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Abstract

TheN = 1 effective action for generic type IIA and type IIB Calabi-Yau orientifolds in
the presence of background fluxes is computed from a Kaluza-Klein reduction. The
Kähler potential, the gauge kinetic functions and the flux-induced superpotential
are determined in terms of geometrical data of the Calabi-Yau orientifold and the
background fluxes. Mirror symmetry for orientifolds is shown to hold at the level
of the effective action in the large volume – large complex structure limit. The
geometry of the N = 1 moduli space is analyzed. The chiral description is directly
related to Hitchins generalized geometry encoded by special odd and even forms on
a threefold, whereas a dual formulation with several linear multiplets makes contact
to the underlying N = 2 special geometry. For type IIB orientifolds with O3- and
O7-planes the scalar flux-potential is expressed in terms of a superpotential while for
O5- or O9-planes also a D-term and a massive linear multiplet can be present. The
type IIA superpotential depends on all geometrical moduli and vanishes at leading
order when background fluxes are turned off. The N = 1 chiral coordinates linearize
the appropriate instanton actions such that instanton effects can lead to holomorphic
corrections of the superpotential. It is shown at the level of the effective action that
type II orientifolds arise as special limit of an M-theory compactification on a specific
class of G2 manifolds or F-theory on a Calabi-Yau fourfold.



Zusammenfassung

Die N = 1 supersymmetrische effektive Wirkung für Calabi-Yau Orientifold Modelle
wird für einen nichtverschwindenden Flußhintergrund mittels Kaluza-Klein Reduk-
tion berechnet. Das Kählerpotential, die Eichkopplungsfunktionen und das Superpo-
tential werden in Abhähngigkeit von den geometrischen Eigenschaften des Calabi-Yau
Orientifolds und des Flußhintergrundes bestimmt. Es wird gezeigt, dass Mirror Sym-
metrie im Limes großer Volumina und großer komplexer Strukturen gilt. Die Geome-
trie des N = 1 Moduliraums wird analysiert. Die chirale Formulierung der Theorie
steht in direkter Beziehung zu Hitchins verallgemeinerter Geometrie, welche durch die
Wahl spezieller Formen von geradem oder ungeradem Rang kodiert wird. Eine duale
Beschreibung durch lineare Multipletts erlaubt es, Bezug auf die zugrundeliegende
spezielle N = 2 Kähler Geometrie zu nehmen. Für Orientifolds mit O3/O7-Ebenen
kann das skalare Flußpotential aus einem Superpotential berechnet werden, während
für Orientifolds mit O5/O9-Ebenen zusätzlich ein D-term und ein massives lineares
Multiplett induziert werden können. Das Typ IIA Superpotential ist eine Funktion
von allen geometrischen Moduli der Theorie und verschwindet in niedrigster Ordnung
für ausgeschaltete Hintergrundflüsse. Es wird gezeigt, dass die chiralen N = 1 Koor-
dinaten die zugehörige Instantonwirkung linearisieren, so dass Instantoneffekte holo-
morphe Korrekturen zum Superpotential induzieren können. Mit Hilfe der effektiven
Wirkung wird berechnet, dass Typ II Orientifolds als Limes einer M-Theorie Kom-
paktifizierung auf einer speziellen Klasse von G2 Mannigfaltigkeiten, beziehungsweise
einer F-Theorie Kompaktifizierung auf einer vierdimensionalen Calabi-Yau Mannig-
faltigkeiten erhalten werden.
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Chapter 1

Introduction

The Standard Model of particle physics extended by massive neutrinos has been tested
to a very high precision and is believed to correctly describe the known elementary
particles and their interactions. Experimentally, the only missing ingredient is the
scalar Higgs particle, which gives masses to the leptons and quarks, once it acquires
a vacuum expectation value. The Standard Model provides a realistic model of a
renormalizable gauge theory. Despite its impressive success there are also various
theoretical drawbacks, such as the large number of free parameters, the hierarchy and
naturalness problem as well as the missing unification with gravity. These indicate
that it cannot be viewed as a fundamental theory, but rather should arise as an
effective description.

A natural extension of the Standard Model is provided by supersymmetry, which
serves as a fundamental symmetry between bosons and fermions. Supersymmetry
predicts a superpartner for all known particles and thus basically doubles the par-
ticle content of the theory. However, none of the superpartners was ever detected
in an accelerator experiment, which implies that supersymmetry is appearing in its
broken phase. The supersymmetric Standard Model solves some of the problems of
the Standard Model [1]. Even in its (softly) broken phase it forbids large quantum
corrections to scalar masses. This allows the Higgs mass to remain to be of order
the weak scale also in a theory with a higher mass scale. Furthermore, assuming the
supersymmetric Standard Model to be valid up to very high scales, the renormaliza-
tion group flow predicts a unification of all three gauge-couplings. This supports the
idea of an underlying theory relevant beyond the Standard Model scales. However, it
remains to unify these extensions with gravity.

On the other hand, we know that General Relativity links the geometry of space-
time with the distribution of the matter densities. Einsteins theory is very different
in nature. It is a classical theory which is hard to quantize due to its ultra-violet di-
vergences (see however [2]). This fact constraints its range of validity to phenomena,
where quantum effects are of negligible importance. However, there is no experimental
evidence which contradicts large scale predictions based on General Relativity.

Facing these facts General Relativity and the Standard Model seems to be in-
compatible, in the sense that neither of them allows to naturally adapt the other.
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This becomes important in regimes where both theories have to be applied in order
to describe the correct physics. Early time cosmology or physics of black holes are
only two regimes where the interplay of quantum and gravitational effects become im-
portant. To nevertheless approach this theoretically interesting questions one might
hope for a fundamental quantum theory combining the Standard Model and General
Relativity. Until now one does not know what this unifying theory is, but one has
at least one possible candidate. This theory is known as String Theory, which was
studied intensively from various directions in the last thirty years. A comprehensive
introduction to the subject can be found in [3, 4, 5].

Perturbative String Theory is a quantum theory of one-dimensional extended ob-
jects which replace the ordinary point particles. These fundamental strings can ap-
pear in various vibrational modes which at low energies are identified with different
particles. The characteristic length of the string is

√
α′, where α′ is the Regge slope.

Hence, the extended nature of the strings only becomes apparent close to the string
scale 1/

√
α′. The string spectrum naturally includes a mode corresponding to the

graviton. This implies that Sting Theory indeed includes gravity and as we will fur-
ther discuss below reduces to Einsteins theory at low energies. It most likely provides
a renormalizable quantum theory of gravity around a given background. It avoids the
ultra-violet divergences of graviton scattering amplitudes in field theory by smearing
out the location of the interactions.

The extended nature of the fundamental strings poses strong consistency con-
straints on the theory. Non-tachyonic String Theories (Superstring Theories) require
space-time supersymmetry and predict a ten-dimensional space-time at weak cou-
pling. Altogether there are only five consistent String Theories, which are called type
IIA, type IIB, heterotic SO(32) and E8 × E8 and type I. These theories are con-
nected by various dualities and one may eventually hope to unify all of them into one
fundamental theory [6, 4].

As striking a proper formulation of such a fundamental theory might be, much of
its uniqueness and beauty could be spoiled in attempting to extract four-dimensional
results. This is equally true for the five String Theories formulated in ten dimensions.
One approach to reduce String Theory from ten to four space-time dimensions is
compactification on a geometric background of the form M3,1 × Y . M3,1 is identified
with our four-dimensional world, while Y is chosen to be small and compact, such
that these six additional dimensions are not visible in experiments. This however
induces a high amount of ambiguity, since String Theory allows for various consistent
choices of Y . Eventually one would hope to find a String Field Theory formulated
in ten dimensions, which resolves this ambiguity and dynamically chooses a certain
background. However, such a theory is still lacking and one is forced to take a sideway
to find and explore consistent string backgrounds.

For a given background, the ten-dimensional theory can then be reduced to four
dimensions by a Kaluza-Klein compactification [7] (for a review on Kaluza-Klein re-
duction see e.g. [8]). This amounts to expanding the fields into modes of Y and
results in a full tower of Kaluza-Klein modes for each of the string excitations. Addi-
tionally there are winding modes corresponding to strings winding around cycles in
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Y . Generically it is hard and phenomenologically not interesting to deal with these
infinite towers of modes and an effective description is needed.

In order to extract an effective formulation one may first integrate out the massive
string excitations with masses of order 1/

√
α′. This is possible due to the fact that

the string scale 1/
√
α′ is usually set to be of order the Planck scale such that gravity

couples with Newtonian strength. In the point-particle limit α′ → 0 the effective
theory describing the massless string modes is a supergravity theory (see e.g. [3,
4]). It can be constructed by calculating string scattering amplitudes for massless
states. One then infers an effective action for these fields encoding the same tree
level scattering vertices. An example is the three-graviton scattering amplitude in
String Theory, which in an effective description can be equivalently obtained from
the ten-dimensional Einstein-Hilbert term. Repeating the same reasoning for all
other massless string modes yields a ten-dimensional supergravity theory for each of
the five String Theories.

In a similar spirit one can also extract an effective Kaluza-Klein theory. For a
compact internal manifold Y the first massive Kaluza-Klein modes have a mass of
order 1/R, where R is the ‘average radius’ of Y . Hence, choosing Y to be sufficiently
small these modes become heavy and can be integrated out. On the other hand, Y
has to be large enough that winding modes of length

√
α′ can be discarded. Together

for p being the characteristic momentum of the lower-dimensional fields an effective
description of the massless modes is valid in the regime 1/p≫ R &

√
α′.

The structure of the four-dimensional theory obtained by such a reduction highly
depends on the chosen internal manifold. The properties of Y determine the amount
of supersymmetry and the gauge-groups of the lower-dimensional theory. Generically
one insists that Y preserves some of the ten-dimensional supersymmetries. This is
due to the fact that string theory on supersymmetric backgrounds is under much
better control and various consistency conditions are automatically satisfied. It turns
out that looking for a supersymmetric theory with a four-dimensional Minkowski
background the internal manifold has to be a Calabi-Yau manifold [9]. From a phe-
nomenological point of view the resulting low-energy supergravity theories need to
include gauged matter fields filling the spectrum of the desired gauge theory such as
the supersymmetric Standard Model. However, parameters like the size and shape of
the compact space appear as massless neutral scalar fields in four dimensions. They
label the continuous degeneracy of consistent backgrounds Y and are generically not
driven to any particular value; they are moduli of the theory. In a Standard Model-
like vacuum these moduli have to be massive, such that they are not dynamical in the
low-energy effective action. Therefore one needs to identify a mechanism in String
Theory which induces a potential for these scalars. As it is well-known for supergrav-
ity theories this potential can provide at the same time a way to spontaneously break
supersymmetry.

To generate a moduli-dependent potential in a consisted String Theory setup is
a non-trivial task and requires further refinements of the standard compactifications.
Recently, much effort was made to establish controllable mechanisms to stabilize
moduli fields in type II String Theory. The three most popular approaches are the
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inclusion of background fluxes [10]–[41], instanton corrections [42, 43, 44] and gaugino
condensates [45, 44]. This raised the hope to find examples of string vacua with
all moduli being fixed [35, 40, 41, 46]. Moreover, phenomenologically interesting
scenarios for particle physics and cosmology can be constructed within these setups
[47, 48].

In contrast to E8 × E8 and SO(32) heterotic String Theory and type I strings
both Type II String Theory do not consist of non-Abelian gauge-groups in their
original formulation. Thus most of the model building was first concentrated on the
heterotic String Theory as well as type I strings. This has changed after the event
of the D-branes [49, 4, 50, 51], which naturally induce non-trivial gauge theories.
It turned out that compactifications with space-time filling D-branes combined with
moduli potentials due to fluxes or non-perturbative effects provide a rich arena for
model building in particle physics as well as cosmology [47, 48]. One of the reasons is
that consistent setups with D-branes and fluxes generically demand a generalization
of the Kaluza-Klein Ansatz to so-called warped compactifications [12, 14, 19, 20].
Remarkably, these compactifications provide a String Theory realization of models
with large hierarchies [14, 16, 18, 19, 20] as they were first suggested in [52].

One of the major motivation of this work it to analyze the low energy dynamics
of the (bulk) supergravity moduli fields within a brane world setup with a non-
vanishing potential. Hence, we will more carefully introduce the basic constituents in
the following.

1.1 Compactification and moduli stabilization

Sting Theory is consistently formulated in a ten-dimensional space-time. In order
in order to make contact with our four-dimensional observed world one is forced to
assign six of these dimensions to an invisible sector. This can be achieve by choosing
these dimensions to be small and compact and not detectable in present experiments.
Even though the additional dimensions are not observed directly, they influence the
resulting four-dimensional physics in a crucial way.

The idea of geometric compactification is rather old and goes back to the work
of Kaluza and Klein in 1920 considering compactification of five-dimensional gravity
on a circle [7]. They aimed at combining gravity with U(1) gauge theory in a higher-
dimensional theory. Through our motivations have changed, the techniques are very
similar and can be generalized to the reduction from ten to four dimensions.

In the Kaluza-Klein reduction one starts by specifying an Ansatz for the back-
ground space-time [8]. Topologically it is assumed to be a manifold of the product
structure

M10 = M
3,1 × Y , (1.1)

where M3,1 represent the four observed non-compact dimensions and Y correspond
to the compact internal manifold. On this space one specifies a block-diagonal back-
ground metric

ds2 = g(4)
µν (x) dxµdxν + g(6)

mn(y) dymdyn (1.2)
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where g
(4)
µν is a four-dimensional Minkowski metric and g

(6)
ab is the metric on the com-

pact internal subspace. More generally, one can include a nontrivial warp factor
e2A(y) depending on the internal coordinates y into the Ansatz (1.2). This amounts

to replacing g
(4)
µν (x) with e2A(y)g

(4)
µν (x) which is the most general Ansatz for a Poincaré

invariant four-dimensional metric [53, 10, 12, 14, 19, 20]. The functional form of the
warp factor is then determined by demanding the background Ansatz to be a solu-
tion of the supergravity theory. It becomes a non-trivial function in the presence of
localized sources such as D-branes. However, for simplicity we will restrict ourselves
to the Ansatz (1.2) in the following.

The lower-dimensional theory is obtained by expanding all fields into modes of the
internal manifold Y . As an illustrative example we discuss the Kaluza-Klein reduction
of a ten-dimensional scalar Φ(x, y) fulfilling the ten-dimensional Laplace equation
∆10Φ = 0 [8]. Using the Ansatz (1.2) the Laplace operator splits as ∆10 = ∆4 + ∆6

and we may apply the fact that ∆6 on a compact space has a discrete spectrum.
The coefficients arising in the expansion of Φ(x, y) into eigenfunctions of ∆6 are fields
depending only on the coordinates of M3,1. From a four dimensional point of view
the term ∆6Φ thus appears as a mass term. One ends up with an infinite tower of
massive states with masses quantized in terms of 1/R, where R is the ‘radius’ of Y
such that Vol(Y ) is of order R6. Choosing the internal manifold to be small enough the
massive Kaluza-Klein states become heavy and can be integrate out. The resulting
effective theory encodes the dynamics of the four-dimensional fields associated with
the massless Kaluza-Klein modes satisfying

∆6Φ(x, y) = 0 . (1.3)

In chapter 2 we review how this procedure can be generalized to all other fields present
in the ten-dimensional supergravity theories. This also includes the metric itself
[8]. Equation (1.2) specifies the ten-dimensional background metric and a gravity
theory describes variations around this Ansatz. In the non-compact dimensions these
correspond to the four-dimensional graviton and the effective action reduces to the
standard Einstein-Hilbert term for the metric. The situation changes for the internal
part of the metric. Massless fluctuations of gmn(y) around its background value, such
as changes of the size and shape of Y , correspond to scalar and vector fields in four-
dimensions. As a result the four-dimensional theory consists of a huge set of scalar
and vector fields arising as coefficients in the expansion of the ten-dimensional fields
into zero modes of Y . In order that the four dimensional theory inherits some of the
supersymmetries of the underlying ten-dimensional supergravity theory one restricts
to background manifolds with structure group in SU(3) such as Calabi-Yau manifolds
or six-tori. This implies that the Kaluza-Klein modes reside in supermultiplets with
dynamics encoded by a supergravity theory.

As already remarked above every compactification induces a set of massless neutral
scalars called moduli. In Calabi-Yau compactifications it typically consists of more
then 100 scalar fields parameterizing the geometry of Y , which is clearly in conflict
with the known particle spectrum. It is a long-standing problem to find a mechanism
within String Theory to generate a potential for these fields. Finding such a potential
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will fix their values in a vacuum and make them sufficiently massive such that they
can be discarded from the observable spectrum. Above we already listed the three
most popular possibilities to generate such a potential: background fluxes, instanton
corrections and gaugino condensation. Let us now focus our attention to the first
mechanism, since fluxes will play a major role in this work.

To include background fluxes amounts to allowing for non-trivial vacuum expec-
tation value of certain field strengths [10]–[41]. Take as an example a tensor field B2.
If its field strength H3 = dB2 admits a background flux Hflux

3 =
〈

dB2

〉

, the kinetic
term of B2 yields a contribution [20]

∫

M10

Hflux
3 ∧ ∗Hflux

3 , (1.4)

which via the Hodge-∗ couples to the metric and its deformations. Insisting on four-
dimensional Poincaré invariance of the background, non-trivial fluxes can only be
induced on internal three-cycles γ. The terms (1.4) induce a non-trivial potential
for the deformations of the internal metric gmn(y) which generically stabilizes the
corresponding moduli fields at a scale mflux ∼ α′/R3 [20, 29].

There are at least two further important points to remark. Firstly, note that in
general one is not completely free to choose the fluxes, but rather has to obey certain
consistency conditions. Fluxes generically induce a charge which has to be canceled
on a compact space. Hence, the setup needs to be enriched by objects carrying a
negative charge [20]. Secondly, it is usually the case that fluxes do not stabilize
all moduli of the theory. In order to induce a potential for the remaining fields, one
needs to include non-perturbative effects such as instantons and gaugino condensates.
Various recent work [44] is intended to get some deeper insight into the nature of these
corrections.

1.2 Brane World Scenarios

In the middle of the 90’s, the discovery of the D-brane opened a new perspective for
String Theory [49]. On the one hand, D-branes where required to fill the conjectured
web of string dualities [6, 4]. Their appearance supports the hope for a more funda-
mental underlying theory unifying all the known String Theories. Moreover, they led
to the conjecture of various new connections between String Theories and supersym-
metric gauge theories, such as the celebrated AdS/CFT correspondence [54]. From
a direct phenomenological point of view, they opened a whole new arena for model
building [47], since they come equipped with a gauge theory.

More precisely, D-branes are extended objects defined as subspaces of the ten-
dimensional space-time on which open strings can end [49, 4, 50, 51]. Open strings
with both ends on the same D-brane correspond to an U(1) gauge field in the low
energy effective action. This gauge group gets enhanced to U(N ) when putting a
stack of N D-branes on top of each other. At lowest order this induces a Yang-
Mills gauge theory in the low-energy effective action. This fact allows to construct
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phenomenologically attractive models from space-time filling D-branes consistently
included in a compactification of type II String Theory [47]. The basic idea is that
the Standard Model, or rather its supersymmetric extensions, is realized on a stack
of space-time filling D-branes. The matter fields arise from dynamical excitations of
the brane around its background configuration. This is similar to the situation in
standard compactifications discussed in the beginning of the previous section, where
moduli fields parameterize fluctuations of the background metric on Y . The crucial
difference is that fluctuations of the D-branes are charged under the corresponding
gauge group and can yield chiral fermions in topologically non-trivial configuration
[47].

In addition to the applications in Particle Physics, D-branes can serve as essential
ingredients to construct cosmological models. Their non-perturbative nature can be
used to circumvent the no-go theorem excluding the possibility of de Sitter vacua in
String Theory [35, 57, 48]. Furthermore, similar to the fundamental string, D-branes
are dynamical objects, which can move through the ten-dimensional ambient space.
In certain circumstances this dynamical behavior was conjectured to be linked to a
cosmological evolution [48].

There are basically three steps to extract phenomenological data from brane world
scenarios. Firstly, one has to actually construct consistent examples yielding the de-
sired gauge groups, field content and amount of supersymmetry. Secondly, to de-
termine the dynamics of the theory one needs to evaluate the low energy effective
action of the brane excitations and the gauge neutral bulk moduli. This can then be
combined with the approach to generate potentials by a flux-background and non-
perturbative effects.

The resulting theory may exhibit various phenomenologically interesting features.
As briefly discussed in section 1.1 it can yield moduli stabilization in the vacuum.
Moreover, if the vacuum breaks supersymmetry this generically results in a set of soft
supersymmetry breaking terms for the charged matter fields on the D-branes (see ref.
[55, 56] for a generic string inspired supergravity analysis). These can be computed
from the effective low energy action as it has been carried out in refs. [30, 31, 32].
On the other hand, anti-branes (or brane fluxes) can be used to generate a positive
cosmological constant [35, 57].

Even though this general approach sounds promising, it is extremely hard to
address all these issues at once. Hence, one is usually forced to either concentrate on
specific models or on one or the other ingredient to develop techniques and to extract
general results.

As an example, one can already check if space-time filling D-branes and fluxes
alone can be consistently included in a compactification. Namely, since D-branes
are charged under certain fields of the bulk supergravity theory they contribute a
source term in the Bianchi identities of these fields [49, 4, 50, 51]. This is similarly
true for non-trivial background fluxes. One can next apply the Gauß law for the
compact internal space such that consistency requires internal sources to cancel. In
this respect D-branes are the higher dimensional analog of say positively charged
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particles. Putting such a particle in a compact space, the field lines have to end
somewhere and we have to require for negative sources. In String Theory these
negative sources are either appropriately chosen anti-D-branes or ‘orientifold planes’
[49, 51]. Even though it is possible to construct consistent scenarios with D-branes
and anti-D-branes only, one may further insist to keep a D = 4 supergravity theory.
This is mainly due to the fact that these models are under much better control and
are not plagued by instabilities. This favors the inclusion of appropriate orientifold
planes, since there negative tension cancels the run-away potentials for the moduli
induced by D-branes. In figure 1.1 we schematically picture some ingredients of a
brane-world model.

Figure 1.1: Brane-world scenario on M3,1 × Y with space-time filling D-branes, ori-

entifold planes and background fluxes.

Orientifold planes arise in String Theories constructed form type II strings by
modding out world-sheet parity plus a geometric symmetry σ of M3,1 × Y [49, 51].
On the level of the full String Theory this implies that non-orientable string world-
sheets, such as the Klein bottle or the Möbius strip, are allowed. Focusing on the
effective action orientifolds break part or all of the supersymmetry of the low-energy
theory. By imposing appropriate conditions on the orientifold projection and the
included D-branes the setup can be adjusted to preserve exactly half of the original
supersymmetry.

From a phenomenological point of view spontaneously broken N = 1 theories
are of particular interest. Starting from type II String Theories in ten space-time
dimensions, one can compactify on Calabi-Yau threefolds to obtain N = 2 theories
in four dimensions. This N = 2 is further broken to N = 1 if in addition background
D-branes and orientifold planes are present [58, 20, 59, 60, 61]. The presence of
background fluxes or other effects generating a potential results in a spontaneously
broken N = 1 theory [11]–[41]. To examine this setup on the level of the effective
action is one of the motivations for this thesis. Note that all these brane world
scenarios are conjectured to admit a higher dimensional origin in a more fundamental
theory, which we briefly introduce next. However, it is important to keep in mind
that this unifying theory is much less understood then the five String Theories.
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1.2.1 From dualities to M- and F-theory

At the first glance in seems as if we have to choose one or the other String Theory in
which we aim to construct a specific model. However, it turns out that many of these
choices are actually equivalent and linked by various dualities [6, 4]. The full set of
dualities forms a interlocking web between all five String Theories (see figure 1.2).

Figure 1.2: The duality web of String Theories.

