a symplectic structure does exist (that means the fundamental two–form
is closed, dJ = 0, but the manifold is not complex). We will show in the following that the
half–flat solution from [70] also possesses a symplectic structure and give some arguments
that favor the symplectic interpretation.

• If we would T–dualize the global background, we would have to take a warp factor into
account that depends on an internal coordinate. In the case of [70] one would not find a
half–flat structure either if the warp factor would depend on internal coordinates.

To be able to illustrate these arguments, let us briefly review the discussion from [70]. Start
with an NS5–brane in flat 10–dimensional space, this will be a warped product of the flat
worldvolume of the brane R1,5 and the transverse four dimensional space. The wrap factor V is
a harmonic function on the transverse space R4. This solution can be “smeared” by allowing V
to depend only on certain coordinates of R4. Consider the simple case that V actually depends
only on one coordinate V = V (ξ) and compactify the 10–dimensional solution on a six–torus. In
this way ξ becomes an external coordinate. This leads to a domain–wall solution, since the 5–
branes are wrapped along three internal directions and extend along three space–time directions
R1,2. The solution can be written as

ds2 = ds2R1,2 + V dξ2 +
(
dx2

1 + dx2
2 + dx2

3 + V (dy2
1 + dy2

2 + dy2
3)
)

HNS = ∂ξV dy1 ∧ dy2 ∧ dy3 . (2.38)

The term in parenthesis indicates the compact part in the metric. Note that three of the internal
directions are warped by V , but from the point of view of the internal manifold this is simply a
constant, so the starting manifold X is simply a torus T 6 = T 3 × T 3. The other three internal
coordinates xi are along the brane worldvolume. The four dimensional non–compact (external)
space is now given by ds2R1,2 + V dξ2.

There are several fibers one could identify as the T–duality T 3. Choose it such that HNS is
purely electric. Following [70], but using slightly different notation, we perform T–duality along
x1, x2 and y1. Locally, the B–field can be chosen as B = λ y2 dy3∧dy1. One finds for the mirror
background

ds2 = ds2R1,2 + dξ2 (2.39)
+
(
dx2

1 + dx2
2 + dx2

3 + V −1(dy1 − λy2 dy3)2 + V dy2
2 + V dy2

3

)
.

Clearly, the internal manifold Y is no longer a torus. It has the form T 3 × Q, where Q is a
non–trivial S1–fibration over T 2. Also note, that the B–field is “used up” under T–duality. It
vanishes completely in the metric and since we started with a torus without any cross-terms, no
B–field is generated under T–duality. One can still define an almost complex structure locally,
in terms of three complex vielbeins

e1 = dx1 + i
√
V dy2

e2 = dx2 + i
√
V dy3

e3 =
1√
V

(dy1 − λ y2 dy3) + idx3 , (2.40)
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but this cannot be integrated to a complex structure on the mirror manifold. Define the funda-
mental 2–form as J = i

2δ
ij ei ∧ ēj , then it is obviously not closed, because

dJ =
2λ√
V
dy2 ∧ dy3 ∧ dx3 , (2.41)

but it still satisfies
d(J ∧ J) = 0 . (2.42)

One can also define a holomorphic 3–form Ω = Ω+ + iΩ− = e1 ∧ e2 ∧ e3, which is not closed
either but

dΩ = − λ√
V
dx1 ∧ dx2 ∧ dy2 ∧ dy3 , (2.43)

which means that
dΩ+ 6= 0 , dΩ− = 0 . (2.44)

Equations (2.42) and (2.44) define precisely what is known as a half–flat manifold.
However, the choice of complex structure on a six–dimensional real manifold is not unique.

The metric in real coordinates does not carry any information about the complex structure. For
example, a minor change in (2.40) given by the exchange of the imaginary parts of e2 and e3

e1 = dx1 + i
√
V dy2

e2 = dx2 + idx3

e3 =
1√
V

(dy1 − λ y2 dy3) + i
√
V dy3 , (2.45)

leads to the conclusion Y should be symplectic. One finds J to be completely independ of
the term containing λ y2, therefore dJ = 0, but this is not a Kähler manifold as it cannot be
complex. For the holomorphic 3–form one finds

dΩ = − λ√
V

(dx1 ∧ dx2 ∧ dy2 ∧ dy3 + i dx1 ∧ dx3 ∧ dy2 ∧ dy3) , (2.46)

so neither real nor imaginary part of Ω are closed.
However, the argument of “cohomology counting” presented in section 2.1 strongly suggests

that this manifold should indeed be half–flat. It fulfills the assumption that the non–closed
imaginary part of the complexified Kähler parameter is mapped to a part of Ω being non–
closed. It turned out to be the real part of Ω in this convention, but the assignment of real or
imaginary part is completely arbitrary17.

But there are also more arguments that favor the interpretation as a symplectic manifold.
One of them is given in the context of generalized complex geometry (GCG), as introduced by
Hitchin and Gualtieri [88, 89], see also appendix C.4 for a brief introduction. The structures
they defined interpolate between usual complex and symplectic structures. The question whether
GCG has relevance for string theory has been of great interest recently, see for example [90]–
[97]. In particular, the B–field transform [89] that takes complex or symplectic structures into
generalized complex structures, can be interpreted as T–duality with magnetic NS flux [91]. It
was argued that T–duality with only electric NS flux cannot lead to GCG, it should preserve

17The authors of [70] defined t = BNS + iJ , so that they find indeed a mapping of non–closed real parts of J
and Ω.
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a complex or symplectic structure18. In a different context, it was also shown that IIA vacua
should always be symplectic, whereas IIB vacua should be complex [92]. Mirror symmetry
between complex and symplectic manifolds has been discussed in [99].

These arguments seem to suggest that mirror symmetry with NS flux leads to symplectic
manifolds in IIA and only the special case discussed in [70] allows an additional half–flat struc-
ture. As will be discussed in chapter 4, half–flat manifolds lift to manifolds with G2 holonomy
(which preserve N = 2 supersymmetry in d=4 upon compactification without flux). Super-
symmetry arguments therefore seem to suggest that the symplectic mirror manifold admits a
half–flat structure precisely if there are no additional RR or NS fluxes in IIA (and the dilaton
is constant).

An interesting question in this context would be under what circumstances half–flat manifolds
also admit a symplectic structure (and vice versa). One might also ask if half–flat manifolds can
be interpreted as generalized complex manifolds and if so, of what kind (e.g. B–field transforms of
complex or symplectic structures or something entirely different). Maybe there exists a mapping
between GCG and torsion classes [100], which describe two different approaches of classifying
generalized (or non–Kähler) geometries. One way to achieve that might be the framework of
[93] which maps quantities of GCG (pure spinors) to fundamental two–form and holomorphic
three–form, which are used to determine torsion classes.

Let us now discuss what would happen if we T–dualized the global metric (2.6) instead of its
local limit (2.9). F–theory tells us that flux compactifications in IIB simply lead to an overall
conformal warp factor for the internal space [40]. For IIA we do not have such a reasoning
and the back–reaction of fluxes seems to be more involved, see [33] for an overview on flux
compactifications. Thus, we will start with a space that is a conformal resolved conifold in IIB.
The analysis of [70] took the back–reaction into account, but the warp factor was a function of an
external coordinate (otherwise one could not compactify that direction). Our warp factor h(r)
is not constant on the internal manifold. Repeating the analysis following equation (2.40) with
a warp factor V that depends on internal coordinates, would not produce a half–flat manifold.
This is the second reason why we do not believe our result (2.35) to be half–flat globally.

The influence of a non–trivial warp factor is already interesting for scenarios with only RR
flux. Imagine a generic conformal Calabi–Yau in IIB, let us denote it by h · X, where X is a
T 3 fibration over some base B. Under T–duality, the size of the T 3 fibers will be inverted, but
the base is not changed. If Y was the mirror of X in the absence of fluxes, then h ·X does not
map to a conformal version of Y under three T–dualities, as the T 3 fibers acquire a factor of
h−1, but the base does not. So, the mirror is locally a product (h · B) × (h−1T 3). One could
still write this manifold as h · Ŷ , but Y and Ŷ are not the same manifold as they have different
T 3 fibers. This difference is of course trivial if the warp factor is constant on the fiber, then it
can be absorbed into a coordinate redefinition. This is the case in [70], but not if we leave the
local limit of our calculation.

It would be interesting to study the influence of flux back–reactions onto the result from
[75], which states that if X is mirror to Y, then the two manifold are also mirror with RR fluxes
turned on. Solutions of the type [101] allow for compact internal manifolds with warp factors
that do depend on internal coordinates. Their effect under T–duality should then be non–trivial,
i.e. they cannot be absorbed into a rescaling of coordinates. Then the local form of the mirror
(h ·B)×(h−1T 3) suggests a more complicated backreaction of the fluxes in IIA or a modification
of the mirror symmetry statement of [75].

18However, the work of Kapustin [91] differs from [70] or the analysis presented herein since he considers T–
duality in all directions on an even–dimensional torus. We and [70], on the other hand, are interested in mirror
symmetry or three T–dualities which might lead to different conclusions [98].
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To summarize this chapter: We find a family of non–Kähler manifolds in IIA that includes
one Kähler geometry (for all NS flux switched off), which takes the form of a local deformed
conifold metric. However, it does not agree with the local limit of the Ricci–flat Kähler metric on
the deformed conifold (the two S2 have different size). This was to be expected, since resolved
and deformed conifold are only approximately mirror to each other. When constructing the
mirror metric, we had to make explicit use of the assumption that we work in the local limit to
bring the IIA metric into a form that resembles a local deformed conifold.

We also argued that the IIA non–Kähler backgrounds can be more general than half–flat
globally. Since T–duality preserves supersymmetry, these should be good string theory back-
grounds (although we can only give their metric in the local limit), provided we start with a
string theory solution in IIB. As already mentioned, the solution for wrapped D5–branes on
the resolved conifold from [77] breaks all supersymmetries, so we need a new idea. We will
suggest a background that is obtained from an F–theory construction and therefore inherently
supersymmetric in the next chapter.
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Chapter 3

Geometric Transitions in Type II

In this chapter we will use what we have learned about mirror symmetry between resolved and
deformed conifold to verify “Vafa’s duality chain”, see figure 1.2, with a concrete string theory
background. We find such a background by considering an F–theory solution that is elliptically
fibered over the resolved conifold. This background has the same local metric we discussed in
chapter 2. Taking a generic ansatz for NS and RR fluxes we follow the duality chain from IIB
to IIA, lift the resulting non–Kähler background to M–theory, perform a flop, reduce again to
IIA and perform a last mirror to end in IIB again. We will show that the duality chain has to
be modified to include non–Kähler backgrounds in IIA.

The flop we perform in theM–theory lift implies that the two non–Kähler backgrounds we
propose in IIA are connected via a geometric transition. We will give several arguments for the
consistency of this transition, in particular the “closure” of the duality chain as we finally end
in IIB with a Kähler background. We will show that the fluxes do not change (much) under
geometric transition, but the geometry does. This is in agreement with the interpretation that
the cycles, on which we wrapped D–branes, shrink and a new geometry that contains only flux
emerges after geometric transition.

To fix notation and remind the reader of the connection between F–theory and type IIB
orientifolds we start with a short review, see also [11] for a more detailed review article. Our
particular F–theory setup will be constructed in section 3.2, the reader familiar with the concepts
may want to skip ahead.

3.1 Orientifolds and F–Theory

We begin this section by reviewing some symmetries of type IIB superstrings we will need to
make the connection between 12–dimensional F–theory and 10–dimensional IIB on an orientifold.
Orientifolds are nothing but orbifold (manifolds gauged by a symmetry group G) that include the
orientation reversal of the string worldsheet. We will denote the symmetry group by {G1, G2},
where G1 is a pure orbifold action and only G2 contains the worldsheet parity Ω.

There are two perturbative Z2 symmetries of IIB superstrings which will be of particular
interest to us. They are perturbative in the sense that they are evident at the perturbative level
but believed to hold non–perturbatively, whereas non–perturbative symmetries are not apparent
at the perturbative level.

• Worldsheet parity Ω. Type IIB is invariant under orientation reversal of the worldsheet
(σ → 2π−σ) since it is non–chiral on the worldsheet. Ω takes left movers to right movers,
therefore NS–NS tensor states are even under Ω if they are symmetric (odd if they are

37
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antisymmetric). From the R–R sector the tensor C2 is even (because of Fermi statistics).
One combination of the fermions is even, the other is odd. To summarize,

gµν , φ, C2 even under Ω
χ, BNS , C4 odd under Ω .

(3.1)

• Spacetime fermion number (−1)FL . This symmetry is only obvious in Green–Schwarz (GS)
formalism, because there are no space–time fermions in R–NS formalism. In GS formalism,
the IIB superstring action reads [1] (with worldsheet coordinates σ and τ and light–cone
coordinates ∂± = 1/2(∂τ ± ∂σ), the Regge slope is as usual denoted by α′ and is related
to the string tension)

S =
−1

4πα′

∫
dσ dτ (∂+X

µ∂−X
µ − iSαL∂−SαL − iSαR∂+S

α
R) (3.2)

where SαL, S
α
R are actually spacetime spinors, both transforming as 8s of Spin(8)1. The

type IIA action looks similar, but with Sα̇R transforming as a conjugate spinor 8c. This
action is, amongst others, invariant under SL → −SL, an operation which is written as
(−1)FL . FL is the spacetime fermion number coming from left movers. Only left moving
fermions are odd under this symmetry, so R–NS and R–R states are odd, whereas NS–R
and NS–NS states are even. To summarize,

gµν , φ, BNS even under (−1)FL

χ, C2, C4 odd under (−1)FL .
(3.3)

We will be particularly interested in T–duality on orientifolds, so let us see what happens
to the perturbative symmetry Ω under T–duality. As explained in appendix B, T–duality has a
rather non–trivial action on the worldsheet. It acts as a one–sided parity transformation sending
Xi
R → −Xi

R, but leaving Xi
L invariant (i indicates the T–duality direction). A T–duality along

the 9th direction yields

Ω in type IIB T9−→ I9 Ω in type IIA (3.4)

where I9 symbolizes space–time parity, i.e. inversion of the 9th coordinate I9 : (X9
L, X

9
R) →

(−X9
L,−X9

R). In other words,
T9 ΩT−1

9 = I9 Ω (3.5)

as can be seen from

(X9
L, X

9
R)

T−1
9−−→ (X9

L,−X9
R) Ω−→ (−X9

R, X
9
L) T9−→ (−X9

R,−X9
L) . (3.6)

Acting on fermions, the parity I9 flips the chirality of both left and right moving fermions. Note
that Ω by itself is not a symmetry of type IIA, because starting with a left moving spinor 8s

and a right moving conjugate spinor 8c, one obtains a left moving conjugate spinor 8c and a
right moving spinor 8s. To flip the chirality the operation has to be accompanied by a parity
transformation to obtain a genuine symmetry

(8s,8c)
Ω−→ (8c,8s)

I9−→ (8s,8c) . (3.7)
1Spin(8) is the covering group of SO(8), which is the transverse rotation group if we use light cone gauge on

the 10d target space. Relevant to us are the eight–dimensional representations 8v (vector), 8s (spinor) and 8c

(conjugate spinor).
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Thus we see that worldsheet parity is a symmetry of IIB, but IIA is only symmetric under a
combination of worldsheet and spacetime parity.

Type IIB superstring theory has a non–perturbative SL(2,Z) symmetry, which is given by
the group represented by integer 2× 2 matrices with determinant one:

Λ =
(
a b
c d

)
with a, b, c, d ∈ R and ad− bc = 1 . (3.8)

Define a complex scalar field λ = χ + ie−φ, where χ is the axion (the RR scalar) and φ the
dilaton. The expectation value of the dilaton actually fixes the string coupling, gs = e〈φ〉. One
also introduces the Einstein metric Gµν = e−φ/2gµν (with string frame metric gµν) because it is
invariant under SL(2,Z). Recall also the other fields in the type IIB spectrum: BNS and the
RR fields C2, C4. The action of SL(2,Z) on the bosonic fields is given by

λ → aλ+ b

cλ+ d
,

(
BNS
C2

)
→
(
d −c
−b a

)(
BNS
C2

)
, C4 → C4 , G → G . (3.9)

This action is generated by the elements:

T : λ→ λ+ 1 , Λ =
(

1 1
0 1

)

S : λ→ −1/λ , Λ =
(

0 1
−1 0

)
(3.10)

R : λ→ λ , Λ =
(
−1 0
0 −1

)
.

This symmetry has far–reaching consequences for the moduli space of type IIB. It states that
every λ is non–perturbatively equivalent to any other λ that can be reached by an SL(2,Z)
transformation This reduces the moduli space from the whole upper half plane to a much smaller
subset [3] known as the fundamental domain.

The symbol S for one of the generators is not chosen by accident, it generates precisely what
is known as S–duality. This becomes obvious if one considers the case where χ = 0 and λ is
essentially given by the string coupling. The action of S then relates a theory at strong coupling
(λ = i/gs) to a theory at weak coupling (−1/λ = igs). Apparently, type IIB is self–dual under
this symmetry, but it also connects type I and heterotic SO(32), a fact we will use in section
5.3. Note also that S (−1)FL S−1 = Ω, because S basically exchanges BNS and C2 (recall (3.1)
and (3.3)). Another important relation for the discussion of F–theory will be

R = Ω(−1)FL , (3.11)

which can be easily seen from their action on the massless spectrum. BNS and C2 are odd,
whereas all other fields are even under R, which is the same as the combined action Ω(−1)FL ,
see (3.1) and (3.3).

This SL(2,Z) symmetry has been proposed [53] to have a geometrical interpretation as two
extra toroidal dimensions. This means there is some 12–dimensional theory, which has been
termed F–theory, that gives rise to 10–dimensional IIB. The complex structure of the F–theory
two–torus is hereby identified with the IIB scalar λ. We will now briefly review how this leads
to orientifolds in IIB [54], see e.g. [11] for a detailed review.

Consider an elliptically fibered Calabi–Yau fourfold K which is a toroidal fiber bundle over
a base B. Even though K is a smooth manifold, there will be points in the base where the
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fiber becomes singular and its complex structure parameter τ can have non–trivial monodromy2

around these points. An F–theory compactification on K refers to a compactification of type
IIB on B, where the IIB scalar λ = χ+ ie−φ is identified with the geometrical parameter τ [53].
In general, τ varies over the base resulting in a non–constant field λ.

However, there are possible scenarios that allow for a constant solution of λ [54, 102]. These
solutions are characterized by 24 singularities in the function describing the elliptic fibration.
In the special case where these singularities appear at four different locations in a multiplicity
of six, λ is constant. The singularities are interpreted as 24 seven–branes in F–theory, because
there is a non–trivial monodromy3 as we go around the singular point, which is precisely the
one generated by R in (3.10): Moving around one singular point, the coordinate of the fiber is
twisted by R, i.e. it is inverted, but its modular parameter τ remains unchanged.

The base is actually an orbifold generated by the parity transformation I2 that inverts both
coordinates of the toroidal fiber. If we go once around the singular point the theory comes back
to itself modulo the SL(2,Z) element R. We therefore have an orbifold of the base by I2 · R,
which turns into an orientifold, because R is related to the worldsheet parity Ω of IIB. So, this
F–theory setup gives rise to IIB on

B

{1, R I2}
=

B

{1,Ω(−1)FLI2}
(3.12)

if one recalls the identity R = Ω(−1)FL from (3.11). Such an identification of F–theory with
an orientifold is very useful and we will make extensive use of it in this thesis. Choosing the
12–dimensional manifold as a direct product4 of flat Minkowski space and a Calabi–Yau fourfold
with elliptic fibration preserves N = 2 supersymmetry for the resulting IIB theory (away from
the fixed points of the orientifold action) [103].

This orientifold has 4 orientifold 7–planes and 16 D7–branes that cancel their charges. This
can be seen by noting that under T–duality along the i and j directions: Ω(−1)FLIij = T−1

ij ΩTij ,
therefore this orientifold is T–dual to type IIB on B/{1,Ω}, which has 32 D9–branes and a
spacetime filling orientifold 9–plane. Under T–duality these become D7–branes and since they
move in pairs (due to Iij), there are effectively only 16 of them. The orientifold action ΩIij has
four fixed points and the transverse space is 7–dimensional, so there are four O7–planes. This
establishes the correspondence of an F–theory 7–brane with one O7–plane and four D7–branes
in IIB.

Also note that under T–duality, recall (3.4),

IIB on
B

{1,Ω(−1)FLIij}
Tk−→ IIA on

{
B′/{1,Ω(−1)FLIijk} if k 6= i, j

B′/{1,Ω(−1)FLIi} if k = j
, (3.13)

which means there will be orientifold 6–planes or 8–planes in IIA. The dimension of the orientifold
planes behaves under T–duality like that of D–branes: depending on whether T–duality is
transverse or orthogonal to the plane its dimension is increased or decreased, respectively.

2Monodromy on a fibration is similar to the concept of holonomy on a manifold. Instead of a parallel transport
along a closed loop one considers the lift of a loop at x that lies in a connected space X. The lift of x into a fiber
over X is given by c, and going once around the loop in X one finds an image c′ in the fiber, where in general
c 6= c′. The monodromy is given by the right action of the fundamental group π1(X,x) as a permutation on the
set of all c.

3This monodromy indicates a magnetic source which has to be a seven–brane because seven–branes couple
magnetically to scalars.

4The inclusion of fluxes leads to warp factors [101, 103].
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3.2 The F–Theory Setup and Orientifolds in IIA and IIB

We now want to construct a global IIB setup that is supersymmetric, contains D5–branes
wrapped on the S2 of the resolved conifold and allows us to add additional D–branes for global
symmetries. Both adventures can be most conveniently undertaken at the same time within
F–theory.

Consider F–theory on an elliptically fibered Calabi–Yau fourfoldX → B such that the base B
is the resolved conifold5. Suppose B contains a smooth S2 and that there is a conifold transition
from B to B′ obtained by contracting the S2 to a conical singularity and then smoothing to a
deformed geometry. This gives another elliptically fibered Calabi–Yau fourfold X ′ → B′ over a
deformed base. We can introduce similar notation for the case when the cycle is contracted to
a conical singularity, such that X0 → B0 describes a fibration over the singular conifold.

The Euler characteristic of X can be computed from its topology. It was shown in [74] that
it does not change under geometric transition, i.e. χ(X ′) = χ(X0) = χ(X). For the compact
example in [74] it was computed explicitely with the Maple routine schubert [104], obtaining
χ(X) = χ(X ′) = 19728. This agrees with the result presented in [68] where the F–theory
description for a fourfold after geometric transition was derived. Since we focus on local metrics
only, our analysis does not distinguish whether the manifold is compact or not. But since we will
not introduce any charge cancellation mechanisms for the wrapped D5–branes, let us assume a
non–compact manifold henceforth.

As explained in section 3.1, this setup provides us with an orientifold in type IIB with D7–
branes and O7–planes. When we wrap D5–branes on the S2 of the resolved geometry, we obtain
an intersecting D5/D7–brane scenario on an orientifold IIB, which preserves supersymmetry
[73]. The metric of the base B has to resemble the resolved conifold locally, but globally it
will also contain singularities that correspond to the 7–branes. Adding D5–branes creates warp
factors. To incorporate these effects we make the following generic ansatz for the base

ds2 = h0(r̃) dr̃2 + h1(r̃)
(
dψ̃ + cos θ̃1 dφ̃1 + cos θ̃2 dφ̃2

)2
+
(
h2(r̃) dθ̃2

1 + h3(r̃) sin2 θ̃1 dφ̃
2
1

)
+
(
h4(r̃) dθ̃2

2 + h5(r̃) sin2 θ̃2 dφ̃
2
2

)
, (3.14)

which allows in particular for the two spheres to be asymmetric and squashed. This ansatz
is motivated by the idea that in the absence of D–branes and fluxes we should recover the
Kähler metric. Also, for r̃ → ∞ the warp factors should approach 1, so we will suppress any
θ1,2–dependence in the functions hi although it would not influence the following local analysis.

Let us compare this to the local metric in IIB (2.9) we T–dualized in the last chapter. We
define again local coordinates

r̃ = r0 +
r√
h0(r0)

, ψ̃ = 〈z〉+ z√
h1(r0)

φ̃1 = 〈φ1〉+
x√

h3(r0) sin〈θ1〉
, φ̃2 = 〈φ2〉+

y√
h5(r0) sin〈θ2〉

θ̃1 = 〈θ1〉+
θ1√
h2(r0)

, θ̃2 = 〈θ2〉+
θ2√
h4(r0)

, (3.15)

which gives the same simple form of the local metric

ds2 = dr2 + (dz +Adx+B dy)2 + (dx2 + dθ2
1) + (dy2 + dθ2

2) , (3.16)

5B will not be a Calabi–Yau threefold anymore, since X is a Calabi–Yau, but it is still Kähler [74].
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where we have with a slight abuse of notation kept the name A and B for the constants, but
they are now more generically given by

A =

√
h1(r0)
h3(r0)

cot〈θ1〉 , B =

√
h1(r0)
h5(r0)

cot〈θ2〉 . (3.17)

Apart from this redefinition of A and B, the mirror symmetry analysis will be completely
unchanged from chapter 2. The mirror is then given by (2.35), which is the local limit of D6–
branes on the deformed metric. We will show shortly the consistency of this construction with
an orientifold in IIA. It would, of course, be interesting to find a Ricci–flat Kähler metric on
this Calabi–Yau fourfold and the global supersymmetric type IIB solution with it, but this is
beyond the scope of this thesis. We will therefore restrict ourselves to the local limit henceforth.

We do, however, need some global information, in particular the orientation of the D7 and
D5–branes on the base B. The choice is up to us. We have to specify over which directions the
F–theory fibration degenerates, that determines the position of the orientifold planes and the
D7–branes with them. We will consider the version discussed in 3.1, where the fiber degenerates
over a two–dimensional subspace6, giving rise to four fixed points with one orientifold plane each
and there are four D7–branes on top of each O7–plane. This translates into a constant complex
structure τ on the fiber which also implies a constant dilaton φB in type IIB.

We need our IIB background to be invariant under this orientifold action, which is given by
Ω (−1)FL Iij . Since the IIB background is invariant under Ω (−1)FL , we require the metric to
be invariant under space–time parity Iij of the two coordinates xi and xj over which the fiber
degenerates. There are many choices for xi and xj , but recall from (3.13) that under T–duality
this orientifold becomes

IIB on
B

{1,Ω(−1)FLIij}
Txyz−−−→ IIA on

B′

{1,Ω(−1)FLIij · Ixyz}
. (3.18)

We want the final metric in IIA after 3 T–dualities to resemble some version of a deformed
conifold, so the parity operator in IIA is also severely restricted. In other words, we need to
choose xi and xj such that Iij is a symmetry of the resolved conifold and Iij · Ixyz (which one
finds after three T–dualities along x, y and z) is a symmetry of the deformed metric. Of course,
the reasoning in IIA is different as Ω(−1)FL is not a symmetry of IIA, but we have to make sure
that that under Iij · Ixyz no components inherent to the deformed conifold metric are projected
out. This will become clearer when we discuss our example.

The choice we adapt is that the F–theory torus is fibered non–trivially over the two–torus
(x, θ1). This is actually the only choice that preserves all the symmetries we require [74]. The
D5–branes are wrapped on the two–torus (or sphere) given by (y, θ2) (recall from (2.6) that this
is the sphere that remains finite as r̃ → 0). This means that under three T–dualities

IIB on
B

{1,Ω(−1)FLIxθ1}
Txyz−−−→ IIA on

B′

{1,Ω(−1)FLIyzθ1}
. (3.19)

In IIB the D5–branes extend along Minkowski space and (y, θ2), whereas the D7/O7–system
extends along Minkowski space and (r, y, z, θ2). After three T–dualities the D7/O7 system has
turned into D6/O6 which extend along Minkowski space and (r, x, θ2), whereas the original
D5–branes become D6–branes on the three-cycle (x, z, θ2).

6See [74] for explanations why a degeneration over 0, 4 and 6–cycles actually does not work.
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Or schematically, in type IIB

D5 : 0 1 2 3 − − − − y θ2
D7/O7 : 0 1 2 3 r z − − y θ2 ,

which turns after three T–dualities along x, y and z into IIA with

D6 : 0 1 2 3 − z x − − θ2
D6/O6 : 0 1 2 3 r − x − − θ2 .

It is easy to see that the metric (3.16) is indeed invariant under Ixθ1 (remember that A contains
cot〈θ1〉, so it is odd under this parity7) and the mirror (2.35) will be symmetric under Iyzθ1 after
we impose some restrictions on the B–field components (more in the next section).

Note that the D7–branes extend along the non–compact direction r. A similar brane config-
uration on the resolved conifold has been considered by [105], but it was not constructed from
F–theory. It was shown there how strings stretching between D7 and D5–branes (or D6 and D6)
give rise to a global symmetry. It is not a gauge symmetry because of the large volume factor
associated with the D7–branes extending along the non–compact direction r. We will call these
D7 or D6 that originate from F–theory “flavor branes” to distinguish them from the D5 or D6
that carry the gauge theory.

Before moving on with our duality chain let us comment on the gauge theory that results
from this brane setup. As demonstrated in [6], the gauge theory on the D5 or D6 branes gives rise
to N = 1 SYM in d=4. In IIB there are additionally 4× 4 D7–branes at four fixed points. Each
stack of four D7–branes gives rise to an SO(8) symmetry (not SO(4) because the D7–branes
also have a “mirror image” on the “other side” of the orientifold plane, so there are effectively 8
branes between which the strings can stretch). So the global symmetry in this setup is SO(8)4

which can be broken by Wilson lines to (SO(4) × SO(4))4 ' SU(2)16. In IIA there are now
eight fixed points of the orientifold action Ω (−1)FL Iyzθ1 . Therefore, there are eight O6–planes,
each accompanied by two D6–branes for charge cancellation. The symmetry group generated
by eight stacks of D6 is therefore SO(4)8 ' SU(2)16. So in both IIA and IIB we consider a
generalization of pure N = 1 SYM to a symmetry with flavors in the fundamental representation
of SU(2)16. If we are far away from the flavor branes (far away from the orientifold points),
those flavors will be heavy and integrated out, so that in the low energy limit the effective field
theory reduces to that discussed by [6]. See [74, 105] for more details.

3.3 Non–Kähler Transitions in IIA

Let us now turn to the “duality chain”. We will show that there are two non–Kähler backgrounds
in IIA that resemble deformed and resolved conifold apart from B–field dependent fibrations and
are related by a flop inM–theory. In this way they are geometric transition duals, because one
could start with the deformed geometry, shrink a three–cycle and blow up a two–cycle in the
resolved version of our non–Kähler conifold. The only difference is, that our two– and three–cycle
contain non–trivial B–field fibrations.