As an example type IIA compactified on a circle of radius R is shown to be
equivalent to type IIB on a circle of radius 1/R [4, 62]. This duality is termed
T-duality and relates two String Theories at weak string coupling [62]. There are
also strong/weak dualities such as S-duality, which is a symmetry of the type IIB
String Theory [6]. Both of these dualities can be generalized and applied to standard
Calabi-Yau compactifications as well as brane-world scenarios.

A prominent example is mirror symmetry which can be interpreted as performing
several T-dualities [63]. It associates to each Calabi-Yau manifold Y a corresponding
mirror Calabi-Yau Ỹ [64]. Within the framework of String Theory it can be argued
that type IIA compactified on Y is fully equivalent to type IIB strings on Ỹ . From
a mathematical point of view mirror symmetry exchanges the odd cohomologies of
Y with the even cohomologies of Ỹ and vice versa. Even stronger it suggests that
the moduli spaces of the two Calabi-Yau manifolds are identified. Remarkably, in
specific examples this allows to calculate stringy corrections to the theory on Y from
geometrical data of Ỹ . Mirror symmetry can be generalized to setups with D-branes
[65] and eventually should identify type IIA and type IIB brane world scenarios. This
raises various non-trivial questions such as in which way mirror symmetry applies to
flux compactifications [66, 67].

Let us also introduce S-duality in slightly more detail [6, 4]. Type IIB String
Theory contains in addition to the fundamental string also a D-string (D1-brane). It
can now be argued that the theory where the fundamental string is at low coupling
gs, and hence the D-string is very heavy, is dual to a theory at 1/gs with the role
of both strings exchanged. Carefully identifying the fields, S-duality is also shown
to be a symmetry of the corresponding type IIB low-energy effective action. This
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strong/weak duality is actually part of a larger symmetry group Sl(2,Z). It has been
suggested in [68] that this duality group admits a geometric interpretation in terms of
two additional toroidal dimensions. This twelve dimensional construction was named
F-theory. The additional two dimensions are necessarily a compact torus, which
however in compactifications can be non-trivially fibered over the compactification
manifold. This naturally applies to type IIB brane-world scenarios, which generically
admit backgrounds corresponding these non-trivial compactifications [69, 16, 20].

The existence of these various dualities suggests that the ten-dimensional String
Theories are actually just different limits of a more fundamental theory [6] as pictured
in figure 1.2. This mysterious theory unifying all five String Theories was named M-
theory. In general, not much is known about its actual formulation and the required
structures are far less understood then the one for String Theory. However, there are
certain regimes in which one believes to find some hints of its existence. This also
includes the existence D-branes, which fit into this picture as they occur from higher-
dimensional objects termed M-branes. There also is a unique supergravity theory in
eleven dimensions [70], which is interpreted to be the low-energy limit of M-theory.
In the final chapter of this thesis it will be this low-energy theory which allows us lift
the orientifold compactifications to M-theory.

1.2.2 Topics and outline of the thesis

After this brief general introduction let us now turn to the actual topics of this
thesis. As just discussed, an essential step to extract phenomenological properties of
string vacua with (spontaneously broken) N = 1 vacua in brane world scenarios is to
determine the low energy effective action. In this work we focus on type IIA and IIB
String Theory compactified on generic Calabi-Yau orientifolds and determine their
low energy effective action in terms of geometrical data of the Calabi-Yau orientifold
and the background fluxes. We include D-branes for consistency, but freeze their
matter fields (and moduli) concentrating on the couplings of the bulk moduli. We
also provide a detailed discussion of the resulting N = 1 moduli space in the chiral
and the dual linear multiplet description and check mirror symmetry in the large
volume–large complex structure limit. Moreover, we show at the level of the effective
actions that Calabi-Yau orientifolds with fluxes admit a natural embedding into F-
and M-theory compactifications.

In chapter 2 we first briefly review standard Calabi-Yau compactifications of type
IIA and type IIB supergravity and discuss the resulting N = 2 supergravity action.
In doing so we focus on the geometry of the moduli space MSK × MQ spanned
by the scalars of the N = 2 supergravity theory. Supersymmetry constrains it to
locally admit this product form, where MSK is a special Kähler manifold and MQ

is a quaternionic manifold. Furthermore, we introduce N = 2 mirror symmetry on
the level of the effective action and present a somewhat non-standard construction of
the mirror map between the IIA and IIB quaternionic moduli spaces reproducing the
results of [71].

In chapter 3 we immediately turn to the compactification of type II theories on
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Calabi-Yau orientifolds. We start with a more detailed introduction to setups with
D-branes and orientifold planes and comment on consistency and supersymmetry
conditions. As already mentioned in section 1.2 orientifold planes are essential in-
gredients to obtain supersymmetric theories in brane-world compactifications. They
arise in String Theories modded out by a geometrical symmetry σ of M3,1 × Y in ad-
dition to the world-sheet parity operation. We demand Y to be a generic Calabi-Yau
manifold admitting an isometric involutive symmetry σ. It turns out that in order
to preserve N = 1 supersymmetry σ has to be a holomorphic map in type IIB and
an anti-holomorphic map in type IIA compactifications. Taking into account further
properties of σ one finds three supersymmetric setups [59, 61]: (1) IIB orientifolds
with O3/O7 planes, (2) IIB orientifolds with O5/O9 planes and (3) IIA orientifolds
with O6 planes.

The spectrum of these theories was first determined in [61]. However, the effective
action was only computed for special cases of type IIB Calabi-Yau orientifolds with
O3/O7 planes [20, 27]. In [39] we generalized these results and also included an
analysis of O5/O9 setups. For type IIA brane-world scenarios the calculation of the
low energy supergravity theory was mainly concerned with orbifolds of six-tori [72, 47]
for which conformal field theory techniques can be applied. Complementary, the
dynamics of the bulk theory can extracted for general type IIA Calabi-Yau orientifolds
by using a Kaluza-Klein reduction as shown in our publication [41]. In chapter 3 we
review the first parts of refs. [39, 41] and determine the N = 1 effective action of
all three setups. We extract the Kähler potential and the gauge-kinetic couplings by
first assuming that no background fluxes are present. The N = 1 moduli space is
shown to be a local product M̃SK × M̃Q, where M̃SK is a special Kähler manifold
inside MSK and M̃Q is a Kähler manifold inside the quaternionic manifold MQ.

We end chapter 3 with a discussion of mirror symmetry for Calabi-Yau orientifolds
and determine the necessary conditions on the involutive symmetries of the mirror
IIA and IIB orientifold theories. By specifying two types of special coordinates on the
IIA side, we are able to identify the large complex structure limit of IIA orientifolds
with the large volume limits of IIB orientifolds with O3/O7 and O5/O9 planes.

In chapter 4 we present a more detailed analysis of the N = 1 moduli space
geometry of Calabi-Yau orientifold compactifications [39, 41]. The special Kähler
manifold M̃SK inherits its geometrical structure directly from N = 2, such that
we focus our attention to the Kähler manifold M̃Q inside the quaternionic space.
We show that the definition of the Kähler coordinates as well as certain no-scale
type conditions can be more easily understood in terms of the ‘dual’ formulation
where some chiral multiplets of the Calabi-Yau orientifold are replaced by linear
multiplets. A linear multiplet consists of a real scalar and an anti-symmetric two-
tensor as bosonic fields. In the massless case this two-tensor is dual to a second real
scalar and one is led back to the chiral description. In order to do set the stage
for the orientifold analysis we first review N = 1 supergravity with several linear
multiplets following [73]. The transformation into linear multiplets corresponds to a
Legendre transformation of the Kähler potentials and coordinates. In the dual picture
the characteristic functions for type IIB orientifolds take a particularly simple form.
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Moreover, in type IIA orientifolds the Legendre transform is essential to make contact
with the underlying N = 2 special geometry. As a byproduct we determine an entire
new class of no-scale Kähler potentials which in the chiral formulation can only be
given implicitly as the solution of some constraint equation. These new insights will
enable us to give an direct construction of the Kähler manifold M̃Q in analogy to
the moduli space of supersymmetric Lagrangian submanifolds [74]. Moreover, this
sets the stage to generalize the reduction to orientifolds of certain non-Calabi-Yau
manifolds introduced in [75, 76].

In chapter 5 we redo the Kaluza-Klein compactification by additionally allowing
for non-trivial background fluxes. For O3/O7 orientifolds this amounts to a general-
ization of the analysis presented in [20, 27] and confirms that the Gukov-Vafa-Witten
superpotential [15] encodes the potential due to background fluxes. However, we
show that for orientifolds with O5/O9 planes background fluxes generically result in
a non-trivial superpotential, D-terms as well as a direct mass term for a linear multi-
plet. Following this observation, supergravity theories with massive linear multiplets
coupled to vector and chiral multiplets where further analyzed in [77]. Surprisingly,
in type IIA orientifolds with background fluxes the superpotential depends on all
(bulk) moduli fields of the theory. In [40] an equivalent observation was made for the
underlying N = 2 theory. This suggests that all geometric moduli can be stabilized
in a supersymmetric vacuum and using the results of [41] one can show that this is
indeed possible at large volume and small string coupling [78, 79].

The IIA superpotential is expected to receive non-perturbative corrections from
world-sheet as well as D-brane instantons. In the final section of chapter 5 we derive
that for supersymmetric type IIA and type IIB instantons the respective actions are
linear in the chiral coordinates and therefore can result in holomorphic corrections to
the superpotential.

In chapter 6 we embed type IIB and type IIA orientifolds into F- and M-theory
compactifications. Orientifolds with O3/O7-planes can be obtained as a limit of F-
theory compactified on elliptically fibered Calabi-Yau fourfolds [69]. We check this
correspondence on the level of the effective action by first compactifying M-theory on
a specific Calabi-Yau fourfold and comparing the result with the effective action of
O3/O7 orientifolds compactified on a circle to D = 3. The low energy effective action
of M-theory compactifications on Calabi-Yau four-folds was determined in [22, 34]
and we use their results in a slightly reformulated version. Moreover, it turns out
that this duality is best understood in the dual pictures where three-dimensional
vector multiplets are kept in the spectrum and the Kähler potential is an explicit
function of the moduli. We determine simple solutions to the fourfold consistency
conditions for which we find perfect matching between the orientifold and M-theory
compactifications. This correspondence can be lifted to D = 4 where M-theory on an
elliptically fibered Calabi-Yau fourfold descents to an F-theory compactification.

We end this chapter by also discussing the embedding of type IIA orientifolds into
a specific class of G2 compactifications of M-theory as suggested in [80]. Restricting
the general results of [81, 43, 82, 83, 84] to a specific G2 manifold and neglecting
the contributions arising from the singularities we show agreement between the low
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energy effective actions [41]. In [41] we discovered that only parts of the orientifold
flux superpotential decent from fluxes in an M-theory compactifications on manifolds
with G2 holonomy. However, as we will argue one of the missing terms is generated on
G2 structure manifolds with non-trivial fibrations. However, the higher-dimensional
origin of the term involving the mass parameter of massive type IIA supergravity
remains mysterious.

The content of this thesis is mostly based on our publications [39] and [41] with
some reference to [31]. However, we also present various new results which are still
unpublished. Namely, it turns out to be possible to reformulate the results of [39, 41]
in a very elegant and powerful way adapted to Hitchins analysis of special even and
odd forms on six-manifolds [75, 82]. This allows for a better understanding of the N=1
moduli space inside the quaternionic manifold and suggests a generalization to non-
Calabi-Yau orientifolds. Moreover, we included a detailed analysis of the orientifold
limit of the F-theory embedding of type IIB orientifolds. In addition we identify the
higher-dimensional origin of a second flux term of the IIA orientifold superpotential
being due to a non-trivial fibration of a G2 structure manifold.
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Chapter 2

Calabi-Yau compactifications of

Type II theories

In this section we review compactifications of type IIA and type IIB supergravity
on a Calabi-Yau manifold Y . These lead to N = 2 supergravity theories in four
dimensions expressed in terms of the characteristic data of the Calabi-Yau space.
We start our discussion with some mathematical preliminaries. In section 2.1 we
introduce Calabi-Yau manifolds and give a short description of their moduli spaces.
In a next step we turn to compactifications of IIA and IIB supergravity on Calabi-Yau
manifolds in section 2.3 and 2.2. Finally, in section 2.4 we give a brief account of
N = 2 mirror symmetry applied at the level of the effective action. The mirror map
for the quaternionic moduli spaces will be constructed.

2.1 Calabi-Yau manifolds and their moduli space

String theory is consistently formulated in a ten-dimensional target space. In order to
reduce to a four-dimensional observable world, we choose the background to be of the
form M10 = M3,1 ×Y as already given in (1.1). Here Y is a compact six-dimensional
manifold, which, in principle, we are free to choose. Due to this Ansatz, the Lorentz
group of M10 decomposes as SO(9, 1) → SO(3, 1) × SO(6), where SO(6) is the
generic structure group of a sixfold. However, demanding Y to preserve the minimal
amount of supersymmetry one has to pick a manifold with structure group SU(3).
They admit one globally defined spinor η, since the SO(6) spinor representation 4

decomposes to 1 ⊕ 3. Further demanding this spinor η to be covariantly constant
reduces the class of background manifolds to manifolds with SU(3) holonomy [3].
These spaces are called Calabi-Yau manifolds and are complex Kähler manifolds,
which are in addition Ricci flat [85].

In terms of η one can globally define a covariantly constant two-from J (the Kähler
form) and a three-form Ω (the holomorphic three-form). For a fixed complex structure
these fulfill the algebraic conditions

J ∧ J ∧ J ∝ Ω ∧ Ω̄ , J ∧ Ω = 0 . (2.1)



24 Calabi-Yau compactifications of Type II theories

where the proportionality factor depends on the normalization of Ω with respect
to J . Performing a Kaluza-Klein reduction on the background (1.1) the massless
four-dimensional fields arise as the zero modes of the internal Laplacian (1.3) [3, 4].
These zero modes are in one-to-one correspondence with harmonic forms on Y and
thus their multiplicity is counted by the dimension of the non-trivial cohomologies of
the Calabi-Yau manifold. The Calabi-Yau condition poses strong constraints on the
Hodge decomposition of the cohomology groups. The only non-vanishing cohomology
groups are the even and odd cohomologies

Hev = H(0,0) ⊕H(1,1) ⊕H(2,2) ⊕H(3,3) , (2.2)

Hodd = H(3,0) ⊕H(2,1) ⊕H(1,2) ⊕H(0,3) .

Their dimensions h(p,q) = dimH(p,q) can be summarized in the Hodge diamond as
follows

h(0,0)

h(1,0) h(0,1)

h(2,0) h(1,1) h(0,2)

h(3,0) h(2,1) h(1,2) h(0,3)

h(3,1) h(2,2) h(1,3)

h(3,2) h(2,3)

h(3,3)

=

1
0 0

0 h(1,1) 0
1 h(2,1) h(2,1) 1

0 h(1,1) 0
0 0

1

. (2.3)

Let us introduce a basis for the different cohomology groups by always choosing the
unique harmonic representative in each cohomology class. The basis of harmonic
(1, 1)-forms we denote by ωA with dual harmonic (2, 2)-forms ω̃A which form a basis

of H(2,2)(Y ). (αK̂ , β
L̂) are harmonic three-forms and form a real, symplectic basis on

H(3)(Y ). Together the non-trivial intersection numbers are summarized as
∫

Y

ωA ∧ ω̃B = δB
A ,

∫

Y

αK̂ ∧ βL̂ = δL̂
K̂
, (2.4)

with all other intersections vanishing. Finally, we denote by vol(Y ) the harmonic
volume (3, 3)-form of the Calabi-Yau space. In Table 2.1 we summarize the non-
trivial cohomology groups on Y and denote their basis elements.

In sections 2.2 and 2.3 we explain how these harmonics yield four-dimensional
massless fields, when expanding the ten-dimensional supergravity forms. Further-
more, there are additional massless modes arising as deformations of the metric gi̄.
Considering variations Rmn(g+δg) of the Ricci-tensor which respect the Ricci-flatness
condition Rmn = 0 forces δg to satisfy a differential equation (the Lichnerowicz equa-
tion). Solutions to this equation can be identified in case of a Calabi-Yau manifold
with the harmonic (1, 1)- and (2, 1)-forms, which parameterize Kähler structure and
complex structure deformations of Y [86, 88, 85]. The deformations of the Kähler
form J = igi̄ dy

i ∧ dȳ ̄ give rise to h(1,1) real scalars vA and one expands 1

gi̄ + δgi̄ = −i Ji̄ = −i vA (ωA)i̄ , A = 1, . . . , h(1,1) . (2.5)

1Globally only those deformations are allowed which keep the volume of Y as well as its two-
and four-cycles positive, i.e.

∫

Y
J ∧ J ∧ J ≥ 0,

∫

S4

J ∧ J ≥ 0 and
∫

S2

J ≥ 0. These conditions are

preserved under positive rescalings of the fields vA, such that they span a h(1,1)−dimensional cone.
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cohomology group dimension basis

H(1,1) h(1,1) ωA

H(2,2) h(1,1) ω̃A

H(3) 2h(2,1) + 2 (αK̂ , β
L̂)

H(2,1) h(2,1) χK

H(3,3) 1 vol

Table 2.1: Cohomology groups on Y and their basis elements.

These real deformations are complexified by the h(1,1) real scalars bA(x) arising in the
expansion of the B-field present in both type II string theories. More precisely we
introduce the complex fields

tA = bA + i vA , (2.6)

which parameterize the h(1,1)−dimensional complexified Kähler cone [88].

The second set of deformations are variations of the complex structure of Y . They
are parameterized by complex scalar fields zK and are in one-to-one correspondence
with harmonic (1, 2)-forms

δgij =
i

||Ω||2 z̄
K(χ̄K)īı̄ Ωı̄̄

j , K = 1, . . . , h(1,2) , (2.7)

where Ω is the holomorphic (3,0)-form, χ̄K denotes a basis of H(1,2) and we abbreviate
||Ω||2 ≡ 1

3!
ΩijkΩ̄

ijk.

Together the complex scalars zK and tA span the geometric moduli space of the
Calabi-Yau manifold. It is shown to be locally a product

Mcs ×Mks , (2.8)

where both factors are special Kähler manifolds of complex dimension h(2,1) and h(1,1)

respectively. To make that more precise let us first discuss Mcs. Its metric GKL̄ is
given by [86, 87, 88]

GKL̄ = −
∫

Y
χK ∧ χ̄L

∫

Y
Ω ∧ Ω̄

, (2.9)

where χK is related to the variation of the three-form Ω via Kodaira’s formula

χK(z, z̄) = ∂zKΩ(z) + Ω(z) ∂zKKcs . (2.10)

With the help of (2.10) one shows that GKL̄ is a Kähler manifold, since we can locally
find complex coordinates zK and a function K(z, z̄) such that

GKL̄ = ∂zK∂z̄L Kcs , Kcs = − ln
[

i

∫

Y

Ω∧ Ω̄
]

= − ln i
[

Z̄K̂FK̂ −ZK̂F̄K̂

]

, (2.11)
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where the holomorphic periods ZK̂ ,FK̂ are defined as

ZK̂(z) =

∫

Y

Ω(z) ∧ βK̂ , FK̂(z) =

∫

Y

Ω(z) ∧ αK̂ , (2.12)

or in other words Ω enjoys the expansion

Ω(z) = ZK̂(z)αK̂ − FK̂(z) βK̂ . (2.13)

The Kähler manifold Mcs is furthermore special Kähler, since FK̂ is the first derivative

with respect to ZK̂ of a prepotential F = 1
2
ZK̂FK̂ . This implies that GKL̄ is fully

encoded in the holomorphic function F .

Note that Ω is only defined up to complex rescalings by a holomorphic function
e−h(z) which via (2.11) also changes the Kähler potential by a Kähler transformation

Ω → Ω e−h(z) , Kcs → Kcs + h+ h̄ . (2.14)

This symmetry renders one of the periods (conventionally denoted by Z0) unphysical
in that one can always choose to fix a Kähler gauge and set Z0 = 1. The complex
structure deformations can thus be identified with the remaining h(1,2) periods ZK by
defining the special coordinates zK = ZK/Z0. A more detailed discussion of special
geometry can be found in appendix B.

Let us next turn to the second factor in (2.8) spanned by the complexified Kähler
deformations tA. The metric on Mks is given by [89, 88]

GAB =
3

2K

∫

Y

ωA ∧ ∗ωB = −3

2

(KAB

K − 3

2

KAKB

K2

)

= ∂ta∂t̄BK
ks , (2.15)

where ∗ is the six-dimensional Hodge-∗ on Y and the Kähler potential Kks is given
by

Kks = − ln
[

i
6
KABC(t− t̄)A(t− t̄)B(t− t̄)C

]

= − ln 4
3
K , (2.16)

where 1
6
K is the volume of the Calabi-Yau manifold. We abbreviated the intersection

numbers as follows

KABC =

∫

Y

ωA ∧ ωB ∧ ωC , KAB =

∫

Y

ωA ∧ ωB ∧ J = KABCv
C , (2.17)

KA =

∫

Y

ωA ∧ J ∧ J = KABCv
BvC , K =

∫

Y

J ∧ J ∧ J = KABCv
AvBvC ,

with J = vAωA being the Kähler form of Y . The manifold Mks is once again special
Kähler, since Kks given in (2.16) can be derived from a single holomorphic function
f(t) = −1

6
KABCt

AtBtC via (B.17).

2.2 Type IIA on Calabi-Yau manifolds

Let us now apply these tools in Calabi-Yau compactifications of type IIA supergrav-
ity following [90, 91]. This theory is the maximally supersymmetric theory in ten
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spacetime dimensions, which posses two gravitinos of opposite chirality. It is nat-
urally obtained as the low energy limit of type IIA superstring theory. Thus the
supergravity spectrum consists of the massless string modes. The bosonic fields are
the dilaton φ̂, the ten-dimensional metric ĝ and the two-form B̂2 in the NS-NS sector,
while the one- and three-forms Ĉ1, Ĉ3 arise in the R-R sector.2 Using form notation
(our conventions are summarized in appendix A) the corresponding ten-dimensional
type IIA supergravity action in the Einstein frame is given by [4]

S
(10)
IIA =

∫

−1
2
R̂ ∗ 1 − 1

4
dφ̂ ∧ ∗dφ̂− 1

4
e−φ̂Ĥ3 ∧ ∗Ĥ3 − 1

2
e

3
2
φ̂F̂2 ∧ ∗F̂2

−1
2
e

1
2
φ̂F̂4 ∧ ∗F̂4 − 1

2
B̂2 ∧ F̂4 ∧ F̂4 , (2.18)

where the field strengths are defined as

Ĥ3 = dB̂2 , F̂2 = dĈ1 , F̂4 = dĈ3 − Ĉ1 ∧ Ĥ3 . (2.19)

In order to dimensionally reduce type IIA to a four-dimensional theory, we make
the product Ansatz M3,1 × Y and perform a Kaluza-Klein reduction. Since Y is a
Calabi-Yau manifold it posses one covariantly constant spinor η. Decomposing the
two ten-dimensional gravitinos into η times some four-dimensional spinor leads to two
gravitinos in D = 4. Hence, compactifying type IIA supergravity on a Calabi-Yau
threefold Y results in an N = 2 theory in four space-time dimensions and the zero
modes of Y have to assemble into massless N = 2 multiplets. These zero modes are
in one-to-one correspondence with harmonic forms on Y and thus their multiplicity is
counted by the dimension of the non-trivial cohomologies of the Calabi-Yau manifold.
For the dimensional reduction one chooses a block diagonal Kaluza-Klein Ansatz for
the ten-dimensional background metric

ds2 = ηµν(x) dx
µdxν + gi̄(y) dy

idy ̄ , (2.20)

where ηµν , µ, ν = 0, . . . , 3 is a four-dimensional Minkowski metric and gi̄, i, ̄ = 1 . . . 3
is a Calabi-Yau metric. Part of the four dimensional fields arise as variations around
this background metric. They correspond to the four-dimensional graviton and the
geometric deformations vA(x) and zK(x) defined in (2.5) and (2.7). Variations of
the off-diagonal entries of this metric vanish due to the fact that Y does not admit
harmonic one-forms. Accordingly we expand the ten-dimensional gauge-potentials
introduced in (2.19) in terms of harmonic forms on Y

Ĉ1 = A0(x) , B̂2 = B2(x) + bA(x)ωA , A = 1, . . . , h(1,1) , (2.21)

Ĉ3 = AA(x) ∧ ωA + ξK̂(x)αK̂ − ξ̃K̂(x) βK̂ , K̂ = 0, . . . , h(2,1) .