From the F–theory setup in the last section we know that every metric for D5–branes on the
resolved conifold takes the local form (3.16):

ds2 = dr2 + (dz +Adx+B dy)2 + (dx2 + dθ2
1) + (dy2 + dθ2

2) .
7The parity operation acts on the global manifold, so it does not merely send θ1 → −θ1, but acts on the global

coordinate eθ1. Comparison to (3.15) shows that this also implies 〈θ1〉 → −〈θ1〉.
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We also have to re–evaluate the assumptions about NS and RR flux. We cannot use the solution
from [77] because it breaks supersymmetry and our background contains additional D7–branes
on an orientifold.

We keep the assumption that there is only electric NS flux. Recall that BNS is odd under
the combined symmetry Ω(−1)FL , see (3.1) and (3.3), so it also has to be odd under parity Ixθ1
to be invariant under the orientifold action Ω(−1)FLIxθ1 . This means that only flux components
with precisely one leg along the directions of the degenerating fiber (x, θ1) survive. This restricts
our ansatz (2.32) to8

BIIB
NS = bxθ2 dx ∧ dθ2 + byθ1 dy ∧ dθ1 + bzθ1 dz ∧ dθ1 . (3.20)

The same symmetry arguments apply to RR fields, we therefore make a generic choice for the
RR two–form gauge potential

C2 = c1 dx ∧ dz + c2 dx ∧ dy + c3 dx ∧ dθ2
+c4 dy ∧ dθ1 + c5 dz ∧ dθ1 + c6 dθ1 ∧ dθ2 , (3.21)

where the components ci as well as bij are in general allowed to depend on (r, θ1, θ2) (to preserve
the isometries of the background). The orientifold action also restricts them to be even under
θ1 → −θ1. Note that c2 and c6 did not appear in the solution of [77], but they are allowed in
our orientifold setup. Since wrapped D5–branes act as fractional branes, there will also be an
RR four–form potential. C4 is even under Ω(−1)FL , so we only allow for components that are
even under parity as well

C4 = c7 dx ∧ dy ∧ dz ∧ dθ1 + c8 dx ∧ dy ∧ dθ1 ∧ dθ2 + c9 dx ∧ dz ∧ dθ1 ∧ dθ2 . (3.22)

The self duality of its fieldstrength is realized by taking F5 = (1 + ∗10) dC4.
This is of course a specific toy example. One could furthermore restrict C2 to be along the

space transverse to the D5–brane only, i.e. along (x, z, θ1) or allow for components containing
dr (the r–dependence of the RR fieldstrengths is taken care of by the r–dependence of the
coefficients ci). We should also note that away from the orientifold point more types of fluxes
are allowed. However, as long as we do not know the full supergravity background we can very
well demonstrate our calculation with this toy model.

The IIA non–Kähler background before transition

The three T–dualities are performed as in the last chapter and the result is a special version of
(2.35), which becomes under the specific choice of B–field we made

ds̃2 = dr2 + α−1 [(dz − bzθ1 dθ1)− αA (dx− bxθ2 dθ2)− αB (dy − byθ1 dθ1)]
2

+ α(1 +B2)
[
dθ2

1 + (dx− bxθ2 dθ2)2
]

+ α(1 +A2)
[
dθ2

2 + (dy − byθ1 dθ1)2
]

+ 2αAB cos〈z〉 [dθ1dθ2 − (dx− bxθ2 dθ2)(dy − byθ1 dθ1)] (3.23)
+ 2αAB sin〈z〉 [(dx− bxθ2 dθ2) dθ2 + (dy − byθ1 dθ1) dθ1] .

Note that this is indeed precisely the correct choice of B–field components that makes (3.23)
symmetric under Iyzθ1 (with A and sin〈z〉 odd, B and cos〈z〉 even9 under the parity Iyzθ1).

8This is not the most generic ansatz, since we did not include brx, brθ1 or any magnetic flux that might still be
invariant under the orientifold action. We still trust our ansatz to be generic enough for our purposes. It would
be useful to find a supergravity solution that confirms that.

9As explained in footnote 7 of section 3.2, this is to be understood as a parity of the global background.
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To simplify notation in the following analysis, let us define coordinates (or rather one–forms)
that include the B–field dependent fibration

dx̂ = dx− bxθ2 dθ2
dŷ = dy − byθ1 dθ1 (3.24)
dẑ = dz − bzθ1 dθ1 .

The RR fields in the mirror IIA are also found by applying Buscher’s rules (B.12). The
resulting RR one–form which corresponds to the intersecting D6–branes is

CIIA1 = c1 dŷ − c2 dẑ + c7 dθ1 . (3.25)

The RR three–form field is found to be

CIIA3 = Cxy1 dx̂ ∧ dŷ ∧ dθ1 + Cxz1 dx̂ ∧ dẑ ∧ dθ1 + Cyz1 dŷ ∧ dẑ ∧ dθ1
+ Cyz2 dŷ ∧ dẑ ∧ dθ2 + Cy12 dŷ ∧ dθ1 ∧ dθ2 + Cz12 dẑ ∧ dθ1 ∧ dθ2 (3.26)

with components defined as

Cxy1 = −c5 + f1c1 , Cxz1 = c4 − f1c2

Cyz1 = Af1c1 Cyz2 = −c3 + f2(Bc1 − c2) (3.27)
Cy12 = c9 + f2c7 , Cz12 = c8 +Bf2c7 .

The appearance of f1,2 needs some explanation. Recall that these constants were fixed by the
metric to ±

√
α/ε. The question is if these fields are unphysical because they become infinitely

large in the limit ε → 0. The approach taken in [72] was to rescale the metric by a conformal
factor

√
ε, such that the B–field (which has an overall factor of 1/

√
ε ) becomes finite. This

would on the other hand imply that all components in the RR–fields not containing f1,2 scale
with some positive power of ε and vanish in the ε→ 0 limit. This is particularly unphysical for
the 1–form (3.25), since its absence would indicate the absence of D6–branes.

Another approach taken in [72, 74] is to make explicit use of the local limit, where f1,2 are
constant. Note that f1 appears in terms with dθ1 and f2 in terms with dθ2. If we define new
coordinates

dθ̂i = d(fi θi) (3.28)

then all terms containing fi can be absorbed into these new coordinates. This interpretation is
completely consistent if α is treated as a constant. If we wanted to leave local coordinates, we
would have to define dθ̂i = d(Fi θi) with ∂θi

Fi = fi and restrict fi = fi(θi).
Let it suffice to say that the problem of the unphysicality of some background fields can be

cured in the local limit. We will henceforth keep these terms and ask the reader to keep in mind
that their divergence for ε→ 0 is not severe. In the end of this chapter we will argue that these
terms might actually be “large complex structure artefacts” that should vanish when we want
to leave the large complex structure limit.

Finally, let us note that there is also a 5–form field

CIIA5 =
[
c6 + c3 f1 − (c4 −Bc5) f2 + (c2 −Bc1) f1f2

]
dx̂ ∧ dŷ ∧ dẑ ∧ dθ1 ∧ dθ2 (3.29)

and furthermore the dilaton φA, which gives rise to a string coupling gA

eφA = gA =
gB√
1− ε

α

ε→0−−→ gB = eφB . (3.30)
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Apparently, the dilaton remains constant under T–duality if we take the limit that ε → 0, so
φA = φB = φ. For completeness, let us also quote the B–field, which was already evaluated in
(2.37). It now has a slightly different fibration structure in the coordinates, but remains as√

ε

α
BIIA
NS = dx̂ ∧ dθ1 − dŷ ∧ dθ2 −Adẑ ∧ dθ1

+B cos〈z〉 dẑ ∧ dθ2 +B sin〈z〉 dŷ ∧ dẑ . (3.31)

We have already commented on the properties of this non–Kähler manifold in the last chap-
ter. Let us now focus on finding the background it is dual to. Both geometries should be
related by a flop transition in M–theory just as in the Calabi–Yau case discussed in [66]. Let
us therefore discuss how this background lifts to M–theory.

The M–theory Flop

In order to not overload this section with details, let us make a simple choice for the background
fields in (3.20) and (3.21). Let us assume

bzθ1 = 0 ci = 0 except c1 = c1(r, θ1, θ2) . (3.32)

This simplifies the RR one–form in the mirror IIA. It will become useful to write (3.25) under
this assumption as

C1 = ∆1 dx̂−∆2 dŷ , (3.33)

where ∆1 and ∆2 are not necessarily given by zero and −c1, respectively, if we allow for an extra
gauge degree of freedom in the one–form potentials. As usual in the presence of a gauge field
C1 and dilaton φ, type IIA on a manifold X is lifted toM–theory on a twisted circle via

ds2M = e−2φ/3 ds2X + e4φ/3 (dx11 + C1)2 (3.34)

with x11 parameterizing the extra dimension with radius R, x11 = 0 . . . 2πR. In the limit R→ 0
we recover 10–dimensional IIA theory. The gauge fields in our case enter into the metric so that
it becomes

ds2M = e−2φ/3 dr2 + e−2φ/3 α−1
(
dz − αAdx̂− αB dŷ

)2 + e4φ/3
(
dx11 + ∆1 dx̂−∆2 dŷ

)2
+e−2φ/3

[
α(1 +B2) (dθ2

1 + dx̂2) + α(1 +A2) (dθ2
2 + dŷ2)

]
+e−2φ/3 2αAB [cos〈z〉 (dθ1 dθ2 − dx̂ dŷ) + sin〈z〉 (dx̂ dθ2 + dŷ dθ1)] . (3.35)

The two fibration terms in the first line are of special interest. They are very similar in structure,
even more so if one introduces new coordinates ψ1 and ψ2 via

dz = dψ1 − dψ2 and dx11 = dψ1 + dψ2. (3.36)

This happens, of course, with some forsight. To explain why this choice is particular convenient
to perform the flop, we need to discuss similarities and differences compared to [66], which
discussed the flop of Vafa’s scenario.

It was argued in [66] that deformed and resolved conifold both lift to a G2–holonomy manifold
with symmetry group SU(2) × SU(2) × U(1). Moreover, it was shown in [106], that there is a
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whole family of G2–holonomy metrics (that includes the lift of resolved and deformed conifold)
of the form10

ds2 = dr2 + a2
[
(Σ1 + ξσ1)2 + (Σ2 + ξσ2)2

]
+ b2(σ2

1 + σ2
2)

+c2(Σ3 − σ3) + f2(Σ3 + g3 σ3)2 (3.37)

where σi and Σi are two sets of SU(2) left–invariant one–forms, because all these G2–holonomy
metrics have S3 × S3 principal orbits, i.e. SU(2)× SU(2) symmetry. This is of course inspired
by the usual notation for conifold geometries, see appendix A. In terms of Euler angles on the
two S3 these left–invariant one–forms are given as11

σ1 = cosψ1 dθ1 + sinψ1 sin θ1 dφ1 Σ1 = cosψ2 dθ2 − sinψ2 sin θ2 dφ2

σ2 = − sinψ1 dθ1 + cosψ1 sin θ1 dφ1 Σ2 = − sinψ2 dθ2 − cosψ2 sin θ2 dφ2

σ3 = dψ1 + cos θ1 dφ1 Σ3 = dψ2 − cos θ2 dφ2

(3.38)

and satisfy dσi = −1/2 εijk σj ∧σk and dΣi = −1/2 εijk Σj ∧Σk. The metric in these vielbeins is
obviously invariant under a left acting SU(2)× SU(2) and there is a U(1) symmetry generated
by the shift symmetries ψ1 → ψ1 + k and ψ2 → ψ2 + k, which is why ψ1 − ψ2 was identified as
the 11th direction in [106].

The general setup (3.37) that we adopted from [106] has less symmetry than the metric in
[66] for which the flop was discussed. In particular, it allows for a solution that looks like the lift
of a deformed conifold, but with two S2 of different size (so it includes not only the Calabi–Yau
deformed conifold). This becomes obvious if the Calabi–Yau metrics for resolved and deformed
conifold are written in vielbeins (3.38) as

ds2def = A2
2∑
i=1

(σi − Σi)2 +B2
2∑
i=1

(σi + Σi)2 + C2 (σ3 − Σ3)2 +D2 dr2 (3.39)

ds2res = Ã2
2∑
i=1

(σi)2 + B̃2
2∑
i=1

(Σi)2 + C̃2 (σ3 − Σ3)2 + D̃2 dr2 (3.40)

with the coefficients A,B etc. determined by Kähler and Ricci flatness condition, see (A.24)
and (A.30). This clearly shows that the deformed conifold is completely symmetric under Z2 :
σi ↔ Σi, whereas the resolved conifold does not have this symmetry, due to Ã 6= B̃. This is
precisely the statement that the two S2 do not have the same size in the resolved geometry, but
they do in the deformed. To see this consider

σ2
1 + σ2

2 = dθ2
1 + sin2 θ1 dφ

2
1 , Σ2

1 + Σ2
2 = dθ2

2 + sin2 θ2 dφ
2
2 ,

which implies for the metric describing the two S2

ds2def = (A2 +B2)[sin2 θ1 dφ
2
1 + dθ2

1 + sin2 θ2 dφ
2
2 + dθ2

2] + . . .

ds2res = Ã2 (sin2 θ1 dφ
2
1 + dθ2

1) + B̃2 (sin2 θ2 dφ
2
2 + dθ2

2) + . . .

for deformed and resolved conifold, respectively. Note that the parameter ξ in (3.37) controls
the asymmetry between the two S2. On the other hand, the deformed metric has cross–terms

10A similar ansatz was discussed in [107], which corresponds to g3 = 1 and a2(1 − ξ2) = b2, so there are only
four free parameters instead of six. Of course, the requirement of G2 holonomy restricts these parameters, only
one of the six is actually free, so that the solutions from [106] correspond to a one–parameter family of G2 metrics.

11We use slightly different notation than [106], in particular we use −φ2 instead of φ2.
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σiΣi that the resolved conifold does not exhibit. This is the reason why the resolved metric has
a U(1) that the deformed does not have.

If deformed and resolved conifold have such different symmetry properties, how can they be
reductions of the same M–theory manifold?

The answer to this question as given by [66] is that a G2–holonomy metric with symmetry
SU(2) × SU(2) × U(1) can be reduced to six dimensions in two different ways. Topologically,
the manifold in question is equivalent to a cone over S3 × S̃3 that has a U(1) fiber on which
one can reduce to d=6. One can either reduce on a fiber that belongs to an S3 of vanishing size
(this yields a six–dimensional manifold with blown–up S̃3, the deformed conifold) or on a fiber
that belongs to an S̃3 of finite size (this gives a finite size S̃2 in six dimensions, the resolved
geometry)12. In other words, both scenarios are related by an exchange of the finite size S̃3 with
the vanishing S3 which is called a “flop transition”.

A cone over S3 × S̃3 is given by R+ × S3 × S̃3 which is equivalent to R4 × S̃3. The topology
of this manifold can be viewed as [66]

(u2
1 + u2

2 + u2
3 + u2

4)− (v2
1 + v2

2 + v2
3 + v2

4) = V , with ui, vi ∈ R . (3.41)

For V > 0 the blown up S̃3 is described by ui and vi correspond to R4. For V < 0 their roles
are exchanged. The flop transition can then be viewed as a sign flip in V or as an exchange of
the two S3. Since each S3 is described by a set of SU(2) left invariant one–forms, this amounts
to an exchange σi ↔ Σi. But note that this also implies that the U(1) fiber along which one
reduces to d=6 is contained either in σ3 or Σ3, i.e. it is given either by ψ1 or ψ2, but not by
x11 = ψ1 + ψ2 as we would like to define it.

This discussion was for the Calabi–Yau metrics. The “non–Kähler deformed conifold” we
found in chapter 2 does not have two S2 of same size. We therefore need to use the more general
ansatz (3.37) from [106] and adopt a flop different from the one suggested for the Calabi–Yaus
in [66].

It was established in [106] that the limit c = 0 of the G2 metric (3.37) contains resolved
and deformed conifold in different regions of the parameter space13. They chose x11 = ψ1 − ψ2,
which is close to what we attempt to do. But it becomes obvious from the crossterms

σ1Σ1 + σ2Σ2 = cos(ψ1 − ψ2) [dθ1 dθ2 − sin θ1 sin θ2 dφ1 dφ2]
+ sin(ψ1 − ψ2) [sin θ1 dφ1 dθ2 + sin θ2 dφ2 dθ1] (3.42)

that ψ1 − ψ2 has to be identified with ψ (or z in local coordinates) to produce the typical cosψ
and sinψ terms for a deformed conifold, recall for example (2.7). We therefore choose z = ψ1−ψ2

and x11 = ψ1 + ψ2 in (3.36).
After this excursion into the literature, let us now discuss our IIA background. Our metric

(3.35) does of course not describe S3 × S3 principal orbits. Recall that our coordinates x, y, z
are non–trivially fibered due to the B–field components which entered into the metric. We can
nevertheless adopt the ansatz (3.37) with a different definition of vielbeins

σ1 = cosψ1 dθ1 + sinψ1 dx̂ Σ1 = cosψ2 dθ2 − sinψ2 dŷ
σ2 = − sinψ1 dθ1 + cosψ1 dx̂ Σ2 = − sinψ2 dθ2 − cosψ2 dŷ
σ3 = dψ1 − αAdx̂ Σ3 = dψ2 + αB dŷ .

(3.43)

12Furthermore modding out by a ZN in both cases gives a singularity corresponding to N D6–branes or a
non–singular solution with N units of flux, respectively [66].

13In particular, [106] solved the differential equations for the r–dependent coefficients a, b, c, f, g3 and ξ and
showed that the resulting Kähler form looks like that for the resolved conifold. It was not considered how a flop
between resolved and deformed conifold can be performed.
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Then we can write (3.35) in terms of these vielbeins as in (3.37). But our metric does not have
G2 holonomy. It only possesses a G2 structure, as will be discussed in chapter 4.

Let us make one last simplifying assumption. Consider the term (Σ3 +g3 σ3), which becomes
in our vielbeins

(Σ3 + g3 σ3) = (dψ1 + g3 dψ2 − αAdx̂+ g3 αBdŷ) . (3.44)

We would like to match this with the twisted M–theory circle (dx11 + C1). Since we want to
identify ψ1 + ψ2 with x11, we also have to identify the terms in the fibration with the one–form
gauge field (3.33). Assume we can use a gauge choice for C1 such that ∆1 = −αA, then we can
use the freedom in g3 to bring also the other term in the required form g3αB = −∆2. Let us
therefore assume right from the start that we can set g3 = 1 and choose the one–form to be

C1 = −αAdx̂+ αB dŷ . (3.45)

Then we can bring our metric (3.35) into the form (3.37) using the one–forms (3.43). After a
little rearrangement, this takes the form14:

ds2 = e−2φ/3 dr2 + e−2φ/3 α(1 +A2) (Σ2
1 + Σ2

2) + e−2φ/3 α(1 +B2) (σ2
1 + σ2

2) (3.46)
+ 2e−2φ/3 αAB (σ1Σ1 + σ2Σ2) + e−2φ/3 α−1 (σ3 − Σ3)2 + e4φ/3 (σ3 + Σ3)2 .

The identification of parameters with (3.37) is as follows:

a2 = e−2φ/3 α(1 +A2) , c2 = e−2φ/3 α−1

b2 = e−2φ/3 (1 +A2)−1 , f2 = e4φ/3

ξ = AB (1 +A2)−1 , g3 = 1 ,
(3.47)

the only difference being that we consider the limit f = 0 as the reduction to ten dimensions
instead of c = 0 as in [106], i.e. we reduce along x11 = ψ1 + ψ2.

The flop has to be different from the case considered in [66], since we do not want to exchange
the role of ψ1 and ψ2, but we want to exchange x11 and z as these are the naturally fibered
coordinates in (3.35). Furthermore, we have the asymmetry factor ξ, so that our metric does
not exhibit the Z2 symmetry σi ↔ Σi as the lift of the Calabi–Yau deformed conifold does. We
define our flop transition by the assumption that after flop a reduction along x11 should produce
a resolved geometry. This means in particular that the cross terms σ1Σ1 and σ2Σ2 in (3.37)
have to vanish. This, together with x11 ↔ z, can be achieved by

σ3 − Σ3 ↔ σ3 + Σ3

σi → Σi (3.48)
Σi → ξ (σi − Σi) with i = 1, 2 .

This results in the following metric after flop

ds2 = e−2φ/3 dr2 + e−2φ/3 αA
2B2

1 +A2

(
dθ2

1 + dx̂2
)

+ e−2φ/3 1
1 +A2

(
dθ2

2 + dŷ2
)

+e−2φ/3 α−1
(
dx11 − αAdx̂+ αB dŷ

)2 + e4φ/3
(
dz − αAdx̂− αB dŷ

)2
, (3.49)

which can now be reduced along the same x11 to the IIA background after transition.
14Here we have ignored that our metric does not contain cos z and sin z, but only their expectation values. This

can be taken into account by defining ψ1−ψ2 = 〈z〉+z and keeping only the lowest order in this local coordinate,
but it does not influence the following statements.
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The IIA non–Kähler background after transition

Dimensional reduction on the same x11 does clearly not give the same metric as before flop.
Instead, we find

ds2 = dr2 + αA2B2(1 +A2)−1
(
dθ2

1 + dx̂2
)

+ (1 +A2)−1
(
dθ2

2 + dŷ2
)

+e2φ
(
dz − αAdx̂− αB dŷ

)2
. (3.50)

with one–form gauge field
C̃1 =

√
α
(
−Adx̂+B dŷ

)
(3.51)

where we rescaled x11 with 1/
√
α. Recall that the coordinates dx̂, dŷ describe B–field dependent

circle fibrations over x, y, so this manifold is non–Kähler in precisely the same spirit as the
“non–Kähler deformed conifold” before flop (3.23). Comparing it to (3.16) shows that it also
possesses the characteristic metric of a resolved conifold (locally). Note that the dilaton is the
same as before flop, φA = φB = φ = const.

To summarize: we claim the metric (3.50), which we call “non–Kähler resolved conifold” to
be transition dual to the metric (3.23), the “non–Kähler deformed conifold”. The latter one
was a manifold with D6–branes wrapping a 3–cycle, whereas the former describes a blown–up
2–cycle with fluxes on it. We have not considered all the fluxes yet.

In particular, BIIA
NS from (3.31) lifts to M–theory as a 3–form field C = BIIA

NS ∧ dx11. Since
we reduce along the same 11th coordinate after flop, this field is reproduced exactly as before
and remains a passive spectator. The RR three–form fields from (3.26) lift directly to three–
form flux inM–theory, so it remains unchanged under flop as well. The components (3.27) are
simplified by our ansatz (3.32), they now amount to

Cxy1 = f1c1 , Cyz1 = Af1c1 , Cyz2 = Bf2c1 , (3.52)

all others vanish. The five–form does not change either15, it is still given by (3.29) but it is
simplified by the ansatz (3.32) to

CIIA5 = −Bc1 f1f2 dx̂ ∧ dŷ ∧ dẑ ∧ dθ1 ∧ dθ2 . (3.53)

So, in conclusion, all fields except the RR one–form remain unchanged under flop transition.
This should of course be expected, since the effect of a geometric transition is to remove the
D–branes, but not the fluxes. In fact, one would expect all fluxes to remain unchanged under
this transition. The changed one–form is only due to the gauge choice we employed in (3.45).
This choice was by no means necessary to perform the flop, but tremendously convenient.

There is another consistency check for our background that involves a relation between NS
and RR three–form fieldstrength. The fluxes have to satisfy a linearized supergravity equation
of motion [5, 68]

F3 = ∗6HNS , (3.54)

where F3 = dC2 is the RR fieldstrength, HNS = dBNS is the NS fieldstrength. We started with
an ansatz for the B–field BIIB

NS = bxθ2 dx ∧ dθ2 + byθ1 dy ∧ dθ1 which is allowed under orientifold
action. A particular simple choice would be to allow the coefficients to depend only on r, as in
[77]. The corresponding field strength would then be

HIIB
NS = ∂rbxθ2 dr ∧ dx ∧ dθ2 + ∂rbyθ1 dr ∧ dy ∧ dθ1. (3.55)

15There is no five form in M–theory, but the IIA five form is dual to a three form that can be lifted to 11d.
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This would be consistent with the following RR fieldstrength

F IIB3 = Fxz2 dx ∧ dz ∧ dθ2 + Fyz1 dy ∧ dz ∧ dθ1
= ∗6(Hry1 dr ∧ dy ∧ dθ1) + ∗6(Hrx2 dr ∧ dx ∧ dθ2) , (3.56)

where Hijk indicates the corresponding component of HIIB
NS . (The precise relation between Fxz2

and Hry1 involves a numerical factor from the Hodge operator on this curved manifold.) Can
this be realized with the simple ansatz (3.32)? The answer is yes, if we consider

CIIB2 = c1(θ2) dx ∧ dz . (3.57)

This will have a fieldstrength F IIB3 = ∂θ2c1(θ2) dx ∧ dz ∧ dθ2, but no dy ∧ dz ∧ dθ1 component.
This means that for the equation of motion (3.54) to be satisfied we also need the dr ∧ dx∧ dθ2
component of HIIB

NS to vanish, so that

F IIB3 = ∂θ2c1(θ2) dx ∧ dz ∧ dθ2 = ∗6HIIB
NS = ∗6 (∂rbyθ1 dr ∧ dy ∧ dθ1) . (3.58)

This can be achieved by letting bxθ2 = constant. Allowing for more RR components than only
c1 to be switched on will also allow for more generic B–field components.

One can actually show that the most generic ansatz16 for IIB 2–form fluxes, that are allowed
under orientifold action, will always yield bxθ2 = constant and c3 = c4 = c5 = c6 = constant.
Otherwise we cannot fulfill the equation of motion if all background fields only depend on r, θ1, θ2
and we do not allow for magnetic NS flux. One also finds c1 = c1(r, θ2) and c2 = c2(r, θ2), only
bzθ1 and byθ1 can depend on all base coordinates.

One comment is in order: in the discussion above we have always restricted the fluxes to be
symmetric under orientifold operation. If we want to consider the full IIB theory with unbroken
N = 2 supersymmetry, we actually have to move away from the orientifold planes, i.e. we
restrict our local coordinates to a patch that does not contain any orientifold point. In that case
we do not have to follow the restrictions imposed on the fluxes under orientifold symmetry, but
the equation of motion (3.54) still restricts the RR fluxes in terms of NS fluxes. This will allow
for much more generic fluxes.

One particularly interesting example would be to introduce a IIB RR two–form component

CIIB2 = c10 dy ∧ dθ2 (3.59)

which is allowed away from the orientifold point. We still require c10 to be independent of x, y, z
to preserve the isometries of the background. Under three T–dualities this creates a new term
in the IIA three–form

CIIA3 = c10 dx̂ ∧ dẑ ∧ dθ2 . (3.60)

This term is interesting, because it describes flux along the three-cycle on which the branes
are wrapped. Its existence implies that we can define a complexified volume of the blown up
three–cycle before flop inM–theory as

V =
√
detG+ i |c10| , (3.61)

as anticipated in [66] (G being the metric on the three–cycle). This helps us to avoid the
singularity in the flop transition, because even when the three–cycle shrinks to zero, there is
still a finite imaginary part in V . This means one can smoothly transform from the deformed

16This includes dr ∧ dx or dr ∧ dθ1 components for BNS and C2.
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to the resolved geometry in theM–theory lift. This imaginary part was interpreted as a gauge
theory θ–angle in [66]. That means, it would have to be closed (recall that the θ–angle in
supersymmetric field theories is constant). To answer the question if this is possible in our setup
we can again consider the IIB equations of motion.

The fieldstrength of this new term would be

F IIB3 = ∂rc10(r, θ1, θ2) dr ∧ dy ∧ dθ2 − ∂θ1c10(r, θ1, θ2) dy ∧ dθ1 ∧ dθ2 . (3.62)

The problem with this term is that the linearized equation of motion (3.54) would imply a
dx ∧ dz ∧ dθ1 or dr ∧ dx ∧ dz term for HNS . But this is magnetic flux which we do not allow
for. So, the only solution is that the RR three–form fieldstrength in IIB has to vanish as well
which can be achieved by setting c10 to a constant, this implies dCIIB2 = 0. In the mirror IIA
this implies indeed that dCIIA3 = 0, which justifies its interpretation as a gauge theory θ–angle.

In conclusion, we have shown that we can construct a new pair of string theory backgrounds
that are non–Kähler and deviate from deformed and resolved conifold in a very precise manner:
the T 3 fibers are twisted by the B–field. They are related by a geometric transition, because their
respective lifts toM–theory are related by a flop. We will comment on possible implications for
gauge theories in section 6.2.

This concludes our discussion of the geometric transition in IIA (an analysis of the SU(3)
structure is relegated to chapter 4). We can now “close the duality chain” by performing
another mirror which takes us back to IIB. We should recover a Kähler background similar to
the Klebanov–Strassler model [5], since we started with a Kähler manifold in IIB.

3.4 Kähler Transitions in IIB

In principle the analysis follows the same steps as laid out when T–dualizing the resolved conifold
from IIB to IIA with NS and RR flux in section 3.3. Only now, our starting background is the
non–Kähler version of the resolved conifold in IIA, the complete background is described in the
end of the last section. Again, we can only recover a local (semi–flat) version of the deformed
conifold, this time in IIB. We will make the fascinating observation that the same mechanism
that converted B–field into metric cross terms and vice versa will now serve to restore bxθ2 and
byθ1 as B–field and the metric will be completely free of any B–field dependent fibration. The IIA
B–field will of course enter into the metric again, but looking at (3.31) and taking the semi–flat
limit 〈z〉 = 0 we find√

ε

α
BIIA
NS = dx̂ ∧ dθ1 − dŷ ∧ dθ2 −Adẑ ∧ dθ1 +B dẑ ∧ dθ2 .

The IIA B–field components are entirely given by A and B — the original metric components.
The original IIB B–field components bxθ2 and byθ1 contained in dx̂ = dx − bxθ2 dθ2 and dŷ =
dy− byθ1 dθ1 will be converted into B–field again and do not contribute to the metric after three
T–dualities.