Here bA, ξK̂ , ξ̃K̂ are four-dimensional scalars, A0, AA are one-forms and B2 is a two-

form. The ten-dimensional one-form Ĉ1 only contains a four-dimensional one-form
A0 in the expansion (2.21) since a Calabi-Yau threefold has no harmonic one-forms.

2We use a ‘hat’ to denote ten-dimensional quantities and omit it for four-dimensional fields.
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The geometric deformations vA, zK together with the fields defined in the ex-
pansions (2.21) assemble into a gravity multiplet (gµν , A

0), h(1,1) vector multiplets
(AA, vA, bA), h(2,1) hypermultiplets (zK , ξK , ξ̃K) and one tensor multiplet (B2, φ, ξ

0, ξ̃0)
where we only give the bosonic components. Dualizing the two-form B2 to a scalar
a results in one further hypermultiplet. We summarize the bosonic spectrum in ta-
ble 2.1.

gravity multiplet 1 (gµν , A
0)

vector multiplets h(1,1) (AA, vA, bA)

hypermultiplets h(2,1) (zK , ξK , ξ̃K)

tensor multiplet 1 (B2, φ, ξ
0, ξ̃0)

Table 2.1: N = 2 multiplets for Type IIA supergravity compactified on a Calabi-Yau

manifold.

In order to display the low energy effective action in the standard N = 2 form one
needs to redefine the field variables slightly. One combines the real scalars vA, bA into
complex fields tA as done in (2.6) and defines a four-dimensional dilaton D according
to

eD = eφ(K/6)−
1
2 , (2.22)

where K is defined in (2.17). Note that vA, and hence the volume K/6 = VolS(Y ), are
evaluated in string frame. In this frame the ten-dimensional Einstein-Hilbert term
takes the form

∫

1
2
e−2φ̂R ∗ 1 and J = vAωA is obtained from the internal part of this

string frame metric. The kinetic term for the ten-dimensional Einstein frame metric
reads

∫

1
2
R ∗ 1 and hence J is related to JE in the Einstein frame via J = eφ/2JE .

Inserting the field expansions (2.21) into (2.19), (2.18), reducing the Riemann scalar
R by including the complex and Kähler deformations and performing a Weyl rescaling
to the standard Einstein-Hilbert term, one ends up with the four-dimensional N = 2
effective action [92, 90, 91]

S
(4)
IIA =

∫

−1
2
R ∗ 1 + 1

2
ImNÂB̂ F

Â ∧ ∗F B̂ + 1
2
ReNÂB̂ F

Â ∧ F B̂ (2.23)

−GAB dt
A ∧ ∗dt̄B − huv dq̃

u ∧ ∗dq̃v ,

where F Â = dAÂ. The couplings of the vector multiplets in the action (2.23) are
encoded by the metric GAB and the complex matrix NÂB̂. GAB only depends on
the moduli tA (or rather their imaginary parts) and is defined in (2.15) and (2.16).
The gauge-kinetic coupling matrix NÂB̂ also depends on the scalars tA and is given
explicitly in (B.19). It can be calculated from the same holomorphic prepotential like
GAB as explained in appendix B.

Next let us turn to the couplings of the hypermultiplet sector which are encoded
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in the quaternionic metric huv. From the Kaluza-Klein reduction one obtains [91]

huv dq̃
u dq̃v = (dD)2 +GKL̄ dz

Kdz̄L + 1
4
e4D

(

da− (ξ̃K̂dξ
K̂ − ξK̂dξ̃K̂)

)2
(2.24)

−1
2
e2D(Im M)−1 K̂L̂

(

dξ̃K̂ −MK̂N̂dξ
N̂
)(

dξ̃L̂ − M̄L̂M̂dξ
M̂

)

,

where GKL̄ is the metric on the space of complex structure deformations given in
(2.9) and (2.11). The complex coupling matrix MK̂L̂ appearing in (2.24) depends on
the complex structure deformations zK and is defined as [93]

∫

αK̂ ∧ ∗αL̂ = −(Im M + (Re M)(Im M)−1(Re M))K̂L̂ ,
∫

βK̂ ∧ ∗βL̂ = −(Im M)−1 K̂L̂ , (2.25)
∫

αK̂ ∧ ∗βL̂ = −((Re M)(Im M)−1)L̂
K̂
.

It can be calculated from the periods (2.12) by using equation (B.15). Thus also in
the hypermultiplet sector all couplings are determined by a holomorphic prepotential
and such metrics have been called dual or special quaternionic [94, 91].

As we have just reviewed the N = 2 moduli space has the local product structure

MSK ×MQ , (2.26)

where MSK = Mks is the special Kähler manifold spanned by the scalars in the
vector multiplets or in other words the (complexified) deformations of the Calabi-
Yau Kähler form and MQ is a dual quaternionic manifold spanned by the scalars in
the hypermultiplets. MQ has a special Kähler submanifold spanned by the complex
structure deformations Mcs.

This ends our short review of Calabi-Yau compactifications of type IIA super-
gravity. There is a second N = 2 supersymmetric theory in ten dimensions which is
the low energy effective theory of type IIB string theory. Reviewing the Calabi-Yau
reduction of this theory will be the task of the next section.

2.3 Type IIB on Calabi-Yau manifolds

Now we turn to the review of type IIB compactifications on Calabi-Yau spaces [71].
Type IIB supergravity is maximal supersymmetric in ten dimensions and possesses
two gravitinos of the same chirality. It consists of the same NS-NS fields as type IIA:
the scalar dilaton φ̂, the metric ĝ and a two-form B̂2. In the R-R sector type IIB
consists of even forms, the axion Ĉ0, a two-form Ĉ2 and a four-form Ĉ4. The low
energy effective action in the D = 10 Einstein frame is given by [4]

S
(10)
IIB =

∫

−1
2
R̂ ∗ 1 − 1

4
dφ̂ ∧ ∗dφ̂− 1

4
e−φ̂Ĥ3 ∧ ∗Ĥ3 (2.27)

−1
4
e2φ̂F̂1 ∧ ∗F̂1 − 1

4
eφ̂F̂3 ∧ ∗F̂3 −−1

8
F̂5 ∧ ∗F̂5 − 1

4
Ĉ4 ∧ Ĥ3 ∧ F̂3 ,
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with the field strengths defined as

Ĥ3 = dB̂2 , F̂1 = dĈ0 , F̂q+1 = dĈq − Ĉq−2 ∧ Ĥ3 , q = 2, 4 . (2.28)

The self-duality condition F̂5 = ∗F̂5 is imposed at the level of the equations of motion.

As in the type IIA compactifications discussed in the previous section we use the
Ansatz (2.20) for the ten-dimensional background metric. Fluctuations around this
background metric are parameterized by the four-dimensional graviton gµν and the
geometric deformations of the Calabi-Yau metric. More precisely, we find h(1,1) real
Kähler structure deformations vA introduced in (2.5) and h(2,1) complex structure
deformations zK introduced in (2.7). The type IIB gauge potentials appearing in the
Lagrangian (2.27) are similarly expanded in terms of harmonic forms on Y according
to

B̂2 = B2(x) + bA(x)ωA , Ĉ2 = C2(x) + cA(x)ωA , A = 1, . . . , h(1,1) ,(2.29)

Ĉ4 = DA
2 (x) ∧ ωA + V K̂(x) ∧ αK̂ − UK̂(x) ∧ βK̂ + ρA(x) ω̃A , K̂ = 0, . . . , h(1,2).

The four-dimensional fields appearing in the expansion (2.29) are the scalars bA(x),

cA(x) and ρA(x), the one-forms V K̂(x) and UK̂(x) and the two-forms B2(x), C2(x)

and DA
2 (x). The self-duality condition of F̂5 eliminates half of the degrees of freedom

in Ĉ4 and in this section we choose to eliminate DA
2 and UK̂ in favor of ρA and V K̂ .

Finally, the two type IIB scalars φ̂, Ĉ0 also appear as scalars in D = 4 and therefore
we drop the hats henceforth and denote them by φ, C0.

In summary the massless D = 4 spectrum consists of the gravity multiplet
with bosonic components (gµν , V

0), h(2,1) vector multiplets with bosonic components
(V K , zK), h(1,1) hypermultiplets with bosonic components (vA, bA, cA, ρA) and one
double-tensor multiplet [95] with bosonic components (B2, C2, φ, C0) which can be
dualized to an additional (universal) hypermultiplet. The four-dimensional spectrum
is summarized in Table 2.1.

gravity multiplet 1 (gµν , V
0)

vector multiplets h(2,1) (V K , zK)

hypermultiplets h(1,1) (vA, bA, cA, ρA)

double-tensor multiplet 1 (B2, C2, φ, C0)

Table 2.1: N = 2 multiplets for Type IIB supergravity compactified on a Calabi-Yau

manifold.

The N = 2 low energy effective action is computed by inserting (2.28) and (2.29)
into the action (2.27) and integrating over the Calabi-Yau manifold. For the details
we refer the reader to the literature [71, 13, 24, 26] and only recall the results here.
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One finds

S
(4)
IIB =

∫

−1
2
R ∗1 + 1

4
ReMK̂L̂F

K̂ ∧ F L̂ + 1
4
ImMK̂L̂F

K̂ ∧ ∗F L̂

−GKLdz
K ∧ ∗dz̄L −GABdt

A ∧ ∗dt̄B − dD ∧ ∗dD − 1
24
e2DKdl ∧ ∗dl

−1
6
e2DKGAB

(

dcA − ldbA
)

∧ ∗
(

dcB − ldbB
)

(2.30)

− 3
8Ke

2DGAD
(

dρA −KABCc
BdbC

)

∧∗
(

dρD −KDEF c
EdbF

)

−1
4
e−4DdB2 ∧ ∗dB2 − 1

24
e−2DK

(

dC2 − ldB2

)

∧ ∗
(

dC2 − ldB2

)

−1
2
dC2 ∧

(

ρAdb
A − bAdρA

)

+ 1
2
dB2 ∧ cAdρA − 1

4
KABCc

AcBdB2 ∧ dbC ,

where F K̂ = dV K̂ . The gauge kinetic matrix MK̂L̂ is related to the metric on H3(Y )
and given in (2.25). The metric GKL(z, z̄) which appears in (2.30) is the metric on
the space of complex structure deformations given in (2.11). It is a special Kähler
metric in that it is entirely determined by the holomorphic prepotential F(z) [87, 88].
On the other hand, the metric GAB in (2.30) is the metric on the space of Kähler
deformations defined in (2.15).

In order to entirely express (2.30) in terms of vector- and hypermultiplets we
dualize the D = 4 two-forms B2, C2 to scalar fields. This can be done, since B2 and
C2 are massless and posses the gauge symmetries C2 → C2 +dΛ1 and B2 → B2 +dΛ̃1.
Let us first dualize C2. We replace dC2 with D3 and add the Lagrange multiplier
1
2
h dD3 such that the differentiation with respect to h yields dD3 = 0. Locally this

ensures that D3 = dC2 for some two-form C2. The terms in (2.30) involving D3 are
simply

LC2 = −g
4

(

D3 − C0 dB2

)

∧ ∗
(

D3 − C0 dB2

)

− 1
4
D3 ∧ J1 + 1

2
D3 ∧ dh , (2.31)

where we abbreviated g = 1
6
e−2DK and J1 = ρAdb

A−bAdρA. Now we can consistently
eliminate D3 in favor of h by its equation of motion. The dualized Lagrangian takes
the form

Lh = − 1
4g

(

dh− 1
2
J1

)

∧ ∗
(

dh− 1
2
J1

)

+ 1
2
C0 dB2 ∧

(

dh− 1
2
J1

)

. (2.32)

Similarly we can dualize the two-from B2 into a scalar h̃. Having replaced C2, B2

by h, h̃ in (2.30) the effective action can be written in the standard N = 2 form
[96, 97, 92]

S
(4)
IIB =

∫

−1
2
R ∗ 1 + 1

4
ReMK̂L̂F

K̂ ∧ F L̂ + 1
4
ImMK̂L̂F

K̂ ∧ ∗F L̂

−GKLdz
K ∧ ∗dz̄L − hpq dq̃

p ∧ ∗dq̃q , (2.33)

where qp denote the coordinates for all h(1,1) + 1 hypermultiplets. The metric hpq is



32 Calabi-Yau compactifications of Type II theories

a quaternionic metric explicitly given by [91]

hpq dq̃
p dq̃q = (dD)2 +GABdt

Adt̄B + 1
24
e2DK(dC0)

2

+ 1
6
e2DKGAB

(

dcA − C0 db
A
)(

dcB − C0 db
B
)

(2.34)

+ 3
8Ke

2DGAD
(

dρA −KABCc
BdbC

)(

dρD −KDEF c
EdbF

)

+ 3
2Ke

2D
(

dh− 1
2
(ρAdb

A − bAdρA)
)2

+ 1
2
e4D

(

dh̃+ C0 dh+ cAdρA + 1
2
C0 (ρAdb

A − bAdρA) − 1
4
KABCc

AcBdbC
)2
.

In summary the scalar moduli space MSK ×MQ of the N = 2 theory is the product
of a quaternionic manifold MQ spanned by the scalars qp with metric (2.34) and a
special Kähler manifold MSK = Mcs spanned by the scalars zK . The complexified
Kähler structure deformations span a special Kähler manifold Mks inside MQ. In [91]
it was shown that the quaternionic space can be constructed from the prepotential of
Mks such that MQ is a special quaternionic manifold.

This ends our brief summary of type IIB compactified on Calabi-Yau threefolds
and its N = 2 low energy effective action. We have seen that the effective actions
of the type IIA and type IIB indeed take the standard N = 2 form. In both cases
the metrics on the special Kähler and special quaternionic manifold are encoded by
a corresponding prepotential. However, the role of the Kähler and complex structure
deformations is exchanged in type IIA and type IIB compactifications. As we will
discuss momentarily this can be traced back to an underlying symmetry which finally
enables us to identify both effective theories in the large volume – large complex
structure limit.

2.4 N=2 Mirror symmetry

In this section we briefly discuss mirror symmetry for Calabi-Yau compactifications
[64]. From a mathematical point of view, mirror symmetry is a duality in the moduli
space of Calabi-Yau manifolds. It states that for a given Calabi-Yau manifold Y ,
there exists a mirror Calabi-Yau Ỹ such that

h(1,1)(Y ) = h(2,1)(Ỹ ) , h(2,1)(Y ) = h(1,1)(Ỹ ) . (2.35)

Applied to the Hodge diamond (2.3) this amounts to a reflection along the diagonal.
In other words, mirror symmetry identifies the odd and even cohomologies (2.2) of
two topological distinct Calabi-Yau spaces

Hev(Y ) ∼= Hodd(Ỹ ) , Hodd(Y ) ∼= Hev(Ỹ ) . (2.36)

Moreover, it is much stronger than that, since it also implies an identification of the
moduli spaces of deformations of Y and Ỹ . As given in (2.8) the geometric moduli
space of a Calabi-Yau manifold is a local product of two special Kähler manifolds Mks

and Mcs. Their complex dimensions are exactly given by h(1,1) and h(2,1). Motivated
by (2.35) mirror symmetry conjectures the identifications

Mks(Y ) ≡ Mcs(Ỹ ) , Mcs(Y ) ≡ Mks(Ỹ ) , (2.37)
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as special Kähler manifolds. Recall that the geometry of Mcs(Y ) and Mcs(Ỹ ) are
encoded in the variations of the holomorphic three-forms Ω and Ω̃ of the two Calabi-
Yau manifolds Y and Ỹ . These can be expanded in a real symplectic basis of H3(Y )
and H3(Ỹ ) respectively

Ω(z) = ZK̂αK̂ − FK̂β
K̂ , Ω̃(z̃) = Z̃ÂαÂ − F̃Âβ

Â , (2.38)

Under the large volume mirror map the coordinates on the two manifolds Mks(Y )
and Mcs(Ỹ ) as well as Mcs(Y ) and Mks(Ỹ ) are identified as

tA = Z̃A(z̃)/Z̃0(z̃) , ZK(z)/Z0(z) = t̃K (2.39)

where tA and t̃K are the complexified Kähler deformations of Y and Ỹ . Equation
(2.39) implies that tA, t̃K are identified with special coordinates on Mcs. Furthermore,
recall that due to the special Kähler property the metric on both moduli spaces is
encoded by a prepotential. Applying (2.37) it follows that these prepotentials fY (t)
and fỸ (z̃) as well as fY (z) and fỸ (t̃) are identified under mirror symmetry. One
immediately notices, that this can not be the full truth, since Mks and Mcs have
a different structure. Mks is a cone and admits the simple prepotential f(t) =
−1

6
KABCt

AtBtC , while the metric on Mcs is determined in terms of the (generically
complicated) periods of the holomorphic three-form. Hence, one expects corrections
to fY (t) and fỸ (t̃). These corrections get a physical interpretation as soon as mirror
symmetry is embedded in string theory. They are due to strings wrapping two-cycles
in Y called world-sheet instantons. Schematically one identifies

fY (t) = t3 + O(e−t) = fỸ (z̃) , fY (z) = t̃3 + O(e−t̃) = fỸ (t̃) . (2.40)

One can also turn the argument around and use mirror symmetry as a very powerful
tool to calculate the world-sheet instanton corrections O(e−t) as done in the pioneering
paper [98]. In most cases this is much simpler then a direct calculation of the world-
sheet instanton contributions.

The most prominent applications of mirror symmetry in string theory is the iden-
tification of type IIA string theory compactified on Y with type IIB string theory
compactified on Ỹ . It matches the full string theories including their low energy lim-
its and supersymmetric D-brane states. With the material presented in this chapter
we can check it on the level of the effective action by comparing (2.23) with (2.33).
This amounts to matching the moduli spaces of the corresponding four-dimensional
N = 2 theories which take the standard N = 2 form (2.26). Since we already dis-
cussed the special Kähler part in (2.26), let us now concentrate on the quaternionic
manifolds MQ(Y ) and MQ(Ỹ ). In accordance with (2.36) and (2.39) one identifies

the basis elements (1, ωK, ω̃
K , vol(Y )) of Hev(Y ) with the basis (αK̂ , β

K̂) of Hodd(Ỹ )
as

1 ↔ α0 , ωK ↔ αK , vol(Y ) ↔ β0 , ω̃K ↔ βK . (2.41)

We will work in this basis in the following. Let us now construct the explicit map for
the quaternionic coordinates by using a slightly non-standard argument. We intend
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to apply the fact, that the fields of the quaternionic space describe the coupling to
D-branes, which are extended non-perturbative objects present in both type II string
theories. We will discuss the low energy dynamics and supersymmetry conditions of
these objects more carefully in section 3.1. All we need for constructing the mirror
map for the quaternionic spaces is there coupling to the R-R forms in the supergravity
theory and some information about supersymmetric branes in type IIA and type IIB
string theory. It will become clear in section 3.1, that the only supersymmetric
Euclidean D-branes wrapping a cycle in a Calabi-Yau manifold are D2 branes in
Type IIA and D(−1), D1, D3 and D5 branes in type IIB. The Chern-Simons action
describes the coupling of the brane world-volume to the forms

IIA: (
∑

p even

Ĉp ∧ e−B̂2)3 , IIB: (
∑

p odd

Ĉp ∧ e−B̂2)q , q = 0, 2, 4, 6 , (2.42)

where Ĉp and B̂2 are the ten-dimensional R-R and NS-NS forms introduced in section
2.2 and 2.3. By (. . .)q we indicate that we only consider the q−form appearing in
the sum of forms inside the parenthesis. Supersymmetry implies that the Euclidean
D-branes, wrap cycles which are dual to harmonic forms. But the only odd harmonic
forms are (αK̂ , β

K̂), while the even harmonic forms are (1, ωK, ω̃
K , vol(Y )). Next we

match the Chern-Simons couplings (2.42) for IIA and IIB Euclidean D-branes. We
decompose (2.42) on the respective cohomology basis elements by using the expan-
sions (2.29) of B̂2 and the R-R forms Ĉ0, Ĉ2, Ĉ4 as well as the expansion (2.21) of Ĉ3.
Applying the identification (2.41) of the basis forms we find for the coefficients of αK̂

and (1, ωK) that
ξ0 = C0 , ξK = cK − C0 b

K . (2.43)

Identifying the coefficients of βK̂ and (ω̃K , vol(Y )) yields higher powers in B̂2 and we
find 3

ξ̃K = ρK −KKLMc
LbM + 1

2
C0 KKLMb

LbM , (2.44)

ξ̃0 = h− 1
2
ρKb

K + 1
2
KKLMc

KbLbM − 1
6
C0 KKLMb

KbLbM .

It remains to identify the space-time two-forms from the NS-NS sectors. Since BA
2 and

BB
2 are the only remaining two-forms in the spectrum, we are forced to set BA

2 = BB
2 .

Dualized into scalars this amounts to

a = 2h̃ + C0 h + ρK(cK − C0 b
K) (2.45)

Thus, by using the explicit form of the Chern-Simons coupling to D-branes, one can
infer the mirror map for the coordinates on the quaternionic space. Of course, that
the established map indeed transforms hA

uv given in (2.24) into hB
uv given in (2.34) can

be checked by direct calculation as done in [71].

This ends our review section on Calabi-Yau compactifications of type IIA and
type IIB supergravity. We now turn to their orientifold versions which break N = 2
to N = 1. The aim of the next chapter is to determine the characteristic data of the
resulting supergravity theory.

3We have replaced
∫

C6 by h + 1
2ρAb

A. This can be done since C6 is dual to C2, which was
dualized to h in (2.32).



Chapter 3

Effective actions of Type II

Calabi-Yau orientifolds

In this chapter we discuss the four-dimensional low energy effective supergravity the-
ory obtained by compactifying type IIA and type IIB string theory on Calabi-Yau
orientifolds. Before entering the calculations we review some aspects of D-branes and
orientifolds in section 3.1. In particular, we introduce the low energy effective action
for D-branes. Later on this will allow us to comment on corrections due to wrapped
Euclidean D-branes to the bulk supergravity theory. As we already explained in
section 1.2 the inclusion of space-time filling D-branes is essential for consistency.
However, we freeze their moduli and matter fields such that they do not appear in
the low energy effective action.1 In a next step we turn to the main issue of this chap-
ter and perform a Kaluza-Klein reduction by implementing the orientifold conditions
and extract the resulting N = 1 supergravity theory (sections 3.2 – 3.4). Specifically
we determine the Kähler potential and the gauge-kinetic coupling functions encoding
the low energy effective theory. We end our analysis by checking mirror symmetry in
the large complex structure and large volume limit in section 3.5. A derivation of a
flux induced superpotential and possible gaugings will be presented in chapter 5.

3.1 D-branes and orientifolds

In this section we provide more details on D-branes and orientifolds as used in the con-
struction of brane-world scenarios. As already mentioned in section 1.2 brane world
scenarios are currently one of the promising approaches to construct phenomenologi-
cally interesting models from string compactification [47]. They consist of space-time
filling D-branes serving as source for Abelian or non-Abelian gauge theories. String
theory implies a low energy effective action for this gauge theory as well as the cou-
plings to the bulk fields introduced in chapter 2. More precisely, the gauge theory and
the coupling to the NS-NS fields φ̂, ĝ and B̂2 is captured by the Dirac-Born-Infeld

1This restriction was weakened e.g. in [31, 99], where the coupling to D3- and D7-bane moduli
was determined by using the low energy effective action of the D branes.
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action. The most simple example is provided by a single Dp-brane, which admits an
U(1) gauge theory on its p+1-dimensional world-volume. The corresponding bosonic
part of the Dirac-Born-Infeld action reads in string frame [50, 4]

Ssf
DBI = −Tp

∫

W
dp+1ξ e−φ̂

√

− det
(

ϕ∗(ĝ + B̂2)µ̂ν̂ + 2πα′Fµ̂ν̂

)

, (3.1)

where Tp denotes the brane tension. The integral is taken over the p+ 1-dimensional
world-volume W of the Dp-brane, which is embedded in the ten-dimensional space-
time manifold M10 via the map ϕ : W →֒ M10. The Dirac-Born-Infeld action (3.1)
contains an U(1) field strength Fµ̂ν̂ = 2∂[µ̂Aν̂], which describes the U(1) gauge theory
to all orders in α′F [100]. To leading order, the gauge theory reduces to an U(1)
gauge theory on the world-volume W of the brane. The dynamics of the Dp-brane is
encoded in the embedding map ϕ. Fluctuations around a given ϕ are parameterized
by charged scalar fields, which provide the matter content of the low-energy effective
theory.