We could take the background (3.50) and RR fluxes (3.52), (3.53) and T–dualize them to IIB,
but it should be obvious that all the steps performed during the flop do not rely on our simplifying
assumption (3.32). In particular, we could have taken the full B–field and 3–form fluxes, as they
do not participate in the flop transition at all. We could also replace dz → dẑ = dψ̂1 − dψ̂2

anywhere in the σi and Σi by introducing dψ̂1 = dψ1 − 1
2bzθ1 dθ1 and dψ̂2 = dψ1 + 1

2bzθ1 dθ1,
then still dx̂11 = dψ̂1 + dψ̂2 = dψ1 + dψ2 and we would reduce on an untwisted fiber. A little
harder is the question whether we could use the full RR one–form gauge potential before flop

CIIA1 = c1 dŷ − c2 dẑ + c7 dθ1 (3.63)
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and use a gauge choice and the freedom in the parameter g3 to bring this into the form (3.45).
The term −c2 dẑ+ c7 dθ1 would have to be gauged away or absorbed into a redefinition of dx11.
Locally that should be no problem, but if we want to allow for a coordinate dependence of ci
this might not always be possible17. The only simplifying assumption we will therefore make in
this section is

c2(r, θ1, θ2) = c7(r, θ1, θ2) = 0 . (3.64)

Otherwise we will take the full IIA background after transition as our starting point for the
last piece of the duality chain. The metric then reads

ds2IIA = dr2 + e2φ
[
(dz − bzθ1 dθ1)− αA (dx− bxθ2 dθ2)− αB (dy − byθ1 dθ1)

]2
+
αA2B2

1 +A2

[
dθ2

1 + (dx− bxθ2 dθ2)2
]
+

1
1 +A2

[
dθ2

2 + (dy − byθ1 dθ1)2
]
, (3.65)

where we have written the fibration structure explicitely as a reminder that the original IIB
B–field is contained in this metric. We would like to stress the readers patience with introducing
another set of symbols for the metric components giving the spheres:

C =
αA2B2

1 +A2
, D =

1
1 +A2

and α−1
0 = CD + α2 e2φ (CB2 +DA2) (3.66)

analogous to the definition of A, B and α in (2.10) and (2.13). The IIA B–field is given by

BIIA
NS = f1 (dx− bxθ2 dθ2) ∧ dθ1 + f2 (dy − byθ1 dθ1) ∧ dθ2

−f1A (dz − bzθ1 dθ1) ∧ dθ1 − f2B (dz − bzθ1 dθ1) ∧ dθ2 , (3.67)

where we have reversed the coordinate transformation (2.25) to obtain a background with isom-
etry in z–direction, i.e. we take the semi–flat limit again. Recall that f1,2 were found to be
f1 = −f2 =

√
α
ε , but we will “forget” their infinity for the moment and come back to it later.

The RR fields are given by the one–form (3.51) and three–form (3.26) whose components under
the assumption (3.64) become

Cxy1 = −c5 + f1c1 , Cxz1 = c4 , Cyz1 = Af1c1

Cyz2 = −c3 +Bf2c1 , Cy12 = c9 , Cz12 = c8 (3.68)

as well as five–form (3.29) which is now given by

CIIA5 =
[
c6 + c3 f1 − (c4 −Bc5) f2 −Bc1 f1f2

]
dx ∧ dy ∧ dz ∧ dθ1 ∧ dθ2 . (3.69)

T–dualizing this background along x, y and z again fails to produce the dθ1 dθ2–crossterm
typical for a deformed conifold. We have to use the same “trick” as when going from IIB to IIA
in chapter 2, we have to boost the complex structure of the (x̂, θ1) and (ŷ, θ2) tori:

dχ̂1 = dx̂+ i dθ1 → dx̂+ (i− f̃1) dθ1 , dχ̂2 = dŷ + i dθ2 → dŷ + (i− f̃2) dθ2 . (3.70)

Then performing three T–dualities is tedious but nevertheless straight forward. Again, f̃1 and
f̃2 have to be very large, so we set them to f̃i = β̃i/

√
ε̃ and change the gzz component in the

17We can of course always perform a flop transition, no matter what the 1–form gauge field looks like. But if
we want to use the analysis based on the SU(2) invariant one–forms, we require this particular choice of C1.
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metric as gzz → gzz − ε̃. Taking the limit ε̃→ 0 we recover a metric that has some resemblance
with a deformed conifold

ds2IIB = dr2 +
e−2φ

α0CD

[
dz +Af1 dθ1 +Bf2 dθ2 + α0αADe

2φ (dx− f1 dθ1)

+α0αBCe
2φ (dy − f2 dθ2)

]2
+ α0

(
D + α2B2e2φ

)
(dx− f1 dθ1)2 (3.71)

+
(
C − α2A2β̃2

1

)
dθ2

1 + α0

(
C + α2A2e2φ

)
(dy − f2 dθ2)2 +

(
D − α2B2β̃2

2

)
dθ2

2

− α2β̃1β̃2AB dθ1 dθ2 − α0α
2ABe2φ (dx− f1 dθ1)(dy − f2 dθ2) .

A few comments are in order.

• We took the limit ε̃ → 0 without taking into account that fi actually scales like ε−1/2.
These are two different limits, but interchanging their order or letting ε = ε̃ does not
influence the result.

• The metric still has a fibration structure, now in terms of −fi dθi. Did we not promise
to recover a Kähler background? The key is that this fibration over x, y and z does not
depend on the B–field anymore. What was B–field in IIA actually stems from metric cross
terms in IIB. So we reversed the entanglement of metric and BNS that dominated the IIA
backgrounds, both before and after transition.

The fi–dependent fibration can actually be removed in several ways. We could again take
the approach from [72, 74] and introduce dθ̂i = d(fi θi) as in (3.28), which is exact. In the local
limit this is justified and all fi dθi terms can be absorbed into the coordinates x, y and z.

But we can also argue for the removal of the unwanted fi–terms on more physical grounds.
What we recover in (3.71) is naturally the large complex structure and semi–flat limit of the
deformed conifold. Not only does it have the z–isometry we will break by introducing the cross
terms accompanied by cos〈z〉 and sin〈z〉, but it also has a large scaling of the base coordinates
θi (r is non–compact to start with). This is different from the situation we encountered in
section 2.3, where the boost of complex structures on the resolved conifold did not appear
explicitely in the deformed mirror metric, but only in the flux (it became part of a large B–field,
from where it now comes back to haunt us). The fibration with large fi we find here is the
reverse transformation to the large complex structure boost we did to the IIB background before
transition. In the local limit this is nothing but a coordinate transformation, which we can now
reverse to get back to our original coordinates. We can therefore argue that leaving the large
complex structure limit is synonym with removing the fi–dependent terms. The postulated
mirror metric (not in the large complex structure limit anymore) is then

ds2IIB = dr2 +
e−2φ

α0CD

[
dz + α0αADe

2φ dx+ α0αBCe
2φ dy

]2
+α0

(
D + α2B2e2φ

)
dx2 +

(
C − α2A2β̃2

1

)
dθ2

1

+α0

(
C + α2A2e2φ

)
dy2 +

(
D − α2B2β̃2

2

)
dθ2

2 (3.72)

−2α2β̃1β̃2AB dθ1 dθ2 − 2α0α
2ABe2φ dx dy .

We would have found the same result if we had adopted the point of view that the IIA B–field
was only a large complex structure artefact or if we had gauged it away. Similar remarks hold
true for the RR fields that could also be freed from the “unphysical” fi–terms.
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We then proceed as in chapter 2. We require the dθ1 dθ2 term to have the same coefficient
as the dx dy term, implying

β̃1β̃2 = −α0e
2φ . (3.73)

We would also like to combine x and θ1 as well as y and θ2 into spheres/tori. This will in general
not be possible for both. We therefore require it for y and θ2, since we want to rotate these
coordinates to restore the deformed conifold metric. The (x, θ1) sphere will remain squashed.
Solving for the dy2 and dθ2

2 coefficients to be equal gives

β̃2 =

√
D − α0(C + α2A2e2φ)

αB
(3.74)

which determines β̃1 to be

β̃1 =
−α0αBe

2φ√
D − α0(C + α2A2e2φ)

. (3.75)

If we then also use the coordinate rotation (2.25), we obtain as the final IIB metric after transition

ds̃2IIB = dr2 +
e−2φ

α0CD

[
dz + α0αADe

2φ dx+ α0αBCe
2φ dy

]2
(3.76)

+α0

(
D + α2B2e2φ

)
(dx2 + ζ dθ2

1) + α0

(
C + α2A2e2φ

)
(dy2 + dθ2

2)

+2α0α
2ABe2φ

[
cos〈z〉(dθ1 dθ2 − dx dy) + sin〈z〉(dx dθ2 + dy dθ1)

]
,

where we have introduced the “squashing factor”

ζ =
C − α2A2β̃2

1

α0 (D + α2B2e2φ)
. (3.77)

One might ask if we could have obtained a metric that comes closer to the deformed conifold
(without the squashing factor). The only step in the calculation that allows for a deviation from
the derivation presented here would be the flop (3.48). The way we define this flop determines
the coefficients C and D (the size of the two spheres after transition). One could entertain the
idea of leaving D as a free parameter and determine its value by requiring ζ = 1, i.e. the (x, θ1)
sphere to be unsquashed. This seems like a worthwhile idea, but for the ansatz (3.37) there
does not exist any flop transition that would allow to fix D independently of C. All flops that
produce the right metric (i.e. close to a resolved conifold after transition) allow only for an
overall factor which would be the same for both spheres, i.e. C and D would both be scaled
by the same factor. That does not solve the squashing problem and we therefore adhere to the
choice (3.48), which seems most natural (since it sends σ1,2 → Σ1,2).

We therefore find that the final IIB metric after flop (3.76) is not quite a deformed conifold
due to the asymmetry in the (x, θ1) sphere/torus. In the local version presented above it is
of course Kähler (all coefficients are constant), but we cannot make any statement about the
global behavior. Remember that we do not have the global metric for our starting background
with D7/O7 and D5 branes. Thus, we conclude that the local metric (3.16) is transition dual to
the local metric (3.76). Both of them are Kähler, in contrast to the pair in IIA which contained
a fibration depending on the B–field of IIB.

After having determined the metric we should now pay attention to the NS and RR fields of
this background. The B–field splits in two parts, one “physical” and one large complex structure
artifact:

B̃IIB
NS = byθ1 dy ∧ dθ1 + bxθ2 dx ∧ dθ2 + bzθ1 dz ∧ dθ1 (3.78)

+f̃1

[
αAdˆ̃z ∧ dθ1 + αB dˆ̃z ∧ dθ2 + dˆ̃x ∧ dθ1 + dˆ̃y ∧ dθ2

]
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where we encounter precisely the same fibration as we have seen in the metric

dˆ̃z = dz +Af1 dθ1 +Bf2 dθ2

dˆ̃x = dx− f1 dθ1 (3.79)
dˆ̃y = dy − f2 dθy .

Again we take the point of view that this is simply a large complex structure artifact and should
not be present in the IIB background after we leave this limit. Moreover, the whole second line
in the last equation scales with this large prefactor, so we will argue that after leaving the large
complex structure limit the B–field should read

B̃IIB
NS = byθ1 dy ∧ dθ1 + bxθ2 dx ∧ dθ2 + bzθ1 dz ∧ dθ1 . (3.80)

In other words, we recover the B–field we started with in (3.20).
We now turn to the RR fields, there are one, three and five–form in IIA. It turns out that

there will be no RR zero–form (axion), but only two– and four–form in the mirror IIB. Omitting
terms that scale with fi we find

C̃IIB2 = −
√
αB dx ∧ dz − c3 dx ∧ dθ2 −

√
αAdy ∧ dz − c4 dy ∧ dθ1 (3.81)

−c5 dz ∧ dθ1 − c6 dθ1 ∧ dθ2
C̃IIB4 = −c8 dx ∧ dy ∧ dθ1 ∧ dθ2 − c9 dx ∧ dz ∧ dθ1 ∧ dθ2 . (3.82)

As expected, this is very close to the two– and four–form we started with in IIB before transition,
see (3.21) and (3.22). As already mentioned, we should recover the fluxes that correspond to
the D–brane setup from before transition, but the cycle on which the branes were wrapped has
shrunk and we have a completely different geometry. The only term that looks out of place in
(3.81) is the dy∧dz term. This was not part of our ansatz (3.21) as it is not invariant under the
orientifold action. The reason this term appears is the gauge choice we made in (3.45). One can
check explicitely that the reverse T–dualities with the original IIA one–form (3.63) do indeed
reproduce the fluxes we started with before transition. There is only one minor difference: all
RR fields have an overall minus sign. This is not worrysome, since the orientation of the cycles,
which enter into the quantization condition for the fluxes, can contribute an overall sign.

Something very peculiar happens to the dilaton. According to T–duality rules (B.11) it is
given by

e2φ̃ = G̃−1
zz G

−1
yy g

−1
xx e

2φ (3.83)

where G and G̃ indicate the metric after T–duality along x and y, respectively, g and φ are the
metric and dilaton of the starting background in IIA. Plugging in the corresponding values this
becomes

e2φ̃ = (α0CDe
2φ)−1(α0(C + α2A2e2φ))(C + α2A2e2φ)−1 e2φ = (CD)−1 . (3.84)

Since the IIA dilaton φ became part of the metric during the flop, it now cancels in this equation.
The IIB dilaton is not given by the IIA dilaton anymore. In the local background the final dilaton
in IIB is still a constant and its vacuum expectation value could be fixed to zero by fixing the
expectation values of C and D. But it depends in principle on the size of the two spheres/tori
in the IIA background after flop. If we leave the local limit it would not be constant anymore,
in contrast to the other IIB and both IIA backgrounds.

It would be interesting to compare the background we found to other known IIB backgrounds
with D5–branes on the resolved/singular conifolds that flow to a deformed conifold geometry
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in the IR. In particular, Klebanov–Strassler [5] and Maldacena–Nunez [71] constructed such
backgrounds and it was shown by Minasian et al. [108] that there is a one–parameter family
interpolating between these backgrounds. Ours might be a member of that family. We will
return to this in section 5.4 and use those similarities to postulate a global solution.

In conclusion, we have shown that the “duality chain” needs to be modified due to fluxes. The
NS field enters into the metric giving rise to non–Kähler backgrounds in IIA. We constructed
a pair of such backgrounds that we call “non–Kähler deformed” and “non–Kähler resolved
conifold” and which are related by a flop inM–theory. That we can close the duality chain and
return to a Kähler background in IIB provides a consistency check of our calculation.

In Vafa’s original paper [6], it was already anticipated that fluxes will modify the background.
However, the assumption there was that fluxes will only lead to warp factors. Therefore, they
calculated topological string amplitudes for the Calabi–Yau backgrounds and considered fluxes
to be turned on as a perturbation. This is not the picture we find here. The IIB B–field enters
into the IIA metric as a non–trivial fibration. Turning off IIA flux does not remove the impact
of the IIB B–field which is now part of the metric rather than flux. We therefore suggest the
impact of fluxes to be not as trivial as anticipated in [6]. We will comment on possible ways to
modify the arguments from [6] accordingly in section 6.2 .
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Chapter 4

Classification of IIA non–Kähler
Manifolds

In this chapter we attempt to classify the IIA non–Kähler manifolds we constructed in section
3.3. As already mentioned, we do not find a half–flat manifold after performing three T–dualities
with fluxes. We will show that this does not contradict supersymmetry requirements. First, it
has been shown that lifting a 10d manifold on a twisted circle (i.e. with gauge field and dilaton
as in our case) can still give a supersymmetric M–theory background (a G2 holonomy manifold),
even if the 10d manifold was not half–flat [109]. Furthermore, we actually do not expect an 11d
manifold with G2 holonomy, since our M–theory background has flux turned on.

Let us set the stage and explain how six and seven dimensional manifolds are classified in
terms of their intrinsic torsion. This is interesting for string theory, because these manifolds have
SU(3) or G2 structure, which occur naturally in string theory compactifications if one requires
supersymmetry in d=4 [92], [110]–[114]. See [115, 116] for a rather mathematical exposure to
manifolds with G–structure, we will in the following rely on [100, 111]. Then we will illustrate
the calculation of torsion classes for the local IIA backgrounds. We will show that with a very
generic choice of complex structure we can find a symplectic, but no half–flat structure on these
metrics. This local statement can of course not be assumed to hold true for a global background.

4.1 SU(3) and G2 Structure Manifolds

We are interested in compactifications that leave some supersymmetry and Poincaré invariance
unbroken in d=4. The latter requires a 10–dimensional metric of the form

ds210 = eA(y) hµν dx
µ dxν + gab dy

a dyb (4.1)

with flat Minkowski space parameterized by the noncompact coordinates xµ (µ = 0 . . . 3) and
flat metric hµν . The warp factor eA(y) depends only on the internal coordinates ya (a = 1 . . . 6).
If all background fluxes are set to zero, supersymmetry requires the external space to be flat
(A(y) = 0) and the existence of a covariantly constant spinor η on the internal manifold, see e.g.
[1]. For each such spinor (that makes the supersymmetry variations of the fermions vanish) there
is one copy of the minimal supersymmetry algebra in d=4. But a covariantly constant spinor
also implies that the internal manifold has SU(3) holonomy, thus it must be a Calabi–Yau.

This strong condition can be relaxed if we allow for non–vanishing vacuum expectation values
of the fields, i.e. fluxes [30]–[40]. The 10–dimensional solution will then be a warped product of
Minkowski space and some internal manifold which does no longer possess SU(3) holonomy, but
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only SU(3) structure. The 4d supersymmetry condition of a covariantly constant spinor on the
internal space is relaxed to the existence of a globally defined, nowhere–vanishing spinor that is
constant with respect to a torsional connection [30], i.e.

∇T η = (∇+ T ) η = 0 , (4.2)

where ∇ is the Levi–Civita connection and T is the torsion. This reduces the structure group of
the 6d manifold from SO(6) (the rotation group) to SU(3). If the torsion vanishes, the manifold
has SU(3) holonomy and is therefore Ricci–flat and Kähler, i.e. a Calabi–Yau. These types of
compactifications preserve N = 2 for type II or N = 1 for heterotic and type I theories, in other
words they leave 1/4 of the supercharges unbroken.

The existence of an SU(3) invariant spinor is equivalent to the statement that the manifold
has SU(3) struture. But SU(3) structures are also characterized by a 2–form J and a three–form
Ω [117]. Since two–forms are in the adjoint representation 15 of SO(6) and three–forms in the
20 of SO(6), they decompose under SU(3) as

15 = 1 + 8 + 3 + 3̄

20 = 1 + 1 + 3 + 3̄ + 6 + 6̄ ,

so there is one singlet under SU(3) corresponding to J and two singlets for Ω, which correspond
to its real and imaginary parts Ω = Ω+ + iΩ−. J and Ω fulfill the compatibility relations

J ∧ Ω+ = J ∧ Ω− = 0 and Ω+ ∧ Ω− =
2
3
J ∧ J ∧ J . (4.3)

The torsion1 can be viewed as a one–form with values in the Lie–Algebra so(6), which
decomposes into su(3) and its orthogonal complement, so(6) = su(3)⊕ su(3)⊥. Only the su(3)⊥

part has a non–trivial action on the SU(3) invariant tensors (or spinors), this is called the
intrinsic torsion with values in

∧1⊗su(3)⊥ [116]. It also decomposes under representations of
SU(3). In particular,∧1 ⊗ su(3)⊥ = (3⊕ 3̄)⊗ (1⊕ 3⊕ 3̄)

= (1⊕ 1)⊕ (8⊕ 8)⊕ (6⊕ 6̄)⊕ (3⊕ 3̄)⊕ (3⊕ 3̄) , (4.4)

where
∧1∼ 3⊕ 3̄, su(3) ∼ 8 and su(3)⊥ ∼ 1⊕ 3⊕ 3̄. This implies that the intrinsic torsion

T0 lies in 5 classes [100, 111]: T0 ∈ W1 ⊕ W2 ⊕ W3 ⊕ W4 ⊕ W5, which match precisely the
decomposition under SU(3) as given above. Each of these torsion classes can be given by a
component of the SU(3) decomposition of dJ and dΩ.

The obstruction for the torsional connection to be the Levi–Civita connection is measured
in the failure of fundamental 2–form and holomorphic 3–form to be closed. Defining a set of
real vielbeins {ei} one can define an almost complex structure as

E1 = e1 + i e2

E2 = e3 + i e4 (4.5)
E3 = e5 + i e6 ,

which gives rise to a (1,1)–form w.r.t. this almost complex structure

J = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6 . (4.6)
1We are a bit sloppy here and do not distinguish between contorsion and torsion.
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Similarly, one defines a holomorphic 3–form w.r.t. this almost complex structure

Ω = Ω+ + iΩ− = (e1 + i e2) ∧ (e3 + i e4) ∧ (e5 + i e6) , (4.7)

where Ω± are the real and imaginary part of Ω, respectively. The torsion classes are then
determined by the following forms:

W1 ↔ dJ (3,0) , W2 ↔ (dΩ)(2,2)0

W3 ↔ (dJ)(2,1)0 , W4 ↔ J ∧ dJ (4.8)

W5 ↔ dΩ(3,1) ,

where the subscript 0 refers to the primitive part. A (p, q)–form β is primitive, i.e. β ∈
∧p,q

0 if
β∧J = 0. It is immediately obvious that complex manifolds have to have vanishingW1 andW2

and Kähler manifolds are determined by T0 ∈ W5. A symplectic structure has torsion contained
in W2 and W5.

Decomposing Ω = Ω+ + iΩ− we can write more precisely [100]

dΩ± ∧ J = Ω± ∧ dJ = W±
1 J ∧ J ∧ J

dΩ(2,2)
± = W±

1 J ∧ J +W±
2 ∧ J (4.9)

dJ (2,1) = (J ∧W4)(2,1) +W3 ,

so W1 is given by two real numbers, W1 = W+
1 +W−

1 , W2 is a (1,1) form and W3 is a (2,1)
form. With the definition of the contraction

y :
∧k T ∗ ⊗∧n T ∗ −→ ∧n−k T ∗ (4.10)

and the convention (e1 ∧ e2) y (e1 ∧ e2 ∧ e3 ∧ e4) = e3 ∧ e4 we can define [100]

W4 =
1
2
J y dJ , W5 =

1
2

Ω+ y dΩ+ . (4.11)

A half–flat manifold is specified by T0 ∈ W−
1 ⊕W

−
2 ⊕W3, which follows from J ∧ dJ = 0 and

dΩ+ = 0, but dΩ− 6= 0 (this lead to the terminology “half–flat”). This implies it can be complex
or non–complex. Note that the assignment of Ω− and Ω+ may be switched by simply exchanging
real and imaginary parts in the complex vielbeins Ei in (4.5).

Similar statements hold true for M–theory on 7–manifolds, which would require G2 holonomy
to preserve 1/4 supersymmetry in d=4 in the absence of flux. Turning on fluxes relaxes this
condition to the existence of a globally defined G2 invariant spinor. In terms of torsion classes,
the fundamental object now is a G2 singlet which is a nowhere vanishing 3–form Φ and its failure
to be closed and/or co–closed determines the torsion. The relevant structure group is G2 and
the intrinsic torsion decomposes under this group. This results in four torsion classes for the
7–manifold: τ0 ∈ X1 ⊕X2 ⊕X3 ⊕X4. They are given by [100]

dΦ = X1 (∗Φ) + X4 ∧ Φ + X3

d(∗Φ) =
4
3
X4 ∧ (∗Φ) + X2 ∧ Φ . (4.12)

In [100, 117] it was demonstrated how a manifold with SU(3) structure can be lifted to a
G2 holonomy. One defines the G2 invariant 3–form as

Φ = Ω+ + J ∧ e7 (4.13)
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where e7 parameterizes the 7th direction, such that the resulting 7–manifold is a (warped)
product M × I with I ⊂ R. This produces Hitchin’s flow equations [117] if the 6–manifold is
half–flat. Hitchin concluded that every half–flat manifold can be lifted to a G2 holonomy metric
and conversely that if the seven–dimensional manifold has holonomy in G2 then there exists a
half–flat structure on the six–dimensional manifold for all t ∈ I. Hitchin’s flow equations

dJ =
∂Ω+

∂t
, dΩ− = −J ∧ ∂J

∂t
(4.14)

describe the evolution of J and Ω with t. Of course, on a (trivial) product manifold M × I a
manifold M with SU(3) holonomy can always be lifted to a G2 holonomy.

This is not the case if the 7d manifold is non–trivially fibered over the 6d manifold [100].
Such a non–trivial fibration occurs naturally if we lift a 6d background with RR one–form to 7d.
The fiber is twisted by the gauge field whose field strength enters into the G2 torsion classes.
This implies that SU(3) holonomy does not necessarily lead to G2 holonomy when lifting on a
twisted fiber.

In contrast, we are more interested in the reverse case discussed in [109]. Starting with an
SU(3)–structure manifold X they constructed a G2–structure manifold Y as a lift over a twisted
circle with dilaton φ and gauge field A:

ds2Y = e−2αφ ds2X + e2βφ (dz +A)2 . (4.15)

We will adopt the string frame in which α = 1/3 and β = 2/3. One now defines the 3–form on
the 7–manifold not like in (4.13) but rather as

Φ = e−φ Ω+ + e−
2
3
φ J ∧ e7 . (4.16)

This gives straightforward relations between the torsion classesWi and Xj that generally involve
the field strength F = dA and the derivative of the dilaton dφ. It was shown in [109] that
requiring G2 holonomy (i.e. dΦ = d(∗Φ) = 0 or equivalently Xi = 0) leads to the following
constraints on the SU(3) torsion classes2:

W±
1 = W−

2 = W3 = W4 = 0

W+
2 = −eφ F (1,1)

0 , W5 =
1
3
dφ . (4.17)

Note, that only in the string frame W4 = 0, otherwise it is also proportional to dφ. This shows
that the 6–manifold does not need to be Kähler (if F (1,1)

0 6= 0), but it does not need to be
half-flat either (it still could be if dφ = 0).

This short discussion was intended to clarify that half–flat manifolds are not the only mani-
folds that can be lifted to a G2 holonomy, resulting in a supersymmetric compactification. One
has to be specific about which type of lift is chosen. It is immediately clear that our scenario
requires the 7th direction to be a twisted circle, since the IIA background has a gauge field
A. But since we have also other background fluxes turned on, we obtain a torsional M–theory
background after the lift. Therefore, the manifold we propose in IIA is neither half–flat nor
has it torsion restricted to W+

2 ⊕W5. For the local metric constructed in section 3.3 we find
a symplectic structure, but without knowledge of a full supersymmetric background we cannot
make any assertions about the global structure of the manifold. It is nevertheless instructive to
discuss the local type IIA backgrounds as examples.

2The case without dilaton was already discussed in [100]. Then the resulting 6d manifold is still half–flat, or
more precisely half–flat and almost Kähler with torsion T0 ∈ W+

2 . They also anticipated that allowing for a circle
fibration with non–constant size would turn on W5.
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4.2 Torsion Classes before Geometric Transition

We will only discuss the IIA case, since the local IIB backgrounds are trivially Kähler. It will be
shown that with a quite generic ansatz for the almost complex structure we can find a symplectic
structure on the local metric, but no half–flat structure.

The metric for the “non–Kähler deformed conifold” was given in (3.23). Since we set bzθ1 = 0
throughout the flop analysis, we will also employ this choice here. The metric then reads

ds̃2 = dr2 + α−1 [dz − αA (dx− bxθ2 dθ2)− αB (dy − byθ1 dθ1)]
2

+ α(1 +B2)
[
dθ2

1 + (dx− bxθ2 dθ2)2
]

+ α(1 +A2)
[
dθ2

2 + (dy − byθ1 dθ1)2
]

+ 2αAB cos〈z〉 [dθ1dθ2 − (dx− bxθ2 dθ2)(dy − byθ1 dθ1)] (4.18)
+ 2αAB sin〈z〉

[
(dx− bxθ2 dθ2) dθ2 + (dy − byθ1 dθ1) dθ1

]
.

Let us furthermore assume that bxθ2 and byθ1 are functions of r only, we showed in section 3.3
that this simple choice can give a consistent background that fulfills the supergravity equations
of motion (3.54).

To define an almost complex structure, let us first choose a set of six real vielbeins that
encapsulates this metric. We follow the choice for the Maldacena–Nunez solution [71], since
it also describes a deformed conifold that has two S2 of different size. The vielbeins for this
solution were given in [108], we will discuss it in more detail in section 5. The vielbeins we
choose are

e1 = dr , e2 = α−1/2
(
dz +A(dx− bxθ1dθ1) +B(dy − byθ2dθ2)

)
e3 =

1√
1 +B2

dθ2 , e5 =
1√

1 +B2
(dy − byθ2dθ2) (4.19)

e4 =
√
α(1 +B2)

(
sin 〈z〉(dx− bxθ1dθ1) + cos 〈z〉 dθ1 +

AB

1 +A2
dθ2

)
e6 =

√
α(1 +B2)

(
cos 〈z〉(dx− bxθ1dθ1)− sin 〈z〉 dθ1 −

AB

1 +A2
(dy − byθ2dθ2)

)
.

Following the discussion in [78] we write down the most generic candidate for a fundamental
2–form

J =
∑
i<j

aij ei ∧ ej , (4.20)

where the coefficients aij could in principle depend on all coordinates. This has to be compatible
with an almost complex structure J AB = δACJCB, i.e. we require J 2 = −1. The resulting 12
equations for the 15 coefficients aij are solved in the appendix of [78]. If we furthermore make
the assumption that a13 = a14 = 0, the almost complex structure takes a particularly simple
form [78]3. The complex vielbeins can be written as

E1 = e1 + i e2

E2 = e3 + i (X e4 − P e6) (4.21)
E3 = e5 + i (X e6 + P e4) ,

where X2 = 1−P 2 and P = a34. In the following we will make the simplifying assumption that
P (and therefore X) is a function of r only.