Since Dp-branes also carry R-R charges [49], they couple as extended objects
to appropriate R-R forms of the bulk, namely the p + 1-dimensional world-volume
couples naturally to the R-R form Ĉp+1. Moreover, generically D-branes contain lower
dimensional D-brane charges, and hence interact also with lower degree R-R forms
[101]. All these couplings to the bulk are implemented in the Chern-Simons action

SCS = µp

∫

W
ϕ∗

(

∑

q

Ĉq ∧ e−B̂2

)

∧ e2πα′F , (3.2)

where µp is the charge of the D-branes. The lowest order terms in (3.2) in the R-R
fields are topological and represent the R-R tadpole contributions to the low energy
effective action. Additionally, (3.2) encodes the coupling of the gauged matter fields
arising from perturbations of ϕ to the R-R forms. The effective actions (3.1) and
(3.2) can be generalized to stacks of D-branes [102]. This gives rise to non-Abelian
gauge theories and appropriate (intersecting) embeddings can yield Standard Model
like gauge theories [47].

Generic brane world scenarios lead to non-supersymmetric low energy theories,
which are plagued by various instabilities due to runaway potentials for the bulk
moduli. In contrast, supersymmetric setups are under much better control and are
therefore phenomenologically favored. However, the aim to preserve some supersym-
metry poses strong conditions on the D-branes present in the setup. D-branes which
preserve half of the original supersymmetries are called BPS branes and the corre-
sponding supersymmetry conditions BPS conditions. In brane-world setups with a
ten-dimensional background space-time of the form M3,1×Y two types of branes will
be of importance which preserve four dimensional Poncaré invariance. Firstly, one
includes D-branes filling the space-time M3,1 and wrapping a cycle in the manifold
Y . These provide the gauge theory and matter fields just discussed. Secondly, one
might add Euclidean D-branes (called D-instantons) solely wrapping a cycle in Y .
They induce corrections to the supergravity theory and their effects can be useful
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to stabilize bulk moduli. The BPS conditions for both types of branes demand that
the brane tensions Tp and charges µp are equal. This ensures stability since the net
force between BPS branes vanishes [49]. Moreover, there are conditions on the cycles
ΛDp in Y wrapped by the branes. In [103] it was shown that in a purely metric
background with Y being a Calabi-Yau manifold the only allowed cycles are special
Lagrangian submanifolds of Y in type IIA and holomorphic submanifolds in type IIB.
More precisely special Lagrangian submanifolds are three-cycles Λ(3) in Y for which

vol(Λ(3)) = ϕ̃∗(ReΩ) , ϕ̃∗(ImΩ) = 0 , ϕ̃∗J = 0 , (3.3)

where vol(Λ(3)) = det1/2(ϕ̃∗g) d3λ is the volume form on Λ(3), J and Ω are the Kähler
form and holomorphic three-form of Y as in chapter 2 and ϕ̃ defines the embedding
of the D-brane into Y . On the other hand, holomorphic submanifolds are even-
dimensional cycles Λ(2),Λ(4) in Y satisfying

vol(Λ(2)) = ϕ̃∗(J) , vol(Λ(4)) = 1
2
ϕ̃∗(J ∧ J) , ϕ∗(Ω) = 0 . (3.4)

It can be shown that the conditions (3.3) and (3.4) ensure that such cycles minimizes
their volume in their homology classes (see e.g. [103]).

These conditions have to be adjusted as soon as one allows a non-trivial back-
ground of supergravity forms [104, 105]. As an example, the BPS conditions on the
volume of the cycles in the presence of a non-trivial B̂2 field are given by [104]

IIA: volDBI(Λ
(3)
Dp) = e−iθDp ϕ̃∗(Ω

)

, (3.5)

IIB: volDBI(Λ
(q)
Dp) = e−iθDp ϕ̃∗(e−B̂2+iJ

)

q
, q = 2, 4, 6 ,

where volDBI(Λ
(q)
Dp) = det1/2(ϕ̃∗[g + B̂2]) d

qλ is the Dirac-Born-Infeld volume form

on Λ
(q)
Dp. e

iθDp denotes a constant phase which will be determined below. The BPS
conditions involving the volume elements split into real and imaginary parts, where
the imaginary part has to vanish on Λ

(q)
Dp by using reality of volDBI(Λ

(q)
Dp). The cycles

Λ
(q)
Dp satisfying the conditions (3.5) are called calibrated with respect to the form

e−iθDp Ω in type IIA and calibrated with respect to e−iθDp e−B̂2+iJ in type IIB. In a
setup with several D-branes some supersymmetry is preserved as soon as all D-branes
are calibrated with respect to the same form. However, as we already explained in
section 1.2 this is not the end of the story, since consisted supersymmetric theories
have to include negative tension objects such as orientifold planes [20].

Similar to D-branes, orientifold planes are hyper-planes of the ten-dimensional
background. They arise in string theories which contain non-orientable world-sheets.
Orientifold theories can be constructed by starting from a closed string theory such
as type IIA or type IIB strings and dividing out a symmetry group [51, 58] 2

G ∪ SΩp, (3.6)

2As usual, dividing out a symmetry can be understood as a gauge fixing.
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where G is a group of target space symmetries and Ωp is the world-sheet parity,
exchanging left and right movers. S contains operations, which render SΩp to be a
symmetry of the string theory. For orientifolds (3.6) consists of evidently perturbative
symmetries of the string theory, which can be imposed order by order in perturbation
theory and are believed to be unbroken also non-perturbatively. Specifically this
implies that the orientifold projection can be consistently imposed in a low energy
description. The orientifold planes are the hyper-surfaces left invariant by S. They
naturally couple to the R-R forms and thus carry a charge. Moreover, they can
have negative tension.3 This allows to construct consisted D-brane setups with some
fraction of supersymmetry preserved. More precisely, in a background M3,1 × Y
orientifold planes wrap cycles in Y arising as the fix-point set of S. If these are
calibrated with respect to the same form as the cycles wrapped by the D-branes in
the setup, the brane-orientifold setup can preserves some supersymmetry. We will
comment on these conditions later on in this chapter.

Before we define the precise orientifold projections relevant for this work in section
3.2, let us first collect some possible symmetry operations allowed in S. In the simplest
example S only consists of a target space symmetry σ : M10 → M10, such that Ωpσ is
a symmetry of the underlying string theory. This will be the case for IIB orientifolds
with O5 or O9 planes. However, type IIB admits a second perturbative symmetry
operation denoted by (−1)FL, where FL is the space-time fermion number in the
left-moving sector. Under the action of (−1)FL R-NS and R-R states are odd while
NS-R and NS-NS states are even. Orientifolds with O3 and/or O7 planes arise from
projections of the form (−1)FLΩpσ as we will argue below. In summary let us display
the transformation behavior of the massless bosonic states under these two operations
[4, 51]

Ωp : even: φ̂, ĝ, Ĉ1, Ĉ2, odd: Ĉ0, B̂2, Ĉ3, Ĉ4 ,

(−1)FL : even: φ̂, ĝ, B̂2, odd: Ĉ0, Ĉ1, Ĉ2, Ĉ3, Ĉ4 ,
(3.7)

where we have also displayed the transformation properties of the type IIA forms.
With these transformations at hand one easily checks that Ωp as well as (−1)FL are
symmetries of the ten-dimensional type IIB supergravity action. This is in contrast
to type IIA. By using (3.7) one immediately notices that Ωp, (−1)FL and (−1)FLΩp

alone are no symmetries of the type IIA effective action (2.18). However, orientifolds
with O6 planes arise if S includes (−1)FLΩp as well as some appropriatly chosen
target space symmetry which ensures that SΩp leaves (2.18) invariant. Let us now
make this more explicite by properly defining the Calabi-Yau orientifold projections.

3.2 Orientifold projections

After this brief introduction we are now in the position to specify the orientifolds under
consideration and give an explicit definition of the orientifold symmetry group (3.6).

3Note that orientifold planes are to lowest order non-dynamical in string theory. This is not
anymore true to higher orders as can be inferred from their F-theory interpretation [69].
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We start from type II string theory and compactify on a Calabi-Yau threefold Y . In
addition we mod out by orientation reversal of the string world-sheet Ωp together with
an ‘internal’ symmetry σ which acts solely on Y but leaves the D = 4 Minkowskian
space-time untouched. We will restrict ourselves to involutive symmetries (σ2 = 1)
of Y and thus set G in (3.6) to be empty.4 This avoids the appearance of further
twisted sectors as they appear in general orbifold models [106]. In a next step we
have to specify additional properties of σ and the complete operation SΩp in order
that it provides a symmetry of the string theory under consideration. To do that we
discuss the type IIA and type IIB case in turn.

Type IIB orientifolds

Let us start with type IIB Calabi-Yau orientifolds and define the orientifold projec-
tions following [69, 107, 59, 61]. Later on, in section 3.3 we show that gauge-fixing
these symmetries indeed leads to an N = 1 supergravity theory. In type IIB con-
sistency requires σ to be an isometric and holomorphic involution of Y [59, 61]. A
holomorphic isometry leaves both the metric and the complex structure of the Calabi-
Yau manifold invariant. As a consequence also the Kähler form J is invariant such
that

σ∗J = J , (3.8)

where σ∗ denotes the pull-back of the map σ. Hence in our analysis we focus on the
class of Calabi-Yau threefolds which admit such an involution but within this class
we leave the threefolds arbitrary. Since the involution is holomorphic it respects the
Hodge decomposition (2.2) and we find in particular σ∗H(3,0) = H(3,0). Picking the
holomorphic three-form Ω as an representative of H(3,0) and using that (σ∗)2 = id
one is left with two possible actions

(1) O3/O7 : σ∗Ω = −Ω , (2) O5/O9 : σ∗Ω = +Ω . (3.9)

Correspondingly, depending on the transformation properties of Ω two different sym-
metry operations O = SΩp are possible [69, 107, 59, 61] 5

O(1) = (−1)FLΩp σ , O(2) = Ωp σ (3.10)

where Ωp is the world-sheet parity, FL is the space-time fermion number in the left-
moving sector introduced at the end of section 3.1. This specifies the operation SΩp

in (3.6) and, since G is empty, the complete orientifold projection. We are now
in the position to check if the orientifold projections are indeed a symmetry of the
bosonic ten-dimensional type IIB supergravity action (2.27). We will do this check by
concentrating only on some of the terms in (2.27) keeping in mind that the analysis for
the remaining terms is analoge. The background M′ = M3,1×σ(Y ) denotes the image

4Calabi-Yau manifolds have only discrete isometries. For example in the case of the quintic,
σ could act by permuting the coordinates such that the defining equation is left invariant. A
classification of all possible involutions of the quintic can be found in ref. [61].

5The factor (−1)FL is included in O(1) to ensure that O2
(1) = 1 on all states.
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of M = M
3,1 × Y under the geometric action σ. Also inserting the σ-transformed

fields into (2.27) one infers 6

S
(10)
IIB′ =

∫

M′

(

− 1
2
R̂g′ ∗ ′1− 1

4
g′MN(∂M φ̂

′)(∂N φ̂
′) ∗ ′1− . . .− 1

4
Ĉ ′

4 ∧ Ĥ ′
3 ∧ F̂ ′

3

)

, (3.11)

where g′ = σ∗g, φ̂′ = σ∗φ̂ etc. and the dots denote terms transforming similar to the
kinetic term of φ′. The Hodge star ∗′ is evaluated on the manifold M′ with metric
g′. Now we apply the properties of the involution. Since σ is an isometry we find
g = g′ and due to the holomorphicity of σ we can deduce that the ten-dimensional
volume element ∗′1 does not change sign in going from M′ to M.7 This ensures that
the Einstein-Hilbert term takes the from

∫

M′ σ
∗(−1

2
R ∗1) and by applying (A.6) and

(A.7) is invariant under the isometric map σ. A similar reasoning applies to all other
terms in (3.11) and one concludes that the effective action (2.27) is indeed unchanged
by σ. Combined with the invariance of (2.27) under the world-sheet parity Ωp and
(−1)FL one infers that the orientifold operations (3.10) are symmetries of the effective
theory.

The fix-point set of the involutions σ in (3.10) determines the location of the
orientifold planes. Modding out by O(1) leads to the possibility of having O3- and O7-
planes while modding out by O(2) allows O5- and O9-planes. To see this, recall that
the four-dimensional Minkowski space is left invariant by σ such that the orientifold
planes are necessarily space-time filling. Using the fact that σ is holomorphic they
have to be even-dimensional (including the time direction) which selects O3-, O5-,
O7- or O9-planes as the only possibilities. The actual dimensionality of the orientifold
plane is then determined by the dimensionality of the fix-point set of σ in Y . In order
to determine this dimensionality we need the induced action of σ on the tangent space
at any point of the orientifold plane. Since one can always choose Ω ∝ dy1∧dy2∧dy3

we see that for σ∗Ω = −Ω the internal part of the orientifold plane is either a point or
a surface of complex dimension two. Together with the space-time filling part we thus
can have O3- and/or O7-planes. The same argument can be repeated for σ∗Ω = Ω
which then leads to the possibility of O5- or O9-planes. There are no models with
O5 and O9 planes, since the appearance of a O9 plane implies that the complete
background M10 consist of fix-points of σ = id. The case of O9 planes is special and
coincides with type I if one introduces the appropriate number of D9-branes to cancel
tadpoles.

Since the involution σ is holomorphic the fix-point set of the involution are holo-
morphic cycles ΛOp. This implies that they are calibrated with respect to the forms
1 and J ∧ J in orientifolds with O3/O7 planes and with respect to J or J ∧ J ∧ J in
orientifolds with O5 or O9 planes. More precicely, one finds that the volume forms
on ΛOp equals the pull-back of eiJ to the cycle 8

vol(ΛOp) = e−iθOp eiJ
∣

∣

ΛOp
, θO3/7 = 0 , θO5 = π

2
, θO9 = −π

2
, (3.12)

6Here we have used (A.5) in order to give the component expression of the kinetic terms in (2.27).
7Holomorphic maps do not change the orientation of M .
8Here we abbreviate the formal sum of (q, q)-forms eiJ = 1 + iJ + 1

2!J ∧ J − i
3!J ∧ J ∧ J .
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where the phase depends on the type of orientifold planes in the setup. Furthermore
one has Ω|ΛOp

= 0. Cycles fulfilling these conditions minimize their volume within
their homology class. Note that similar to (3.5) this condition has to be modified in
the presence of a B̂2 field. In this case the form which calibrates the supersymmetric
cycles is e−B̂2+iJ . Let us check whether the fix-point sets ΛOp of σ remain calibrated.
In the two orientifold setups only fields are kept in the spectrum which are invariant
under the respective projection O(1/2) given in (3.10). Thus, by using (3.7) one infers

that B̂2 has to transform as σ∗B̂2 = −B̂2 for both orientifold projections. This implies
that B̂2 restricted to the fix-point set of σ vanishes. 9 One concludes that the cycles
ΛOp remain calibrated with respect to the generalized calibration form, i.e.

volDBI(ΛOp) = e−iθOpe−B̂2+iJ
∣

∣

ΛOp
, (3.13)

where θOp is as given in (3.12) and volDBI(ΛOp) is defined as in (3.5). At this point,
one can compare the calibration condition (3.13) for the orientifold planes with the
one for the Dp-branes given in (3.5). In order to preserve some supersymmetry all
orientifold planes and D-branes, have to be calibrated with respect to the same form.
This implies that the phases θDp in (3.5) have to coincide with θOp given in (3.12) (see
also [99] for the case of D3/D7 branes). This is equivalently true for Dq-instantons
wrapping q+1-cycles in Y . In supersymmetric setups with O(q+3) planes one has to
set θDq = θO(q+3), where eiθDq is the phase in the D-instanton calibration condition.

Type IIA orientifolds

Let us now turn to the type IIA Calabi-Yau orientifolds. In contrast to type IIB the
orientifold projection has to include an anti-holomorphic and isometric involution σ
in order to preserve N = 1 supersymmetry [59, 60, 61]. Hence, the Kähler form on
Y transforms as

σ∗J = −J , (3.14)

since σ preserves the metric but yields a minus sign when applied to the complex
structure. The complete projection takes the form

O = (−1)FLΩpσ . (3.15)

In addition to the condition (3.14) compatibility of σ with the Calabi-Yau condition
Ω ∧ Ω̄ ∝ J ∧ J ∧ J implies that σ also acts non-trivially on the three-form Ω as

σ∗Ω = e2iθΩ̄ , (3.16)

where e2iθ is a constant phase and we included a factor 2 for later convenience. Similar
to the type IIB case we can check that the projection O is a symmetry of the type IIA
supergravity action (2.18). Note however, that (−1)FLΩp alone is not a symmetry of

9Denoting ρ∗B̂2 = B̂2|ΛOp
the pull-back to the fix-point set ΛOp of σ it follows −ρ∗B̂2 =

ρ∗(σ∗B̂2) = (σ ◦ ρ)∗B̂2 = ρ∗B̂2 such that ρ∗B̂2 = 0.
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type IIA. Using (3.7) this can be already inferred from the fact that the kinetic and
topological terms in (2.18) transform with a different sign. On the other hand, under
the action of the involution σ the effective action changes as

S
(10)
IIA′ =

∫

M′

(

− 1
2
R̂g′ ∗ ′1 − 1

4
g′MN(∂M φ̂

′)(∂N φ̂
′) ∗ ′1 . . .− 1

2
B̂′

2 ∧ F̂ ′
4 ∧ F̂ ′

4

)

, (3.17)

where as in (3.11) we have set g′ = σ∗g, φ̂′ = σ∗φ̂ etc. and the Hodge star ∗′
is on the manifold M′ = M3,1 × σ(Y ) with metric g′. Using the fact that σ is
an anti-holomorpic isometric involution it changes the sign of the volume element
∗1 ∼ vol(M3,1) ∧ J ′ ∧ J ′ ∧ J ′, such that ∗′1 = − ∗ 1. From equations (A.6) and
(A.7) one finds that the topological term transforms with a minus sign while the
kinetic terms remain invariant. This extra sign cancels the minus from the action of
(−1)FLΩp such that O is indeed a symmetry of (2.18). In section 3.4 we show that
gauge-fixing this symmetry results in an N = 1 supergravity theory.

Type IIA orientifolds with anti-holomorphic involution generically contain O6
planes. This is due to the fact, that the fixed point set of σ in Y are three-cycles
ΛO6 supporting the internal part of the orientifold planes. These cycles are special
Lagrangian submanifolds of Y as an immediate consequences of (3.14) and (3.16)
which implies [108]

J |ΛO6
= 0 , Im(e−iθΩ)|ΛO6

= 0 . (3.18)

In other words, they are calibrated with respect to Re(e−iθΩ)

vol(ΛO6) ∼ Re(e−iθΩ) , (3.19)

where the overall normalization of Ω will be determined in (5.40). Once again this
poses conditions on additional D-branes in the setup, if they are demanded to preserve
the same supersymmetry. More precicely, BPS branes have to be calibrated with
respect to the same form as the orientifold planes. This implies by comparing (3.5)
with (3.19) that θD6 = θ for space-time filling D6-branes wrapping a three-cycle in Y .
A similar condition θD2 = θ has to hold for supersymmetric D2-instantons wrapping
a three-cycle in Y .

3.3 Type IIB Calabi-Yau orientifolds

In this section we impose the projection (3.10) on the type IIB theory and derive the
massless spectrum (section 3.3.1) and its low energy N = 1, D = 4 effective super-
gravity action (section 3.3.2). This generalizes similar derivations already performed
in refs. [20, 27]. We restrict our analysis to the bosonic fields of the compactification
keeping in mind that the couplings of the fermionic partners are fixed by supersym-
metry. Furthermore, we include space-time filling D-branes for consistency but fix
their moduli, such that they do not appear in the low energy effective action. The
compactification we perform is closely related to the compactification of type IIB
string theory on Calabi-Yau threefolds reviewed in chapter 2. The orientifold pro-
jection (3.10) truncates the massless spectrum from N = 2 to N = 1 multiplets and
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also leads to a modification of the couplings which render the low energy effective
theory compatible with N = 1 supergravity. Such truncation procedures from N = 2
to N = 1 supergravity has been carried out from a purely supergravity point of view
in refs. [112].

3.3.1 The N = 1 spectrum

Before computing the effective action let us first determine the massless spectrum
when the orientifold projection is taken into account and see how the fields assemble
inN = 1 supermultiplets [61]. In the four-dimensional compactified theory only states
invariant under the projection are kept. Using equation (3.7) one immediately infers
that the scalars φ̂, l̂, the metric ĝ and the four-form Ĉ4 are even under (−1)FLΩp while

both two forms B̂2, Ĉ2 are odd. Using (3.10) this implies that the invariant states
have to obey

σ∗φ̂ = φ̂ ,
σ∗ĝ = ĝ ,

σ∗B̂2 = −B̂2 ,

O3/O7

σ∗Ĉ0 = Ĉ0 ,

σ∗Ĉ2 = −Ĉ2 ,

σ∗Ĉ4 = Ĉ4 ,

O5/O9

σ∗Ĉ0 = −Ĉ0 ,

σ∗Ĉ2 = Ĉ2 ,

σ∗Ĉ4 = −Ĉ4 ,

(3.20)

where the first column is identical for both involutions σ in (3.10). Since σ is a
holomorphic involution the cohomology groups H(p,q) (and thus the harmonic (p, q)-
forms) split into two eigenspaces under the action of σ∗

H(p,q) = H
(p,q)
+ ⊕H

(p,q)
− . (3.21)

H
(p,q)
+ has dimension h

(p,q)
+ and denotes the even eigenspace of σ∗ while H

(p,q)
− has

dimension h
(p,q)
− and denotes the odd eigenspace of σ∗. The Hodge ∗-operator com-

mutes with σ∗ since σ preserves the orientation and the metric of the Calabi-Yau
manifold and thus the Hodge numbers obey h

(1,1)
± = h

(2,2)
± . Holomorphicity of σ fur-

ther implies h
(2,1)
± = h

(1,2)
± while (3.9) leads to h

(3,0)
+ = h

(0,3)
+ = 0, h

(3,0)
− = h

(0,3)
− = 1 for

O3/O7 orientifolds and h
(3,0)
+ = h

(0,3)
+ = 1, h

(3,0)
− = h

(0,3)
− = 0 for O5/O9 orientifolds.

Furthermore, the volume-form which is proportional to Ω ∧ Ω̄ is invariant under σ∗

and thus one has h
(0,0)
+ = h

(3,3)
+ = 1, h

(0,0)
− = h

(3,3)
− = 0. We summarize the non-trivial

cohomology groups including their basis elements in table 3.1.

The four-dimensional invariant spectrum is found by using the Kaluza-Klein ex-
pansion given in eqs. (2.5), (2.7) and (2.29) keeping only the fields which in addition
obey (3.20). We see immediately that the D = 4 scalar field arising from φ̂ remains
in the spectrum for both setups and as before we denote it by φ. Since σ∗ leaves the
Kähler form J invariant only the h

(1,1)
+ even Kähler deformations vα remain in the

spectrum and we expand

J = vα ωα , α = 1, . . . , h
(1,1)
+ , (3.22)
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setup cohomology group dimension basis

O3/O7
and

O5/O9

H
(1,1)
+ H

(1,1)
− h

(1,1)
+ h

(1,1)
− ωα ωa

H
(2,2)
+ H

(2,2)
− h

(1,1)
+ h

(1,1)
− ω̃α ω̃a

H
(2,1)
+ H

(2,1)
− h

(2,1)
+ h

(2,1)
− χκ χk

O3/O7 H
(3)
+ H

(3)
− 2h

(2,1)
+ 2h

(2,1)
− + 2 (ακ, β

λ) (αk̂, β
l̂)

O5/O9 H
(3)
+ H

(3)
− 2h

(2,1)
+ + 2 2h

(2,1)
− (ακ, β

λ) (αk̂, β
l̂)

Table 3.1: Cohomology groups and their basis elements.

where ωα denotes a basis of H
(1,1)
+ . Similarly, from eq. (2.7) we infer that the

invariance of the metric together with (3.9) implies that the complex structure defor-

mations kept in the spectrum correspond to elements in H
(1,2)
− for O3/O7 setups and

to elements of H
(1,2)
+ for O5/O9. Hence, (2.7) is replaced by

O3/O7 : δgij =
i

||Ω||2 z̄
k(χ̄k)īı̄ Ωı̄̄

j , k = 1, . . . , h
(1,2)
− , (3.23)

O5/O9 : δgij =
i

||Ω||2 z̄
κ(χ̄κ)īı̄ Ωı̄̄

j , κ = 1, . . . , h
(1,2)
+ ,

where χ̄k (χ̄κ) denotes a basis of H
(1,2)
− (H

(1,2)
+ ).10

From eqs. (3.20) we learn that in the expansion of B̂2 only odd elements are kept.
Thus, for both orientifold setups we have

B̂2 = ba ωa , a = 1, . . . , h
(1,1)
− , (3.24)

where ωa is a basis of H
(1,1)
− . The orientifold projections differ in the R-R sector.

For O3/O7 orientifolds Ĉ2 is odd and Ĉ4 is even. Therefore the expansion (2.29) is
replaced by

Ĉ2 = ca ωa , Ĉ4 = Dα
2 ∧ ωα + V κ ∧ ακ + Uκ ∧ βκ + ρα ω̃

α , (3.25)

where ω̃α is a basis ofH
(2,2)
+ which is dual to ωα, and (ακ, β

κ) is a real, symplectic basis

of H
(3)
+ = H

(1,2)
+ ⊕H(2,1)

+ (c.f. table 3.1). From (3.20) we find that the axion Ĉ0 remains
in the spectrum and we denote the corresponding four-dimensional field by C0. Note
that the two D = 4 two-forms B2 and C2 present in the N = 2 compactification
(see (2.29)) have been projected out and in the expansion of B̂2 and Ĉ2 only the
scalar fields ca, ba appear. The non-vanishing of ca, ba and V κ is closely related to
the appearance of O7-planes. To understand this in more detail we recall, that O3-
planes appear when the fix-point set of σ is zero-dimensional in Y or in other words

10In ref. [61] it is further shown that the h
(1,2)
± deformations form a smooth submanifold of the

Calabi-Yau moduli space.
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all tangent vectors at this point are odd under the action of σ. This in turn implies
that locally two-forms are even under σ∗, while three-forms are odd. However, this is
incompatible with the expansions given in (3.25) for non-vanishing ba, ca and V κ. For
a setup also including O7-planes we locally get the correct transformation behavior,
so that harmonic forms in H

(1,1)
− and H

(2,1)
+ can be supported.

For O5/O9 orientifolds the O(2)-invariant R-R forms transform exactly with the
opposite sign under σ. Thus, the expansion (2.29) reduces to

Ĉ2 = C2 + cα ωα , Ĉ4 = Da
2 ∧ ωa + V k ∧ αk − Uk ∧ βk + ρa ω̃

a . (3.26)

In this case the axion Ĉ0 is projected out and replaced by the D = 4 antisymmetric
tensor C2(x). As a consequence the N = 1 spectrum contains a ‘universal’ linear
multiplet (φ, C2) which in the massless case can be dualized to a chiral multiplet. As
for Calabi-Yau compactifications imposing the self-duality on F̂5 eliminates half of
the degrees of freedom in the expansions (3.25) and (3.26) of Ĉ4. For the one-forms
V ·, U· this corresponds to the choice of electric versus magnetic gauge potentials. On
the other hand choosing the two forms D·

2 or the scalars ρ· determines the structure
of the N = 1 multiplets to be either a linear or a chiral multiplet and in chapter 4 we
discuss both cases.

Altogether the resulting N = 1 fields for the two setups assembles into a gravita-
tional multiplet, h

(2,1)
± vector multiplets and (h

(2,1)
∓ + h(1,1) + 1) chiral multiplets and

are summarized in table 3.2 [61, 39].

O3/O7 O5/O9

gravity multiplet 1 gµν 1 gµν

vector multiplets h
(2,1)
+ V λ h

(2,1)
− V k

chiral multiplets

h
(2,1)
− zk h

(2,1)
+ zλ

h
(1,1)
− (ba, ca) h

(1,1)
+ (vα, cα)

1 (φ, l)

chiral/linear multiplets
h

(1,1)
+ (vα, ρα) h

(1,1)
− (ba, ρa)

1 (φ, C2)

Table 3.2: N = 1 spectrum of Type IIB orientifold compactifications.

Compared to the N = 2 spectrum of the Calabi-Yau compactification given in
table 2.1 we see that the graviphoton ‘left’ the gravitational multiplet while the h(2,1)

N = 2 vector multiplets decomposed into h
(2,1)
± N = 1 vector multiplets plus h

(2,1)
∓

chiral multiplets. Furthermore, the h(1,1)+1 hypermultiplets lost half of their physical
degrees of freedom and are reduced into h(1,1) +1 chiral multiplets. This is consistent
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with the theorem of [111, 112] where it was shown that any Kähler submanifold of a
quaternionic manifold can have at most half of its (real) dimension.

3.3.2 The effective action

In following we derive the effective actions encoding the dynamics of the N = 1
multiplets of the type IIB orientifold theories. However, before entering the actual
computations a cautionary note is in order. In the presence of localized sources such as
orientifold planes and D-branes as well as in the presence of non-trivial background
fluxes the product Ansatz (2.20) for the metric is strictly speaking not anymore
suitable. This is due to the fact that the supergravity theory with source terms and
fluxes does not have the background metric (2.20) as a solution [12, 14, 19, 20]. As
deviation from the standard Calabi-Yau compactifications a non-trivial warp factor
e−2A has to be included into the Ansatz for the metric (2.20) such that [20, 113]

ds2 = e2A(y)gµν(x)dx
µdxν + e−2A(y)gi̄(y)dy

idȳ ̄ . (3.27)

However, in this work we perform our analysis in the unwarped Calabi-Yau manifold
since in the large radius limit the warp factor approaches one and the metrics of the
two manifolds coincide [20, 114]. This in turn also implies that the metrics on the
moduli space of deformations agree and as a consequence the kinetic terms in the
low energy effective actions are the same. The difference appears in the potential
when some of the Calabi-Yau zero modes are rendered massive. However, the regime
e2A(y) ≈ 1 should be understood as a special limit and it would be desirable to
generalize compactifications to warped backgrounds (3.27).

Let us now turn to the derivation of the four-dimensional effective action by redo-
ing the Kaluza-Klein reduction of the ten-dimensional type IIB action given in (2.27)
for the truncated orientifold spectrum.

The reduction of the N = 2 vector sector

We first consider the reduction of the vector sector of the N = 2 supergravity the-
ory obtained by type IIB Calabi-Yau compactification. As discussed in section 2.3
the four-dimensional bosonic components of the vector multiplets are (zK , V K). The
complex scalars zK parameterize the complex structure deformations of Y . Under the
orientifold projection these N = 2 multiplets split into chiral multiplets with bosonic
components (zk) and vector multiplets (V λ) for O3/O7 orientifolds and chiral multi-
plets (zλ) and vectors (V k) in O5/O9 orientifolds. Since the reduction of the vector
sector is very similar for both the O3/O7 and O5/O9 case we will first concentrate on
the first case and later give a rule how to translate these results to O5/O9 orientifolds.

Due to the split of the cohomology H(3) = H
(3)
+ ⊕ H

(3)
− the real symplectic basis

(αK̂ , β
L̂) of H(3) can be split into (ακ, β

λ) of H
(3)
+ and (αk̂, β

l̂) of H
(3)
− . Eqs. (2.4)

continue to hold which implies that both basis are symplectic and obey
∫

ακ ∧ βλ = δλ
κ ,

∫

αk̂ ∧ β l̂ = δ l̂
k̂
, (3.28)
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with all other intersections vanishing. Since Ĉ4 is even under σ∗ the expansion (3.25)

led to h
(3)
+ = h

(2,1)
+ vectors V κ. The three-form Ω is odd under σ∗ and thus has to be

expanded in a basis of H
(3)
− according to

Ω(zk) = Z k̂αk̂ −Fk̂β
k̂ , (3.29)

while the other periods (Zκ,Fκ) vanish

Zκ|zκ=0 =

∫

Y

Ω ∧ βκ = 0 , Fκ

∣

∣

zκ=0
=

∫

Y

Ω ∧ ακ = 0 . (3.30)

As a consequence the metric on the space of complex structure deformations reduces
to

Gkl =
∂

∂zk

∂

∂z̄l
Kcs , Kcs = − ln

[

− i

∫

Y

Ω ∧ Ω̄
]

= − ln i
[

Z k̂F̄k̂ − Z̄ k̂Fk̂

]

, (3.31)

replacing (2.11). The reduction of the kinetic terms for the N = 2 vector sector thus
yields [39]

S
(4) vec
O3/O7 =

∫

−Gkl dz
k ∧ ∗dz̄l + 1

4
Im Mκλ F

κ ∧ ∗F λ + 1
4
Re Mκλ F

κ ∧ F λ , (3.32)

where F λ = dV λ. Recall that the vectors V k as well as the graviphoton are projected
out by the orientifold projection (3.10) and do not appear in (3.32). The coupling
matrix Mκλ(z

k) in front of the remaining vectors V κ is evaluated on the subspace
where zκ = 0 and thus depends on zk only. The analysis for O5/O9 orientifolds is
in complete anology to the O3/O7 case, with the difference that the vectors V k and
scalars zλ remain in the spectrum while V λ and zk is projected out. The equations
(3.28) – (3.32) can be translated to this second case by replacing the indices k, l →
κ, λ, k̂ → κ̂ and κ, λ → k, l. This is consistent with the fact that by (3.23) the

three-form Ω is in H
(3)
− for O3/O7 setups and in H

(3)
+ for O5/O9 setups.

The reduction of the N = 2 quaternionic sector

Similar to the vector sector, we now perform the reduction of the hypermultiplet
couplings (2.34). One computes the four-dimensional effective action by redoing the
Kaluza-Klein reduction of the ten-dimensional type IIB action given in (2.27) for
the truncated orientifold spectrum. Equivalently, one can impose the orientifold con-
strains on the four-dimensional N = 2 effective action (2.33). In type IIB the metric
on the quaternionic manifold depends on the complexified Kähler deformations t and
the dilaton and is obtained from the intersection numbers in the even cohomologies.
Hence, in order to perform the reduction to N = 1 we first need to reconsider the
structure of the metrics (2.15) and the intersection numbers (2.17) for the orientifold.

Note that σ∗J = J and σ∗B̂2 = −B̂2 holds for both IIB orientifold projections.
This implies that the constraints on the space of Kähler structure deformations are
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the same for O3/O7 as well as O5/O9 setups. Let us discuss them in the following.

Corresponding to the decomposition H(1,1) = H
(1,1)
+ ⊕H

(1,1)
− also the harmonic (1,1)-

forms ωA split into ωA = (ωα, ωa) such that ωα is a basis of H
(1,1)
+ and ωa is a basis

of H
(1,1)
− . This in turn results in a decomposition of the intersection numbers KABC

given in (2.17). Under the orientifold projection only Kαβγ and Kαbc can be non-zero
while Kαβc = Kabc = 0 has to hold. Since the Kähler-form J is invariant we also
conclude from (2.17) that Kαb = 0 = Ka. To summarize, keeping only the invariant
intersection numbers results in

Kαβc = Kabc = Kαb = Ka = 0 , (3.33)

while all the other intersection numbers can be non-vanishing.11 Inserting (3.33) into
(2.15) we derive

Gαβ = −3

2

(Kαβ

K − 3

2

KαKβ

K2

)

, Gab = −3

2

Kab

K , Gαb = Gaβ = 0 , (3.34)

where

Kαβ = Kαβγ v
γ , Kab = Kabγ v

γ , Kα = Kαβγ v
βvγ , K = Kαβγ v

αvβvγ . (3.35)

We see that the metric GAB given in (2.15) is block-diagonal with respect to the

decomposition H(1,1) = H
(1,1)
+ ⊕ H

(1,1)
− . For later use let us also record the inverse

metrics

Gαβ = −2

3
KKαβ + 2vαvβ , Gab = −2

3
KKab , (3.36)

where Kαβ and Kab are the inverse of Kαβ and Kab, respectively.

The N = 2 hypermultiplet couplings are reduced by inserting (3.33) - (3.36) and
truncating to the orientifold spectrum as summarized in table 3.2. Since this the
orientifold spectrum of O3/O7 setups differs from the one of O5/O9 setups, one
obtains two different effective actions. Together with the standard Einstein-Hilbert
term and the contributions from the reduction of the N = 2 vectors (3.32) one finds
after Weyl rescaling [39]

S
(4)
O3/O7 =

∫

−1
2
R ∗ 1 −Gkl̄ dz

k ∧ ∗dz̄l −Gαβ dv
α ∧ ∗dvβ −Gab db

a ∧ ∗dbb

−dD ∧ ∗dD − 1
24
e2DK dl ∧ ∗dl − 1

6
e2DKGab (dca − ldba) ∧ ∗

(

dcb − ldbb
)

− 3
8Ke

2DGαβ
(

dρα −Kαabc
adbb

)

∧ ∗
(

dρβ −Kβcdc
cdbd

)

+1
4
Im Mκλ F

κ ∧ ∗F λ + 1
4
Re Mκλ F

κ ∧ F λ , (3.37)

11From a supergravity point of view this has been also observed in refs. [112].
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and

S
(4)
O5/O9 =

∫

−1
2
R ∗ 1 −Gκλ̄ dz

κ ∧ ∗dz̄λ −Gαβ dv
α ∧ ∗dvβ

−Gab db
a ∧ ∗dbb − dD ∧ ∗dD − 1

6
e2DKGαβ dc

α ∧ ∗dcβ

− 3
2Ke

2D(dh+ 1
2
(dρab

a − ρadb
a)) ∧ ∗(dh+ 1

2
(dρab

a − ρadb
a))

− 3
8Ke

2DGab(dρa −Kacαc
αdbc) ∧ ∗(dρb −Kbdβc

βdbd) .

+1
4
Im Mkl F

k ∧ ∗F l + 1
4
Re Mkl F

k ∧ F l , (3.38)

where we have expressed the result in a chiral basis and used the index conventions
given in table 3.1. In contrast to ref. [39] we have expressed the effective actions in
terms of the string frame Kähler structure deformations vα and the four-dimensional
dilaton

eD = eφ (K/6)−1/2 , (3.39)

where eφ is the ten-dimensional dilaton. This ends our computation of the orientifold
bulk action. In remains to cast (3.37) and (3.38) into the standard N = 1 form.

3.3.3 The Kähler potentials and gauge-couplings

Our next task is to transform the actions (3.37) and (3.38) into the standard N = 1
supergravity form with chiral multiplets where it is expressed in terms of a Kähler
potential K, a holomorphic superpotential W and the holomorphic gauge-kinetic
coupling functions f as follows [115, 116]

S(4) = −
∫

1
2
R∗1+KIJ̄DM

I ∧∗DM̄ J̄ + 1
2
Refκλ F

κ∧∗F λ + 1
2
Imfκλ F

κ∧F λ +V ∗1 ,

(3.40)
where

V = eK
(

KIJ̄DIWDJ̄W̄ − 3|W |2
)

+ 1
2
(Re f)−1 κλDκDλ . (3.41)

Here the M I collectively denote all complex scalars in chiral multiplets present in
the theory and KIJ̄ is a Kähler metric satisfying KIJ̄ = ∂I ∂̄J̄K(M, M̄). The scalar
potential is expressed in terms of the Kähler-covariant derivative DIW = ∂IW +
(∂IK)W .

In the reduction we did not find any scalar potential, such that one immediately
concludes W = 0 and Dκ = 0. Next we need to find a complex structure on the space
of scalar fields such that the metrics computed in (3.37) and (3.38) are manifestly
Kähler.

The Kähler potential: O3/O7 setups

As we saw in (3.31) the complex structure deformations zk are already good Kähler
coordinates with Gkl̄ being the appropriate Kähler metric. For the remaining fields
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the definition of the Kähler coordinates is not so obvious. Guided by refs. [22, 27] we
define

E − iA = iτ + iGaωa − Tαω̃
α (3.42)

where

ϕev = E + i Ê = e−φe−B̂2+iJ , A = e−B̂2 ∧
∑

q=0,2,4,6

Ĉq|scalar , (3.43)

are sums of even forms. In (3.43) we have defined Ĉq|scalar to be the part of Ĉq yielding

scalars in D = 4, e.g. Ĉ4|scalar = ρα ω̃
α. Expanding all the forms in (3.42) by using

(3.43),(3.24) and (3.25) the coordinates take the form [39]

τ = C0 + ie−φ , Ga = ca − τba ,

Tα = i(ρα − 1
2
Kαabc

abb) + 1
2
e−φKα − ζα , (3.44)

where12

Kα = Kαβγv
βvγ , ζα = − i

2(τ − τ̄)
KαbcG

b(G− Ḡ)c . (3.45)

In ref. [39] it was checked explicitly that in terms of these coordinates the metric of
(3.37) is Kähler with the Kähler potential [39]

K = Kcs(z, z̄) +KQ(τ, T,G) , Kcs = −ln
[

− i

∫

Y

Ω(z) ∧ Ω̄(z̄)
]

, (3.46)

and
KQ = −ln

[

− i(τ − τ̄)
]

− 2ln
[

VolE(τ, T,G)
]

= − ln
[

2e−4D
]

, (3.47)

where we have used (3.39) in order to evaluate the last equality. The Einstein frame

volume VolE(Y ) = 1
6
e−

3
2
φKαβγv

αvβvγ in (3.47) should be understood as a function of
the Kähler coordinates (τ, T,G) which enter by solving (3.44) for e−φ/2vα in terms of
(τ, T,G). Unfortunately this solution cannot be given explicitly and therefore VolE is
known only implicitly via e−φ/2vα(τ, T,G).13 In chapter 4 we show that the definition
of the Kähler coordinates (3.44) and the Kähler potential (3.46) can be understood
somewhat more conceptually in a dual formalism using linear multiplets Lα instead
of the chiral multiplets Tα.

Let us return to the Kähler potential (3.46). Kcs and the first term in (3.47)
are the standard Kähler potentials for the complex structure deformations and the
dilaton, respectively. VolE(τ, G, T ) also depends on τ and therefore the metric mixes

12The definition of ζα is unique up to a constant which does not enter into the metric. The
possibility of a non-zero constant is important for the formulation in terms of linear multiplets in
section 4.1.1.

13This is in complete analogy to the situation encountered in compactifications of M-theory on
Calabi-Yau fourfolds studied in [22]. This is no coincidence and can be understood from the fact that
this theory can be lifted to F-theory on Calabi-Yau fourfolds which in a specific limit is related to
orientifold compactifications of type IIB [69]. In section 6.1 we make this more explicit by checking
this correspondence on the level of the effective actions.
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τ with Tα and Ga. It is block diagonal in the complex structure deformations which
do not mix with the other scalars. Hence, the moduli space locally has the form

MN=1 = M̃SK × M̃Q , (3.48)

where each factor is a Kähler manifold. The manifold M̃SK has complex dimension
h

(1,2)
− and is a special Kähler manifold in that Kcs satisfies (3.31). It parameterizes

the complex structure deformations of Y respecting the orientifold constraint (3.9).
On the other hand, M̃Q is a h(1,1) +1-dimensional Kähler manifold inside the quater-
nionic manifold MQ. Local coordinates are given by the fields τ, Ga, Tα arising in
the expansion (3.42). Also the Kähler potential KQ(τ, G, T ) fulfills special proper-
ties inherited from the underlying special quaternionic manifold. To see this, let us
bring KQ in a slightly different form. Using the explicit expansion (3.42) of ϕev one
checks that up to a trivial Kähler transformation the Kähler potential (3.47) can be
rewritten as

KQ = −2 ln ΦB(E) , ΦB(E) ≡ i
〈

ϕev, ϕ̄ev
〉

, (3.49)

where ϕev = E + iÊ is defined in (3.43) and Ê(E) has to be evaluated. In (3.49)
we abbreviated the skew-symmetric product

〈

ϕ, ψ
〉

for two sums of even forms ϕ =
ϕ0 + ϕ2 + ϕ4 + ϕ6 and ψ = ψ0 + ψ2 + ψ4 + ψ6 as [75]

〈

ϕ, ψ
〉

=

∫

Y

∑

m

(−1)mϕ2m ∧ ψ 6−2m . (3.50)

The function ΦB can be identified with Hitchins functional on a generalized complex
manifold [75] evaluated for the simple form ϕev defined in (3.43) (see [117] for more
details). We discuss the geometry of M̃Q in greater detail in section 4.2.

Although not immediately obvious from its definition KQ obeys a no-scale type
condition in that it satisfies

∂K

∂N I
(K−1)IJ̄ ∂K

∂N̄ J̄
= 4 , (3.51)

where N I = (τ, Ga, Tα).14 This equality can be shown by direct computation as done
in [39]. Alternatively, it can be deduced from the fact that ΦB defined in (3.49) is
homogeneous of degree two, i.e. ΦB(a E) = a2 ΦB(E) for all a ∈ R [75]. Using (3.42)
a simple calculation shows that KQ = −2 ln ΦB satisfies (3.51). From (3.41) we see
that (3.51) implies V ≥ 0 which we also show in the linear multiplet formalism in
section 4.1.1. For τ = const. the right hand side of (3.51) is found to be equal to 3
as it is the case in the standard no-scale Kähler potentials of [119].

Let us relate (3.46) to the known Kähler potentials in the literature. First of all,
for Ga = 0 and thus Tα = iρα + 1

2
Kα the Kähler potential (3.46) reduce to the one

given in [27]. Secondly, for one overall Kähler modulus v parameterizing the volume

(i.e. for h
(1,1)
+ = 1, Tα ≡ T ) the Kähler potential KQ reduces to K = −3ln(T + T̄ )

which coincides with the Kähler potential determined in [20].

14For Ga = 0 this has already been observed in [20, 27, 29, 118].
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Before we turn to the discussion of the O5/O9 case let us note that K is in-
variant under the SL(2,R) transformations inherited from the ten-dimensional type
IIB theory. In the orientifold theory this symmetry acts on τ by fractional linear
transformations exactly as in D = 10 and transforms (ba, ca) as a doublet, such that

τ → aτ + b

cτ + d
, Ga → Ga

cτ + d
, ad− bc = 1 . (3.52)

Under the SL(2,R) only the second term of K given in (3.47) transforms but this
transformation is just a Kähler transformation. This can be seen from (3.44) and the
fact that e−φ/2vα and zk are invariant. This symmetry reduces to SL(2,Z) in the full
string theory, which is nothing but the invariance group of a two-torus. This torus
becomes part of the space-time in the formulation of ‘F-theory’ [68]. We discuss in
section 6.1 the embedding of O3/O7 orientifolds into this theory on the level of the
effective action.