3This assumption might seem very restrictive, but we also considered permutations of the vielbeins
(e3, e4, e5, e6). All scenarios have W4 = 0 in common and in some W−

1 or W+
1 can be zero as well. The

only case with more vanishing torsion classes is the symplectic one.
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With this setup, J and Ω are defined as

J =
i

2

3∑
i=1

Ei ∧ Ei , Ω = E1 ∧ E2 ∧ E3 (4.22)

and one can calculate dJ and dΩ and all five torison classes with them. One immediately notices
that W4 = 0, because

J ∧ dJ = 2α
(
P (r)P ′(r) +X(r)X ′(r)

)
dr ∧ dx ∧ dy ∧ dθ1 ∧ dθ2 , (4.23)

which is identically zero because of P (r)2 +X(r)2 = 1 (the prime denotes derivative w.r.t. r).
However, the metric does not allow for a half–flat structure, because there is no choice of P (r)
that makes either dΩ+ = 0 or dΩ− = 0. We can nevertheless choose P (r) to give a symplectic
structure. Consider W±

1 given by dΩ± ∧ J =W±
1 J ∧ J ∧ J :

dΩ+ ∧ J =
2
√
α√

1− P (r)2
P ′(r) dr ∧ dx ∧ dy ∧ dz ∧ dθ1 ∧ dθ2 (4.24)

dΩ− ∧ J = −α
(
cos〈z〉

√
1− P (r)2 + sin〈z〉P (r)

)
×(

(1 +B2)b′yθ1(r) + (1 +A2)b′xθ2(r)
)
dr ∧ dx ∧ dy ∧ dz ∧ dθ1 ∧ dθ2 . (4.25)

Note that in our local background the coefficients A, B and α are simply constants and we have
assumed the IIB BNS–field components to have r–dependence only. Obviously, W+

1 vanishes if
P (r) is constant. W−

1 vanishes if

P = − cos〈z〉 = constant. (4.26)

It turns out, that for this value also W3 vanishes, and in this case dJ = 0. Let us stress again,
that there is no choice for P (r) that would give W5 = 0 or W±

2 = 0. The remaining torsion
classes could only vanish if the IIB BNS field was constant. In that case we would trivially
recover a closed two and three–form, since then all metric components would be constant. For
completeness, let us also give W5 and W±

2 with the choice (4.26) for P :

W+
2 = −

√
1

1 +B2

Bb′yθ1
2

(
e2 ∧ e3 − cos〈z〉 e1 ∧ e6 − sin〈z〉 e1 ∧ e4

)
−
√

α

1 +B2

AB2b′yθ1
2

(
e2 ∧ e4 − cos〈z〉 e1 ∧ e5 + sin〈z〉 e1 ∧ e3

)
(4.27)

−
√
α(1 +B2)

Ab′xθ2
2

(
e1 ∧ e5 − cos〈z〉 e2 ∧ e4 + sin〈z〉 e2 ∧ e6

)
−
ABb′yθ1
1 +B2

sin〈z〉
[
cos〈z〉 (e3 ∧ e4 − e5 ∧ e6) + sin〈z〉 (e4 ∧ e5 − e3 ∧ e6)

]
−

(
b′yθ1√

α(1 +B2)
−
√
α(1 +B2)b′xθ2

)
(e3 ∧ e5 + e4 ∧ e6)
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W−
2 = −

√
1

1 +B2

Bb′yθ1
2

(
e1 ∧ e3 + cos〈z〉 e2 ∧ e6 + sin〈z〉 e2 ∧ e4

)
−
√

α

1 +B2

AB2b′yθ1
2

(
e1 ∧ e4 + cos〈z〉 e2 ∧ e5 − sin〈z〉 e2 ∧ e3

)
(4.28)

+
√
α(1 +B2)

Ab′xθ2
2

(
e2 ∧ e5 + cos〈z〉 e1 ∧ e4 − sin〈z〉 e1 ∧ e6

)
+

2ABb′yθ1
1 +B2

sin〈z〉
(
e3 ∧ e5 + e4 ∧ e6

)
−

(1 + αA2B2 cos 2〈z〉)b′yθ1 + α(1 +B2)b′xθ2
2
√
α(1 +B2)

×[
cos〈z〉 (e3 ∧ e4 − e5 ∧ e6) + sin〈z〉 (e4 ∧ e5 − e3 ∧ e6)

]
W5 =

1
2
√
α
(
(1 +A2)b′yθ1 + (1 +B2)b′xθ2

)
e2 +

1
2

√
α(1 +B2)Ab′xθ2 e4

+
1
2
Bb′yθ1
1 +B2

e5 − 1
2

√
α

1 +B2
AB2b′yθ1

(
cos〈z〉 e4 + sin〈z〉 e6

)
. (4.29)

The vielbeins ei are defined in (4.19). This completely specifies a symplectic structure on the
“non–Kähler deformed conifold”.

4.3 Torsion Classes after Geometric Transition

Very similar remarks hold true for the local IIA metric after transition which we termed “non–
Kähler resolved conifold”. We can find a symplectic structure, but W±

2 and W5 are nonzero.
The metric after transition was obtained in (3.50) to be:

ds2 = dr2 + e2φ
(
dz − αA (dx− bxθ2 dθ2)− αB (dy − byθ1 dθ2)

)2 (4.30)
+ αA2B2(1 +A2)−1

(
dθ2

1 + (dx− bxθ2 dθ2)2
)

+ (1 +A2)−1
(
dθ2

2 + (dy − byθ1 dθ1)2
)
.

We take again the ansatz (4.21) for the complex structure but now with real vielbeins

e1 = dr , e2 = eφ
(
dz − αA(dx− bxθ2dθ2)− αB(dy − byθ1dθ1)

)
e3 =

1√
1 +A2

dθ2 , e5 =
1√

1 +A2
(dy − byθ1dθ1) (4.31)

e4 =
√

α

1 +A2
AB (sin〈z〉 (dx− bxθ2dθ2) + cos〈z〉 dθ1)

e6 =
√

α

1 +A2
AB (− cos〈z〉 (dx− bxθ2dθ2)− sin〈z〉 dθ1) .

This different choice of vielbeins is of course inspired by the resolved conifold [78]. One also
findsW4 = 0 automatically. Again, W+

1 can only vanish if P (r) is constant and solvingW−
1 = 0
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has the same solution P (r) = − cos〈z〉. There is no choice of P (r) that would allow for W5 = 0
or W±

2 = 0. With the choice P = − cos〈z〉 the remaining torsion classes are

W+
2 = −1

2

√
α(1 +A2) eφ b′yθ1

(
e2 ∧ e3 − cos〈z〉 e1 ∧ e6 − sin〈z〉 e1 ∧ e4

)
−1

2
α
√

1 +A2Aeφ b′xθ2
(
e1 ∧ e5 − cos〈z〉 e2 ∧ e4 + sin〈z〉 e2 ∧ e6

)
(4.32)

−
b′yθ1 − αA

2B2 b′xθ2
2
√
αAB

(
e3 ∧ e5 + e4 ∧ e6

)
W−

2 = −1
2

√
α(1 +A2) eφ b′yθ1

(
e1 ∧ e3 + cos〈z〉 e2 ∧ e6 + sin〈z〉 e2 ∧ e4

)
+

1
2
α
√

1 +A2Aeφ b′xθ2
(
e2 ∧ e5 + cos〈z〉 e1 ∧ e4 − sin〈z〉 e1 ∧ e6

)
(4.33)

−
b′yθ1 + αA2B2 b′xθ2

2
√
αAB

[
cos〈z〉 (e3 ∧ e4 − e5 ∧ e6)− sin〈z〉 (e3 ∧ e6 − e4 ∧ e5)

]
W5 =

√
α(1 +A2)

2A
eφ b′yθ1 e5 +

1
2
α
√

1 +A2Aeφ b′xθ2 e4 +
b′yθ1 + αA2B2 b′xθ2

2
√
αAB

e2 , (4.34)

where φ is the IIA dilaton which we found to be exactly the same as the IIB dilaton before
transition and constant.

We see that the geometric transition maps the torsion classes W±
2 and W5 into themselves.

This can be translated into a statement about G2 torsion classes, using the definition of the
three–form (4.16). So, also the G2 torsion classes Xi are mapped into themselves. But we know
that the flop just replaces the usual x11 direction with the z–fibration. These two circles are used
to lift SU(3) torsion classes to G2 torsion classes and this implies that the G2 torsion classes
should not change during the flop.

In conclusion, we have argued that on grounds of supersymmetry we do not expect a half–flat
manifold. Our lift includes a constant dilaton, one might therefore expect the torsion classes
(4.17) to reduce to W+

2 6= 0, leading to a half–flat structure. But we also lift other RR fluxes to
G–fluxes inM–theory, which means that supersymmetry does not require G2 holonomy on the
7d manifold. Apart from that, we only have a local metric which does not show supersymmetry
(all components and warp factors are approximated by constants). We could, however, find
a symplectic structure on this local background which is in agreement with arguments from
section 2.4.



Chapter 5

Geometric Transitions in Type I and
Heterotic

The same mechanism as that discussed in chapter 3 can be used to go beyond Vafa’s duality chain
and construct new transition dual backgrounds in type I and heterotic theory. The F–theory
setup takes us naturally to the orientifold corner of type IIB which is basically type I. We only
need to perform 2 T–dualities that convert the D7/O7 system into space–time filling D9/O9.
This gives rise to open and closed unoriented strings — type I. From there we can perform
another S–duality and obtain heterotic backgrounds, see figure 5.1. These new backgrounds will
also be non–Kähler, since the B–field enters into the metric when we T–dualize from the IIB
orientifold to type I similar to the analysis in chapter 3.

Heterotic
SO(32) NS5 on
non–Kähler

Heterotic
SO(32) fluxes
on non–Kähler

geometric
transition?

?
S–duality

Type I D5 on
non–Kähler

?
T 2

IIB D5–branes
on orientifold of
resolved

geometric
transition

IIB fluxes on
orientifold of
deformed

?
T 2

Type I fluxes on
non–Kähler

geometric
transition?

?
S–duality

Figure 5.1: The heterotic duality chain. Following the arrows we can construct non–Kähler
backgrounds in type I and heterotic theory that are dual to the type IIB backgrounds before
and after transition. This implies that also the new backgrounds are in a sense transition duals.
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Following these dualities on both sides of the geometric transition will give us backgrounds
that are connected to a flop in M–theory (as performed in section 3.3) via a very long duality
chain. Therefore, we claim these backgrounds are also transition duals. Supergravity equations
of motion and the torsional constraint [30] for heterotic strings pose severe restrictions on the
allowed type of fluxes. We provide a toy example that is consistent with the IIB orientifold
action, the IIB linearized supergravity equation of motion and the torsional relation in the
U–dual1 heterotic background.

We can also exploit the fact that the local heterotic metric we find after transition has a
similar structure as the solution constructed by Maldacena–Nunez [71]. This enables us, for
the first time in this thesis, to leave the local limit and propose a global solution in heterotic
theory that is consistent with our IIB orientifold setup. For the construction of vector bundles
on heterotic and type I backgrounds we refer the reader to [74], where also their behavior under
geometric transition has been studied.

5.1 Another F–Theory Setup and IIB Orientifold

Many of the considerations in this section are very similar to the F–theory setup constructed in
section 3.2, but it should be immediately clear that we cannot use the same four–fold. What we
constructed in section 3.2 was an elliptic fibration over a resolved conifold base with the torus
fibers degenerating over (x, θ1), which means the D7/O7 system extends along (r, y, z, θ2). To
convert this into a space–time filling D9/O9 system, we would have to T–dualize along (x, θ1),
but θ1 does not correspond to an isometry of conifold geometries. We therefore need a different
orientation of the F–theory torus.

First we need to define the two directions along which we want to T–dualize. The logical
candidates are among the directions (x, y, z), for the same reason we chose them in chapter 3:
they are the isometry direction of the resolved conifold. But z is not an isometry direction of
the manifold after transition (being a deformed conifold). So we would like to avoid T–duality
along z and will T–dualize along x and y. We then need the D7/O7 to extend orthogonal to the
T–duality directions, otherwise they do not lead us to type I.

In summary, we start again with a fourfold that is elliptically fibered over the resolved
conifold base, but the fiber degenerates over (x, y). This has of course consequences for the IIB
orientifold. We now consider

IIB on
B

{1,Ω(−1)FLIxy}
, (5.1)

where B is the base that looks locally like a resolved conifold. This means, the branes are
oriented as follows:

D5 : 0 1 2 3 − − − − y θ2
D7/O7 : 0 1 2 3 r z − θ1 − θ2 .

After T–duality along x and y this turns into

D5 : 0 1 2 3 − − x − − θ2
D9/O9 : 0 1 2 3 r z x θ1 y θ2 ,

which is consistent with a type I scenario.

1U–duality is the combined action of T– and S–duality.
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There is a slight problem with this orientifold. The resolved conifold metric is not invariant
under Ixy! Therefore, we have to project out certain components of the metric. Recalling the
local metric of the resolved conifold base (3.16)

ds2 = dr2 + (dz +Adx+B dy)2 + (dx2 + dθ2
1) + (dy2 + dθ2

2)

we see that the dx dz and dy dz cross terms spoil the invariance under Ixy. To eliminate them we
have to “untwist” the z–fiber. However, the orientifold action does not require us to eliminate all
terms from the z–fibration, we can keep those that are invariant under Ixy, like dx2 for example.
We therefore make the generic ansatz

ds2IIB = dr2 + dz2 + d1 |dz1|2 + d2 |dz2|2 (5.2)

with the two tori defined as (note that these are different tori than the ones in (2.15))

dz1 = dx+ τ1 dy , dz2 = dθ1 + τ2 dθ2 . (5.3)

This construction in terms of tori is especially convenient since it will preserve supersymmetry
(such toroidal orbifold models have already been considered in [118]). We see that when we
define (recall that α−1 = 1 +A2 +B2)

d1 = (1 +A)2 , τ1 =
1

1 +A2

(
AB + i α−1/2

)
, d2 = 1 , τ2 = i (5.4)

we obtain a metric that is precisely (5.2) without the unwanted cross-terms

ds2 = dr2 + dz2 + (1 +A2) dx2 + (1 +B)2 dy2 + 2AB dxdy + dθ2
1 + dθ2

2 . (5.5)

We could generate a larger class of metrics that are related to this orientifold version of the
resolved conifold by allowing more generic complex structures on the tori2. The only choice we
have to require for all of them is

Re τ2 = 0 (5.6)

because the resolved conifold does not have any dθ1 dθ2 cross term and we want our starting
background before transition to be “close” to a resolved conifold. This will enable us to argue
for the existence of a contractible 2–cycle. We could, however, also have taken the point of view
that “untwisting” the z–fiber should remove all crossterms, also the dx dy term that comes from
the z–fibration. This can be achieved by setting Re τ1 = 0 and we will also allow for this case,
but keep in mind that τ1 can in principle have both real and imaginary part.

Note that the setup we chose is again a model with four O7–planes each with six D7–branes
on top and we have a constant complex structure on the F–theory torus, or in other words a
constant axion–dilaton in IIB. Not only is it constant, but actually zero, because D7 and O7
charges cancel exactly, so we set as in [73]

χIIB = 0 , φIIB = 0 . (5.7)

Adding D5–branes to this background will simply act as a warp factor in IIB [40], i.e. a
harmonic function H(r). Since we work in the local limit anyway, we can absorb this into the
coordinate differentials as we did in chapter 3.

At the orientifold point we can also make an ansatz for the B–field, which is invariant under
Ω(−1)FL Ixy if all its components have precisely one leg along the T–duality directions. We did

2Supersymmetry would then have to be restored by an appropriate choice of fluxes.
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not allow for any magnetic NS flux when we constructed the background in 3.2, so let us keep
the assumption that there are no dx dz or dy dz components3. Our ansatz will therefore be

BIIB
NS = bxi dx ∧ dθi + byj dy ∧ dθj , (5.8)

where the coefficients can now depend on (r, z, θ1, θ2), since we do not want to T–dualize along
z anymore. With the same reasoning we also have to make an ansatz for the RR two–form:

CIIB2 = c1 dx ∧ dz + c2 dx ∧ dθ1 + c3 dx ∧ dθ2 + c4 dy ∧ dz + c5 dy ∧ dθ1 + c6 dy ∧ dθ2 . (5.9)

The coefficients ci are in general allowed to depend on (r, z, θ1, θ2). This implies an RR three–
form fieldstrength

F IIB3 = Fxz1 dx ∧ dz ∧ dθ1 + Fxz2 dx ∧ dz ∧ dθ2 + Fyz1 dy ∧ dz ∧ dθ1
+Fyz2 dy ∧ dz ∧ dθ2 + Frxz dr ∧ dx ∧ dz + Frx1 dr ∧ dx ∧ dθ1
+Frx2 dr ∧ dx ∧ dθ2 + Fryz dr ∧ dy ∧ dz + Fry1 dr ∧ dy ∧ dθ1 (5.10)
+Fry2 dr ∧ dy ∧ dθ2 .

As in [73] we ignore the RR four–form for simplicity.
In conclusion, we make the generic ansatz (5.2) for the metric and (5.8) and (5.10) for the

fluxes for the IIB background at the orientifold point before transition. We will mostly focus
on the theory at the orientifold point, which takes us to type I. But it will be interesting to
compare the type I theory that we find after two T–dualities to the IIB theory we would have
obtained if we had T–dualized the IIB background away from the orientifold point. They will
have many similarities. But note that away from the orientifold point there are more allowed
flux components.

Similar remarks hold true for the background after transition, but here we have an F–theory
fourfold that is fibered over a base which resembles the deformed conifold. We now want to
find an orientifold version of this, too. We will start with the semi–flat limit we obtained from
T–duality, because it does not have any dx dθ2 or dy dθ1 crossterms that would not be invariant
under Ixy. In other words, we start with (3.72), but impose the values for β̃i as in (3.74), (3.75):

ds̃2IIB = dr2 +
e−2φ

α0CD

[
dz + α0αADe

2φ dx+ α0αBCe
2φ dy

]2
+α0D1 (dx2 + ζ dθ2

1) + α0C1 (dy2 + dθ2
2) (5.11)

+2α0α
2ABe2φ (dθ1 dθ2 − dx dy) ,

with the squashing factor ζ defined in (3.77). At the danger of overloading notation we have
introduced two other abbreviations

C1 = C + α2A2e2φ , and D1 = D + α2B2e2φ (5.12)

where C and D were defined in (3.66) and govern the size of the two S2 in the non–Kähler
resolved metric we found in IIA after transition. With this definition the constant α0 from
(3.66) becomes

α0 = C1D1 − α4e4φA2B2. (5.13)

3The analysis of this chapter would not be influenced by allowing dx dz or dy dz components in the B–field.
We would simply acquire also a z–dependent twisting of the T–duality fibers x and y.
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Again, this metric has unwanted cross terms in the form dx dz and dy dz, but it can also be
brought into the form (5.2) after untwisting the z–fiber. However, the complex structures of the
two tori will now be very different, in particular we find

Re τ2 6= 0 but Re τ1 = 0 , (5.14)

which is exactly opposite as for the background before transition. The second of these relations
might not be immediately obvious, but is simply due to the cancellation of the dx dy cross terms
from the dz–fibration with those from the last line in (5.11). Again, we allow for quite generic
values for τi (supersymmetry will fix them depending on the fluxes we choose), but we will
always require Re τ1 = 0. Requiring (5.11) without dx dz or dy dz cross terms to match with

ds̃2 = dr2 + d̃1 |dz1|2 + d̃2 |dz2|2 + d̃3 dz
2 (5.15)

gives the following values for the constants d̃i and complex structures

d̃1 = C−1 , d̃2 = ζα0D1 , d̃3 = (α0CD e2φ)−1 (5.16)

τ1 = i

√
C

D
, τ2 =

α2ABe2φ + i
√
C1D1ζ − α4A2B2e4φ

ζ D1
.

The B–field does not change under geometric transition, as we showed on our walk through the
duality chain, see (3.80), so also after transition we have (5.8). The orientifold action also allows
for the same type of RR fields as in (5.9). We will also assume a vanishing axion–dilaton for the
orientifold background after transition.

Both of these backgrounds will now be T–dualized to type I, because the D7/O7 system
turns into spacetime filling D9/O9 under T–duality along x and y, as explained above. This
gives rise to non–Kähler backgrounds in type I due to the same mechanism that mixes B–field
and metric as encountered in chapter 3.

5.2 Non–Kähler Backgrounds in Type I Theory

Before geometric transition we find the metric after performing two T–dualities along x and y
on (5.2) to be

ds2I = dr2 + dz2 + |dz2|2 − 2αAB (dx− bxθi dθi)(dy − byθj
dθj)

+α(1 +B2) (dx− bxθi dθi)2 + α(1 +A2) (dy − byθj
dθj)2 . (5.17)

This metric has some by now familiar properties: we encounter the usual fibration structure,
i.e. the fibers corresponding to the T–duality directions are twisted by the B–field. Therefore,
this background will in general not be Kähler, since the derivative of these B–fields make the
fundamental two–form non–closed. But there is one fundamental difference: we did not boost
the complex structure of the (x, θ1) and (y, θ2) tori since this would lead to cross terms that
are projected out by Ixy and, moreover, we do not aim at regaining a metric that looks like a
deformed conifold. We are not attempting to find the mirror manifold in IIA, therefore we do
not expect to find a deformed conifold (or something close to it). So there is simply no reason
why we should have to impose this non–trivial boost of complex structures. Furthermore, since
we do not T–dualize along z we do not have to worry about isometries for this direction. This
is a simpler scenario than the one considered in the type II theories in chapter 3. It is rather
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closer to the case considered in [70] in the sense that the B–field is completely “used up”, which
it has to be since BNS is not part of the type I spectrum.

Therefore, we find an explicit realization of a non–Kähler manifold for string theory back-
grounds in type I. This should still be a complex manifold [118, 119]4, though, and we need to
determine the precise value of the fluxes to ensure that the supergravity equations of motion are
solved. So, let us finish the analysis of the type I background before transition by evaluating
the RR fields and the dilaton. The type of background we consider, a toroidal orbifold with
non–trivial complex structure, has already been studied in [118]. The complex structure will be
fixed by the fluxes and one particular simple choice is the assumption that the RR and NS field
strengths are constant (although BNS and C2 are not). This assumption was shown to be con-
sistent with a metric of type (5.2) where Re τi = 0, a choice which is possible for our orientifold
setup. Under this condition, the following constraint is imposed on the fields [118, 119]

BNS
[xµ C

RR
νy] = 0 , (5.18)

where [ , ] indicates antisymmetrization of all enclosed indices. This has important consequences
for the RR field we find after T–duality. As derived in [118], only those RR fields with one leg
along the T–duality direction survive and we find for the RR three-form fieldstrength and the
string coupling

F I3 = F IIBxz1 dy ∧ dz ∧ dθ2 + F IIBxz2 dy ∧ dz ∧ dθ1 − F IIByz2 dx ∧ dz ∧ dθ1
−F IIByz1 dx ∧ dz ∧ dθ2 + F IIBrxz dr ∧ dy ∧ dz + F IIBrx1 dr ∧ dy ∧ dθ2 (5.19)

+F IIBrx2 dr ∧ dy ∧ dθ1 − F IIBryz dr ∧ dx ∧ dz − F IIBry1 dr ∧ dx ∧ dθ2
−F IIBry2 dr ∧ dx ∧ dθ1

gI = eφ
I

=
√
α , (5.20)

where F IIBijk are the components of the RR field strength we started with in IIB, see (5.10). Note
that the string coupling is still a constant in our local limit, but it could in principle depend
on (r, θ1, θ2) through α, if we leave the local limit. In any case, the dilaton does not vanish
anymore. It is interesting that there is no B–field dependent fibration in the RR three form.
This agrees with observations made in [118, 119] and is due to the constraint (5.18). Note that
this was not the case for the IIA mirror, see equation (3.26) for example, where the fibration
structure is encrypted in the hatted coordinates.

In type IIB, the RR fieldstrength F IIB3 and the NS fieldstrength HIIB
NS are related due to

the linearized equation of motion [5, 68]

F IIB3 = ∗HIIB
NS . (5.21)

In other words we can fix

F IIBryz dr ∧ dy ∧ dz = ∂rc4(r, z, θ1, θ2) dr ∧ dy ∧ dz (5.22)
= ∗

[
(∂θ2 bxθ1 − ∂θ1 bxθ2) dx ∧ dθ1 ∧ dθ2

]
and similarly for the other components, where we use the convention εrxyzθ1θ2 = +1. This is
completely analogous to the discussion following equation (3.54), we will therefore not repeat

4Non–complex manifolds in heterotic theory have been considered in [120], for example. Our orientifold
construction is similar to models considered in [118], therefore we would expect it to yield complex manifolds as
well.
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it for all components. Let us simply state that this orientifold setup is much less restrictive
than the one considered in chapter 3 and we can have more components of F3 and HNS turned
on. This is due to the fact that we have more B–field components that are consistent with the
orientifold action and that the coefficients are now also allowed to depend on z. Even requiring
bxθi

and byθj
to be functions of r only will not result in any of the ci to be forced to a constant.

We would like to address the question if the background we derived here can indeed show any
geometric transition, i.e. can we shrink the two–cycle the D5 branes are wrapped on and blow
up a dual three-cycle with fluxes on it? To answer this question we can consider the type IIB
metric away from the orientifold point. T–dualizing this gives another IIB background which
turns out to be surprisingly similar to the type I we just derived. Since we know that IIB away
from the orientifold point shows geometric transition (this is the original Vafa model), we can
infer that the type I background does, too, since it is dual to this IIB background.

Starting with the full IIB metric before orientifolding (5.2) and the same ansatz for BNS as
in (5.8) we would have found

dŝ2IIB = dr2 + αdz2 + |dz2|2 − 2αAB (dx− bxθi dθi)(dy − byθj
dθj)

+α(1 +B2) (dx− bxθi dθi)2 + α(1 +A2) (dy − byθj
dθj)2 , (5.23)

but now with non–vanishing BNS

BNS = −αA (dx− bxθi dθi) ∧ dz − αB(dy − byθj
dθj) ∧ dz , (5.24)

which was to be expected because these are precisely the dx dz and dy dz cross–terms from the
starting metric, so they turn into B–field components via Buscher’s rules (B.11). We see that
the only difference in the metric is a warp factor for dz2. In our local limit this is simply a
constant and we can rescale

z −→ z′ =
√
α z , (5.25)

then the type I and type IIB metrics after T–duality agree completely. Since (5.23) is dual to
the IIB background that shows transition, we can infer that also the type I background (5.17)
has a two–cycle that can be shrunk and be exchanged for a blown–up three cycle.

The dual background with blown up three–cycle is found by T–dualizing the orientifold
ansatz after transition (5.15). The steps are the same as for the background before transition
and pretty straightforward. There is no extra boost of the complex structures required. This
brings us to the type I metric after transition

ds̃2I = dr2 + (α0CDe
2φ)−1 dz2 + ζ α0D1 |dz2|2

+C (dx− bxi dθi)2 +D (dy − byj dθj)2 . (5.26)

Again, the B–field is completely used up under T–duality. The RR fluxes will take the same
form as in (5.19), although the precise coefficients may differ. The string coupling is evaluated
to be

gI = eφ
I

=
√
CD , (5.27)

which is not the same value we found before transition (5.20), but in the local limit both are
constant.

Again we want to compare this to the IIB background away from the orientifold point that
we would have obtained after two T–dualities. This is done by T–dualizing (5.11), which still
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has the dx dz and dy dz cross–terms. After a little algebra one finds almost exactly the same
metric apart from a warp factor for dz2, which turns out to be surprisingly simple

dˆ̃s2IIB = dr2 + e−2φ dz2 + ζ α0(D + α2B2e2φ) |dz2|2

+C (dx− bxi dθi)2 +D (dy − byj dθj)2 . (5.28)

After a rescaling
z −→ z′ = (α0CD)−1/2 z (5.29)

this agrees with the type I metric. The only difference is, as before transition, that this IIB
background has a non–vanishing BNS field and we do not have to restrict the ansätze for the
fluxes to be invariant under orientifold operation. But note that we have established a connection
between the semi–flat IIB background after transition (5.11) with the type I background after
transition (5.26), instead of considering the full IIB background (with restored cos〈z〉 and sin〈z〉
terms).

We can therefore conclude that the type I backgrounds constructed in (5.17) and (5.26) are
transition dual. Let us repeat the argument: Each of the type I metrics is essentially identical to
a IIB background which is T–dual to one of the IIB backgrounds discussed in section 3.4. The
backgrounds in section 3.4 are transition duals because we found them by following the duality
chain. If now one type I background is T–dual to the IIB background before and the other to
the IIB background after transition, this implies that they are also transition duals. They are
connected via an even longer duality chain than the one we followed in chapter 3.

Both type I backgrounds are non–Kähler, because they are T–dual to IIB backgrounds with
NS field. It would be interesting to confirm that they are really complex as anticipated in
[73, 118], but we cannot show this conclusively if we only know the local metric. Again, we
would require knowledge of the global metric of the F–theory fourfold to be able to extend this
analysis to global backgrounds.

5.3 Non–Kähler Backgrounds in Heterotic Theory

As noted in the introduction, type I and heterotic string theory are related via a weak–strong
coupling duality, so–called S–duality. It does not only exchange weak and strong coupling
constant, but also RR and NS two–forms. This also means, that the sources for the RR two–
form have to be turned into sources for BNS , i.e. D5–branes become so–called NS5–branes in
heterotic string theory. Recall that heterotic strings cannot couple to D–branes.

S–duality is generated by the SL(2,Z) element S in (3.10). Recall that it leaves the Einstein
metric Gµν = e−φ/2gµν invariant and acts on the complex scalar field λ = χ+ie−φ as λ→ −1/λ.
For χ = 0, S–duality simply relates eφ to e−φ (in other words strong to weak string coupling)
and exchanges NS and RR 2–forms. Since the axion χ vanishes in our case and there is no NS
field in type I, the S–duality rules read

ghetµν = e−φIgIµν , φhet = −φI , Bhet
NS = CI2 , (5.30)

where gµν indicates the string frame metric we have been working with so far. It is evident that
S–duality maps the type I spectrum (which does not contain BNS since it gets projected out
by Ω when constructing an unoriented closed string) to the heterotic SO(32) spectrum (which
does not contain CRR2 since it cannot couple consistently to D–branes). One can also show that
under these replacements the type I and heterotic action are really identical [7].

We will now S–dualize the type I backgrounds (5.17) before and (5.26) after transition to
obtain heterotic backgrounds. These will also be non–Kähler, so we construct heterotic string
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backgrounds with torsion. Those have been the subject of intensive study, see e.g. [30, 32, 119,
121] and references in [33], and it will be interesting to see how the new, non–compact models
we discuss here, fit into the existing literature.

Before transition, we find the S–dual of the metric (5.17)

ds2het = α−1/2
(
dr2 + dz2 + |dχ2|2)− 2

√
αAB (dx− bxθi dθi)(dy − byθj

dθj)

+
√
α (1 +B2) (dx− bxθi dθi)2 +

√
α (1 +A2) (dy − byθj

dθj)2 . (5.31)

The torsion three–form and string coupling are found from (5.19)

Hhet = F I3 = F IIBxz1 dy ∧ dz ∧ dθ2 + F IIBxz2 dy ∧ dz ∧ dθ1 − F IIByz2 dx ∧ dz ∧ dθ1
−F IIByz1 dx ∧ dz ∧ dθ2 + F IIBrxz dr ∧ dy ∧ dz + F IIBrx1 dr ∧ dy ∧ dθ2 (5.32)

+F IIBrx2 dr ∧ dy ∧ dθ1 − F IIBryz dr ∧ dx ∧ dz − F IIBry1 dr ∧ dx ∧ dθ2
−F IIBry2 dr ∧ dx ∧ dθ1

ghet =
1√
α
, (5.33)

After transition, taking the S–dual of (5.26), we find

ds̃2het =
1√
CD

[
dr2 + (α0CDe

2φ)−1 dz2 + ζ α0D1 |dχ2|2
]

+

√
D

C
(dx− bxi dθi)2 +

√
C

D
(dy − byj dθj)2 (5.34)

ghet =
1√
CD

. (5.35)

This, together with a torsion three–form of the same type as (5.32), specifies the heterotic
background we claim to be transition dual to the background obtained as the S–dual of the type
I background before transition in (5.31).

Let us repeat the reasoning why we claim these backgrounds to be transition dual. We
verified Vafa’s duality chain to the extend that we found a IIB background that has the local
structure of a deformed conifold after a series of T–dualities and anM–theory flop. Trusting this
duality chain means, both IIB backgrounds are actually transition dual. We then constructed
type I backgrounds that are T–dual to an orientifold version of these IIB backgrounds. We also
verified that the type I metrics are actually very close to IIB after two T–dualities away from
the orientifold limit. Therefore, we can trust that those metrics in type I contain a contractible
two– and three–cycle, respectively. Since the heterotic backgrounds possess the same metric as
the type I backgrounds (apart from an overall factor given by the coupling) they should also be
transition duals.

Both heterotic backgrounds have to fulfill a torsional relation to preserve supersymmetry
[30]. With constant dilaton (as we have in the local limit) this torsional relation reads

Hhet = ∗dJ (5.36)

with fundamental two–form J . But the fluxes were already constrained in IIB by the linearized
equation of motion (3.54). This implies the following chain of reasoning for the mapping of the
fluxes from IIB to heterotic

∗(HIIB
NS ) = F IIB3

Txy−−→ F I3 = Hhet = ∗(dJ) , (5.37)
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where T–duality Txy along x and y imposes relations between the type IIB RR flux F IIB3 and
the type I three–form F I3 that can be read of from (5.19)

F IIBrx(z,1,2) = −F Iry(z,2,1) , F IIBry(z,1,2) = F Irx(z,2,1)

F IIBxz(1,2) = −F Iyz(2,1) , F IIByz(1,2) = F Ixz(2,1) . (5.38)

Note that the B–field components bxθi
and byθj

we start with in IIB appear at the end of the
chain in heterotic theory in the metric and are contained in dJ . Therefore, this connection is
highly non–trivial and might not always be consistent for an arbitrary choice of background
fluxes. It means that there has to exist a complex structure on the heterotic metric that is
compatible with the T–duality action on the RR forms.

We can demonstrate this for a simple toy example5. We will make a quite restrictive ansatz
for the fluxes and work strictly in the local limit where A,B,C,D =constant (and so are α, α0).
Let us choose for the IIB RR two–form

CIIB2 = c1(r) dx ∧ dz + c4(r) dy ∧ dz , (5.39)

which means there will be only two components in the RR fieldstrength. They are related to
the IIB NS–field via the linearized equation of motion (5.21) and we find

F IIBrxz dr ∧ dx ∧ dz = ∗[(∂θ2byθ1 − ∂θ1byθ2) dy ∧ dθ1 ∧ dθ2]
= a1 (∂θ2byθ1 − ∂θ1byθ2) dr ∧ dx ∧ dz

F IIBryz dr ∧ dy ∧ dz = ∗[(∂θ2bxθ1 − ∂θ1bxθ2) dx ∧ dθ1 ∧ dθ2] (5.40)
= a2 (∂θ2bxθ1 − ∂θ1bxθ2) dr ∧ dy ∧ dz ,

where the constants ai contain the numerical factor due to the Hodge star operator ∗ on the
six–dimensional IIB metric (5.5). In order to fulfill the supergravity equation of motion we
also have to ensure that the IIB NS field strength does not have any other components than
those appearing in (5.40). This imposes the requirement that the components bxθi

and byθj

are functions of (θ1, θ2) only and not of r or z. Under T–duality these fluxes turn into an RR
three–form in type I:

F I3 = −F IIBrxz dr ∧ dy ∧ dz + F IIBryz dr ∧ dx ∧ dz (5.41)

which becomes Hhet after S–duality. The question now is: does a complex structure (or rather
fundamental two–form) exist for the heterotic background that is compatible with this torsion
three–form?

There are of course many complex structures on the real six–manifold that is described by
the metric (5.31). One possible choice is to take the real vielbeins

e1 = α−1/4 dr , e2 = α−1/4 dz

e3 = α−1/4 dθ1 , e4 = α−1/4 |τ2| dθ2 (5.42)

e5 = α−1/4

√
1 +A2

2
((dy − byi dθi) + γ2 (dx− bxidθi))

e6 = α−1/4

√
1 +A2

2
((dy − byi dθi) + γ3 (dx− bxidθi))

5This differs from the example considered in [73].
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with the coefficients γi being determined by the metric to

γ2 =
−AB ± α−1/2

1 +A2
, γ3 =

−AB ∓ α−1/2

1 +A2
. (5.43)

With the canonical choice of complex structure as in (4.5) the fundamental two–form becomes

J = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6 = {J1}bij=0 + {J2} (5.44)

where we have explicitely separated J into a B–field independent part J1 and a part that contains
the IIB B–field components bxθi

and byθj
, given by J2. Since we work in the local limit

dJ1 = 0 (5.45)

trivially. One might expect such a splitting to be always possible, since in the absence of any flux
a Kähler background maps to another Kähler background under T–duality and only switching
on NS flux creates torsion. This is of course correct, but a splitting of the fundamental two–form
is only possible if we know the “right” complex structure on the Kähler manifold, in other words
if we know the Kähler form. Not any choice of real vielbeins ei will lead to a closed J1. These
issues have been discussed in chapter 4.

For the local limit this splitting is trivially always possible. But keep in mind that the choice
(5.42) with the complex structure imposed by J is by no means unique. We view this choice as
an illustrative example. For the non–closed part we find

J2 = byi dx ∧ dθi − bxj dy ∧ dθj − (bxθ1byθ2 − bxθ2byθ1) dθ1 ∧ dθ2 (5.46)

up to an overall minus sign related to the sign ambiguity in γi in (5.43). The torsional relation
Hhet = ∗(dJ2) then implies

Hhet
rxz dr ∧ dx ∧ dz = ∗[−(∂θ2bxθ1 − ∂θ1bxθ2) dy ∧ dθ1 ∧ dθ2]

= −a1 (∂θ2bxθ1 − ∂θ1bxθ2)dr ∧ dx ∧ dz
Hhet
ryz dr ∧ dy ∧ dz = ∗[(∂θ2byθ1 − ∂θ1byθ2) dx ∧ dθ1 ∧ dθ2] (5.47)

= a2 (∂θ2byθ1 − ∂θ1byθ2) dr ∧ dy ∧ dz

with all other components vanishing because bij does not depend on r or z. We have again
included numerical factors ai to incorporate the Hodge star operator, they are exactly the same
as in (5.40). We would like to match this torsion form with the type I three–form (5.41), which
requires

−F IIBrxz = Hhet
ryz , F IIBryz = Hhet

rxz . (5.48)

Comparing F IIB given by the supergravity equation of motion in (5.40) and Hhet given through
the torsional relation in (5.47), we see that the first and second identity require

−a1 = a2 and a2 = −a1 , (5.49)

respectively. The constants a1 and a2 are determined by the Hodge star operator, which is given
on a six–manifold by

∗(dxµ1 ∧ dxµ2 ∧ dxµ3) =
1
3!

√
|g| εµ1µ2µ3

ν1ν2ν3 dx
ν1 ∧ dxν2 ∧ dxν3 . (5.50)

Since a1 is determined by εyθ1θ2rxz, a2 is determined by εxθ1θ2ryz and εyθ1θ2 rxz = −εxθ1θ2 ryz,
this seems perfectly consistent. We conclude that the choice of flux and complex structure in
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our toy example is consistent with the duality chain (5.37) when a1 = −a2. The precise value
of a1 could be found from the metric (5.31), but we will not do so here.

In summary, we found new non–compact, non–Kähler manifolds with local metric (5.31) and
(5.34), that are related via S–duality to the type I backgrounds constructed in the last section.
We argued the type I backgrounds to be transition duals, therefore also the heterotic non–Kähler
backgrounds should show geometric transition. We demonstrated for a specific choice of fluxes
that this background fulfills the torsional relation with torsion three–form (5.32), which was in
turn related to the RR three form flux in the IIB orientifold. This IIB flux was also shown to
fulfill the linearized supergravity equation of motion.

We now turn to the question if we can find a global background that reduces in the local
limit to the ones we constructed here.

5.4 A Global Heterotic Solution

One would, of course, like to leave the local limit. We cannot simply let the coordinates that
we kept fixed vary, but if we find a global supergravity solution that reduces to the one we
found in the local limit, then we can safely assume this as one possible solution for our global
background.

Let us therefore take a closer look at backgrounds that have some similarity with ours. There
are two solutions that come to mind in IIB: The Klebanov–Strassler (KS) model [5] and the
Maldacena–Nunez solution (MN) [71]6. The full MN solution is only known after transition, so
let us focus on that region and compare the two.

Both models describe a gravity dual of the far IR limit of a gauge theory. In the usual
gauge/gravity duality, the IR of the supergravity theory corresponds to small radial coordinate
r, the UV to large r. Although the gauge theory after transition is already in the far IR (the
confining phase), the dual supergravity solution is nevertheless valid at all scales7. We want to
alert the reader to the fact that there are two different concepts of IR and UV: on the gauge
theory side the UV is described by D–branes wrapped on a large S2, whereas the (far) IR is
described by fluxes on a large S3. Both gauge theory phases have a supergravity dual, in which
UV corresponds to large r and IR to small r. We will in the following only discuss a solution
after transition, so when we distinguish between IR and UV it will always be in the supergravity
dual side. The gauge theory is already in the confining phase.

KS and MN both “flow” towards some version of the deformed conifold after transition. The
geometry is different, in particular the MN solution does not have two spheres of the same size
as KS does. Both models also have fluxes turned on, but in the MN case there is only RR flux
(the reason being that they only start with D5 branes before transition, whereas KS start with
D5 and D3, resulting in different solutions for the fluxes). So it seems that the MN background
is well suited for S–dualizing it to a heterotic theory. We cannot do the same to the KS solution
because its NS flux could turn into RR flux, which the heterotic theory does not contain. Also,
the MN background seems closer to what we found after geometric transition in IIB, we also
recovered two S2 of different size.

6The supersymmetry of these backgrounds has been shown in [83] and [78].
7This is not quite true for the MN background, which is only valid at small r [108], we will return to this issue

later.
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Let us therefore quote the MN background [71], which is after S–duality in heterotic

ds2MN = N dr̃2 +
N

4

(
dψ + cos θ̃1 dφ̃1 + cos θ̃2 dφ̃2

)2
(5.51)

+
N

4
(
e2g + a2

) (
dθ̃2

2 + sin2θ̃2 dφ̃
2
2

)
+
N

4

(
dθ̃2

1 + sin2θ̃1 dφ̃
2
1

)
− Na

2

[
cosψ(dθ̃1dθ̃2 − sin θ̃1sin θ̃2 dφ̃1dφ̃2) + sinψ(sin θ̃1 dφ̃1 dθ̃2 + sin θ̃2 dφ̃2 dθ̃1)

]
with the definition (following the notation of [108])

a(r̃) = − 2r̃
sinh 2r̃

, e2g = 4r̃ coth 2r̃ − 4r̃2

sinh2 2r̃
− 1 . (5.52)

The dilaton is given by

e2φ =
eg+2Φ0

sinh 2r̃
(5.53)

where Φ0 is some constant value that could for example be fixed from the U–dual background.
The NS three–form for this heterotic background was found in [71] to be

HNS
MN = −N

4

[
(ω1 −A1) ∧ (ω2 −A2) ∧ (ω3 −A3)−

∑
a

F a ∧ (ω4 −A4)

]
(5.54)

with one–forms

ω1 = cosψ dθ̃1 + sinψ sin θ̃1 dφ̃1 A1 = a dθ̃2

ω2 = − sinψ dθ̃1 + cosψ sin θ̃1 dφ̃1 , A2 = −a sin θ̃2 dφ̃2 (5.55)
ω3 = dψ + cos θ̃1 dφ̃1 , A3 = − cos θ̃2 dφ̃2

and the fieldstrength F is defined as F a = dAa + εabcAbAc. These one–forms are not quite
the right vielbeins for observing the SU(3) structure of this background [108], since it is not
a conformal Calabi–Yau. (For the Ricci flat Kähler metric on the deformed conifold these
vielbeins with the canonical complex structure would give closed two and three form, but not
for a background with different size of the (φ̃1, θ̃1) and (φ̃2, θ̃2) spheres. Therefore, they will
not produce the correct SU(3) structure for this non–Kähler background either.) We will return
to the issue of the right complex structure when we discuss the torsional relation of the global
heterotic background.

If we want to compare this to our local background, we should also introduce local coordinates
here. Let us define them as

r̃ = r0 + r

ψ = 〈z〉+ z , θ̃i = 〈θi〉+ θi (5.56)

φ̃1 = 〈φ1〉+
x

sin〈θ1〉
, φ̃2 = 〈φ2〉+

y

sin〈θ2〉
.

The local MN background is then found to be

ds2MN = N dr2 +
N

4
(dz + cot 〈θ1〉 dx+ cot 〈θ2〉 dy)2

+
N

4
(
e2g + a2

) (
dθ2

2 + dy2
)

+
N

4
(
dθ2

1 + dx2
)

(5.57)

−Na
2

[
cos 〈z〉(dθ1dθ2 − dx dy) + sin 〈z〉(dx dθ2 + dy dθ1)

]
.
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We now want to compare this to the heterotic background we found after transition (5.34).
It was given by

ds̃2het = A1 dz
2 +A2 (dy − byi dθi)2 +A3 (dx− bxj dθj)2 +A4 |dz2|2 +A5 dr

2 . (5.58)

The coefficients could be read off from (5.34), but we can also leave them arbitrary to allow for
a larger class of backgrounds. Recall that dz2 = dθ1 + τ2 dθ2 and dz1 = dx+ τ1 dy, where we had
found that the IIB background before transition was characterized by Re τ2 = 0, whereas after
transition Re τ1 = 0. We will now assume that we can consistently deform the background after
transition in a way that converts both tori to square ones, i.e. also Re τ2 = 0, together with a
choice of B–field (these are the components of the IIB B–field before transition)

BIIB
NS = bxθ2 dx ∧ dθ2 + byθ1 dy ∧ dθ1 . (5.59)

This is a special choice of (5.8), which is consistent with our IIB orientifold setup. Supersym-
metry will be restored by an appropriate choice of RR fluxes. The effect on the metric (5.58) is,
after a little rearrangement,

ds̃2het = A1 dz
2 +A2 dy

2 +A3 dx
2 +A4 |dz2|2 +A5 dr

2

+A2 b
2
yθ1 dθ

2
1 +A3 b

2
xθ2 dθ

2
2 − 2 (A2 byθ1 dy dθ1 +A3 bxθ2 dx dθ2) . (5.60)

If this is to coincide with the local MN background (5.57), we have to impose a few requirements:
we want the cross terms dx dθ2 and dy dθ1 to have the same prefactor and we want the (x, θ1)
as well as the (y, θ2) spheres to be unsquashed. This gives the following constraints on the
coefficients and B–field

A3 =
A2

|τ2|2
, A4 = A2

(
1
|τ2|2

− b2yθ1

)
, bxθ2 = |τ2|2 byθ1 (5.61)

and converts our local metric (5.60) to

ds̃2het = A2

[(
dy2 + dθ2

2

)
+

1
|τ2|2

(
dx2 + dθ2

1

)
− 2byθ1 (dy dθ1 + dx dθ2)

]
+A5 dr

2 +A1 dz
2 . (5.62)

We now perform a local coordinate transformation

y −→ sin〈z〉 y + cos〈z〉 θ2
θ2 −→ − cos〈z〉 y + sin〈z〉 θ2 (5.63)
z −→ z + cot〈θ1〉x+ cot〈θ2〉 y ,

which might remind the reader of a similar transformation in chapter 2, in particular (2.25).
Then (5.62) becomes

ds̃2het = A5 dr
2 +A1 (dz + cot〈θ1〉 dx+ cot〈θ2〉 dy)2

+A2

[(
dy2 + dθ2

2

)
+

1
|τ2|2

(
dx2 + dθ2

1

)]
(5.64)

−2A2byθ1 [sin〈z〉 (dy dθ1 + dx dθ2) + cos〈z〉 (dθ1 dθ2 − dx dy)] .

Comparing this to the local MN background (5.57), we see that we can exactly match the two
backgrounds with the following choice for the coefficients

A1 = A3 =
A5

4
=

N

4
, A2 =

N(e2g + a2)
4

, A4 =
Ne2g

e2g + a2
. (5.65)
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This has consequences for the IIB B–field and the complex structure of the tori (since they are
related to the coefficients via (5.61))

BIIB
NS = a dx ∧ dθ2 +

a

e2g + a2
dy ∧ dθ1 (5.66)

dz1 = dx+ i dy , dz2 = dθ1 + i
√
e2g + a2 dθ2 . (5.67)

Note that the complex struture of the z1–torus was not fixed during the considerations here but
remains the same as in (5.15), the IIB orientifold ansatz after geometric transition.

Thus, we have shown that with an appropriate choice of IIB B–field before transition and
complex structure of the z2–torus after transition in IIB, our solution coincides with the local
limit of the MN background. Reversing this argument, we can also claim that the choice (5.65)
gives a valid global solution if we leave the local limit and allow our coordinates to vary, since
then we recover the MN background, which has been shown to be supersymmetric [78]. But we
can even go beyond that and claim that the global heterotic background we find after transition
is given in terms of generic coefficients Ai

ds̃2het = A5 dr̃
2 +A1

(
dψ + a1cos θ̃1 dφ̃1 + b1cos θ̃2 dφ̃2

)2
(5.68)

+A2

(
dθ̃2

2 + sin2θ̃2 dφ̃
2
2

)
+A3

(
dθ̃2

1 + sin2θ̃1 dφ̃
2
1

)
−2A2byeθ1

[
cosψ(dθ̃1dθ̃2 − sin θ̃1sin θ̃2 dφ̃1dφ̃2) + sinψ(sin θ̃1 dφ̃1 dθ̃2 + sin θ̃2 dφ̃2 dθ̃1)

]
,

where we have re–introduced global coordinates by reversing (5.56). Although the MN back-
ground was derived for the IR (small r limit) only [108], our global solution should be valid
in the UV (large r limit) as well, but we cannot use the identification (5.65) there. The UV
limit of MN was derived in [108], and we will return to this issue shortly. The dilaton φ for
this background can be determined from the warp factors in the metric. The NS three–form (or
torsion three–form) H would be given by the torsional relation [122, 123]

H = e2φ ∗ d
(
e−2φ J

)
(5.69)

with fundamental two–form J . Note that the dilaton is not constant anymore, as anticipated
in our local analysis, where it became obvious how metric components would give rise to a
coordinate–dependent dilaton if we leave the local limit, see (5.35).

We could in principle now evaluate (5.69) to find the generic three–form for our postulated
global background. We will illustrate this in the example where the coefficients Ai match indeed
the MN solution. As pointed out in [108], the appropriate vielbeins are

e1 =
√
N dr̃ , e5 =

√
N

2
eg dθ̃2 , e2 =

√
N

2
(
dψ + cos θ̃1 dφ̃1 + cos θ̃2 dφ̃2

)
e3 =

√
N

2
(
sinψ sin θ̃1 dφ̃1 + cosψ dθ̃1 − a dθ̃2

)
(5.70)

e4 = −
√
N

2

[
B eg sin θ̃2 dφ̃2 +A(cosψ sin θ̃1 dφ̃1 − sinψ dθ̃1 + a sin θ̃2 dφ̃2)

]
e6 = −

√
N

2

[
A eg sin θ̃2 dφ̃2 − B(cosψ sin θ̃1 dφ̃1 − sinψ dθ̃1 + a sin θ̃2 dφ̃2)

]
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which give rise to the metric (5.68) with identification (5.65). The coefficients A and B satisfy
A2 + B2 = 1 and are given as8

A = coth 2r̃ − 2r̃ csch22r̃ , B = csch 2r̃
√
−1 + 4r̃ coth 2r̃ − 4r̃2 csch2 2r̃ . (5.71)

We then make the canonical choice of complex structure where the fundamental two–form is
given by J = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6. This amounts to

J =
N

2
dr̃ ∧ (dψ + cos θ̃1 dφ̃1 + cos θ̃2 dφ̃2)

− N

4
A sin θ̃1 dθ̃1 ∧ dφ̃1 −

N

4
(
−A2a+Ae2g − 2Baeg

)
sin θ̃2 dθ̃2 ∧ dφ̃2

+
N

4
(Aa+ Beg)

[
sinψ(dθ̃1 ∧ dθ̃2 − sin θ̃1 sin θ̃2 dφ̃1 ∧ dφ̃2) (5.72)

+ cosψ(sin θ̃1 dθ̃2 ∧ dφ̃1 − sin θ̃2 dθ̃1 ∧ dφ̃2)
]
.

The background dilaton can be extracted from the warped metric or from [71, 78], and is given
by (5.53). With this dilaton one computes

d(e−2φJ) = e−2φ

(
−2

∂φ

∂r̃
dr̃ ∧ J + dJ

)
. (5.73)

The Hodge dual of this expression is most easily found in terms of vielbeins, since then

∗ (eα1 ∧ eα2 ∧ eα3) =
1
3!
εα1α2α3

µ1µ2µ3
eµ1 ∧ eµ2 ∧ eµ3 . (5.74)

We choose the orientation so that ε123456 = 1. Inverting (5.70) and replacing the coordinate
differentials by vielbeins one finds

e2φ ∗ d(e−2φJ) =
1√

N F2(r̃)

[
F2(r̃) (1 + 8r̃2 − cosh 4r̃) (4r̃ − sinh4r̃)

F1(r̃) sinh22r̃
e1 ∧ e2 ∧ e6

+
2 (−1 + 2r̃ coth 2r̃)

sinh 2r̃
e1 ∧ e3 ∧ e5 +

(1 + 8r̃2 − cosh 4r̃)
sinh3 2r̃

e1 ∧ e4 ∧ e6

+
(
− r̃

sinh2r̃
+

1
sinhr̃ cosh r̃

− r̃

cosh2 r̃

)
e2 ∧ e4 ∧ e5 (5.75)

+
F 2

2 (r̃)
sinhr̃ cosh r̃

e2 ∧ e3 ∧ e6 +
(−4r̃ + sinh4r̃)

sinh2 2r̃
e3 ∧ e4 ∧ e6

]

with F1(r̃) and F2(r̃) defined by

F1(r̃) = −1 + 8r̃2 + cosh 4r̃ − 4r̃ sinh 4r̃ , F2(r̃) =
√
−1 + 4r̃ (coth 2r̃ − r̃ csch2 2r̃) . (5.76)

8They play the same role as P and X introduced in section 4.2 and stem from the generic ansatz made for the
complex structure. Note that they also carry r–dependence only, the same assumption we used in section 4.2.
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This three–form is the torsion for our background (5.68) with dilaton (5.53) and coefficients
(5.65). In terms of global coordinates (r̃, θ̃i, φ̃i, ψ) the torsion H is given as

H = e2φ ∗ d(e−2φJ)

= −Na
′

4
cosψ dr̃ ∧ (dθ̃1 ∧ dθ̃2 − sin θ̃1 sin θ̃2 dφ̃1 ∧ dφ̃2)

− Na
′

4
sinψ dr̃ ∧ (sin θ̃2 dθ̃1 ∧ dφ̃2 − sin θ̃1 dθ̃2 ∧ dφ̃1)

+
Na

4
sinψ dθ̃1 ∧ dθ̃2 ∧ (dψ + cos θ̃1 dφ̃1 + cos θ̃2 dφ̃2)

− N
4

(sin θ̃1 cos θ̃2 − a cosψ cos θ̃1 sin θ̃2) dθ̃1 ∧ dφ̃1 ∧ dφ̃2

− N
4

(sin θ̃2 cos θ̃1 − a cosψ cos θ̃2 sin θ̃1) dθ̃2 ∧ dφ̃1 ∧ dφ̃2 (5.77)

− N
4

sin θ̃1 dθ̃1 ∧ dφ̃1 ∧ dψ +
N

4
sin θ̃2 dθ̃2 ∧ dφ̃2 ∧ dψ

− Na
4

cosψ (sin θ̃2 dθ̃1 ∧ dφ̃2 ∧ dψ − sin θ̃1 dθ̃2 ∧ dφ̃1 ∧ dψ)

− Na
4

sinψ sin θ̃1 sin θ̃2 dφ̃1 ∧ dφ̃2 ∧ dψ

with a′ = ∂a/∂r̃. It is easy to check that this matches precisely the MN three–form (5.54) and
therefore confirms our background to be a valid superstring solution. Moreover, in [74] it was
shown how one can construct vector bundles for this type of backgrounds that are derived from
F–theory. Their behavior under conifold transition was also studied there and we will not repeat
the arguments here.

The knowledge of a global heterotic solution that is consistent with our IIB orientifold setup
now enables us to make some predictions for the global behavior of the IIB B–field byθ1 and bxθ2
and the complex structure of the z2 torus as well. The global heterotic metric (5.68) contains
of course also the global IIB B–fields. It was obtained by connecting the local pictures in both
theories and then using the similarity of the heterotic metric with Maldacena–Nunez [71] to
obtain the global picture. In our case of interest, a background with only NS flux, we know
MN to be a valid solution in the IR (for small r). Comparing (5.68) with the MN metric (5.51)
determines BNS9. For small r̃

bxθ2 = −1 +
2
3
r̃2 − 14

45
r̃4 +O(r̃6)

byθ1 = −1 +
10
3
r̃2 − 446

45
r̃4 +O(r̃6) (5.78)

Near r̃ → 0 both B–field components are constant as one might have expected. Having deter-
mined the B–field we can also fix the z2–torus, since they are related via (5.61). The complex
structure is given as

|τ2|2 = 1 +
8
3
r̃2 − 32

45
r̃4 +O(r̃6) (5.79)

which tells us how the (θ1, θ2) torus varies as we move along the radial direction. In fact, near
r̃ → 0: τ2 ≡ i|τ2| = i which, along with τ1 = i, completely specifies the IR (small r) behavior in
IIB.

9One could as well solve the heterotic equations of motion (see also [108])
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The discussion in [71] does not extend to the UV regime. Here we can rely on the analysis
of [108] which embeds the MN background in a class of interpolating solutions between MN and
KS. Using their results we can obtain the large r̃ behavior of the B–fields (the small r̃ behavior
agrees with that from MN):

bxθ2 = −2 e−2er + auv (2r̃ − 1) e−
10er
3 − 1

2
a2

uv (2r̃ − 1)2 e−
14er
3 +O(e−6er)

byθ1 = −2 e−2er − auv (2r̃ − 1) e−
10er
3 − 1

2
a2

uv (2r̃ − 1)2 e−
14er
3 +O(e−6er) (5.80)

where auv = −∞ corresponds to MN in the interpolating scenario. The complex structure then
results in

|τ2|2 = 1 + 2 e−4er − auv (2r̃ − 1) e−
4er
3 +

1
2
a2

uv (2r̃ − 1)2 e−
8er
3 +O(e−

16er
3 ) . (5.81)

Notice that for r̃ → ∞ the IIB B–fields vanish and the complex structure approaches again
τ2 = i and τ1 = i.

This finalizes the study of the global heterotic background (5.68). With a different defor-
mation of our local background (5.58) we can also propose a global IIB metric. The heterotic
metric is essentially the same as that for the IIB orientifold after two T–dualities. In [74] it
was shown that we can also obtain the same local limit as the N = 2 background studied in
[124]. This strongly suggests that the manifold we obtained admits an N = 2 supersymmetric
solution and only fluxes break supersymmetry to N = 1. (Recall that in IIB fluxes only act as
an overall conformal warp factor, which is not visible in local coordinates, there we can always
absorb a warp factor into the coordinate differentials.) This is precisely the scenario discussed
by Gopakumar and Vafa [63, 6]. Therefore, although we do not exactly recover a (conformal)
conifold in the strict sense10, we still seem to have recovered a valid string theory background
at the end of the duality chain in IIB.

Let us summarize the accomplishments of this chapter. We found non–Kähler backgrounds
in type I and heterotic theory that are T– and U–dual, respectively, to (an orientifold of) the
Kähler IIB backgrounds constructed in chapter 3. This means, they are part of a long duality
chain that eventually relates them via a flop inM–theory. To our knowledge, these backgrounds
provide the first attempt of constructing geometric transitions in heterotic (or type I) theory.
It would be very interesting to study the effects on the underlying gauge theory and to find
an interpretation in topological string theory. We will comment in the next chapter on the
challenges that non–Kähler manifolds pose in this context.

Furthermore, although most of this thesis only describes backgrounds in the local limit, we
were able to propose a global extension for the heterotic background after transition by using
a similarity with the Maldacena–Nunez solution. We suggest that a larger class of heterotic
solutions is possible by leaving the coefficientsAi in (5.68) generic, but we confirmed the torsional
relation for the case where they match with the MN solution. In general, they will be determined
by the torsional relation, where the torsion three–form is given in terms of the U–dual IIB RR
form, as illustrated in (5.37). We provided a (local) toy example in which all fluxes were
consistent with this logic.

10Recall that our “walk through the duality chain” in chapter 3 led us to a metric that resembles a deformed
conifold, but had two different sized S2 and one of them was “squashed”, for example.



Chapter 6

Conclusion and Outlook

6.1 Summary

The purpose of this thesis was to verify Vafa’s duality chain, to discuss mirror symmetry with
NS flux on conifold geometries and to propose new non–Kähler backgrounds that are also related
by a geometric transition in IIA, type I and heterotic SO(32).