The Kähler potential: O5/O9 setups

In the action (3.38) we immediately see that the complex structure deformations
zκ are again already good Kähler coordinates. For the remaining fields we find the
appropriate Kähler coordinates to be

Ê − iA = tαωα − Ab ω̃
b − S vol(Y ) , (3.53)

where Ê = Imϕev and A are defined in (3.43) and we have used that in O5/O9 setups
the axion C0 gets projected out. Furthermore, we denoted by vol(Y ) = K−1J ∧J ∧J
the to one normalized volume form of Y . Using the expansions (3.22), (3.24) and
(3.26) we obtain the explicit expressions [39]

tα = e−φvα − icα , Aa = Θabb
b + iρa , (3.54)

S = 1
6
e−φ K + ih− 1

4
(ReΘ−1)abAa(A+ Ā)b ,

where we inserted

Θab(t) ≡ Kabαt
α ,

∫

C6 = h+ 1
2
ρab

a . (3.55)

The matrix Θab depends holomorphically on the coordinates tα which ensures that
M̃Q is Kähler [91, 22]. In the variables given in (3.54) the Kähler potential reads [39]

K = Kcs(z, z̄) +KQ(S, t, A) , Kcs = −ln
[

− i

∫

Ω ∧ Ω̄
]

(3.56)

with

KQ = −ln
[

1
48
Kαβγ(t+ t̄)α(t+ t̄)β(t+ t̄)γ

]

−ln
[

S + S̄ + 1
4
(A+ Ā)a(ReΘ−1)ab(A+ Ā)b

]

(3.57)

= − ln
[

2e−4D
]

.
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where we used (3.39). The check that K indeed reproduces (3.38) is straightforward,
since (3.56) is closely related to the quaternionic ‘Kähler potential’ given in [91] and
we can make use of their results.15 The same reference already observed that for a
holomorphic matrix Θ the quaternionic geometry is also Kähler. This situation was
also found in compactifications of the heterotic string to D = 3 on a circle [22].

From (3.56) we infer that the N = 1 moduli space admits the local product
structure M̃SK × M̃Q similar to (3.48). However, in O5/O9 orientifolds M̃SK is a

special Kähler manifold spanned by the h
(2,1)
+ complex scalars zκ, which are the ones

projected out in O3/O7 orientifolds. M̃Q is spanned by the complex scalars S, tα, Aa

and thus is of complex dimension h1,1 +1 as in O3/O7 setups. Furthermore, also KQ

for orientifolds with O5/O9 planes can be rewritten in terms of the functional ΦB(Ê)
as

KQ = −2 ln ΦB(Ê) , ΦB(Ê) ≡ i
〈

ϕev, ϕ̄ev
〉

, (3.58)

where ϕev = E(Ê) + iÊ are defined in (3.43). The functional dependence of KQ on
ϕev is the same as in (3.49) for O3/O7 orientifolds. This can be understood from
the fact that ϕev only depends on the NS-NS sector variables, which are the same
in both types of orientifolds. Nevertheless, the local structure of M̃Q is different for
both orientifold theories. This becomes appearent when one expresses KQ in terms
of proper Kähler coordinates. In O5/O9 setups this corresponds to the fact that ΦB

is a function of Ê as needed for (3.53). Hence, in order to express KQ in terms of the
Kähler coordinates S, t, A as in (3.57) one evaluates E(Ê). Let us end this discussion
by remarking that ΦB is also homogeneous of degree two in Ê , such that by using
(3.53) one extracts a no-scale type condition equivalent to (3.51).

The gauge-couplings: O3/O7 and O5/O9 setups

Our next task is to determine the gauge-kinetic coupling functions fκλ and show that
they are holomorphic in the moduli. We do this only for O3/O7 orientifolds, since
the result easily translates to the O5/O9 case. As explained in section 3.3.2 this is
achieved by an appropriate replacement of the indices. By comparing the actions
(3.32) and (3.40) one finds

fκλ = − i
2
M̄κλ

∣

∣

∣

zκ=0=z̄κ
, (3.59)

where Mκλ is the N = 2 gauge kinetic matrix given in (2.25) evaluated at zκ = z̄κ =
0. Its holomorphicity in the complex structure deformations zk is not immediately
obvious but can be shown by using (2.25) and (B.15). More precisely, from (2.25)
together with the decomposition of H(3) expressed by (3.21) and (3.28) we infer that

MK̂L̂ is block diagonal or in other words Mκl̂ = 0. Multiplying Mκl̂ with X l̂ and
using Xλ = 0 together with (B.15) we further conclude

Fκl̂

∣

∣

∣

zκ=0=z̄κ
= 0 . (3.60)

15Note however, that the complex structure changed non-trivially. In [91] the standard t ∼ v+ ib

formed complex coordinates.
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Finally inserting (3.29) and (3.60) into (B.15) we arrive at [39]

fκλ(z
k) = − i

2
Fκλ

∣

∣

∣

zκ=0=z̄κ
, (3.61)

which is manifestly holomorphic since Fκλ(z
k) are holomorphic functions of the com-

plex structure deformations zk.

3.4 Type IIA Calabi-Yau orientifolds

In this section we determine the N = 1 supergravity action obtained by compactifica-
tion of Type IIA string theory on a Calabi-Yau orientifold. The orientifold projection
O = (−1)FLΩpσ was already defined in (3.15) and includes an anti-holomorphic iso-
metric involution σ. In section 3.4.1 we extract the N = 1 spectrum by identifying
the fields invariant under O. The corresponding effective action is calculated in sec-
tion 3.4.2. It is shown to be compatible with N = 1 supersymmetry in section 3.4.3,
where we determine the Kähler potential and gauge-kinetic coupling functions.

3.4.1 The N = 1 spectrum

In order to determine the O-invariant states let us recall that the ten-dimensional
RR forms Ĉ1 and Ĉ3 are odd under (−1)FL while all other fields are even. Under the
world-sheet parity Ωp on the other hand B̂2, Ĉ3 are odd with all other fields being
even. As a consequence the O-invariant states have to satisfy [61]

σ∗φ̂ = φ̂ ,
σ∗ĝ = ĝ ,

σ∗B̂2 = −B̂2 ,

σ∗Ĉ1 = −Ĉ1 ,

σ∗Ĉ3 = Ĉ3 ,
(3.62)

while the deformations of the Calabi-Yau metric are constrained by (3.14) and (3.16).16

As we recalled in the previous section the massless modes are in one-to-one corre-
spondence with the harmonic forms on Y . The space of harmonic forms splits under
the involution σ into even and odd eigenspaces

Hp(Y ) = Hp
+ ⊕Hp

− . (3.63)

Depending on the transformation properties given in (3.62) the O-invariant states
reside either in Hp

+ or in Hp
− and as a consequence the number of states is reduced.

We summarize all non-trivial cohomology groups including their basis elements in
table 3.1.

16Following the argument presented in [61] we note that the involution does not change under
deformations of Y . This is due to its involutive property and the fact that we identify involutions
which differ by diffeomorphisms. Therefore we fix an involution and restrict the deformation space
by demanding (3.14) and (3.16).
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cohomology group H
(1,1)
+ H

(1,1)
− H

(2,2)
+ H

(2,2)
− H

(3)
+ H

(3)
−

dimension h
(1,1)
+ h

(1,1)
− h

(1,1)
− h

(1,1)
+ h(2,1) + 1 h(2,1) + 1

basis ωα ωa ω̃a ω̃α aK̂ bK̂

Table 3.1: Cohomology groups and their basis elements.

ωα, ωa denote even and odd (1, 1)-forms while ω̃α, ω̃a denote odd and even (2, 2)-
forms. The number of even (1, 1)-forms is equal to the number of odd (2, 2)-forms
and vice versa since the volume form which is proportional to J ∧ J ∧ J is odd and
thus Hodge duality demands h

(1,1)
+ = h

(2,2)
− , h

(1,1)
− = h

(2,2)
+ . This can also be seen from

the fact that the non-trivial intersection numbers are
∫

ωα ∧ ω̃β = δβ
α , α, β = 1, . . . , h

(1,1)
+ ,

∫

ωa ∧ ω̃b = δb
a , a, b = 1, . . . , h

(1,1)
− ,

(3.64)
with all other pairings vanishing. From the volume-form being odd one further infers
h

(3,3)
+ = 0, h

(3,3)
− = 1 and h

(0,0)
+ = 1, h

(0,0)
− = 0.

H3 can be decomposed independently of the complex structure as H3 = H3
+⊕H3

−
where the (real) dimensions of both H3

+ and H3
− is equal and given by h3

+ = h3
− =

h(2,1) + 1. Again this is a consequence of Hodge duality together with the fact that
the volume-form is odd. It implies that for each element aK̂ ∈ H3

+ there is a dual

element bL̂ ∈ H3
− with the intersections

∫

aK̂ ∧ bL̂ = δL̂
K̂
, K̂, L̂ = 0, . . . , h(2,1) . (3.65)

Compared to (2.4) this amounts to a symplectic rotation such that all α-elements are
chosen to be even and all β-elements are chosen to be odd but with the intersection
numbers unchanged. The orientifold projection breaks this symplectic invariance or
in other words fixes a particular symplectic gauge which groups all basis elements into
even and odd. This in turn implies that the basis (aK̂ , b

K̂) is only one possible choice.
However, since the calculation simplifies considerably for this basis, we first restrict
to this special case and later give the general results with calculations summarized in
section 4.1.2.

In the remainder of this subsection we determine the N = 1 spectrum which
survives the orientifold projections. Let us first discuss the Kähler moduli. From
the eqs. (3.14) and (3.62) we see that both J and B̂2 are odd and hence have to be
expanded in a basis ωa of odd harmonic (1, 1)-forms

J = va(x)ωa , B̂2 = ba(x)ωa , a = 1, . . . , h
(1,1)
− . (3.66)

In contrast to (2.21) the four-dimensional two-formB2 gets projected out due to (3.62)
and the fact that σ acts trivially on the flat dimensions. va and ba are space-time
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scalars and as in N = 2 they can be combined into complex coordinates

ta = ba + i va , Jc = B2 + iJ , (3.67)

where we have also introduced the complexified Kähler form Jc. We see that in terms
of the field variables the same complex structure is chosen as in N = 2 but the
dimension of the Kähler moduli space is truncated from h(1,1) to h

(1,1)
− .

The number of complex structure deformations is similarly reduced since (3.16)
constrains the possible deformations. To see this one performs a symplectic rotation
on (2.13) and expands Ω in the basis of Hp

+ ⊕Hp
−, i.e. as17

Ω(z) = ZK̂(z) aK̂ − FL̂(z) bL̂ . (3.68)

Inserted into (3.16) one finds

Im(e−iθZK̂) = 0 , Re(e−iθFK̂) = 0 . (3.69)

The first set of equations are h(2,1)+1 real conditions for h(2,1) complex scalars zK . One
of these equations is redundant due to the scale invariance (2.14) of Ω. More precisely,

the phase of e−h can be used to trivially satisfy Im(e−iθZK̂) = 0 for one of the ZK̂ .

Thus Im(e−iθZK̂) = 0 projects out h(2,1) real scalars, i.e. half of the complex structure
deformations. Furthermore, in section 3.4.2 we will see the remaining real complex
structure deformations span a Lagrangian submanifold Mcs

R
with respect to the Kähler

form inside Mcs. Note that the second set of equations in (3.69) Re(e−iθFK̂) = 0
should not be read as equations determining the zK but is a constraint on the periods
(or equivalently the Yukawa couplings) of the Calabi-Yau which has to be fulfilled in
order to admit an involutive symmetry with the property (3.16).18

As we have just discussed the complex rescaling (2.14) is reduced to the freedom
of a real rescaling by (3.16). Under these transformations Ω and the Kähler potential
Kcs change as

Ω → Ω e−Re(h) , Kcs → Kcs + 2Re(h) , (3.70)

when restricted to Mcs
R
. This freedom can be used to set one of the Re(e−iθZK̂)

equal to one and tells us that Ω depends only on h(2,1) real deformation parameters.
However, it will turn out to be more convenient to leave this gauge freedom intact
and define a complex ‘compensator’ C = re−iθ with the transformation property
C → CeRe(h).19 Later on we will relate r to the inverse of the four-dimensional
dilaton so that the scale invariant function CΩ depends on h(2,1) +1 real parameters.
Using (3.68) CΩ enjoys the expansion

CΩ = Re(CZK̂) aK̂ − iIm(CFL̂) bL̂ . (3.71)

17Let us stress that at this point all N = 2 relations are still intact since (3.68) is just a specific
choice of the standard N = 2 basis (2.13).

18This can also be seen as conditions arising in consistent truncations of N = 2 to N = 1 theories
as discussed in ref. [112].

19This is reminiscent of the situation encountered in the computation of the entropy of N = 2
black holes where it is also convenient to leave this scale invariance intact [109].
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We are left with the expansion of the ten-dimensional fields Ĉ1 and Ĉ3 into har-
monic forms. From (3.62) we learn that Ĉ1 is odd and so together with the fact that
Y posses no harmonic one-forms and σ acts trivially on the flat dimensions the entire
Ĉ1 is projected out. This corresponds to the fact that the N = 2 graviphoton A0 is
removed from the gravity multiplet, which in N = 1 only consists of the metric gµν

as bosonic component. Finally, Ĉ3 is even and thus can be expanded according to

Ĉ3 = c3(x) + Aα(x) ∧ ωα + C3 , C3 ≡ ξK̂(x) aK̂ , (3.72)

where ξK̂ are h(2,1) + 1 real scalars, Aα are h
(1,1)
+ one-forms and c3 is a three-form

in four dimensions. c3 contains no physical degree of freedom but as we will see
in section 5.3 corresponds to a constant flux parameter in the superpotential. The
real scalars ξK̂ have to combine with the h(2,1) real complex structure deformations
and the dilaton to form chiral multiplets. In the next section we will find that the
appropriate complex fields arise from the combination

Ωc = C3 + 2iRe(CΩ) . (3.73)

Expanding Ωc in a basis (3.65) of H3
+(Y ) and using (3.71) and (3.72) we have

Ωc = 2N K̂aK̂ , N K̂ = 1
2

∫

Ωc ∧ βK̂ = 1
2

(

ξK̂ + 2iRe(CZK̂)
)

. (3.74)

Due to the orientifold projection the two three-forms Ω and C3 each lost half of their
degrees of freedom and combined into a new complex three-form Ωc. As we will show
in more detail in the next section the ‘good’ chiral coordinates in the N = 1 orientifold
are the periods of CΩ directly while in N = 2 the periods agree with the proper field
variables only in special coordinates.

Let us summarize the resulting N = 1 spectrum. It assembles into a gravitational
multiplet, h

(1,1)
+ vector multiplets and (h

(1,1)
− + h(2,1) + 1) chiral multiplets. We list

the bosonic parts of the N = 1 supermultiplets in table 3.2 [61]. We see that the

h(1,1) N = 2 vector multiplets split into h
(1,1)
+ N = 1 vector multiplets and h

(1,1)
−

chiral multiplets while the h(2,1) + 1 hypermultiplets are reduced to h(2,1) + 1 chiral
multiplets.

3.4.2 The effective action

In this section we calculate the four-dimensional effective action of type IIA orien-
tifolds by performing a Kaluza-Klein reduction of the ten-dimensional type IIA action
(2.18) taking the orientifold constraints into account. Equivalently this amounts to
imposing the orientifold projections on the N = 2 action of section 2.2. Inserting
(3.66), (3.71), (3.72) into the ten-dimensional type IIA action (2.18) and performing
a Weyl rescaling of the four-dimensional metric we find [41]

S
(4)
O6 =

∫

−1
2
R ∗ 1 −Gab dt

a ∧ ∗dt̄b + 1
2
ImNαβ F

α ∧ ∗F β + 1
2
ReNαβ F

α ∧ F β

− dD ∧ ∗dD − GKL(q) dqK ∧ ∗dqL + 1
2
e2D ImMK̂L̂ dξ

K̂ ∧ ∗dξL̂ ,(3.75)
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multiplets multiplicity bosonic components

gravity multiplet 1 gµν

vector multiplets h
(1,1)
+ Aα

chiral multiplets h
(1,1)
− ta

chiral multiplets h(2,1) + 1 N K̂

Table 3.2: N = 1 spectrum of O6 orientifold compactification.

where F α = dAα. Let us discuss the different couplings appearing in (3.75) in turn.
Apart from the standard Einstein-Hilbert term the first line arises from the projection
of the N = 2 vector multiplets action. As we already observed the orientifold projec-
tion reduces the number of Kähler moduli from h(1,1) to h

(1,1)
− (tA → ta) but leaves

the complex structure on this component of the moduli space intact. Accordingly
the metric Gab(t) is inherited from the metric GAB of the N = 2 moduli space MSK

given in (2.15). Since the volume form is odd only intersection numbers with one or
three odd basis elements in (2.17) can be non-zero and consequently one has

Kαβγ = Kαab = Kαa = Kα = 0 , (3.76)

while all other intersection numbers can be non-vanishing.20 This implies that the
metric GAB(tA) of (2.15) is block diagonal and obeys

Gab = −3

2

(Kab

K − 3

2

KaKb

K2

)

, Gαβ = −3

2

Kαβ

K , Gαb = 0 , (3.77)

where

Kab = Kabc v
c , Kαβ = Kαβa v

a , Ka = Kabc v
bvc , K = Kabc v

avbvc . (3.78)

In comparison to type IIB orientifolds the opposite intersection numbers vanish as
can be seen by comparing (3.76) with (3.33). This is due to the fact that the Kähler
form J transforms in IIA and IIB orientifolds with a relative minus sign under the
action of σ.

The same consideration also truncates the N = 2 gauge-kinetic coupling matrix
NÂB̂ explicitly given in (B.19). Inserting (3.76) and (3.78) one arrives at

ReNαβ = −Kαβab
a , ImNαβ = Kαβ , Naα = N0α = 0 . (3.79)

(The other non-vanishing matrix elements Nâb̂ arise in the potential (5.31) once fluxes
are turned on.)

Let us now discuss the terms in the second line of (3.75) arising from the reduction
of the N = 2 hypermultiplet action which is determined by the quaternionic metric

20From a supergravity point of view this has been discussed also in [112].
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(2.24). D is the the four-dimensional dilaton defined in (2.22). The metric GKL

is inherited from the N = 2 Kähler metric GKL̄(z, z̄) given in (2.11) and thus is
the induced metric on the submanifold Mcs

R
defined by the constraint (3.16). More

precisely, the complex structure deformations respecting (3.16) can be determined
from (2.10) by considering infinitesimal variations of Ω

Ω(z + δz) = Ω(z) + δzK(∂zKΩ)z = Ω(z) − δzK(Kcs
zKΩ − χK)z . (3.80)

Now we impose the condition that both Ω(z + δz) and Ω(z) satisfy (3.16). This
implies locally

δzK ∂zKKcs = δz̄K ∂z̄KKcs , δzKσ∗χK = e2iθδz̄K χ̄K , (3.81)

where ∂zKKcs and χK are restricted to Mcs
R
. Using the fact that Kcs is a Kähler

potential and therefore ∂zKKcs 6= 0, we conclude from the first equation in (3.81)
that for each δzK either the real or imaginary part has to be zero. This is consistent
with the observation of the previous section that coordinates of Mcs

R
can be identified

with the real or imaginary part of the complex structure deformations zK . To simplify
the notation we call these deformations collectively qK and denote the embedding map
by ρ : Mcs

R
→֒ Mcs. Locally this corresponds to

ρ : qK = (qs, qσ) 7→ zK = (qs, iqσ) , (3.82)

for some splitting zK = (zs, zσ). In other words, the local coordinates on Mcs
R

are
Rezs = qs and Imzσ = qσ while Imzs = 0 = Rezσ. Using the second equation in
(3.81), the embedding map (3.82) and the expression (2.9) for the N = 2 metric GKL̄

we also deduce that the Kähler form vanishes when pulled back to Mcs
R
. In summary

we have

ρ∗(GKL̄ dz
Kdz̄L) ≡ GKL(q) dqKdqL , ρ∗(iGKL̄ dz

K ∧ dz̄L) = 0 . (3.83)

The first equation defines the induced metric while the second equation implies that
Mcs

R
is a Lagrangian submanifold of Mcs with respect to the Kähler-form.

Finally, coming back to the action (3.75) the matrix MK̂L̂ is defined in analogy
with (2.25) as

∫

aK̂ ∧ ∗aL̂ = −Im MK̂L̂ ,

∫

bK̂ ∧ ∗bL̂ = −(Im M)−1 K̂L̂ , (3.84)

where ImMK̂L̂ can be given explicitly in terms of the periods by inserting (3.69) into
(B.15) [39]. Similarly one obtains ReMK̂L̂ = 0 consistent with the fact that (2.25)

implies that
∫

aK̂ ∧ ∗bL̂ vanishes for the special basis (aK̂ , b
K̂).

This ends our discussion of the effective action obtained by applying the orientifold
projection. The next step is to rewrite the action (3.75) in the standard N = 1
supergravity form which we turn to now.
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3.4.3 The Kähler potential and gauge-couplings

The standard N = 1 supergravity the action is expressed in terms of a Kähler poten-
tial K, a holomorphic superpotential W and the holomorphic gauge-kinetic coupling
functions f as given in (3.40). Hence, our task is to find K, f and W for the type IIA
orientifolds. As an immediate observation one finds that (3.75) includes no potential,
such that W = 0 and Dα = 0. It is also not difficult to read off the gauge-kinetic
coupling function fαβ. Comparing (3.75) with (3.40) using (3.79) and (3.67) one infers

fαβ = −iN̄αβ = iKαβat
a . (3.85)

As required by N = 1 supersymmetry the fαβ are indeed holomorphic. Note that
they are linear in the ta moduli and do not depend on the complex structure and
ξ-moduli.

From (3.75) we also immediately observe that the orientifold moduli space has the
product structure

MN=1 = M̃SK × M̃Q . (3.86)

The first factor M̃SK is a subspace of the N = 2 moduli space MSK with dimension
h

(1,1)
− spanned by the complexified Kähler deformations ta. The second factor M̃Q is

a subspace of the quaternionic manifold MQ with dimension h(2,1) +1 spanned by the
complex structure deformations qK , the dilaton D and the scalars ξK̂ arising from
C3. Let us discuss both factors in turn.

As we already stressed earlier the metric Gab of (3.75) defined in (3.34) is a trivial
truncation of the N = 2 special Kähler metric (2.15) and therefore remains special
Kähler. The Kähler potential is given by

KK = − ln
[

i
6
Kabc(t− t̄)a(t− t̄)b(t− t̄)c

]

= − ln
[

4
3

∫

Y

J ∧ J ∧ J
]

, (3.87)

where J is the Kähler form in the string frame. Moreover, KK can be obtained from
the prepotential f(t) = −1

6
Kabct

atbtc by using equation (B.17). It is well known that
KK obeys the standard no-scale condition [119]

KtaK
ta t̄bKt̄b = 3 . (3.88)

The geometry of the second component M̃Q in (3.86) is considerably more com-
plicated. This is due to the fact that (3.74) defines a new complex structure on the
field space. In the following we sketch the calculation of the Kähler potential for the
basis (aK̂ , b

K̂) and only summarize the results for a generic symplectic basis. The
details of this more involved calculation will be presented in section 4.1.2.

To begin with, let us define the compensator C introduced in section 3.4.1 as

C = e−D−iθeKcs(q)/2 , C → CeRe h(q) , (3.89)

where Kcs is the Kähler potential defined in (2.11) restricted to the real subspace Mcs
R
.

We also displayed the transformation behavior of C under real Kähler transformations
(3.70). With this at hand one defines the scale invariant variable

lK̂ = Re(CZK̂(q)) . (3.90)
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Inserted into (3.75) and using the Jacobian matrix encoding the change of variables

(eD, qK) → lK̂ the second line (3.75) simplifies as21

L(4)
Q = 2e2D ImMK̂L̂ (dlK̂ ∧ ∗dlL̂ + 1

4
dξK̂ ∧ ∗dξL̂) . (3.91)

We see that the scalars lK̂ and ξK̂ nicely combine into complex coordinates

N K̂ = 1
2
ξK̂ + ilK̂ = 1

2
ξK̂ + iRe(CZK̂) = 1

2

∫

Ωc ∧ bK̂ , (3.92)

which we anticipated in equation (3.74). The important fact to note here is that M̃Q

is equipped with a new complex structure and the corresponding Kähler coordinates
coincide with half of the periods of Ωc. This is in contrast to the situation in N = 2
where one of the periods (Z0) is a gauge degree of freedom and the Kähler coordinates
are the special coordinates zK = ZK/Z0.