We started in section 2.2 by showing how resolved and deformed conifold are approximately
mirror to each other, although they do not possess the same number of isometries. As anticipated
by Strominger, Yau and Zaslow, we had to employ a “large complex structure limit” and could
only recover a semi–flat version of the deformed conifold, i.e. one that does indeed have the
same number of isometries as the resolved conifold. We argued that the typical deformed
conifold metric could be restored with a special coordinate transformation. This assumption
relied on our use of local coordinates and might not hold true in a global scenario. The use of
local coordinates also enabled us to hold the T 3 fiber coordinates fixed and boost the complex
structure “by hand”, such that the T–duality fiber becomes small compared to the base. The
fact that resolved and deformed conifold are only mirror to each other in the limit when both
resolution and deformation parameter become small could also be observed in this local limit.
But we do not believe this to hold globally, since the large complex structure boost we perform
alters the manifold non–trivially. In the local limit, however, this boost can be interpreted as a
trivial coordinate redefinition.

It should nevertheless be clear that globally the mirror of the Calabi–Yau resolved conifold
is not the Calabi–Yau deformed conifold, as was pointed out in [65, 6], but the metric we found
resembles the local limit of a deformed conifold.

Equipped with the established mirror symmetry between a local resolved and a local de-
formed conifold we determined the influence of NS–flux on this picture. In accordance with
the literature on this topic we found a non–Kähler manifold as the mirror of the local resolved
conifold. This mirror manifold has nevertheless close resemblance to the local deformed coni-
fold. The only difference is that the T 3 fibers acquire a “twist” by the B–field. Although this
seems very close in spirit to the half–flat manifolds found in [70], we argued in section 2.4 that
this manifold which we call “non–Kähler deformed conifold” is not half–flat. There are several
resolutions to this discrepancy. First, the half–flat manifolds from [70] do not only admit a
half–flat but also a symplectic structure, which is in agreement with other observations [92] that
IIA backgrounds should always be symplectic. This fits perfectly with the torsion classes for our
backgrounds that were computed in chapter 4. We demonstrated that the local IIA non–Kähler
backgrounds we constructed do not admit a half–flat but a symplectic structure.

85



86 CHAPTER 6. CONCLUSION AND OUTLOOK

Another difference to the half–flat models is that our mirror background does not lift to a
purely geometric solution inM–theory and does therefore not exhibit G2 holonomy, but only a
G2 structure. There are additional fluxes turned on, as we showed by explicitely T–dualizing a
IIB background which looks locally like a resolved conifold, but was constructed from F–theory.
This F–theory setup implies that we actually T–dualize an orientifold. Nevertheless, the resolved
conifold metric is completely invariant under the orientifold operation we constructed in section
3.2. We also made a generic ansatz for the fluxes which are allowed on this orientifold and
used this background to “walk along Vafa’s duality chain” in sections 3.3 and 3.4. It turned
out that the mirror metric was also perfectly consistent with an orientifold in IIA. The “non–
Kähler deformed conifold” we find under mirror symmetry with NS flux was invariant under the
combined action of the IIB orientifold and three T–dualities.

We showed beyond any reasonable doubt that Vafa’s duality chain figure 1.2 should be
modified for a full supergravity background that will necessarily include NS and RR flux. NS
flux modifies the mirror symmetry between two Calabi–Yaus. Even if we do not start with a
Calabi–Yau (since the base of the F–theory setup constructed in section 3.2 is only conformally
Kähler) we find a mirror geometry that has a T 3 fibration which is twisted due to the BNS field.
We therefore proposed a modification of Vafa’s duality chain in chapter 3 that can be pictured
as in figure 6.1.

IIB D5 and
D7/O7 on
Kähler resolved

IIB fluxes
on Kähler
deformed

geometric
transition

6
mirror

IIA D6 and O6
on “non–Kähler
deformed”

6
lift

G2 structure
with G–flux in
M–theory

-flop
G2 structure
with G–flux in
M–theory

?
descent

IIA fluxes on
“non–Kähler
resolved”

geometric
transition

?
mirror

Figure 6.1: The duality chain proposed in chapter 3. The backgrounds in IIA have to be replaced
by non–Kähler versions of deformed and resolved conifold and theM–theory lift does not possess
G2 holonomy anymore.

The two non–Kähler backgrounds are related via a flop inM–theory and therefore transition
duals. We also showed that away from the orientifold point we can have flux components turned
on that lift to a closed 3–form in M–theory which is oriented along the 3–cycle that shrinks
under the transition. This 3–form makes the flop a smooth transition, since it can be interpreted
as the imaginary part of the complexified volume of the three cycle. Even if the cycle shrinks
to zero, there is no singularity because the imaginary part remains finite.
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The consistency of our calculations can be argued from the fact that we do indeed recover
a Kähler background at the end of the duality chain in IIB. It resembles the local version of
a deformed conifold. We furthermore showed that the fluxes do not change during the flop
tansition, but the two–cycle that the D5–branes wrapped before transition was shrunk and a
dual three–cycle blown up. This has to be true since the flop inM–theory was performed such
that resolved and deformed geometry are exchanged (which implies the exchange of blown–up
two and three cycle, respectively).

Moreover, our F–theory setup also allowed us to introduce additional D7–branes in IIB (D6–
branes in IIA) that lead to an additional global symmetry for the underlying gauge theory.
We constructed flavor groups in SU(2)16. But as long as we are far away from the orientifold
fixed points, these flavors are heavy and the effective low energy theory is pure N = 1 SU(N)
Super–Yang–Mills, as in Vafa’s scenario. Nevertheless, it would be interesting to determine the
effect of the additional branes on the superpotentials.

In chapter 5 we left Vafa’s duality chain and considered a new duality chain that took us
to type I and heterotic SO(32), see figure 5.1. We had to consider a different F–theory setup,
because T–duality of a IIB orientifold can only lead to type I if the T–duality directions are
orthogonal to the orientifold planes, such that one obtains spacetime filling orientifold planes.
This second F–theory setup led us to consider an orientifold action that does not leave conifold
geometries invariant. We had to project out certain components of the metric. What we
constructed was essentially a toroidal orbifold. We could nevertheless argue that the type I
and heterotic metrics also possess contractible two– and three–cycles and should therefore be
transition dual. The reason we believe this to be true is that performing two T–dualities on the
full IIB background (without projecting out certain components of the metric) produces almost
exactly the same metric. Since the IIB backgrounds are related via a geometric transition
(as shown in chapter 3), also the type I and heterotic backgrounds from chapter 5 should be
transition duals. They are connected via a very long duality chain to a flop inM–theory.

This interpretation is of course not as rigorous as the one for the type II backgrounds, since
we considered different orientifolds in chapter 3 and 5. The gauge theory interpretation and
topological string analysis still remain unclear.

Let us also mention that the IIB supergravity equations of motion and the torsional constraint
in heterotic pose serious constraints on the IIB RR and NS flux. We constructed a toy example in
section 5.3 for which these relations can be fulfilled and be consistent with the relation imposed
by T–duality.

Finally, we were also able to leave the local limit which was imposed on us throughout this
thesis by the lack of the metric on the F–theory fourfold. We only know the local metrics on
the bases1. However, there are known globally valid backgrounds on conifold geometries in IIB.
We exploited the fact that the Maldacena–Nunez (MN) [71] background can be S–dualized to
heterotic theory and fulfills the torsional relation. We showed that their metric reduces in the
local limit to the one we found in heterotic after transition (with an appropriate choice of B–
field and complex structure in our IIB backgrounds). Therefore, we argued that we can reverse
this argument and postulate the MN background as one valid global solution for our heterotic
scenario. We proposed a more generic background in which the coefficients would have to be
fixed by imposing the torsional relation.

1It should also be clear after the discussion in chapter 2 that we have to work in the local limit if we want to
follow Vafa’s duality chain. We can only find a mirror in IIA that has some resemblance with a deformed conifold
if we work with local coordinates in the semi–flat and large complex structure limit. For the heterotic duality
chain there is no such restriction.
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6.2 Outlook and Remaining Open Questions

The calculations presented in this thesis raise (at least) four immanent questions. Can one
find a global solution in IIB and repeat the analysis for the type II duality chain (and for the
heterotic chain as well)? How does the open/closed duality argument based on topological
string amplitudes that Gopakumar and Vafa [63] gave for Calabi–Yaus need to be modified for
the non–Kähler backgrounds we constructed in IIA? What is the interpretation of the geometric
transition in heterotic theory? What are the implications for the resulting gauge theory, can one
for example compute its superpotential? We will address these issues and a few other remaining
problems in this section.

Global Solutions

As already pointed out several times, we lack the global metric for two reasons. First, there is
no known supersymmetric solution of D5–branes on the resolved conifold. Attempts on solving
the supergravity equations of motion [77] have not been successful (the solution violates the
primitivity condition for the fluxes [83]). Second, we use an F–theory fourfold that contains the
resolved conifold as its base to gain a supersymmetric setup and to introduce “flavor branes”.
We would need to find the global metric of this fourfold, which is in general very hard. The
F–theory base will furthermore contain singularities at the points where the F–theory torus
degenerates. We also used the local metric to ensure we work in a patch that does not have
these singularities.

But let us assume we had a global supersymmetric solution of D5–branes on the resolved
conifold. If we wanted to find the global mirror of this manifold we would want to apply SYZ
and perform three T–dualities. The discussion in section 2.2 should have made it clear that
simply T–dualizing the resolved metric does not produce the deformed conifold. We needed to
impose a non–trivial boost of the complex structure of the resolved conifold metric. In a global
setup, this boost (which was given by the large functions f1,2 in (2.16)) will be a function of
the base–coordinates (the solutions found in (2.23) contain α, which would in general depend
on the coordinates (r, θ1, θ2), if we had not worked in the local limit). This means, it cannot
be interpreted as a coordinate transformation, but it has a non–trivial influence on the complex
structure of the manifold. Effectively, we want to shift (compare to (2.16))

dθi → (1 + i fi) dθi , (6.1)

which might not always be integrable, depending on the specific value fi takes in a global
framework. One would therefore have to make sure that the background after this non–trivial
boost of the complex structure still fulfills the supergravity equations of motion2.

As already pointed out towards the end of section 2.2, one could T–dualize the global resolved
conifold metric without any non–trivial boost, since it possesses three isometry directions. The
result will be another Calabi–Yau with T 3 fiber, but it will not be the deformed conifold. If
we want to confirm Vafa’s duality chain we have to take the limit where resolved and deformed
conifold are actually mirror, meaning where both resolution and deformation parameter are
small. We argued in section 2.2 that one possible way to do that was given by using local
coordinates. It would be interesting to find out if one can also realize the mirror symmetry in

2In a global setup one would also see (x, θ1) and (y, θ2) as spheres and not tori. This would require a different
approach to make the T 3 fiber large, but a boost of the θi directions should still be possible. One just has to
ensure that this boost also produces dx dθ1 and dy dθ2 crossterms.
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this limit with a global setup, but the simple fact that the mirror of the resolved conifold lacks
the dθ1 dθ2–cross term, which is typical for the deformed conifold, seems to forbid that.

So, not only do we lack a global solution from a supergravity viewpoint, but it is also unclear
how one could verify Vafa’s duality chain with a global metric. Three T–dualities on a global
resolved conifold will not take us to a global deformed conifold unless we find some other method
to stay close to the transition point than the large complex structure limit proposed here. In
our analysis, to establish the mirror symmetry between resolved and deformed conifold, we were
literally forced into the local limit.

If we want to follow the heterotic duality chain we do not aim at finding the deformed conifold
metric. Therefore, we can T–dualize a IIB metric without any non–trivial manipulations to
its complex structure. This means, if we knew a global IIB solution we could find a global
heterotic solution under U–duality. There is one problem, though: we need an orientifold of
IIB, otherwise two T–dualities will only return us to IIB and not lead to type I. In the local
setup we simply projected out metric components that were not invariant under the orientifold
action. The resulting metric took the form of a toroidal orbifold, which seems promising in
terms of admitting supersymmetric solutions [118]. Nevertheless, for a global solution we should
carefully check whether supersymmetry is preserved under this projection. But this side of the
story seems to face less difficulties that the type II duality chain.

Topological Models

Let us assume we had global solutions in type II and heterotic, or at least we had some global
information about the manifolds. Which global information do we need precisely to define a
topological sigma model (see appendix C.1) and topological string amplitudes on these back-
grounds?

We discuss the IIA case first. Our observations here will be closely linked to generalized
complex geometries (GCG) [88, 89]. The goal would be to repeat the arguments from [63]
that are summarized in appendix C.3. One would like to show that the open string partition
function (describing D6–branes on the “non–Kähler deformed conifold”) agrees with the closed
string partition function (describing flux on the “non–Kähler resolved conifold”).

Our case differs from [63] because we consider non–Kähler manifolds. As shown in [125]
and reviewed in appendix C.1, one can construct a (2,2) supersymmetric sigma model on a
non–Kähler target if H 6= 0 and the target manifold is bi–Hermitian, i.e. it admits two complex
structures and the metric is Hermitian w.r.t. both of them. This is also the data required to
define a generalized Kähler structure [89], see appendix C.4 for a brief introduction to generalized
complex geometry. It has furthermore been shown that any other extension of (2,2) sigma
models, e.g. with semi–twisted chiral superfields, also requires a generalized Kähler target [95].
We therefore come to the first conclusion that the global IIA manifolds need to possess a bi–
Hermitian or generalized Kähler structure. In GCG a generalized Kähler structure is defined
by two commuting generalized complex structures (this does not mean that the two complex
structures of the bi–Hermitian structure commute).

It has then been shown by Kapustin and Li [90], see also appendix C.5, that one can define a
topological sigma model for generalized Kähler targets, if the manifold is generalized Calabi–Yau
w.r.t. to one of the generalized complex structures. Then the topological observables depend
only on the cohomology of this generalized complex structure, but not on both.

If we wanted to use their results to compute the string partition functions we would have
to identify a generalized Kähler structure on the global IIA manifolds. With the knowledge of
the global background one could repeat the torsion class analysis from chapter 4 to find out
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what type of non–Kähler manifold we constructed. If it turns out to be symplectic also globally,
it cannot be generalized Kähler, because there exists only one generalized complex structure
on a symplectic manifold, it is of the type (C.53). So far, there is no direct relation between
the torsion classes generally used to classify non–Kähler backgrounds and generalized complex
structures. It would be fascinating to discover a relation between both formalisms. Promising
attempts in this direction seem to be to relate the fundamental two and three–form (the objects
used for torsion classes) to pure spinors (objects in GCG) [92]. Both approaches have been used
to derive supersymmetry conditions, either in terms of torsion classes [109, 111] or in terms of
pure spinors [92]. It should be possible to find a mapping between those criteria.

The question we have to answer is: Can T–duality with B–field convert our IIB background
into a generalized Kähler background in IIA? This should be the case if our IIB background
was Kähler with H = 0 and described by a (2,2) supersymmetric sigma model (the assumptions
made by Gopakumar and Vafa [6, 63]). If we then find a mirror that is non–Kähler and has
H 6= 0, there should still exist a (2,2) supersymmetric sigma model, because T–duality preserves
supersymmetry. Therefore, this manifold would have to be generalized Kähler.

But this is not the case we constructed. First, our IIB starting background has non–trivial
H. For a (2,2) sigma model to exist, the manifold would have to be non–Kähler with torsion H
precisely as outlined in [125]. There would have be two Hermitian complex structures that are
covariantly constant w.r.t. to two different torsional connections. The arguments in [74] suggest
that the base of the F–theory fourfold is actually Kähler and only acquires a conformal warp
factor due to the D5–branes. We would have to find out if a conformal factor changes the metric
in such a way that it allows for a bi–Hermitian structure. The impact of a conformal rescaling
on the torsion classes has been considered in [111]. For a conformal Kähler manifold only W4

and W5 can be non–zero. This tells us the intrinsic torsion of the manifold, it remains to be
seen if this gives rise to two complex structures (invariant under two torsional connections) such
that the metric is Hermitian w.r.t. both of them.

Furthermore, consider the mirror we find in IIA. On a global manifold we do not want to
impose the non–trivial boost of the complex structure, because we do not know if it preserves
supersymmetry. If we did not boost the complex structure, we would not find a B–field in the
mirror3. Recalling equation (2.37), we see that the B–field scales with the large function fi,
without the complex structure boost there would not have been any B–field (we can also adopt
the point of view that this B–field is merely a large complex structure artefact which vanishes
when we leave the large complex structure limit). But that means we would find a non–Kähler
target with H = 0. There is no (2,2) sigma model for this case.

There seem to be only two explanation for this puzzle: either the manifold will still admit a
Kähler structure although it has a non–trivial B–field fibration (but that seems unlikely, if we
were not able to find one in the local limit, it will in general be even harder on a global metric)
or we have to modify our arguments due to RR flux.

A type II string theory background in the absence of any flux requires a Calabi–Yau manifold
to preserve N = 2 supersymmetry in four dimensions4. Turning on only NS flux will make the
manifold in general non–Kähler and we are in the sigma model framework of [125]. If we have RR
flux turned on, the manifold can still be non–Kähler even if the NS flux vanishes. But this does
not fit into any sigma model framework. It is still completely unclear how to incorporate RR flux
into a sigma model. The argument by Gopakumar and Vafa [6, 63] rested on the assumption that
the Calabi–Yau would be modified when fluxes are turned on but that the topological analysis

3This is a feature for all mirror symmetries with only electric NS flux. If the B–field has one leg along the
T–duality directions it will be converted into metric. If the metric does not possess any “electric” (in the same
sense as above) cross terms, then no new B–field will be generated. This is the same as the case discussed in [70].

4The D–branes or fluxes break another 1/2 of the supersymmetry.
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remained unchanged. They treated the fluxes as a perturbation that created the superpotential,
but did not influence the topological string amplitudes. They even argued that the topological
amplitudes do not depend on RR flux.

This seems to clash with our considerations above: turning off the NS field should give a
Kähler target based on sigma model arguments, but it will not in general do so as RR flux can
still warp the manifold in a non–trivial way. It might be true that RR fluxes do not influence
the topological amplitudes, but since they influence the target manifold, they should still dictate
the sigma model.

To bring all these different observations together and resolve above puzzles will have to be
left for future work. Independent of the questions we raised here, it would be of great interest
to find a way to include RR flux into sigma models.

Our interest into GCG goes beyond its connection to sigma models. For example, one would
like to make a connection between B–field transforms in GCG and T–duality with B–field. An
ordinary complex structure gives rise to a generalized complex structure on the direct sum of
tangent and cotangent bundle T ⊕ T ∗, which is of type (C.52)

JJ =
(
−J 0
0 J∗

)
(6.2)

where J is a complex structure in the usual sense on T . The B–field transform of this generalized
complex structure is found to be (C.57)

J = e−BJJeB =
(

−J 0
BJ + J∗B J∗

)
. (6.3)

Note that in this case only the (0, 2) component of the real two–form B has any effect. B–
field transforms of complex structures are always block–lower–diagonal, an observation used in
[91]. This actually seems to indicate that only a B–field transform a.k.a. T–duality with non–
vanishing magnetic part of the NS flux leads to GCG (generalized Kähler) but not T–duality
with only electric NS flux (i.e. (1,1) part) as in our case or in [70].

The analysis in [91] dealt with T–duality “in all directions” on a six torus which leads from
IIB to IIB. The situation might be different when one considers an odd number of T–dualities
going from IIA to IIB [98]. Furthermore, it has been noted that T–duality with magnetic NS
flux leads to non–geometric solutions [85, 86, 87]. Usually, one thinks of geometric quantities as
sections of bundles associated with the frame bundle that transform from chart to chart under
diffeomorphisms. In string theory, the symmetry group is larger than diffeomorphisms. There
may exist a more general SO(d, d) valued transition, this will for example mix metric and B–field,
making them not well–defined separately. This is what [85, 86, 87] mean by “non–geometric”.
It seems, Kapustin [91] claims these non–geometric backgrounds are realized as GCG under
T–duality with magnetic B–field, but T–duality with only electric NS field would not lead to
GCG.

As elaborated in appendix C.4, holomorphic 3–forms and symplectic 2–forms play an im-
portant role in GCG (they are related to pure spinor line bundles, see (C.54)). This is also
reminiscent of topological string theory and might hint to a deeper connection. There has been
a series of papers which connects string theory backgrounds to the notation of pure spinors
developed in the mathematical framework [92]. It has further been noted that mirror symmetry
seems to have an interpretation as the exchange of these two pure spinors [93] and that GCG
provide a good framework for compactifications on manifolds with SU(3)×SU(3) structure [94].
It is therefore our believe that GCG will help us to understand many properties of string theory
that we were so far not able to describe properly.
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Heterotic Interpretation

Heterotic string theories are based on closed strings only. So, how would one interpret a geo-
metric transition, which is an open/closed duality in type II, for heterotic strings?

We already pointed towards one interpretation as a brane/flux duality. Since under S–
duality D5–branes become NS5–branes, we can consider the heterotic geometric transition to be
a duality between a background with NS5–branes and a background with only NS flux, see figure
5.1. This is of course a target space perspective. To be able to say anything about topological
heterotic strings one would need to find a sigma model that describes supersymmetry for only
the right movers, i.e. with (0,2) supersymmetry, and find a way to perform a twist that renders
the theory topological. Such “half twists” (of the right moving sector only) have been considered
[126, 128, 129, 130], but it is not clear under what circumstances one can obtain a topological
theory.

In [74] we suggested a (0,2) sigma model by starting with the (2,2) supersymmetric sigma
model (C.1) and breaking supersymmetry for the left movers explicitely. We added non–
interacting fields only in the left–moving sector. This breaks the left moving supersymmetry,
and one might therefore hope to obtain an action for (0,2) models from the (2,2) model, at least
classically. On the other hand, a possible (0,2) action is also restricted because this will be the
action for heterotic string. It turns out, there are few allowed changes one can do to find the
classical (0,2) action from a given (2,2) action, see section 3.1 in [74] for details.

The half–twist is performed only to the right moving sector of the sigma model. This
was presented first in [126]. In the future we would like to understand the Chiral de Rham
complex CDR and the chiral differential operators CDO [127] in more detail, since they have
emerged as the relevant mathematical objects for (half–)twisted conformal field theories [128,
130]. Constructing a (0,2) topological sigma model with and without NS5–branes would be very
fascinating, not only under the considerations we raised within this thesis.

Gauge Theories and Superpotentials

We already commented briefly on the dual gauge theory of our supergravity backgrounds in the
end of section 3.2. Since we introduced additional D7–branes in IIB with our F–theory setup,
there will be an additional global symmetry for the gauge theory. We argued that we find a
global symmetry group SU(2)16 both in IIA and IIB. This was due to the fact that in IIB every
orientifold fixed point contributes four D7–brane giving rise to an SO(8) that is broken by Wilson
lines to SO(4)×SO(4) ' SU(2)4. This is consistent with the IIA orientifold that contains eight
fixed points, each accompanied by two D6–branes. The symmetry group generated by eight
stacks of D6 is therefore SO(4)8 ' SU(2)16. Apart from these “flavor branes” there are also the
usual N D5 (in IIB) or D6 (in IIA) that carry an SU(N) gauge theory on their worldvolume.
Both IIA and IIB setups give rise to an SU(N) gauge theory with flavor in the fundamental
representation of SU(2)16. Possibly more interesting global symmetry groups can be generated
by considering a different distribution of the F–theory 7–branes. In [102] it was shown that one
can even construct the exceptional gauge groups E6, E7 and E8, which are of particular interest
for Grand Unified Theories (GUT’s).

One of the remarkable results from [6] was to show that the flux generated superpotential
does indeed agree (in lowest order) with the Veneziano–Yankielowicz superpotential for Super–
Yang–Mills (SYM) theory. This superpotential has actually obtained corrections from field
theory [60, 61] as well as from string theory [62] considerations. One question we would like
to address is whether generalized topological models (taking the non–Kähler structure of the
target manifold into account) might be better suited to reproduce these corrections.
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Furthermore, we would like to address the additional global symmetry. The field theory
analog to Veneziano–Yankielowicz for an SU(N) theory with matter is given by the Affleck–
Dine–Seiberg superpotential [131], see also [132] for a review. It would be interesting to see if
we could reproduce this superpotential or if we would find an extension to it when including the
flux due to D7–branes. We would need the precise supergravity solution to see which fluxes are
actually turned on. In our setup, the charge of the D7–branes is immediately cancelled by the
orientifold planes. We would have to move the orientifold planes away from the flavor branes to
observe their effect. This would lead to non–perturbative corrections.

Flux induced superpotentials have been studied in [35, 133, 134]. In IIA, the part generated
by RR flux would be

WRR
IIA =

∫
(F6 + J ∧ F4 + J ∧ J ∧ F2 + F0 J ∧ J ∧ J) . (6.4)

Allowing for NS flux leads in general to a complexification of the fluxes [6], so that one finds in
addition [70, 72]

WNS
IIA =

∫
(J + iBNS) ∧ (F4 + ie−φ dΩ) , (6.5)

where φ is the dilaton as usual. Note the explicit dependence on dΩ. In [70] only the real part
of Ω was non–closed, but since we find manifolds with both real and imaginary part non–closed,
it was conjectured in [72] that the full dΩ(2,2) will contribute to the superpotential in this way.

Similar remarks hold true for IIB. For a Kähler manifold one only expects a superpotential
of the form [35]

WIIB = Ω ∧ (F3 + λHNS) , with λ = χ+ ie−φ , (6.6)

since dJ = 0 and dΩ = 0 on a Kähler manifold. For a non–Kähler manifold we would expect the
same complexification of fluxes such that HNS → HNS + idJ . Obtaining a global supergravity
solution in IIB would allow us to calculate those superpotentials in IIB and the IIA mirror
accordingly.

The interpretation of the gauge theory in heterotic theory is less clear than in type II. Here,
we cannot use the D–brane construction anymore. One would rather expect a gauge theory with
gauge group contained in SO(32), but it remains to be seen if this is consistent with U–duality
and the gauge theory in IIB. The geometric transition we proposed for type I and heterotic is
simply a connection between two metrics as this point and we do not have any proof of a deeper
relation on the topological or gauge theory level yet.

We can nevertheless speculate about the superpotential. As pointed out in [73], the type I
superpotential should be of the form [122, 123]

WI =
∫

(F3 + i dJ) ∧ Ω +WA
CS +Wω

CS (6.7)

where WCS indicates a Chern–Simons superpotential for the SO(32) gauge field A or spin con-
nection ω, i.e. there is a gauge and a gravitational part to the Chern–Simons potential, which
is of the general form

WA
CS =

∫
Tr
(
A ∧ dA+

2
3
A ∧A ∧A

)
∧ Ω (6.8)

and similarly for Wω
CS .
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The heterotic superpotential should take the form [122, 123]

Whet =
∫

(H + i dJ) ∧ Ω (6.9)

with torsion 3–form H that satisfies dH =TrR ∧R − 1
30 TrF ∧ F , where F = dA is the gauge

fieldstrength and R is the curvature two–form..

Further Open Problems

In order to use geometric transition models for realistic theories one would want to find compact
internal manifolds that allow for such transitions. As the analysis in this thesis was based on
local metrics, it should also be applicable to compact manifolds that admit a metric of the type
we discussed, e.g. (2.9), in a local patch. In other words, we need compact manifolds that admit
locally conical singularities which are resolved or deformed, but they do not have to resemble
conifolds globally.

On such compact spaces one would have to provide a mechanism to cancel the charges of the
D5 or D6–branes. As already mentioned in the introduction, this can be done by introducing
D̄–branes or orientifold planes [12]–[19], which would have the further advantage to allow for
supersymmetry breaking.

We would also like to give an independent argument for the absence of D–branes after the
transition (the orientifold planes and their accompanying flavor branes should be undisturbed
by the transition). As observed in [135], D6–branes lifted to a G2 holonomy manifold (more
precisely a Taub–NUT space) give rise to a normalizable harmonic (1,1) form. If the branes are
absent, one would expect this form to become non–normalizable or cease to exist.

In conclusion, we constructed a variety of new (non–compact) string theory backgrounds
on non–Kähler manifolds in IIA, type I and heterotic SO(32). These backgrounds come in
pairs and we argued them to be related by a geometric transition, meaning that one of them
contains branes, the other one only flux. A rigorous proof of this claim and the implications for
weak–strong coupling dualities in the underlying field theories are left for future work.



Appendix A

Geometry and Topology of Conifolds

The first extensive discussion of the topology and geometry of the Calabi–Yaus known as singu-
lar, resolved and deformed conifold was presented in [55]. The (singular) conifold is a complex
3–manifold that can be embedded in four dimensional complex space as

4∑
i=1

(zi)2 = 0 , zi ∈ C4 . (A.1)

This space has a conical singularity at (z1, z2, z3, z4) = 0 and can be describes as a cone over
S2 × S3 which is also known as T 1,1. The singularity can be smoothed in two different ways:
via deformation or via resolution, which leads to the other two conifold geometries mentioned
above. Asymptotically, they also look like cones over S2×S3, but close to the tip of the conifold
(the singular point) they are topologically different. It was shown that all three manifolds admit
a Kähler structure and have vanishing first Chern class, therefore we can pass continously from
one geometry to the other.

This transition is pictured as starting with a finite size S3, shrinking it to zero size and
blowing up an S2 at the singularity, giving rise to deformed, singular and resolved conifold,
respectively. To see that these spaces are topologically distinct, it suffices to see that their Euler
characters differ, since χ(S3) = 0, χ(point) = 1 and χ(S2) = 2.