In order to show that the metric in (3.91) is Kähler we need the explicit expression
for the Kähler potential. Using (3.69) in (B.15) one obtains straightforwardly

2e2DImMK̂L̂ = ∂NK̂∂N̄ L̂K
Q , (3.93)

where

KQ = −2 ln
[

4iF(CZ)
]

, F
(

Re(CZ)
)

=
i

2
Re(CZK̂) Im(CFK̂) . (3.94)

Alternatively, using (3.71) and ∗Ω = −iΩ one derives the integral representation

KQ = −2 ln
[

2

∫

Y

Re(CΩ) ∧ ∗Re(CΩ)
]

= − ln e−4D , (3.95)

where in the second equation we used (3.89) and (2.11). In the form (3.95) the

dependence of KQ on the coordinates N K̂ is only implicit and given by means of
their definition (3.92). Also KQ obeys a no-scale type condition in that it satisfies

KNK̂K
NK̂N̄ L̂

KN̄ L̂ = 4 , (3.96)

which can be checked by direct calculation.

The analysis so far started from the symplectic basis (aK̂ , b
K̂) introduced in (3.65),

determined the Kähler coordinates in (3.92) and derived the Kähler potential KQ in
terms of the prepotential F in (3.94) or as an integral representation in (3.95). Now we
need to ask to what extent this result depends on the choice of the basis (3.65). Or in
other words let us redo the calculation starting from an arbitrary symplectic basis and
determine the Kähler potential and the proper field variables for the corresponding
orientifold theory. Let us first recall the situation in the N = 2 theory reviewed
in section 2.2. The periods (ZK̂ ,FK̂) defined in (2.12) form a symplectic vector of
Sp(2h(1,2) + 2,Z) such that Ω given in (2.13) and Kcs given in (2.11) is manifestly

21The calculation of this result can be found in section 4.1.2.
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invariant. The prepotential F(Z) = 1
2
ZK̂FK̂ on the other hand does depend on the

choice of the basis (αK̂ , β
K̂) and is not invariant.

For N = 1 orientifolds this situation is different since the orientifold projection
(3.16) explicitly breaks the symplectic invariance.22 This can also be seen from the
form of the N = 1 Kähler potential (3.94) which is expressed in terms of the non-
invariant prepotential. One immediately concludes that the result (3.94) is basis
dependent and KQ takes this simple form due to the special choice aK̂ ∈ H3

+(Y ) and

bK̂ ∈ H3
−(Y ).23 On the other hand, the integral representation (3.95) only implicitly

depends on the symplectic basis through the definition of the coordinates N K̂ . This
suggest, that it is possible to generalize our results by allowing for an arbitrary choice
of symplectic basis in the definition of the N = 1 coordinates. More precisely, let us
consider the generic basis (αK̂ , β

L̂), where we assume that the h3
+ = h2,1 + 1 basis

elements (αk, β
λ) span H3

+ and the h3
− = h2,1 +1 basis elements (αλ, β

k) span H3
−. In

this basis the intersections (2.4) take the form

∫

Y

αk ∧ βl = δl
k ,

∫

Y

ακ ∧ βλ = δλ
κ , (3.97)

with all other combinations vanishing. Applying the orientifold constraint (3.16) one
concludes that the equations (3.69) are replaced by

Im(CZk) = Re(CFk) = 0 , Re(CZλ) = Im(CFλ) = 0 . (3.98)

Correspondingly, the expansions (3.71) and (3.72) take the form

CΩ = Re(CZk)αk + iIm(CZλ)αλ − Re(CFλ)β
λ − iIm(CFk)β

k ,

C3 = ξk αk − ξ̃λ β
λ , (3.99)

which implies that we also have to redefine the N = 1 coordinates of M̃Q in an
appropriate way. In section 4.1.2 we show that the new Kähler coordinates (Nk, Tλ)
are again determined by the periods of Ωc and given by

Nk = 1
2

∫

Ωc ∧ βk = 1
2
ξk + iRe(CZk) ,

Tλ = i

∫

Ωc ∧ αλ = iξ̃λ − 2Re(CFλ) , (3.100)

where we evaluated the integrals by using (3.73) and (3.99).

The Kähler potential takes again the form (3.95) but now depends on Nk, Tλ

and thus no longer simplifies to (3.94). Let us compare the situation to the original

N = 2 theory, which was formulated in terms of the ZK̂ or equivalently the special
coordinates zK . Holomorphicity in these coordinates played a central role in defining

22A symplectic transformation S preserve the form
〈

α, β
〉

=
∫

α∧β, such that
〈

Sα,Sβ
〉

=
〈

α, β
〉

.

On the other hand the anti-holomorphic involution satisfies
〈

σ∗α, σ∗β
〉

= −
〈

α, β
〉

.
23Note that this is in striking analogy to the background dependence of the B model partition

function as discussed in [120, 121].
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the prepotential encoding the special geometry of Mcs in MQ (cf. section 2.2). In
contrast, the N = 1 orientifold constraints destroy this complex structure and force
us to combine Re(CΩ) with the RR three-form C3 into Ωc. The Kähler coordinates
are half of the periods of Ωc but now in this more general case also the derivatives of
F can serve as coordinates as seen in (3.100). However, as it is shown in section 4.1.2,
Re(CFλ) and e2DIm(CZλ) are related by a Legendre transformation of the Kähler
potential. Working with this transformed potential and the coordinates Re(CZk) and
e2DIm(CZλ) enables us to make contact to the underlying N = 2 theory in its canon-
ical formulation. From a supergravity point of view, this Legendre transformation
corresponds to replacing the chiral multiplets Tλ by linear multiplets as described in
the next chapter. This is possible due to the translational isometries of K, which
arise as a consequence of the C3 gauge invariance and which render K independent of
the scalars ξ and ξ̃. We show in section 4.2 that this also enables us to construct M̃Q

from Mcs
R

similar to the moduli space of supersymmetric Lagrangian submanifolds in
a Calabi-Yau space as described by Hitchin [74]. This also allows us to interpret the
no-scale condition (3.96) geometrically.

Let us summarize the results obtained so far. We found that the moduli space
of N = 1 orientifolds is indeed the product of two Kähler spaces with the Kähler
potential

K = KK +KQ = − ln
[

4
3

∫

Y

J ∧ J ∧ J
]

− 2 ln
[

2

∫

Y

Re(CΩ) ∧ ∗Re(CΩ)
]

. (3.101)

The first term depends on the Kähler deformations of the orientifold while the second
term is a function of the real complex structure deformations and the dilaton. The
N = 1 Kähler coordinates are obtained by expanding the complex combinations24

Ωc = C3 + 2iRe(CΩ) , Jc = B̂2 + iJ , (3.102)

in a real harmonic basis of H3
+(Y ) and H

(1,1)
− (Y ) respectively. Note that K does not

depend on the scalars arising in the expansion of B̂2 and Ĉ3, such that the Kähler
manifold admits a set of h

(1,1)
− + h(2,1) + 1 translational isometries. In other words

K consists of two functionals encoding the dynamics of the two-form J and the real
three-form Re(CΩ). In type IIA orientifolds it is not difficult to rewrite KQ in a form
similar to (3.49). Defining the odd form

ϕodd = U + i Û = CΩ , (3.103)

one finds

KQ = −2 lnΦA(U) , ΦA(U) ≡ i
〈

ϕodd, ϕ̄odd
〉

= i

∫

Y

ϕodd ∧ ϕ̄odd . (3.104)

The function ΦA(U) is known as Hitchins functional for the real three-form U [82, 75].
The orientifold constraint (3.16) restricts its domain to U ∈ H3

+(Y ). Applying the

24This combination of forms has also appeared recently in ref. [122] in the discussion ofD-instanton
couplings in the A-model. Here they appear as the proper chiral N = 1 variables and as we will see
in the next section they linearize the D-instanton action.
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fact that ΦA(U) is a homogeneous function of degree two KQ obeys the no-scale type
conditions (3.96), (4.50). This is independent of the chosen basis and can be also
shown directly as done in section 4.1.2.

The no-scale conditions are violated when further stringy corrections are included.
K receives additional contributions due to perturbative effects as well as world-sheet
and D2 instantons. It is well-known that the combination Jc = B̂2 + iJ gives the
proper coupling to the string world-sheet such that world-sheet instantons correct the
holomorphic prepotential as f(t) = −1

6
Kabct

atbtc + O(e−t). Since we divided out the
world-sheet parity these corrections also include non-orientable Riemann surfaces,
such that the prepotential f(t) consists of two parts f(t) = for(t) + funor(t). The
function for counts holomorphic maps from orientable world-sheets to Y , while funor

counts holomorphic maps from non-orientable world-sheets to Y [110]. In the next
section we show that D2 instantons naturally couple to the complex three-form Ωc

and they are expected to correct KQ.

3.5 Mirror symmetry

In this section we discuss mirror symmetry for Calabi-Yau orientifolds from the point
of view of the effective action derived in the large volume limit. More precisely, we
compare the N = 1 data for type IIB orientifolds on Ỹ /σB (section 3.3.3) with the
data for type IIA orientifolds on Y/σA (section 3.4.3). Since we want to discuss
mirror symmetry we choose Ỹ to be the mirror manifold of Y . This implies that the
non-trivial Hodge numbers h(1,1) and h(2,1) of Y and Ỹ satisfy h(1,1)(Y ) = h(2,1)(Ỹ )
and h(2,1)(Y ) = h(1,1)(Ỹ ) as already given in section 2.4 where we briefly introduced
N = 2 mirror symmetry. In orientifolds we also have to specify the involutions σA

and σB which are identified under mirror symmetry. Since the discussion in this
thesis is quite generic and never specified any involution σ explicitly we also keep the
discussion of mirror symmetry generic. That is we assume that there exists a mirror
pair of manifolds Y and Ỹ with a mirror pair of involutions σA, σB. Matching the
number of N = 1 multiplets summarized in table 3.1 implies an orientifold version of
(2.35),25 i.e.

O3/O7 : h1,1
− (Y ) = h2,1

− (Ỹ ) , h1,1
+ (Y ) = h2,1

+ (Ỹ ) ,

O5/O9 : h1,1
− (Y ) = h2,1

+ (Ỹ ) , h1,1
+ (Y ) = h2,1

− (Ỹ ) . (3.105)

Our next task will be to match the couplings of the mirror theories. Since the
effective actions on both sides are only computed in the large volume limit we can
expect to find agreement only if we also take the large complex structure limit exactly
as in theN = 2 mirror symmetry. However, if one believes in mirror symmetry one can
use the the geometrical results of the complex structure moduli space to ‘predict’ the

25For the sector of M̃Q mirror symmetry is a constraint on the couplings rather than the Hodge
numbers.
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multiplets IIAY O6 IIBỸ O3/O7 IIBỸ O5/O9

vector multiplets h
(1,1)
+ h

(2,1)
+ h

(2,1)
−

chiral multiplets in M̃SK h
(1,1)
− h

(2,1)
− h

(2,1)
+

chiral multiplets in M̃Q h(2,1) + 1 h(1,1) + 1 h(1,1) + 1

Table 3.1: Number of N = 1 multiplets of orientifold compactifications.

corrections to its mirror symmetric component. This is not quite as straightforward
since the full N = 1 moduli space is a lot more complicated than the underlying
N = 2 space [61]. Let us therefore start our analysis with the simpler situation of
the special Kähler sectors M̃SK

A , M̃SK
B in (3.86) and (3.48) and the vector multiplet

couplings and postpone the analysis of M̃Q
A,B to section 3.5.2.

3.5.1 Mirror symmetry in MK

Recall that the manifold M̃SK
A is spanned by the complexified Kähler deformations ta

preserving the constraint (3.14). Under mirror symmetry these moduli are mapped to
the complex structure deformations which respect the constraint (3.9). In both cases
the Kähler potential is merely a truncated version of the N = 2 Kähler potential and
one has

KK
A = − ln

[

4
3

∫

Y

J ∧ J ∧ J
]

↔ Kcs
B = − ln

[

− i

∫

Ω ∧ Ω̄
]

. (3.106)

Both Kähler potentials can be expressed in terms of prepotentials fA(t), fB(z) and in
the large complex structure limit fB(z) becomes cubic and agrees with fA(t). Mirror
symmetry therefore equates these prepotentials and exchanges J3 with Ω∧ Ω̄ exactly
as in N = 2

fA(t) = fB(z) , J3 ↔ Ω ∧ Ω̄ . (3.107)

In [125] the N = 2 version of this map was written into the form 26

eJc ↔ Ω , (3.108)

where Jc is given in (3.102). Thus for M̃SK mirror symmetry is a truncated version
of N = 2 mirror symmetry. As we will see momentarily this also holds for the gauge
kinetic couplings which depend holomorphically on the moduli spanning M̃SK.

In type IIA the gauge-kinetic couplings are given in (3.85) and read fαβ(t) =
iKαβct

c. The IIB couplings were determined in (3.61) to be

fαβ(za) = −iM̄αβ = −iFαβ , (3.109)

26The authors argued that this should be true also for mirror symmetry of certain non-Calabi-Yau
backgrounds.
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where in order to not overload the notation we are using the same indices for both
cases.27 More precisely we are choosing

α, β = 1, . . . , h
(2,1)
+ (Ỹ ) , a, b = 1, . . . , h

(2,1)
− (Ỹ ) , for O3/O7 ,

α, β = 1, . . . , h
(2,1)
− (Ỹ ) , a, b = 1, . . . , h

(2,1)
+ (Ỹ ) , for O5/O9 . (3.110)

The matrix Fαβ(za) is holomorphic and the second derivatives of the prepotential
restricted to M̃K

B. In the large complex structure limit Fαβ is linear in za and therefore
also agrees with the type IIA mirror couplings. Thus mirror symmetry implies the
map Nαβ(t̄a) = Mαβ(z̄a) in both cases.

This concludes our discussions of mirror symmetry for the chiral multiplets which
span M̃SK. We have shown that the Kähler potential and the gauge-kinetic coupling
functions agree in the large complex structure limit under mirror symmetry. In this
sector the geometrical quantities on the type IIB side include corrections which are
believed to compute world-sheet non-perturbative effects such as world-sheet instan-
tons on the type IIA side. This is analogous to the situation in N = 2 and may be
traced back to the fact, that it is still possible to formulate a topological A model
counting world-sheet instantons for Calabi-Yau orientifolds [59, 110].

3.5.2 Mirror symmetry in MQ

Let us now turn to the discussion of the Kähler manifolds M̃Q
A and M̃Q

B arising in the
reduction of the quaternionic spaces. On the IIA side the Kähler potential is given
in (3.101) which is expressed in terms of the h(2,1) +1 coordinates (Nk, Tλ) defined in
(3.100). In this definition we did not fix the scale invariance (3.70) Ω → Ωe−Re(h) or
in other words we defined the coordinates in terms of the scale invariant combination
CΩ. Somewhat surprisingly there seem to be two physically inequivalent ways to
fix this scale invariance. In N = 2 one uses the scale invariance to define special
coordinates zK = ZK/Z0, z0 = 1 where Z0 is the coefficient in front of the base
element α0. The choice of Z0 is convention and due to the symplectic invariance any
other choice would be equally good. However, as we already discussed in section 3.1
and 3.3 the constraint (3.16) breaks the symplectic invariance and H3 decomposes
into two eigenspaces H3

+ ⊕ H3
−. Thus in (3.99) we have the choice to scale one of

the Zk equal to one or one of the Zλ equal to i. Denoting the corresponding basis
element by α0, these two choices are characterized by α0 ∈ H3

+ or α0 ∈ H3
−. This

choice identifies the dilaton direction inside the moduli space and therefore is crucial
in identifying the type IIB mirror. This is related to the fact that in type IIB the
dilaton reside in a chiral multiplet for O3/O7 orientifolds and in a linear multiplet
for O5/O9 orientifolds as we make more explicit in section 4.1.1. Let us discuss these
two cases in turn.

27We rescaled the type IIB gauge bosons by
√

2 in order to properly match the normalizations.
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The Mirror of IIB orientifolds with O3/O7 planes

We first want to show that in the large complex structure limit KQ
A given in (3.95)

coincides with KQ
B given in (3.47) for orientifolds with O3/O7 planes. It turns out

that in order to do so we need to choose α0 ∈ H3
+ and the dual basis element β0 ∈ H3

−.
It is convenient to keep track of this choice and therefore we mark the α’s and β’s
which contain α0 and β0 by putting a hat on the corresponding index. Thus we work
in the basis (αk̂, β

λ) of H3
+ and (αλ, β

k̂) of H3
−. Therefore, we rewrite the combination

CΩ as
CΩ = g−1

A (1α0 + qkαk + iqλαλ) + . . . , (3.111)

where we introduced gA and the real special coordinates

gA =
1

Re(CZ0)
, qk =

Re(CZk)

Re(CZ0)
, qλ =

Im(CZλ)

Re(CZ0)
. (3.112)

We also need to express the prepotential F(Z) in the special coordinates qk, qλ. In
analogy to (B.16) one defines a function f(q) such that

F
(

Re[CZ k̂], iIm[CZλ]
)

= i
(

Re[CZ0]
)2
f(qk, qλ) . (3.113)

We are now in the position to rewrite the N = 1 coordinates N k̂, Tλ given in (3.100)
in terms of gA and the special coordinates qK . Inserting (3.112) into (3.100) one
obtains

N0 = 1
2
ξ0 + ig−1

A , Nk = 1
2
ξk + ig−1

A qk , Tλ = iξ̃λ − 2g−1
A fλ(q) , (3.114)

where fλ is the first derivative of f(q) with respect to qλ.

The final step is to specify f(q) in the large complex structure limit. In this limit
the N = 2 prepotential is known to be

F(Z) = 1
6
(Z0)−1κKLMZ

KZLZM . (3.115)

Inserted into the orientifold constraints (3.98) one infers

κklm = κκλl = 0 , (3.116)

while κκλµ and κκlm can be non-zero. Using (3.116), (3.113) and (3.112) we arrive at

f(q) = −1
6
κκλµq

κqλqρ + 1
2
κκklq

κqkql . (3.117)

In order to continue we also have to specify the range the indices k and λ take on
the IIA side. A priori it is not fixed and can be changed by a symplectic transforma-
tion. Mirror symmetry demands

k = 1, . . . , h
(1,1)
− (Ỹ ) , λ = 1, . . . , h

(1,1)
+ (Ỹ ) , (3.118)

or in other words there have to be h
(1,1)
− (Ỹ ) basis elements αk and h

(1,1)
+ (Ỹ ) basis

elements βλ in H3
+(Y ). In addition the non-vanishing couplings κκλµ and κκlm have
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to be identified with Kκλµ and Kκlm appearing in the definition of the type IIB chiral
coordinates (3.44). With these conditions fulfilled we can insert (3.117) into (3.114)
and compare with (3.44). This leads to the identification

N k̂ = (τ, Gk) and TA
λ = 2TB

λ , (3.119)

which in terms of the Kaluza-Klein variables corresponds to

eφB = gA , qλ = vλ , qk = −bk ,
ξ0 = 2C0 , ξk = 2(ck − C0b

k) , (3.120)

ξ̃λ = 2ρλ − 2Kλklc
kbl + C0Kλklb

kbl .

With these identifications one immediately shows eDA = eDB , where eDA and eDB are
the four-dimensional dilatons of the type IIA and IIB theory. This implies that the
Kähler potentials (3.95) and (3.47) of the two theories coincide in the large volume –
large complex structure limit. However, the corrections away from this limit cannot
be properly understood from a pure supergravity analysis. It is clear thatKQ

A includes
corrections of the mirror IIB theory but the precise nature of these corrections remains
to be understood.

The Mirror of IIB orientifolds with O5/O9 planes

In this section we check mirror symmetry for type IIB orientifolds with O5/O9 planes
with complex coordinates and Kähler potential determined in section 3.3.3. In order
to find the same chiral data on the IIA side, we have to examine the case where
α0 ∈ H3

−. Therefore we choose a basis (αk, β
λ̂) of H3

+ and (αλ̂, β
k) of H3

−. We rewrite
the combination CΩ in this basis as

CΩ = g−1
A (i α0 + iqλαλ + qkαk) + . . . (3.121)

where we introduced the real special coordinates

gA =
1

Im(CZ0)
, qk =

Re(CZk)

Im(CZ0)
, qλ =

Im(CZλ)

Im(CZ0)
. (3.122)

Let us also express the prepotential F(Z) in terms of qk, qλ. As in N = 2 one defines
a function f(q) such that

F
(

Re[CZk], iIm[CZ λ̂]
)

= −i
(

Im[CZ0]
)2
f(qk, qλ) . (3.123)

We can now rewrite the N = 1 coordinates Tλ̂, N
k given in (3.100) in terms of qk, qλ

and gA as

Nk = 1
2
ξk + ig−1

A qk , Tλ = iξ̃λ + 2g−1
A fλ(q) ,

T0 = iξ̃0 + 2g−1
A (2f(q) − fλq

λ − fkq
k) , (3.124)

where fλ, fk are the first derivatives of f(q) with respect to qλ and qk.
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Going to the large complex structure limit, the N = 2 prepotential takes the form
(3.115). We split the indices as K = (k, λ̂) and apply the constraints (3.98) to find
that

κκλµ = κκkl = 0 κklm 6= 0 , κκλl 6= 0 . (3.125)

Using (3.125) and (3.123) we can calculate f(q) as

f(q) = 1
6
κklmq

kqlqm − 1
2
κκλkq

κqλqk . (3.126)

In order to match the chiral coordinates T0, Tλ, N
k with the type IIB coordinates

of (3.54) we need again to specify the range of the indices on the type IIA side.
Obviously we need

k = 1, . . . , h
(1,1)
+ (Ỹ ) , λ = 1, . . . , h

(1,1)
− (Ỹ ) , (3.127)

which is the equivalent of (3.118) with the plus and minus sign interchanged. Thus
the non-vanishing intersections can be identified with Kklm and Kκλk on the IIB side.
Inserting f(q) back into the equations (3.124) for the chiral coordinates Nk, Tλ̂ and
demanding (3.127) one can compare these to the type IIB coordinates (3.54). One
identifies

Tλ̂ = 2(S,Aλ) , Nk = itk . (3.128)

In terms of the Kaluza-Klein modes this amounts to the identification

gA = eφB , qk = −vk , qλ = bλ , ξk = −2ck ,

ξ̃λ = 2ρλ − 2Kλκlc
lbκ , ξ̃0 = 2h+ Klλκc

lbλbκ − ρλb
λ . (3.129)

With these identifications one shows again eDA = eDB and as a consequence the Kähler
potentials (3.95) and (3.57) agree in the large volume – large complex structure limit.

In summary, we found that it is indeed possible to obtain both type IIB setups
as mirrors of the type IIA orientifolds. In analogy to (3.108) we found by comparing
(3.102) with (3.42) and (3.53) the mirror relation

O3/O7 : ϕodd ↔ ϕev , C3 ↔ A ,

O5/O9 : ϕodd ↔ −iϕev , C3 ↔ A , (3.130)

where ϕodd, ϕev and A are defined in (3.103) and (3.43). Furthermore, we found that
the functionals ΦA and ΦB have to identified as

O3/O7 : ΦA(U) ↔ ΦB(E) , O5/O9 : ΦB(U) ↔ ΦB(Ê) , (3.131)

such that the Kähler potentials are matched. However, the crucial role of the two
definitions of special coordinates remains to be understood further.

Let us close this chapter with a brief remark on the generalizations of this result.
Formulated in this abstract fashion equations (3.130) and (3.131) are expected to
hold even for orientifolds of generalized complex manifolds. This includes certain
SU(3) structure manifolds, such as half-flat manifolds. This looks very promising
and deserves further investigation [117].
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Chapter 4

Linear multiplets and the geometry

of the moduli space

In this chapter we explore the geometry of the N = 1 moduli space in more detail.
Our attempt is to get some deeper understanding of the properties of the Kähler
manifolds obtained from the N = 2 to N = 1 reduction performed in the previous
chapter. Recall that the orientifold moduli space is a direct product

M̃SK × M̃Q , (4.1)

where N = 1 supersymmetry demands each factor to be a Kähler manifold. M̃SK is
a submanifold of the N = 2 special Kähler manifold MSK parameterizing complex
structure deformations in type IIB and complexified Kähler structure deformations in
type IIA. As we have shown also M̃SK is special Kähler, since it inherits its complex
structure from MSK and admits a Kähler metric obtained from a prepotential.