Consider the singular conifold defined in (A.1). The base of the cone is a manifold N given
by the intersection of the space of solutions to (A.1) with a sphere of radius r in C4 = R8

4∑
i=1

|zi|2 = r2 . (A.2)

Separating zi into real and imaginary part zi = xi+iyi this equation together with (A.1) becomes

xixi =
r2

2
, yiyi =

r2

2
, xiyi = 0 . (A.3)

The first equation defines a three sphere S3 with radius r/
√

2. The others define an S2 fiber
over S3. Since all such bundles over S3 are trivial, one finds that N has topology S2 × S3.
Therefore, the conifold is topologically a cone over S2 × S3, i.e. the metric of the 3–manifolds
reads

ds2 = dr2 + r2ds2T 1,1 . (A.4)
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It was shown in [55] that the Ricci flat Kähler metric is obtained with

ds2T 1,1 =
1
9
(
dψ + cos θ1 dφ1 + cos θ2 dφ2

)2 +
1
6

2∑
i=1

(
dθ2
i + sin2 θi dφ

2
i

)
. (A.5)

This can be noted by exploiting the symmetry of T 1,1 which is given as a coset space SU(2)×
SU(2)/U(1). To see this, define

W =
1√
2
ziσi =

1√
2

(
z3 + iz4 z1 − iz2

z1 + iz2 −z3 + iz4

)
(A.6)

where σi are the three Pauli matrices plus the identity. With this definition, equations (A.1)
and (A.2) become

detW = −1
2

4∑
i=1

(zi)2 = 0 (A.7)

TrW †W =
4∑
i=1

|zi|2 = r2 . (A.8)

Defining a matrix Z = W/r these equations read: detZ = 0 and TrZ†Z = 1. If Z0 is a particular
solution of these equations, say

Z0 =
(

0 1
0 0

)
=

1
2

(σ1 + iσ2) (A.9)

then it is straightforward to show that a general solution can be written as Z = LZ0R
† where

L and R belong to SU(2)

L =
(
a −b̄
b ā

)
and R =

(
k −l̄
l k̄

)
(A.10)

with |a|2 + |b|2 = 1 and |k|2 + |l|2 = 1. Choosing the following parameterization of L and R

a = cos
θ1
2
e

i
2
(ψ1+φ1) , k = cos

θ2
2
e

i
2
(ψ2+φ2)

b = sin
θ1
2
e

i
2
(ψ1−φ1) , l = sin

θ2
2
e

i
2
(ψ2−φ2) (A.11)

where ψi, φi, θi are the Euler angles of each SU(2) gives rise to coordinates usually used in the
literature to discuss conifolds [77, 78, 5, 71].

It is clear that SU(2)×SU(2) acts transitively on the base N . Certain matrices (L,R) leave
Z0 fixed. It is easy to check that these are of the form (L,R) = (Θ,Θ†) with

Θ =
(
eiθ 0
0 e−iθ

)
. (A.12)

Therefore, N can be thought of the set of matrices (L,R) ∼ (LΘ, RΘ†), which shows that

N =
SU(2)× SU(2)

U(1)
=

S3 × S3

U(1)
(A.13)
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where the U(1) is generated by Θ. This means that N = T 1,1.
For this manifold to be compatible with a Kähler structure one requires

gµν̄ = ∂µ∂ν̄F (A.14)

where F is the Kähler potential. A Kähler potential that is invariant under SU(2)×SU(2) can
be a function of r2 only. In terms of W

ds2 = F ′ Tr(dW †dW ) + F ′′ |TrW †dW |2 . (A.15)

The Ricci tensor for a Kähler manifold is Rµν̄ = ∂µ∂ν̄ ln
√
g with

√
g =detgµν̄ . Define a function

γ(r) = r2F ′ , (A.16)

then requiring Ricci flatness leads to

γ(r) = r4/3 . (A.17)

After a rescaling r → r̃ =
√

3/2 r2/3 one recovers indeed the metric (A.4).
The small resolution is obtained by blowing up an S2 at the tip of the cone. To see this,

note first that we could also define the singular conifold after a coordinate redefinition as

wz − uv = 0 , (A.18)

which is equal to the statement that there are non–trivial solutions to(
w u
v z

)(
ξ1
ξ2

)
= 0 . (A.19)

At (u, v, w, z) = 0 this is solved by any pair (ξ1, ξ2), but note that there is an overall scaling
freedom (ξ1, ξ2) ∼ (λξ1, λξ2), so (ξ1, ξ2) actually describe a CP1 at the tip of the cone. Therefore,
the resolved conifold is depicted as O(−1)⊕O(−1)→ CP1. We will work in a patch where ξ1/ξ2
is a good inhomogeneous coordinate on CP1. Hence

W =
(
−uλ u
−zλ z

)
. (A.20)

Equation (A.2) becomes
r2 = TrW †W = σΛ (A.21)

with σ = |u|2 + |z|2 and Λ = 1 + |λ|2.
The Kähler potential K in this case is not simply a function of r2 only, but

K = F̃ + 4a2 lnΛ (A.22)

with F̃ being a function of r2 and a is a constant, the resolution parameter. This gives the
metric on the resolved conifold

ds2 = F̃ ′ Tr(dW †dW ) + F̃ ′′ |TrW †dW |2 + 4a2 |dλ|2

Λ2
. (A.23)

This reduces to the singular conifold metric when a → 0. In terms of the Euler angles (A.11)
with ψ = ψ1 + ψ2, this metric was derived in [77] to be

ds2 = γ̃′ dr2 +
γ̃′

4
r2
(
dψ + cos θ1 dφ1 + cos θ2 dφ2

)2
+
γ̃

4
(
dθ2

1 + sin2 θ1 dφ
2
1

)
+
γ̃ + 4a2

4
(
dθ2

2 + sin2 θ2 dφ
2
2

)
, (A.24)
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with γ̃ = γ̃(r) going to zero like r2, a is called resolution parameter because it determines the
size of the blown up S2 at r = 0 and γ̃′ = ∂γ̃/∂r2. Again, γ̃ is defined as in (A.16). Ricci
flatness requires

γ̃′γ̃(γ̃ + 4a2) = 2r2/3 , (A.25)

which can be solved for γ̃(r). It is interesting that there is another metric on the resolved
conifold which is related to this one by a flop, basically the exchange of the two S2.

Let us now turn to the discussion of the deformed conifold. It is obtained by changing (A.1)
in a very simple way

4∑
i=1

(zi)2 = µ2 . (A.26)

In terms of the matrix W this means detW = −µ2/2 and as before we define a radial coordinate
via the relation r2 = Tr (W †W ). Splitting the zi into real and imaginary part we obtain

r2 = xix
i + yiy

i , µ2 = xix
i − yiyi , (A.27)

which implies that r ranges from µ to ∞. But it is also apparent that the (deformed) conifold
is nothing but the cotangent bundle over a three–sphere, T ∗S3. A particular solution is found
to be

Wµ =

(
µ√
2

√
r2 − µ2

0 − µ√
2

)
(A.28)

and the general solution is obtained by setting W = LWµR
†. For r 6= µ the stability group is

again U(1). So for each r 6= µ the surfaces r =constant are again S2 × S3. Note however, that
for r = µ the matrix Wµ is proportional to σ3 and is invariant under an entire SU(2). Thus, the
“origin” of coordinates r = µ is in fact an SU(2) = S3.

Again, we define a Kähler potential F̂ and γ̂ = r2F̂ , then the metric is again given by (A.15)
and the condition for Ricci flat becomes [55]

r2(r4 − µ4)(γ̂3)′ + 3µ4γ̂3 = 2r8 . (A.29)

This can be integrated and one finds that for r → ∞ the function γ̂ approaches r4/3, which
agrees with the singular conifold solution. In terms of Euler angles the metric is explicitely
given as [78, 79]

ds2def =
[(
r2γ̂′ − γ̂

) (
1− µ4

r4

)
+ γ̂

] (
dr2

r2(1− µ4/r4)
+

1
4

(dψ + cos θ1 dφ1 + cos θ2 dφ2)2
)

+
γ̂

4
[
(sin θ2

1 dφ
2
1 + dθ2

1) + (sin θ2
2 dφ

2
2 + dθ2

2)
]

(A.30)

+
γ̂µ2

2r2
[cosψ(dθ1dθ2 − sin θ1 sin θ2dφ1dφ2) + sinψ(sin θ1dφ1dθ2 + sin θ2dφ2dθ1)] .



Appendix B

T–Duality and Buscher Rules

We follow here the conventions from [136], but there are a variety of review articles discussing
this topic, e.g. [11, 43, 45, 46]. T–duality can already be observed on the bosonic level. Consider
the bosonic part of the ten–dimensional (closed) superstring that is described by Xµ(σ, τ) =
Xµ
L(σ+ τ) +Xµ

R(σ− τ) with left movers XL and right movers XR. Compactification on a circle
of radius R in the 9th direction,

X9 ∼ X9 + 2πR . (B.1)

leads to a quantization of the center–of–mass momentum, as usual in Kaluza–Klein reduction,

p =
n

R
, n ∈ Z . (B.2)

But additionally, strings can also wind around the compact direction w times, so

X9(σ + 2π) = X9(σ) + 2πRw , w ∈ Z . (B.3)

This implies for the momentum, which can also be split into left and right movers p9 = p9
L+p9

R:

p9
L =

n

R
+
wR

α′
, p9

R =
n

R
− wR

α′
. (B.4)

Note, that the mass spectrum

m2 =
n2

R2
+
w2R2

α′2
+

2
α′

(NL +NR − 2) , (B.5)

with NR,L being the left and right mover oscillator numbers, is completely symmetric under

R→ R′ =
α′

R
and n↔ w , (B.6)

i.e. the theory compactified on a circle with radius R gives the same spectrum (and Hamiltonian)
as another theory compactified on a circle with radius α′/R if one exchanges winding modes w
and momentum modes n. But this exchange also has the effect

p9
L → p9

L , p9
R → −p9

R , (B.7)

or on the level of X: X9
L → X9

L and X9
R → −X9

R. The CFT is completely unchanged by choosing
X = XL−XR instead of X = XL +XR apart from the sign change in (B.7). So, T–duality can
be viewed as a one–sided parity transformation taking X9

R → −X9
R, but leaving the left–movers
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invariant. By spacetime supersymmetry, T-duality must also act like a one–sided parity on
spacetime fermions, e.g. in IIB with two spinors Sα in Green–Schwarz formalism

SαL → SαL and SαR → Γ9ΓSαR . (B.8)

Γi are the Dirac matrices in d=10 and Γ = Γ1...Γ9, see [1] for a representation of the Clifford
algebra in d=10. Γ acts as helicity operator and just gives ±1 acting on Ramond states. Γ9Γ
represents the action of the parity transformation because it anticommutes with Γ9 but com-
mutes with all other Γi (i 6= 9). This operator changes the chirality of right–moving fermions,
so starting with type IIB and two spinors 8s we end up with a theory with one spinor 8s and
one conjugate spinor 8c — type IIA! This duality is not only a symmetry for the free string,
but also of the interacting theory. See e.g. [2].

T–duality also has to act non–trivially on D–branes if it should consistently exchange IIB
with IIA. In fact, since it is a one–sided parity transformation, it exchanges Dirichlet with
Neumann boundary conditions, as is obvious in a non–standard formulation of these boundary
conditions: {

Neumann ∂+X = ∂−X

Dirichlet ∂+X = −∂−X .
(B.9)

This means, T–duality along a longitudinal direction of a Dp–brane turns it into a D(p-1) brane;
T–duality along a direction transverse to the brane turns it into a D(p+1)–brane.

Let us now consider a theory that includes background fields. Using the sigma model action

S =
1

4πα′

∫
d2σ
√
g
[(
gabGµν(X) + iεabBµν(X)

)
∂aX

µ∂bX
ν + α′φR

]
(B.10)

with background dilaton φ, worldsheet metric gab, worldsheet curvature R and usual graviton
and BNS field, one can show that this is invariant under the following T–duality rules [137] (the
tilde–fields are after T–duality along y)

G̃yy = G−1
yy , G̃µy =

Bµy
Gyy

G̃µν = Gµν −
GµyGνy −BµyBνy

Gyy
(B.11)

B̃µν = Bµν −
BµyGνy −GµyBνy

Gyy
, B̃µy =

Gµy
Gyy

e2
eφ = G−1

yy e
2φ .

One can of course perform multiple T–dualities along a number of circles, that form a torus T d

(d being the number of T–duality directions).
Also taking the RR p–forms Cp into consideration gives the duality transformation [138]

C̃(n)
µ...ναy = C(n−1)

µ...να − (n− 1)G−1
yy C

(n−1)
[µ...ν|yG|α]y (B.12)

C̃
(n)
µ...ναβ = C

(n+1)
µ...ναβy + nC

(n−1)
[µ...ναBβ]y + n(n− 1)G−1

yy C
(n−1)
[µ...ν|yB|α|yG|β]y .

Note that α, β, µ, ν 6= y and [. . .] indicates antisymmetrization, where the index |y| is excluded.



Appendix C

Nonlinear Sigma Models and
Topological Strings

After an introduction to (2,2) supersymmetric sigma models, we will discuss topological sigma
models and string theory for closed three–form H and Kähler target and use it to review the
Gopakumar–Vafa conjecture in section C.3. In the last section we turn to more general topolog-
ical models, in particular we are interested in sigma models on generalized Kähler targets that
also allow for non–vanishing NS flux H. An introduction to generalized complex geometry is
provided in section C.4.

C.1 Nonlinear Sigma Models

String theory is intrinsically linked to sigma models. We can view string theory as the description
of a 2–dimensional worldsheet Σ propagating through a 10–dimensional target space M . The
sigma model that describes this theory deals with maps φ : Σ → M . These maps can be
promoted to chiral superfields Φ that have φ in their lowest component and obey the 2d sigma
model action

S = −1
4

∫
dτ dσ d2θ (gij(Φ) +Bij(Φ)) DαΦiDαΦj , (C.1)

with indices i, j = 1...d parameterizing the target space and

Dα =
∂

∂θ
α + iρµθα∂µ , (C.2)

where ρµ is a 2d γ–matrix and θα a two–component Grassmann valued spinor. Chiral superfields
are defined by D

αΦi = 0. See [139] for an introduction into superspace. Written in terms of
superfields, this action has explicit N = 1 supersymmetry generated by

Qα =
∂

∂θ
α − iρµθα∂µ . (C.3)

In the case H = dB = 0 it has further non–manifest supersymmetry if and only if the target
space is Kähler [140]. The extra supersymmetry transformation is

δη Φi =
(
ηαDα Φj

)
J ij (C.4)

where J ij is the complex structure of the manifold. If the manifold admits a hyper–Kähler
structure (i.e. admits three independent Kähler structures), then the action (C.1) admits more
than one extra supersymmetry, for a usual Kähler structure we find N = 2.
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Considering a sigma model that does not only contain chiral but also twisted chiral super-
fields, one can find additional supersymmetry even if the target is not Kähler. This was proposed
in [125] more than twenty years ago, but only recently it was realized that the constraints one
obtains for the target manifolds in this model define a (twisted) generalized Kähler structure
[89], see section C.4. In section C.5 we will explain how generalized complex geometries can be
used to describe generalized topological sigma models.

Let us briefly review the construction from [125]. The usual non–linear sigma model with
chiral superfields (C.1) is changed by including twisted chiral superfields that satisfy

D+χ =
1
2

(1 + γ5)Dχ = 0 , D−χ =
1
2

(1− γ5)Dχ = 0

and similar for their complex conjugates. In d=2 γ5 is simply given by the Pauli matrix σ3.
In theories with only twisted chiral multiplets, D and D cannot be distinguished and χ is
equivalent to an ordinary chiral superfield Φ. However, in models with both chiral and twisted
chiral superfields, χ and Φ are distinct.

The action suggested in [125] in terms of N = 1 real scalar superfields Φi (i = 1 . . . d) that
generalizes (C.1) is

S = −1
4

∫
d2x d2θ

[
gij(Φ) (DαΦi) (DαΦj) +Bij(Φ) (DαΦi) (γ5D)αΦj

]
, (C.5)

where Φi includes chiral multiplets Φ as well as twisted chiral multiplets χ. Since it is written
in terms of N = 1 superfields, this action is manifest supersymmetric, but we are looking for
additional supersymmetry. In [125] the extra supersymmetry transformations are given as

δη Φ = −i(η+D−Φj) (J+)ij + i(η−D+Φj) (J−)ij (C.6)

with two different complex structures J+ and J−. This generalizes (C.4). The two different
complex structures result from the different action of the supersymmetry transformations on
chiral and twisted chiral multiplets, respectively. For N = 2 chiral multiplets one simply finds

δΦ = i
[
ηαQ̂α, Φ

]
= iηαD̂α Φ , δΦ = i

[
ηαQ̂α, Φ

]
= −iηαD̂α Φ , (C.7)

where the Majorana N = 1 spinor derivative D̂ and the generator of the non–manifest super-
symmetry Q̂ are defined in terms of the ordinary D and Q from (C.2) and (C.3) as

D̂ =

√
1
2
(
D +D

)
, Q̂ =

√
1
2
(
D −D

)
. (C.8)

Note that {D̂, Q̂} = 0. Comparing (C.7) to (C.4) one finds that the complex structure in this
case is given as

Ĵ ji =
(
i 0
0 −i

)
. (C.9)

For N = 2 twisted chiral multiplets the supersymmetry transformations read

δχ = −i(ηγ5)αD̂αχ , δχ = i(ηγ5)αD̂αχ . (C.10)

In a theory with only twisted chiral multiplets one could absorb γ5 into η, but with also ordinary
chiral multiplets present, η is already fixed. This transformation is not of the form (C.4), but
one can define a generalized matrix valued complex structure1

J̃ ji =
(
−iγ5 0

0 iγ5

)
(C.11)

1This is not to be confused with a generalized complex structure in the spirit of Hitchin and Gualtieri [88, 89].
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and write analog to (C.4)

δ

(
χ
χ

)
=
(
ηJ̃
)α
D̂α

(
χ
χ

)
. (C.12)

The case N = 4 works similar, but is not of interest to us here.
The two complex structures in (C.6) are then found to be

(J±)ij = J̃ ij ± Ĵ ij . (C.13)

It was shown in [125] that these two complex structures are indeed integrable. Requiring the
commutator of two such generalized supersymmetry transformations (C.6) to close (and impos-
ing the equations of motion) leads to

D+D−Φi + Γ i
+ jk (D+Φj) (D−Φk) = 0 (C.14)

with the affine connections defined in terms of ordinary Christoffel symbols Γ i
jk as

Γ i
± jk = Γ i

jk ∓H i
jk . (C.15)

H is precisely the fieldstrength H = dB and enters as torsion into this relation. This implies that
the target manifold is no longer Kähler. Note that in above considerations only one torsional
connection Γ i

+ jk entered, but not the other one. Furthermore, invariance of the action requires
that gij is Hermitian w.r.t. to both complex structures and the metric is covariantly constant
w.r.t. to both torsional connections.

In summary, it was found that N = 2 supersymmetry can be preserved if the manifold
possesses a bi–Hermitian structure (g,B, J+, J−) (with H = dB 6= 0). If one wanted to realize
N = 4 supersymmetry, one would find two sets of quaternionic structures [125].

C.2 Topological Sigma Models and String Theory

This section serves the purpose to define topological string amplitudes and explain the difference
between open and closed topological string theories. We need this background material to explain
the Gopakumar–Vafa conjecture in the next section. In accordance with their observations, we
restrict ourselves to the case H = 0 here. Generalized topological sigma models will be discussed
in section C.5. We will closely follow the review [141], see e.g. [142, 143, 144, 145] for details.

Topological string theory integrates not only over all maps φ but also over all metrics on Σ,
this is often called a sigma model coupled to two–dimensional gravity. Classically, the sigma
model action depends only on the conformal class of the metric, so the integral over metrics
reduces to an integral over conformal (or complex) structures on Σ.

The sigma model with Kähler target discussed above can be made topological by a procedure
called “twisting” [142], which basically shifts the spin of all operators by 1/2 their R–charge.
There are two conserved supercurrents for the two worldsheet supersymmetries that are nilpotent

(G±)2 = 0 , (C.16)

so one might be tempted to use these as BRST operators and build cohomologies. But they
have spin 3/2. The twist shifts their spin by half their R–charge to obtain spin 1 operators

Snew = Sold +
1
2
q (C.17)
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where q is the U(1) R–charge of the operator in question Classically, the theory has a vector
U(1)V symmetry and an axial U(1)A symmetry. Twisting by U(1)V gives the so–called A–model,
twisting by U(1)A the B–model. The U(1)A might suffer from an anomaly unless c1(M) = 0,
which leads to the requirement that the target must be a Calabi–Yau manifold for the B–model.
One could now define Q = G+ or Q = G− and use this nilpotent operator as a BRST operator,
i.e. restrict one’s attention to observables which are annihilated by Q.

Before doing so let us note a special feature of N = (2, 2) supersymmetry. Since left and right
movers basically decouple, we can split any of the operators G± into 2 commuting copies, one
for left and one for right movers. In terms of complex coordinates let us denote the left movers
as holomorphic G± and the right movers as antiholomorphic G±. This makes the (2,2) super-
symmetry more apparent. Now twisting can be defined for left and right movers independently
and we obtain in principle four models, depending on which we choose as BRST operators:

A model : (G+, G
+) , B model : (G+, G

−)

Ā model : (G−, G−) , B̄ model : (G−, G+) . (C.18)

Of these four models, only two are actually independent, since the correlators for A (B) and for
Ā (B̄) are related by complex conjugation. So we will ignore Ā and B̄ in the following.

Starting with this setup, one can now discuss observables in topological theories. It turns
out, that Q + Q in the A–model reduces to the differential operator d = ∂ + ∂ on M , i.e.
the states of the theory lie in the deRham cohomology. A “physical state” constraint requires
states to be in H(1,1)(M) only, which corresponds to deformations of the Kähler structure on
M . One can also show that correlators are independent of the complex structure modulus of M,
since the corresponding operators are Q–exact (they decouple from the computation of string
amplitudes).

In the B–model the relevant cohomology is that of ∂ with values in Λ∗(TM), i.e. the
observables are (0,1) forms with values in the tangent bundle TM . These correspond to complex
structure deformations. One can also show that in this case correlation functions are independent
of Kähler moduli. So each of the two topological models depends only on half the moduli,

A model onM : depends on Kähler moduli ofM
B model onM : depends on complex structure moduli ofM .

In this sense both models describe topological theories, because they only depend on the topology
of the target, not its metric. It can also be shown that the relevant path integral

∫
e−S simplifies

tremendously compared to ordinary field theories. It localizes on Q–invariant configurations.
These are simply constant maps φ : Σ → M with dφ = 0 for the B–model and holomorphic
maps ∂φ = 0 for the A–model. In this sense the B–model is simpler than the A–model, because
the string worldsheet “reduces to a point” on M , its correlation functions are those of a field
theory on M . They compute quantities determined by the periods of the holomorphic 3–form
Ω(3,0), which are sensitive to complex structure deformations.

The holomorphic maps in the A–model are called “worldsheet instantons”. Each worldsheet
instanton is weighted by

exp
(∫

C
(J + iB)

)
where t = J + iB ∈ H2(M,C) is the complexified Kähler parameter and C is the image of the
string worldsheet in M . Summing over all instantons makes this theory more complicated than
the B–model, but only in the sense that it is not local on M and does not straightforwardly
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reduce to a field theory on M . In summery, the A–model moduli are complexified volumes of
2–cycles, while the B–model moduli are the periods of Ω.

Let us now talk about the relation of these topologically twisted sigma models to string
theory. As mentioned before, string theory sums not only over all possible maps φ : Σ→M , as
discused in the sigma models above, but also over all possible metrics on Σ. The latter actually
reduces to a sum over the moduli space of genus g Riemann surfaces. The topological string
free energy is then defined as a sum over all genera

F =
∞∑
g=0

λ2−2g
s Fg (C.19)

with the string coupling λs and Fg being the amplitude for a fixed genus g. The string partition
function is given by Z = expF .

The interesting quantities for the topological string theory are therefore the genus g partition
functions. Already at genus zero one finds a lot of interesting information about M . In the A–
model the genus zero free energy turns out to be

F0 =
∫
M
J ∧ J ∧ J + instanton corrections . (C.20)

The first term corresponds to the classical contribution of the worldsheet theory, it gives the
leading order contribution in which the string worldsheet just reduces to a point. We have
explicitely assumed M to be a complex 3–manifold with the real part of the Kähler parameter
being J . The instanton term contains a sum over all homology classes H2(M,Z) of the image
of the worldsheet, each weighed by the complexified area, and a sum over “multi–wrappings” in
which the map Σ→M is not one–to–one.

To define the genus zero free energy in the B–model requires a little more effort. We al-
ready noted that the relevant moduli are periods of Ω ∈ H3(M,C). This cohomology can be
decomposed as

H3 = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 . (C.21)

For a Calabi–Yau threefold the Hodge numbers are given by h3,0 = h0,3 = 1, because there is
one unique holomorphic 3–form, and h2,1 = h1,2, recall the Hodge diamond (2.2). Therefore,
H3(M,C) has real dimension 2h1,2 +2. It is customary to choose a symplectic basis of 3–cycles
Ai and Bj with intersection numbers

Ai ∩Aj = 0 , Bi ∩Bj = 0 , Ai ∩Bj = δij , with i, j = 1, ..., h1,2 + 1 . (C.22)

One can then define homogeneous coordinates on the moduli space of complex structure defor-
mations by

Xi :=
∫
Ai

Ω . (C.23)

This gives h1,2+1 complex coordinates, although the moduli space only has dimension h1,2. This
overcounting is due to the fact that Ω is only unique up to overall rescaling, so the same is true
for the coordinates defined this way. Therefore they carry the name “homogeneous coordinates”.
There are also h1,2 + 1 periods over B–cycles

F̂i :=
∫
Bi

Ω . (C.24)
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Due to the relation between A and B cycles, there must be a relation between the periods. In
other words, we can express F̂i as a function of Xj .

F̂i = F̂i(Xj) . (C.25)

One can prove that these satisfy an integrability condition

∂

∂X i
F̂j =

∂

∂Xj
F̂i (C.26)

which allows us to define a new function F via

F̂i =
∂

∂X i
F (C.27)

which is actually nothing but the genus zero free energy of the B-model2. It is given by the
simple formula

F =
1
2
XiF

i . (C.28)

In general, the integral over all worldsheets is too hard to carry out explicitely. There
are nevertheless some tools that enable one to calculate topological string amplitudes. For
example, mirror symmetry between A and B model can be used to compute amplitudes in
the model of choice (usually the B–model since it does not obtain instanton corrections) and
then extrapolating the result to the mirror theory. We will be more interested in a duality
between open and closed strings, which enables one in principle to calculate the free energy at
all genera for a particular class of non–compact geometries — e.g. conifolds. To describe an
open topological strings we need to explain what we mean by topological branes that appear as
boundaries of Σ.

A D–brane corresponds to a boundary condition for Σ that is BRST–invariant. In the A–
model this implies that the boundary should be mapped to a Lagrangian submanifold3 L of M .
If we allow open strings to end on L, we say that the D–branes are wrapped on L. Having a
stack of N D–branes on L corresponds to including a weighting factor N for each boundary.

We have already discussed how D–branes carry gauge theories in physical strings (we will
use “physical” for the target space perspective to distinguish it from toplogical strings). The
same is true for topological branes. In the A–model it turns out that one can actually compute
the exact string field theory, which is again a topological theory: U(N) Chern–Simons theory
[146]. Its action in terms of the U(N) gauge connection A is given by

S =
∫
L
Tr

(
A ∧ dA+

2
3
A ∧A ∧A

)
. (C.29)

This action might still obtain instanton corrections, but Witten showed that in the special case
where L = S3 there are none. This is fascinating, because the S3 in the deformed conifold
(which is also T ∗S3) is such a Langrangian submanifold.

In physical superstrings, D–branes are sources for RR fluxes. So under what quantity are
topological branes charged? The only fluxes available are the Kähler 2–form J and the holo-
morphic 3–form Ω. Wrapping a topological brane on a Lagrangian subspace L of M (in the A

2Strictly speaking, F is not a function but rather a section of the line bundle over the moduli space. It
depends on the choice of scaling of Ω. Under Ω → ζΩ F scales as F → ζ2F , it is homogeneous of degree 2 in the
homogeneous coordinates of the moduli space.

3This means L has half the dimension of M and the Kähler form restricted to L vanishes.
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model) creates a flux through a 2–cycle C which “links” L. This link means that C = ∂S for
some 3–cycle S that intersects L once, so C is homologically trivial in M , although it becomes
nontrivial if considered as a cycle in M \ L. This implies that

∫
C J = 0 since J is closed and C

trivial.
Wrapping N branes on L has the effect of creating a Kähler flux through C∫

C
J = Ngs , (C.30)

because the branes act as a δ–function source for the two–form, i.e. J is not closed anymore on
L, but dJ = Ngs δ(L). Similarly, a B–model brane on a holomorphic 2–cycle Y induces a flux of
Ω through the 3–cycle linking Y . In principle we could also wrap branes on 0, 4 or 6–cycles in
the B–model, but there is no field candidate those branes could be charged under. This suggests
a privileged role for 2–cycles.

The A–model branes wrap Lagrangian 3–cycles (whose volume is naturally measured by
Ω–the fundamental object of the B–model) whereas B–model branes wrap holomorphic cycles
(whose volume is measured by the A model modulus J). The full meaning of this interesting
connection is still not understood.

C.3 The Gopakumar–Vafa Conjecture

After all these preliminaries we are now ready to explain the geometric tansition on conifolds.
This is a duality between open and closed topological strings (it has been shown that they
compute the same string partition function) which has profound physical consequences. The
dual gauge theory from the open string sector is N = 1 SYM in d=4. The IR dynamics of
this gauge theory can be obtained either from the open or from the closed string sector, but
the UV dynamics can only be described by open strings, as we cannot generate gauge theories
with closed strings. In this sense, both string theory backgrounds are dual, they compute the
same superpotential because they have the same topological string partition function. The key
to this duality in the gauge theory is to identify parameters from the open string theory with
parameters from the closed string theory. In the IR this will be the gluino condensate which is
identified either with the Kähler or complex structure modulus of a closed or open string theory.

The geometric transition in question [63] considers the A model on the deformed conifold
T ∗S3. As noted by [146], the exact partition function of this theory is simply given by U(N)
Chern Simons theory. The closed A–model on this geometry is trivial, because it has no Kähler
moduli. But the T ∗S3 contains a Lagrangian 3–cycle L = S3 on which we can wrap branes in
the open A model. This creates a flux Ngs of J through the 2–cycle C which links L, in this case
C = S2. So it is natural to conjecture that this background is dual to a background with only
flux through this 2–cycle. The resolved conifold is the logical candidate for this dual background
as it looks asymptoticall like the deformed conifold, but has a finite S2 at the tip of the cone.
This led Gopakumar and Vafa to the following

Conjecture: The open A model on the deformed conifold T ∗S3 with N branes wrapping the S3

is dual to the closed A model on the resolved conifold O(−1) ⊕ O(−1) → CP1 and the size of
the CP1 is determined by t = Ngs.

There are no branes anymore in the dual geometry, there is simply no 3–cycle on which
they could wrap. The passage from one geometry to the other is called “geometric transition”
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or “conifold transition” in this case. Since the partition function for the open theory is known
for all genera (from Chern–Simons theory), this can be used to postulate the full closed string
partition function on the resolved conifold, which does have a Kähler parameter J and would
in general be hard to compute to all orders.

The agreement of the partition function on both sides has been shown in [63] for arbitrary ’t
Hooft coupling λ = Ngs and to all orders in 1/N . In this sense, this duality is an example of a
large N duality which has been suggested by ’t Hooft: for large N holes in the Riemann surface
of Feynman diagrams are “filled in” or “condensed”, where one takes N → ∞ with gs =fixed.
The authors of [63] matched the free energy Fg at every genus g via the identification of the ’t
Hooft coupling

iλ = Ngs (open) ←→ iλ = t (closed) , (C.31)

where t is the complexified Kähler parameter of the S2 in the resolved conifold and the iden-
tification of the ’t Hooft coupling for open strings is dictated by the Chern–Simons theory on
S3.

Beyond that, it was also shown that the coupling to gravity (to the metric)4 and Wilson
loops take the same form for the open and closed theory. The two topological string theories
described here correspond to the different limits λ → 0 and λ → ∞, but they are conjectured
to describe the same string theory (with the same small gs) only on different geometries.

Embedding in Superstrings and Superpotential

This scenario has an embedding in “physical” type IIA string theory. Starting with N D6
branes on the S3 of the deformed conifold we find a dual background with flux through the
S2 of the resolved conifold. The Calabi–Yau breaks 3/4 of the supersymmetry (which leaves 8
supercharges), therefore the theory on the worldvolume of the branes has N = 1 (the branes
break another half of the supersymmetry). There is a U(N) gauge theory on the branes (in the
low energy limit of the string theory the U(1) factor decouples and we have effectively SU(N)).
As described in the last section, these wrapped branes create flux and therefore a superpotential.
This superpotential is computed from topological strings, but we need a gauge theory parameter
in which it is expressed. The relevant superfield for N = 1 SU(N) is S, the chiral superfield with
gaugino bilinear in its bottom component. We want to express the free energy Fg in terms of
S. Since there will be contributions from worldsheet with boundaries, we can arrange this into
a sum over holes h

Fg(S) =
∞∑
h=0

Fg,h S
h . (C.32)

It turns out that the genus zero term computes the pure gauge theory, i.e. pure SYM, higher
genera are related to gravitational corrections.

As discussed above, the open topological string theory is given by Chern Simons on T ∗S3,
which has no Kähler modulus. The superpotential created by the open topological amplitude of
genus zero is given by [6]

λsW
open =

∫
d2θ

∂F open
0 (S)
∂S

+ αS + β (C.33)

4It might seem contradictory that there can be a coupling to the metric when we are speaking about topological
models. The classical Chern–Simons action is indeed independent of the background, but at the quantum level
such a coupling can arise. In the closed side there are possible IR divergences, anomalies for non–compact
manifolds that depend on the boundary metric of these manifolds.
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with α, β =constant, αS being the explicit annulus contribution (h = 2).
Although the topological model is not sensitive to any flux through a 4– or 6– cycle, in the

superstring theory the corresponding RR forms F4 and F6 can be turned on. In the closed string
side this corresponds to a superpotential

λsW
closed =

∫
F2 ∧ k ∧ k + i

∫
F4 ∧ k +

∫
F6. (C.34)

The topological string amplitude is not modified by these fluxes [6]. The genus zero topological
string amplitude F0 determines the size of the 4– and 6–cycle to be ∂F0

∂t and 2F0− t ∂F0
∂t , respec-

tively, where t is the usual complexified Kähler parameter (of the resolved conifold). If we have
N,L, P units of 2–, 4– and 6–form flux, respectively, the superpotential yields after integration

λsW
closed = N

∂F0

∂t
+ itL+ P . (C.35)

Note that requiring W = 0 and ∂tW = 0 fixes P and L in terms of N and t. N is of course
fixed by the number of branes in the open string theory.

This looks very similar to the superpotential for the open theory (C.33). We have already
discussed that the topological string amplitudes agree

F open = F closed (C.36)

if one identifies the relevant parameters as in (C.31). In this case we have to identify S with t
and α, β with the flux quantum numbers iL, P . It is clear from the gauge theory side that α
(or L) is related to a shift in the bare coupling of the gauge theory. In particular, to agree with
the bare coupling to all orders we require iL = V/λs, where V is the volume of the S3 that the
branes are wrapped on. This gives an interesting relation between the size V of the blown–up
S3 (open) and the size t of the blown–up S2 (closed):(

et − 1
)N = const · e−V/λs . (C.37)

This indicates that for small N (Ngs/V � 1) the D–brane wrapped on S3 description is good
(since t → 0), whereas for large N (Ngs � 1) the blown–up S2 description is good (since
V → −∞ does not make sense). It should be clear from our discussion that after the S3 has
shrunk to zero size there cannot be any D6–branes in the background, but RR fluxes are turned
on.

To summarize the superstring picture of the conifold transition: In type IIA we start with
N D6–branes on the S3 of the deformed geometry and find as its dual N units if 2–form flux
through the S2 of the resolved conifold. In the mirror type IIB, N D5 branes wrapping the S2

of the resolved conifold are dual (in the large N limit) to a background without D–branes but
3–form flux turned on. The geometry after transition is given by the deformed conifold with
blown up S3. In both cases we have to identify the complex structure modulus of the deformed
conifold with the Kähler modulus of the resolved conifold or, roughly speaking, the size of the
S3 with the size of the S2.

Let us finish this section with the explicit derivation of the Veneziano–Yankielowicz super-
potential in type IIA [6]. To lowest order the type IIA superpotential is given by

W (S) =
∫
d2θ

(
1
λs
τS + iN2αe−τ/N

)
(C.38)
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where τ is the chiral superfield with iC+V/λs in its bottom component, C being the background
value of the 3–form gauge field in IIA and V the size of the S3 as before. C takes the role of the θ
angle and the gauge coupling is promoted to a superfield. The second term in (C.38) stems from
instanton corrections. It might seem surprising that V enters into this superpotential (although
the A model is independent of the complex structure modulus), the reason lies within quantum
corrections. But the linear term in S is the only coupling that V has to this theory.

We now use that τ is actually a dynamical superfield and can be integrated out from its
equation of motion. Requiring ∂τW = 0 gives

S = iλsNαe
−τ/N . (C.39)

Solving this for τ and plugging the result back into (C.38) gives an effective superpotential for
S

Weff = −N
λs

[
S log

(
S

iNαλs

)
− S

]
. (C.40)

We do indeed recover the Veneziano–Yankielowicz superpotential [59]. The scale of the gauge
theory Λ can be identified with (Nαλs)1/3. The vacuum of the theory exhibits all the known
phenomena of gaugino condensation, chiral symmetry breaking and domain walls. This is a
remarkable result and the first example where string theory produces the correct superpotential
of a gauge theory.

C.4 Generalized Complex Geometry

Generalized complex geometries (GCG) are a notion introduced rather recently by Hitchin and
Gualtieri [88, 89] and are of great interest to physicists, because they provide a framework
to intertwine the concepts of metric and B–field, something that seems to occur naturally in
string theory, as this thesis should have demonstrated quite explicitely. From the mathematics
point if view they were introduced to provide a framework that interpolates between complex
and symplectic structures. The basic idea is to view these objects not as linear operations
on the tangent bundle of a manifold, but on the direct sum T ⊕ T ∗ of tangent and cotangent
bundle. Since the smooth sections of T⊕T ∗ have a natural bracket operation, called the Courant
bracket, there are canonical integrability conditions for these two structures. Therefore, Hitchin
defined a generalized complex structure as an almost complex structure J on T ⊕ T ∗ whose
+i–eigenbundle is Courant involutive [88]. Schematically, the generalization from complex to
generalized complex structures works as follows

tangent bundle on manifoldM: T −→ direct sum of tangent and cotangent
bundle T ⊕ T ∗

almost complex structure −→ generalized almost complex struture
J : T → T with J2 = −1 J : T ⊕ T ∗ → T ⊕ T ∗ with J 2 = −1

integrability condition w.r.t. Lie −→ integrability condition w.r.t. Courant
bracket bracket.

Let M be a real n–dimensional manifold. Then T ⊕ T ∗ is 2n–dimensional and its elements
are of the form X + ξ with X ∈ T a vector field and ξ ∈ T ∗ a one–form. There is a natural
non–degenerate inner product of signature (n, n) defined by

〈X + ξ, Y + η〉 =
1
2
(
ξ(X) + η(Y )

)
, X, Y ∈ T , ξ, η ∈ T ∗ . (C.41)
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The space T ⊕T ∗ has a number of symmetries, for example the inner product is invariant under
SO(n, n), the one which is of most interest to physicists is the B–field transform.

Let B : T → T ∗ with B∗ = −B, we can therefore view B as a two–form in
∧2 T ∗ via

B(X) = ιX B, with the interior product ιX :
∧r(M)→

∧r−1(M) defined as

ιX ω(X1, . . . , Xr−1) = ω(X,X1, . . . , Xr−1) (C.42)

with vector fields Xi. This means, for example,

if Xi =
∂

∂xi
ιXi dx

j ∧ dxk = δji dx
k − δki dxj . (C.43)

The B–field transform is then defined under the natural splitting T ⊕ T ∗ as a 2n× 2n matrix

exp(B) =
(

1 0
B 1

)
(C.44)

and acts as X + ξ → X + ξ + ιXB. This means, it acts as a projection onto T and by a
“shearing” transformation on T ∗. Consider for example X + ξ = ∂/∂x+ dx and B = b dx ∧ dy.
The B–field acts on an argument like this as

X + ξ → X + ξ + b dy . (C.45)

This is very reminiscent of the action of “T–duality with B–field along x” we encountered
numerous times throughout this thesis. Our hope is therefore that the non–Kähler manifolds we
constructed in type IIA (and also heterotic and type I) have a natural interpretations in terms
of generalized complex structures. See also [91] for similar interpretations.

After this motivation, let us define the basic quantities needed for generalized complex ge-
ometry. We will not be very thorough and not aim for completeness, see [89] for a complete
introduction to the subject. The above mentioned Courant bracket is defined as

[X + ξ, Y + η] = [X,Y ] + LX η − LY ξ −
1
2
d(ιX η − ιY ξ) (C.46)

with X,Y ∈ T and ξ, η ∈ T ∗. This is a skew–symmetric object but does not satisfy a Jacobi
identity. L indicates the usual Lie–derivative

LX = d ιX + ιX d . (C.47)

Note that the Courant bracket reduces to the ordinary Lie bracket on vector fields. The Courant
bracket, like the inner product, is not only invariant under diffeomorphisms, but also under the
B–field transform. The map eB is an automorphism of the Courant bracket if and only if B is
closed, i.e. dB = 0.

In physics, we are not only interested in closed B–fields (vanishing field strength). One can,
however, defined “twisted” quantities that differ from the usual ones by terms involving H = db
(with two–form b), so the formalism of generalized complex geometries is still applicable. The
twisted Courant bracket, for example, is defined in terms of the usual Courant bracket [ , ] as

[X + ξ, Y + η]H = [X + ξ, Y + η] + ιY ιX H (C.48)

where H is a real5 closed three–form. One can also define a twisted exterior derivative dH that
acts on any form η ∈

∧• T ∗ as
dH η = dη +H ∧ η . (C.49)

5H does not necessarily have to be real, but since the Courant bracket is a real quantity, it makes sense to
restrict H to be real here.
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A Lie algebroid is a vector bundle L on a smooth manifold M equipped with a Lie bracket
[ , ] on C∞(L) and a smooth bundle map a : L → T , called the “anchor”. The anchor must
induce a Lie algebra homomorphism a : C∞(L)→ C∞(T ), i.e.

a ([X,Y ]) = [a(X), a(Y )] ∀X,Y ∈ C∞(L) , (C.50)

and satisfy a Leibniz rule [147]. It is useful to think of a Lie algebroid as a generalization of
the (complexified) tangent bundle, sine if we take L = T (the tangent bundle) and a = id, the
bracket reduces to the ordinary commutator of vector fields and both conditions are obviously
satisfied.

A complex structure on M is an endomorphism J : T → T satisfying J2 = −1. A symplectic
structure on M is a non–degenerate skew form ω ∈

∧2 T ∗. One may view ω as a map T → T ∗

via the interior product
ω : v → ιv ω , v ∈ T . (C.51)

This implies that a symplectic structure on T can be defined as an isomorphism ω : T → T ∗

satisfying ω∗ = −ω, where ω∗ : (T ∗)∗ = T → T ∗.
A generalized complex structure on T is an endomorphism J of the direct sum T ⊕T ∗ which

satisfies

• J is complex, i.e. J 2 = −1

• J is symplectic, i.e. J ∗ = −J .

The usual complex and symplectic structure are embedded in the notion of generalized complex
structure in the following way: If J is a complex structure on M , then the 2n × 2n matrix
(written w.r.t. the direct sum T ⊕ T ∗)

JJ =
(
−J 0
0 J∗

)
(C.52)

is a generalized complex structure on T . Similarly, if ω is a symplectic structure on M , then

Jω =
(

0 −ω−1

ω 0

)
(C.53)

is also a generalized complex structure. We therefore observe, that diagonal and anti–diagonal
generalized complex structures correspond to complex and symplectic structures, respectively.
The interesting aspect of GCG is that it interpolates between the two.

Specifying J is equivalent to specifying a maximal isotropic subspace of (T ⊕ T ∗) ⊗ C of
real index 0. A subspace L ⊂ (T ⊕ T ∗) ⊗ C is isotropic when 〈X,Y 〉 = 0 for all X,Y ∈ L, it
is maximal when its dimension is maximal, i.e. n in our case. Its real index r is given by the
complex dimension of L ∩ L. Every maximal isotropic in T ⊕ T ∗ corresponds to a pure spinor
line bundle. A spinor ϕ is called pure when its null space Lϕ = {v ∈ T ⊕ T 8 : v · ϕ = 0} is
maximal isotropic. The pure spinor line bundle is generated by

ϕL = exp(B + iω) Ω (C.54)

where B and ω are real two–forms and Ω = θ1∧ . . .∧θk for some linearly independent one–forms
{θi}. The integer k is called the “type” of the maximal isotropic. The maximal isotropic is of
real index zero if and only if

ωn−k ∧ Ω ∧ Ω 6= 0 . (C.55)
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The type of a maximal isotropic is the codimension k of its projection onto T . Then any
generalized complex structure of type k = 0 is a B–field transform of a symplectic structure
Jω as in (C.53), which determines a maximal isotropic L = {X − iω(X) : X ∈ T ⊗ C} and a
pure spinor line generated by ϕL = exp(iω). The B–field transform gives rise to a generalized
complex structure

Jk=0 = e−BJωeB =
(
−ω−1B −ω−1

ω +Bω−1B Bω−1

)
(C.56)

with maximal isotropic L̃ = e−BL = {X − (B + iω)(X) : X ∈ T ⊗ C} and pure spinor line
ϕe−BL = exp(B + iω).

The extremal type k = n is related to complex structures. Note that JJ as defined in (C.52)
determines a maximal isotropic L = T0,1 ⊕ T ∗1,0 (where T1,0 = T0,1 is the +i–eigenspace of J)
and a spinor line generated by ϕL = Ωn,0 (where Ωn,0 is any generator of holomorphic n–forms
on the n–dimensional space (T, J)). Then any generalized complex structure of type k = n is
the B–field transform of a complex structure, i.e.

Jk=n = e−BJJeB =
(

−J 0
BJ + J∗B J∗

)
(C.57)

with maximal isotropic L̃ = e−BL = {X + ξ − ιXB : X + ξ ∈ T0,1 ⊕ T ∗1,0} and pure spinor
ϕe−BL = exp(B) Ωn,0. Note that in this case only the (0, 2) component of the real two–form B
has any effect. B–field transforms of complex structures are always block–lower–diagonal, an
observation used in [91].

Let us also note the following integrability considion for generalized (almost) complex struc-
tures: A generalized complex structure of type k = n is integrable if and only if the complex
structure J is integrable, a generalized complex structure of type k = 0 is integrable if and only
if d(B + iω) = 0.

A generalized almost complex structure is said to be a twisted generalized complex structure
when its +i–eigenbundle is involutive w.r.t. the H–twisted Courant bracket, H being the closed
real three–form introduced around equation (C.48). Given any integrable H–twisted generalized
complex structure J , its conjugate eBJ e−B is integrable w.r.t. the H + dB–twisted Courant
bracket, for any smooth two–form B. This means that the space of twisted generalized complex
structures depends only on the cohomology class [H] ∈ H3(M,R).

We close this section we a few remarks about generalized Kähler and generalized Calabi–Yau
manifolds, as they are of particular importance in string theory.

Since the bundle T ⊕ T ∗ has a natural inner product 〈 , 〉, it has structure group O(2n, 2n).
The specification of a positive definite metric G (G2 = 1) that is compatible with this inner
product is equivalent to the reduction of the structure group to O(2n)×O(2n). If the manifold
allows for a generalized complex structure J this means a reduction of the structure group
U(n, n) ⊂ O(2n, 2n) to U(n)×U(n) if the metric G commutes with J . Note that since G2 = 1
and JG = GJ , the map GJ squares to −1, i.e. it defines another generalized complex structure.

Gualtieri [89] is therefore led to the following definition of a generalized Kähler manifold: A
generalized Kähler structure is a pair (J1,J2) of commuting generalized complex structures such
that G = −J1J2 is a positive definite matric on T ⊕ T ∗. In accordance with the observations
above this means that the existence of a generalized Kähler structure is equivalent to a reduction
of the structure group to U(n) × U(n). This has been exploited to extend string theory on
manifolds of SU(3) structure (recall chapter 4) to manifolds with SU(3)×SU(3) structure [94].
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A special case of generalized Kähler structures is of course the usual Kähler structure, since
a Kähler manifold has both a complex and a symplectic structure. So, we can define two
generalized complex structures (C.52) and (C.53), which obviously commute, and

G = −JJJω =
(

0 g−1

g 0

)
(C.58)

where g is the Riemannian metric on the Kähler manifold.
Any B–field transform of a generalized Kähler structure (J B1 , J B2 ) = (BJ1B

−1, BJ2B
−1)

is also generalized Kähler. In the case with J1 = JJ and J2 = Jω, the metric after B–field
transform becomes

GB =
(
−g−1B g−1

g −Bg−1B Bg−1

)
, (C.59)

showing that the generalized Kähler metric need not be diagonal.
According to [89], any generalized Kähler metric is uniquely specified by the existence of

a Riemannian metric g and a two–form b, where b does not have to be closed. Therefore, a
generalized Kähler metric is not simply a B–field transform of a Riemannian metric (for a B–
field transform we require B to be closed). The torsion of the generalized Kähler structure is
given by h = db.

Moreover, and this has been exploited in the formulation of generalized topological sigma
models (see section C.5), any generalized Kähler structure is determined by a bi–Hermitian
structure on the manifold M . A U(n) × U(n) structure is equivalent to the specification of
(g, b, J+, J−) with Riemannian metric g, two–form b and two Hermitian complex structures J±.
One could call this a “bi–Hermitian structure with b–field”. Let ω± be the two–forms associated
to the complex structures J±, i.e.

ω± = gJ± . (C.60)

Then the maps b± g determine the metric G via

G =
(
−g−1b g−1

g − bg−1B bg−1

)
=
(

1 0
b 1

) (
0 g−1

g 0

) (
1 0
−b 1

)
. (C.61)

The generalized complex structures J1,2 are found to be

J1,2 =
1
2

(
1 0
b 1

) (
J+ ± J− −(ω−1

+ ∓ ω−1
− )

ω+ ∓ ω− −(J∗+ ± J∗−)

) (
1 0
−b 1

)
. (C.62)

Note that the degenerate case where J+ = ±J− corresponds to (J1,J2) being the B–field
transform of a genuine Kähler structure.

For a generalized Kähler structure the torsion h is of type (2,1)+(1,2) w.r.t. both complex
structures J±. Also note the following important corollary: For a generalized Kähler structure
with data (g, b, J±) the following are equivalent

• h = db = 0

• (J+, g) is Kähler

• (J−, g) is Kähler.

In other words, in the absence of torsion the bi–Hermitian structure reduces to a bi–Kähler
structure. This does not necessarily imply J+ = J−, though.
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For a (integrable) generalized Kähler structure it is also true that the complex structures J±
are covariantly constant w.r.t. to two different torsional connections

∇± = ∇± 1
2
g−1h . (C.63)

These are metric connections with torsion T0(∇±) = ±g−1h where h = db. This is precisely
the geometry first observed in physics [125], where it occurred as the target space geometry of
N = (2, 2) supersymmetric sigma models with torsion, as we reviewed in section C.1.

As before, we can extend the notion of a generalized Kähler structure to a twisted generalized
Kähler structure by requiring integrability of J1 and J2 w.r.t. the H–twisted Courant bracket.
Then J± are still integrable complex structures, but the torsion in the torsional connection is
now given by db+H, which is still of type (1,2)+(2,1).

In [88] also the concept of generalized Calabi–Yau manifolds was introduced. A generalized
Calabi–Yau is defined as a generalized Kähler structure (J1, J2) where each generalized complex
structure has holomorphically trivial canonical bundle. Analogous, we can define a twisted
generalized Calabi–Yau.

C.5 Generalized Topological Sigma Models

In section C.1 we reviewed that N = 2 supersymmetry can be preserved if the target manifold of
the nonlinear sigma model possesses a bi–Hermitian structure (g,B, J+, J−) (with H = dB 6= 0).
This is exactly the data required for a generalized Kähler structure to exist, see section C.4 and
we can find it applying the definitions (C.62). This realization has been used to go beyond the
work of [125] and define sigma models in terms of generalized complex structures only [95]. Very
recently, [95] has also solved the problem of finding an off–shell formulation for this theory. A
formulation for (2, 0) models also exists [96], but in the following we will focus on the (2, 2)
sigma model relevant for type II string theory.

Let us also note that [125] already realized that when both complex structures commute the
manifold reduces locally to prodcut of two Kähler structures. The case where H = 0 has also
been analyzed in the GCG framework by [97]. Note that the sigma model of [125] does not
simply reduce to a Kähler target, but actually to a bi–Kähler target in that case.

The important question is now: Can we use these concepts for string theory? In particular,
can we construct a topological string theory based on these generalized sigma models? To
answer this question we focus on the work of Kapustin and Li [90], which exploits the relation
of a bi–Hermitian structure to a generalized Kähler structure. They actually define generalized
A and B models, i.e. topological models, and give an interpretation of the relevant observables
and anomaly cancellation conditions in terms of GCG.

By analogy, one would expect generalized A and B models to depend on only “half” the
geometric data (recall that the ordinary A model only depends on the Kähler structure, the
ordinary B model only depends on the complex structure of the target M). It turns out that
(at least on the classical level) the generalized A and B model depend on only one of the two
generalized complex structures that describe the generalized Kähler target.

As already mentioned in section C.2 the topological twist can be performed w.r.t. two
different U(1) symmetries: there is an axial U(1)A and a vector U(1)V R–symmetry. On a
Kähler target, both these symmetries exist classically, but U(1)A has an anomaly unless the
manifold has vanishing first Chern class, i.e. is a Calabi–Yau. The A model is defined by
twisting the U(1)V , the B model by twisting the U(1)A.
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In principle, the same construction can be applied for the “generalized” sigma model. Re-
call that the sigma model constructed in [125] requires a target with a bi–Hermitian structure
and non–closed three form H. These two complex structures J+ and J− induce two different
decompositions of the (complexified) tangent bundle

T ⊗ C ' T 1,0
+ ⊕ T 0,1

+ ' T 1,0
− ⊕ T 0,1

− (C.64)

Under these decompositions the fermionic fields ψ± can be split accordingly into holomorphic
and anti–holomorphic parts (recall that the indices ± indicate left and right movers, so the two
complex structures J± are actually interpreted as independent complex structures for left and
right movers):

ψ+ =
1
2
(
1− i J+)ψ+ +

1
2
(
1 + i J+)ψ+

ψ− =
1
2
(
1− i J−)ψ− +

1
2
(
1 + i J−)ψ− . (C.65)

The bosons are not charged under U(1) R–symmetry, and classically there are two inequivalent
ways to assign U(1) R–charge to the fermions:

U(1)V ; : qV

[
1
2
(
1− i J+)ψ+

]
= −1 , qV

[
1
2
(
1− i J−)ψ−

]
= −1 (C.66)

U(1)A ; : qA

[
1
2
(
1− i J+)ψ+

]
= −1 , qA

[
1
2
(
1− i J−)ψ−

]
= +1 . (C.67)

Then, as described in section C.2, the inequivalent twist is done by shifting the fermionic spin
either by qV /2 or qA/2 and the corresponding models were baptized “generalized A and B
models” in [90]. Note that flipping the sign of only J− exchanges generalized A nd B model.

As for ordinary topological sigma models, one has to ensure anomaly cancellation for the
twist to be well-defined. The anomalies in this case can be computed using the Atiyah–Singer
index theorem and it was found

U(1)V : c1

(
T 1,0
−

)
− c1

(
T 1,0

+

)
= 0

U(1)A : c1

(
T 1,0
−

)
+ c1

(
T 1,0

+

)
= 0 (C.68)

where c1 is the first Chern class of the corresponding tangent bundle. These conditions can
be interpreted in terms of GCG. Recall that we had defined a generalized Kähler manifold to
possess two generalized Kähler structures that commute. They define a positive definite metric
via G = −J1 J2 on T ⊕T ∗. The generalized complex structure J1 defined in (C.62) induces two
complex structures on T . These are precisely the complex structures J± of the bi–Hermitian
geometry.

Let E1 and E2 denote the +i–eigenbundles of J1 and J2, respectively, and let C± indicate
the ±1–eigenbundle of the metric G on T ⊕ T ∗. Since J1 and J2 commute (this was one
of the conditions for generalized Kähler structures), one can decompose E1 = E+

1 ⊕ E
−
1 and

E2 = E+
2 ⊕ E−

2 , where the superscript ± labels the eigenvalues ±i of the other generalized
complex structure, i.e. E+

1 has eigenvalue +i under J2. It then follows that

C± ⊗ C = E±
1 ⊕ (E±

1 )∗ = E±
2 ⊕ (E±

2 )∗ . (C.69)

This can be used to rewrite the anomaly cancellation condition (C.68) as

U(1)V : c1(E2) = 0
U(1)A : c1(E1) = 0 . (C.70)
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This might seem to indicate that the U(1) R–symmetry is anomaly free if J2 or J1 define
a generalized Calabi–Yau structure. This is not quite true, since the generalized Calabi–Yau
condition as defined in [88] is stronger. But it reverse statement is true: if J1 is a generalized
Calabi–Yau structure, then c1(E1) = 0. Nevertheless, it was shown in [90] that the twisting
makes only sense (physically) if the stronger Hitchin–Gualtieri condition is fulfilled, because it
also ensures the absence of BRST anomalies. This is similar to a statement in ordinary complex
geometry: a manifold M with c1(M) = 0 is only a Calabi–Yau if it has nowhere vanishing
holomorphic sections of the canonical line bundle (this might be violated if the canonical bundle
is not trivial, e.g. if M is not simply connected).

We can therefore state that a generalized A model males sense if J2 defines a generalized
Calabi–Yau, whereas the generalized B model can be defined if J1 defines a generalized Calabi–
Yau. The assignment of J1,2 is not arbitrary, but given in (C.62). Switching J− → −J−
exchanges J1 and J2 and therefore also exchanges generalized A and B model. This might be
interpreted as a hint towards (generalized) mirror symmetry.

The next immediate question would be: What are the relevant BRST operators and observ-
ables? Let us follow the discussion of the generalized B–model in [90], since the generalized
A–model is obtained by flipping the sign of J−. Let Q± denote the usual supersymmetry gener-
ators in light cone coordinates and Q̃ the generator of the extra, non–manifest supersymmetry.
One can then define two operators

QL =
i

2

(
Q+ + iQ̃+

)
, QR =

i

2

(
Q− + iQ̃−

)
(C.71)

that are nilpotent and anticommute. The twist shifts the spin of these operators, so that we can
define a good BRST operator for the generalized B–model as

QBRST = QL +QR . (C.72)

It was than further shown in [90] that the BRST complex (for the B–model) coincides with
the cohomology of the Lie algebroid L (see definition around equation (C.50)) associated to E1,
the +i–eigenbundle of J1. The natural choice for the complex Lie algebroid in this case is to
take L to be the −i–eigenbundle of J1. The bracket on L is then induced by the Courant bracket
on T ⊕ T ∗ and the anchor is the projection a : L → T ⊗ C. The associated complex controls
the deformations of the twisted generalized complex structure J1 (with H = db fixed).

One can furthermore consider the cohomology of states. In the usual sigma model with
Kähler target, there is a well–known state–operator isomorphism identifying both cohomologies.
In general, the cohomology of operators is given by the chiral ring whereas the cohomology of
states is interpreted as the zero–energy states in the RR sector. The isomorphism between the
two spaces is given by the spectral flow [48].

Even if the U(1) R–symmetry is anomalous in the usual sigma model and the twisting does
not make sense, one can nevertheless define the chiral ring and the space of RR ground states.
They are now (in general) non–isomorphic. E.g. for the Kähler target with H = 0 the chiral ring
is given by H•(

∧• T (X)), whereas the RR ground states are given by the deRham cohomology
H•(Ω•(X)). Only for a Calabi–Yau target X both spaces are isomorphic. For the generalized
B–model the chiral ring is given by Lie algebroid cohomology associated with J1 [90] (this holds
true even is the twist cannot be defined).

To discuss the cohomology of states, one defines an operator Q = Q+ + iQ− which turns out
to be6 a twisted deRham operator

dH = d−H ∧ . (C.73)
6up to a numerical factor of −

√
2i
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Note that this reduces to the ordinary deRham operator when H = 0. Therefore, the supersym-
metric ground states for the generalized B–model are given by the dH–cohomology. The BRST
operator QBRST is related to Q via

QBRST =
1
2
(
Q+ [JR, Q]

)
(C.74)

where JR is the Noether current associated to the U(1)R–symmetry we twisted with [90]. This
actually implies

QBRST = ∂H (C.75)

with the twisted generalized Dolbeault–operator as defined by Gualtieri [89]. It then follows
that the BRST–cohomology of operators is isomorphic to the Lie algebroid cohomology of L
(the −i–eigenbundle of J1). On the quantum level this isomorphism may be changed due to
worldsheet instantons.

Above consideration were basically a generalization of the closed topological string theory
presented in section C.2. For open strings (worldsheet with boundaries), we would also need to
introduce the concept of generalized topological A and B branes, see [91, 148, 149].

Thus, we have learned that (with some effort) one can define a topological string theory for
generalized Kähler targets, if the manifold is generalized Calabi–Yau w.r.t. to one of the gener-
alized complex structures. Then the topological observables depend only on the cohomology of
this generalized complex structure, but not on both.
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