The reduction of the hypermultiplet sector is more ‘radical’ since it defines a
Kähler manifold M̃Q inside of a quaternionic manifold MQ, which itself is not nec-
essarily Kähler. This Kähler submanifold has half the dimension of the quaternionic
space. In general it is a difficult mathematical problem to characterize Kähler man-
ifolds inside quaternionic ones [111]. However, the quaternionic manifolds obtained
by Calabi-Yau compactifications of type IIA or type IIB supergravity posses special
properties. As shown in [94, 91] they can be constructed from special Kähler manifold
MSK via the local c-map,

MSK
2n

c-map−−−→ MQ
4n+4 , (4.2)

where 2n and 4n + 4 are the real dimensions of MSK and MQ. These quaternionic
manifolds are termed special or dual quaternionic. One observes that their metric
depends on only half of the bosonic fields in the hypermultiplets, or, in other words,
on half of the quaternionic coordinates. More precisely, the components of the metrics
(2.24) and (2.34) on MQ are functions of only NS-NS scalar fields M I

NS. The second
half are R-R scalar fields denoted by MI RR which appear in the quaternionic metrics
only as a differential and hence posses Peccei-Quinn shift symmetries

MI RR →MI RR + cI , (4.3)



72 Linear multiplets and the geometry of the moduli space

for arbitrary constants cI .

The orientifold projection truncates half of the NS-NS fields and half of the R-R
fields. N = 1 supersymmetry forces the remaining fields to span a Kähler manifold
M̃Q. Furthermore, it can be seen in tables 3.2 and 3.2 that supersymmetry combines
each NS-NS field M I

NS together with a R-R field MI RR into a chiral multiplet with
bosonic components M I = (M I

NS,MI RR) spanning M̃Q. The fact, that the R-R fields
posses shift symmetries allows us to chose a set Mα RR and dualize them into two-
tensors Dα

2RR. This amounts to replacing the chiral multiplets Mα by linear multiples
Lα = (Mα

NS, D
α
2RR), while keeping the remaining fields Ma chiral. The manifold M̃Q

Lα

spanned by the real scalars Mα
NS and the complex scalars Ma still contains all the

information about the full Kähler space M̃Q. In that one can construct M̃Q starting
from M̃Q

Lα,

M̃Q
Lα

dualization of Dα
2−−−−−−−−−−−→ M̃Q . (4.4)

This dualization procedure will be discussed in section 4.1. As we will explain there,
the kinetic terms and couplings of the chiral and linear multiplets can be encoded
by a single function K̃ being the Legendre transform of the Kähler potential. As an
application we determine K̃ for all three orientifold setups. Firstly, in section 4.1.1
we apply the linear multiplet formalism to IIB orientifolds. Secondly, in section 4.1.2
we provide the missing calculation of the Kähler potential for M̃Q for general IIA
orientifolds. In this derivation we apply the techniques connected with the map (4.4).

Finally, recall that the quaternionic space can be obtained from MSK via the local
c-map construction (4.2). In section 4.2 we construct the map

MSK ∩ M̃Q N=1 c-map−−−−−−→ M̃Q , (4.5)

which can be interpreted as the N = 1 analog of the local c-map (4.2). As we
will show it is closely related to the dualization in (4.4), when specifying the right
chiral fields Mα for dualization. This construction is inspired by the one presented
in [74], where the moduli space of Lagrangian submanifolds with U(1) connection is
discussed. Furthermore, it provides the basis to extend the analysis to non-Calabi-
Yau orientifolds.

4.1 Linear multiplets and Calabi-Yau orientifolds

In this section we rewrite the bulk effective action of type IIB and type IIA orientifolds
using the linear multiplet formalism of ref. [73]. In this way we will be able to
understand the definition of the Kähler coordinates given in (3.44), (3.54) and (3.100)
as a superfield duality transformation and furthermore discover the no-scale properties
of KQ somewhat more conceptually. In an analog three-dimensional situation this
has also been observed in [34].

Let us first briefly review N = 1 supergravity coupled to n linear multiplets
Lα, α = 1, . . . , n and r chiral multiplets NA, A = 1, . . . , r following [73]. Linear
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multiplets are defined by the constraint

(D2 − 8R̄)Lα = 0 = (D̄2 − 8R)Lα , (4.6)

whereD is the superspace covariant derivative andR is the chiral superfield containing
the curvature scalar. As bosonic components L contains a real scalar field which we
also denote by L and the field strength of a two-form D2. The superspace Lagrangian
(omitting the gauge interactions) is given by

S = −3

∫

E F (NA, N̄A, Lα) +
1

2

∫

E

R
eK/2 W (N) +

1

2

∫

E

R† e
K/2 W̄ (N̄) , (4.7)

where E is the super-vielbein and W the superpotential. The function F depends
implicitly on the Kähler potential K(NA, N̄A, Lα) through the differential constraint1

1 − 1

3
LαKLα = F − LαFLα , (4.8)

which ensures the correct normalization of the Einstein-Hilbert term. The subscripts
on K and F denotes differentiation, i.e. KLα = ∂K

∂Lα , FLα = ∂F
∂Lα , etc. . Let us also

define the kinetic potential K̃ and rewrite (4.8) as

K̃ = K − 3F , F = 1 − 1
3
K̃LαLα . (4.9)

Expanding (4.7) into components one finds that K̃ determines the kinetic terms of
the fields. More precisely, the (bosonic) component Lagrangian derived from (4.7) is
found to be2

L = −1
2
R ∗ 1 − K̃AB̄ dN

A ∧ ∗dN̄B + 1
4
K̃LαLβ dLα ∧ ∗dLβ − V ∗ 1

+1
4
K̃LαLβ dDα

2 ∧ ∗dDβ
2 − i

2
dDα

2 ∧
(

K̃αA dN
A − K̃αĀ dN̄

A
)

, (4.10)

where
V = eK

(

K̃AB̄DAWDB̄W̄ − (3 − LαKLα)|W |2
)

. (4.11)

We see that the function K̃(N, N̄, L) = K − 3F determines the kinetic terms of
the fields NA and Lα as well as the couplings of the two-forms Dα

2 to the chiral
fields N I . Note that only derivatives of FLα appear leaving a constant piece in FLα

undetermined. This constant drops out from (4.8).

In a next step we like to recover the standard N = 1 effective action by dualizing
the linear multiplets Lα into chiral multiplets Tα. This establishes the map (4.4),
which will be a useful tool in the remainder of this chapter. From here we can
proceed in two ways. We can dualize the two-forms Dα

2 in components and show
that the resulting action is Kähler by determining the Kähler potential and complex

1Strictly speaking K(NA, N̄A, Lα) is not a Kähler potential but as we will see it determines the
kinetic terms in the action.

2This is a straightforward generalization of the Lagrangian for one linear multiplet given in [73].
The potential for this case has also been given in [22].
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coordinates. This is done in appendix C and provides a simple, but somehow more
tedious dualization procedure. However, performing the duality in superspace yields
directly the proper Kähler coordinates Tα and Kähler potential K(T, T̄ , N, N̄).

The duality transformation in superfields is performed in detail in [73] and here
we only repeat the essential steps. One first considers the linear multiplets Lα to be
unconstrained real superfields and modifies the action (4.7) to read3

S = −3

∫

E
(

F (NA, N̄A, Lα) + 6Lα(Tα + T̄α)
)

+ . . . , (4.12)

where the Tα are chiral superfields and in order to be consistent with our previous
conventions we have included a factor 6 in the second term. Variation with respect to
Tα results in the constraint that Lα are linear multiplets and one arrives back at the
action (4.7). Variation with respect to the (unconstrained) Lα yields the equations4

6(Tα + T̄α) + FLα − 1
3
KLα

(

F + 6Lβ(Tβ + T̄β)
)

= 0 , (4.13)

where we have used δLE = −1
3
EKLαδLα. This equation determines Lα in terms of the

chiral superfields NA, Tα and is the looked for duality relation. However, depending
on the specific form of F and K one might not be able to solve (4.13) explicitly for
Lα but instead only obtain an implicit relation Lα(N, N̄, T + T̄ ). Nevertheless one
should insert Lα(N, N̄, T + T̄ ) back into (4.12) which then expresses the Lagrangian
(implicitly) in terms of Tα and therefore defines a Lagrangian in the chiral superfield
formalism. The unusual feature being that the explicit functional dependence is
not known. A correctly normalized Einstein-Hilbert term is ensured by additionally
imposing

F (N, N̄, L) + 6Lα(Tα + T̄α) = 1 . (4.14)

Contracting (4.13) with Lα and using equation (4.14) one obtains (4.8). Thus F
has to have the same functional dependence as before and therefore eqn. (4.9) is
unmodified, but one should insert L(N, N̄, T + T̄ ) implicitly determined by (4.13).
Using (4.14) the duality condition (4.13) can be cast into the form

Tα + T̄α = 1
2
K̃Lα , (4.15)

where K̃ is the kinetic potential defined in (4.9). We also like to rewrite the Kähler
potential K

(

L(N, N̄, T + T̄ ), N, N̄
)

in terms of K̃. Inserting (4.15) into (4.9) one
infers

K(N, N̄, T + T̄ ) = K̃(N, N̄, L) − 2(Tα + T̄α)Lα , (4.16)

where we removed a constant factor by means of a Kähler transformation. Equation
(4.15) identifies Tα + T̄α to be the canonical conjugate to Lα with respect to K̃, while
by (4.16) the Kähler potential K is the Legendre transform of K̃. The equations
(4.15) and (4.16) characterize the map (4.4) and can be equivalently obtained by a

3We omit the superpotential terms here since they only depend on N and play no role in the
dualization.

4Notice that there is a misprint in the equivalent equation given in [73].
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component field dualization as shown in appendix C. Before turning to the orientifold
examples let us calculate the the bosonic effective action in terms of K̃ and the
coordinates

NA , Tα = iξ̃α + 1
4
K̃Lα , (4.17)

where ξ̃α is the scalar dual to Dα
2 and we have used (4.15). Using the Kähler potential

(4.16) one obtains

L = −1
2
R ∗ 1 − K̃NkN̄ l dNk ∧ ∗dN̄ l + 1

4
K̃LκLλ dLκ ∧ ∗dLλ − V ∗ 1 (4.18)

+4K̃LκLλ
(

dξ̃κ − 1
2
Im

(

K̃LκN l dN l
)

)

∧ ∗
(

dξ̃λ − 1
2
Im

(

K̃LλNk dNk
)

)

.

where K̃ is the kinetic potential appearing in (4.16). This is the dual Lagrangian to
(4.10) as can be equivalently shown by component field dualization (equation (C.23)).
We now give some explicit examples for this dualization, by applying it to the Calabi-
Yau orientifolds studied in chapter 3.

4.1.1 Two simple examples: Type IIB orientifolds

I. O3/O7 orientifolds

Let us now restrict to simple potentials K(N, N̄, L) and F (N, N̄, L), which describe
the correct kinematics for O3/O7 orientifolds. Our aim is to rewrite the action (3.37)
in the linear multiplet formalism. As we are going to show this enables us to circum-
vent the implicit definition of the Kähler potential (3.46). In other words, replacing
the chiral multiplets Tα with linear multiplets Lα as just described allows us to give
an explicit expression for K in terms of τ, z and Lα [39]. This is achieved by the
Kähler potential

K = K0(N
A, N̄A) + α ln(KαβγL

αLβLγ) , (4.19)

where we leave K0(N
A, N Ā) and the normalization constant α arbitrary for the mo-

ment. Inserting (4.19) into (4.8) shows that possible solutions F have the form

F = 1 − α + 1
3
LαζR

α (NA, N̄A) , (4.20)

where the real functions ζR
α (NA, N̄A) are not further determined by (4.8). In that

sense the ζR
α (NA, N̄A) are additional input functions which determine the Lagrangian

since they appear in the kinetic potential (4.9). Comparing (3.44) with (4.15) by
using (4.19) and (4.20) we are led to identify5

α = 1 , Lα = 3
2
eφ v

α

K , ζR
α = − i

2(τ − τ̄ )
Kαbc(G− Ḡ)b(G− Ḡ)c , (4.21)

where ζR
α = ζα + ζ̄α was already given in (3.45). Hence, we have shown that the

definition of the Kähler coordinates in (3.44) is nothing but the duality relation (4.15)

5Strictly speaking (4.15) only determines the real part of Tα. The imaginary part can be found
by comparing the explicit effective actions (3.37) and (4.18).
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obtained from the superfield dualization of the linear multiplets Lα to chiral multiplets
Tα.6 It remains to determine K0. Comparing (4.19) by using (4.21) with (3.46) one
finds

K0 = Kcs(z, z̄) − ln
[

− i(τ − τ̄)
]

. (4.22)

In summary, the low energy effective action for O3/O7 orientifolds can be rewritten by
using chiral multiplets (zk, τ, Ga) and linear multiplets Lα. This supergravity theory
is determined (in the formalism of ref. [73] and apart from W and f which we can
neglect for this discussion) by the independent functions K and F given in (4.19) and
(4.20) together with (4.21) and (4.22). Inserted into (4.9) we determine the kinetic
potential

K̃(z, τ, G, L) = Kcs(z, z̄) + ln
(1

2

KαβγL
αLβLγ

l0

)

− KαabL
αlalb

l0
, (4.23)

where we have defined la = ImGa and l0 = Imτ . In the dual formulation where the
linear multiplets Lα are dualized to chiral multiplets Tα the Lagrangian is entirely
determined by the Kähler potential given in (3.46) with the ‘unusual’ feature that
it is not given explicitly in terms of the chiral multiplets but only implicitly via the
constraint (4.15). In this sense the orientifold compactifications (and similarly the
compactifications of F-theory on elliptic Calabi-Yau fourfolds considered in [22] and
section 6.1) lead to a more general class of Kähler potentials then usually considered
in supergravity. In fact the same feature holds for arbitrary K0 and arbitrary ζR

α ,
such that also O3/O7 orientifolds with space-time filling D3 and D7 branes fall into
this class as shown in [31, 99].

Furthermore, these ‘generalized’ Kähler potentials are all of ‘no-scale type’ in that
they lead to a positive semi-definite potential V . For α = 1 (and arbitrary K0 and
ζα) the Kähler potential (4.19) obeys

LαKLα = 3 , (4.24)

and hence the the second term in the potential (4.11) vanishes leaving a positive
semi-definite potential with a supersymmetric Minkowskian ground state. Since in
the chiral formulation K cannot even be given explicitly one can consider such Ks as
a ‘generalized’ class of no-scale Kähler potentials. The analogous property has also
been observed in refs. [22, 27, 118]. Finally note with what ease the no-scale property
follows in the linear formulation compared to the somewhat involved computation in
the chiral formulation performed in [39].

II. O5/O9 orientifolds

As second simple example let us dualize the effective action (3.38) of orientifolds with
O5/O9 planes. In this case our motivation is slightly different, since in contrast to

6The case α = 1 is a somewhat special situation in that the function F does not have a constant
piece but only the term linear in Lα. This in turn requires that the ζR

α cannot be chosen zero
but that they have at least a constant piece so that F does not vanish. This constant is otherwise
irrelevant since it drops out of all physical quantities. (In a slightly different context the case α = 1
has also been discussed in ref. [123].)
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O3/O7 orientifolds, the Kähler potential is already given explicitly in terms of the
Kähler coordinates. Recall however, that type IIB compactified on a Calabi-Yau
naturally admits a double tensor multiplet (φ, C0, B2, C2) which is truncated to the
linear multiplet L = (φ, C2) by the O5/O9 orientifold projection. In section 3.3 we
dualized C2 to a scalar h and extracted the Kähler potential in the chiral picture.
However, with the techniques presented above, we are now in the position to formulate
this N = 1 theory by keeping the linear multiplet L [39].

Let us determine K̃ = K − 3F encoding the couplings of the chiral and linear
multiplets in (4.10). As we will show in a moment the potential K(N, N̄, L) and the
function F (N, N̄, L) are given by

K = K0 + lnL , F = 2
3

+ 1
3
LζR , (4.25)

which is readily checked to be a solution of the normalization condition (4.8). Com-
paring equation (4.15) for S by using the Ansatz (4.25) with the definition (3.54) of
S one determines L and ζR as

L = 3
2
eφK−1 , ζR = 1

4
(A+ Ā)a(ReΘ−1)ab(A+ Ā)b . (4.26)

Inserted back into (4.25) indeed yields the Kähler potential (3.56) if we identify

K0 = Kcs(z, z̄) − ln
[

1
48
Kαβγ(t+ t̄)α(t+ t̄)β(t+ t̄)γ

]

, (4.27)

Thus we have shown that the kinetic terms can consistently be described either in
the chiral- or the linear multiplet formalism and we have determined the appropriate
coordinates.

Let us supplement our analysis with another formulation of the O5/O9 setups.
Namely we like to dualize the chiral multiplet S as well as the chiral multiplets Aa into
a linear multiplets L0 and La. As we will see, this will be a first case where F (N, N̄, L)
is not linear in the linear multiplets L0, La in contrast to (4.20) and (4.25). We will
show momentarily that the Kähler potential still has the form

K(z, t, L) = K0(z, t) + lnL0 , (4.28)

where K0 is the same as in (4.27). F can be deduced from equation (4.15), which
translates to

1
2
K̃L0 = S + S̄ , 1

2
K̃La = Aa + Āa (4.29)

Inserting (4.28) and the coordinates S,Aa given in (3.54) one easily concludes that

L0 = 3
2
eφ 1

K , La = 3
2
eφ b

a

K , F = 2
3
− 1

3
(L0)−1Kαab(t

α + t̄α)LaLb . (4.30)

where L0 is equal to L in (4.26). Together with (4.28) this is consistent with the nor-
malization equation (4.8). Inserting (4.28) and (4.30) into (4.9) the kinetic potential
reads

K̃(z, t, A, L) = Kcs(z, z̄) − ln
(1

6

Kαβγl
αlβlγ

L0

)

+ 2
Kαabl

αLaLb

L0
, (4.31)
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where we have defined lα = Re tα.

Let us close this discussion by comparing this kinetic potential with the one ob-
tained for O3/O7 orientifolds in (4.23). They are identical under the identifications

K̃O3/O7 → −K̃O5/O9 , Lα → lα , (la, l0) → (La, L0) . (4.32)

Note however, that this is a rather drastic step, since we identify linear multiplets of
the one theory with chiral multiplets of the other. It would be interesting to explore
this duality in more detail. It corresponds in simple cases to two T-dualities and
manifests itself by a rotation of the forms

ϕev → iϕev , (E , Ê) → (−Ê , E) . (4.33)

This ends our discussion of IIB orientifolds. As we have seen, much of the underlying
Kähler geometry can be directly analyzed by simply switching to the linear multiplet
picture.

4.1.2 An involved example: Type IIA orientifolds

Let us now turn to a more involved application of the linear multiplet formalism or
rather the Legendre transform method behind (4.15) and (4.16). Namely, we will
present a more detailed analysis of the moduli space M̃Q for type IIA orientifolds
[41]. Our aim is to show that the Kähler potential (3.95) with coordinates Tλ, N

k

introduced in (3.100) indeed encodes the correct low-energy dynamics of the theory
obtained by Kaluza-Klein reduction. Furthermore, we show that KQ always obeys a
no-scale type condition equivalent to (3.96).

Let us start by performing the reduction of the ten-dimensional theory by using
the general basis (αK̂ , β

K̂) introduced in (3.99). It was chosen such that it splits on
H3(Y ) = H3

+ ⊕H3
− as

(αk, β
λ) ∈ H3

+(Y ) , (αλ, β
k) ∈ H3

−(Y ) , (4.34)

where both eigenspaces are spanned by h2,1 + 1 basis vectors. As remarked above,
we will only concentrate on the moduli space M̃Q, such that we can set ta = 0 and
Aα = 0. Due to (3.62), the ten-dimensional three-form Ĉ3 is expanded in elements of
H3

+(Y ) as

C3 = ξk(x)αk − ξ̃λ(x) β
λ , (4.35)

where ξk, ξ̃λ are h2,1 + 1 real space-time scalars in four-dimensions. Inserting this
Ansatz into the ten-dimensional effective action one finds

S
(4)

M̃Q =

∫

− dD ∧ ∗dD − GKL(q) dqK ∧ ∗dqL + 1
2
e2D ImMkl dξ

k ∧ ∗dξl(4.36)

+1
2
e2D (ImM)−1 κλ

(

dξ̃κ − ReMκl dξ
l
)

∧ ∗
(

dξ̃λ − ReMλk dξ
k
)

,

where compared to (3.75) only the terms involving ξk, ξ̃λ have changed. The metric
GKL(q) was introduced in (3.83) and is the induced metric on the space of real
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complex structure deformations Mcs
R

parameterized by qK . It remains to comment
on the kinetic and coupling terms of the scalars ξk, ξ̃λ. In the quaternionic metric
(2.24) of the N = 2 theory they couple via the matrix MK̂L̂ given in (2.25). Using the

split of the symplectic basis (αK̂ , β
K̂) as given in (4.34) and the fact that by Hodge

duality for a form γ ∈ H3
+ one finds ∗γ ∈ H3

− one concludes

ReMκλ(q) = ReMkl(q) = ImMκk(q) = 0 , (4.37)

whereas ReMkλ, ImMκλ, ImMkl are generally non-zero on Mcs
R
. The explicit form

of non-vanishing components can be obtained by restricting (B.15) to Mcs
R

and using
the constraints (3.98).

In order to combine the scalars eD, qK with ξk, ξ̃κ into complex variables, we have
to redefine these fields and rewrite the first two terms in (4.36). Thus we define the
h2,1 + 1 real coordinates

Lλ = −e2D Im
[

CZλ(q)
]

, lk = Re
[

CZk(q)
]

, (4.38)

which is consistent with the orientifold constraint (3.98). The additional factor of e2D

was included in order to match the dilaton factors later on. Using (4.38) one calculates
the Jacobian matrix for the change of variables (eD, qK) to (lk, Lλ) as explicitly done
in [41]. It is then straight forward to rewrite (4.36) by using the identities (B.13) of
special geometry as

S
(4)

M̃Q =

∫

2e−2DImMκλ dL
κ ∧ ∗dLλ + 2e2DImMkl dl

k ∧ ∗dll + e2D

2
ImMkl dξ

k ∧ ∗dξl

+ e2D

2
(ImM)−1 κλ

(

dξ̃κ − ReMκk dξ
k
)

∧ ∗
(

dξ̃λ − ReMλk dξ
k
)

. (4.39)

From (4.39) one sees that the scalars lk and ξk nicely combine into complex coordi-
nates

Nk = 1
2
ξk + ilk = 1

2
ξk + iRe(CZk) , (4.40)

which corresponds to (3.100). In contrast, one observes that the metric for the kinetic
terms of the scalars ξ̃λ is exactly the inverse of the one appearing in the kinetic terms
of the scalar fields Lλ. Hence, comparing (4.39) with (4.18) on concludes that this
action is obtained by dualizing a set of linear multiplets (Lλ, Dλ

2 ) into chiral multiplets
(Lλ, ξ̃λ). To extract K̃(L,N, N̄) we compare (4.39) with (4.18) and read off the metric

K̃LκLλ = 8 e−2DImMκλ , K̃lkll = −8 e2DImMkl , K̃Lκll = −8 ReMκl , (4.41)

where we have used that the metric is independent of ξk, ξ̃λ. This metric can be
obtained from a kinetic potential of the form

K̃(L, l) = − ln
[

e−4D
]

+ 8e2DIm
[

ρ∗F(CZk)
]

, (4.42)

where F is the prepotential of the special Kähler manifold Mcs restricted to the real
subspace Mcs

R
. The map ρ was given in (3.82) and enforces the constraints (3.98).

To show that K̃ indeed yields the correct metric (4.41) one differentiates (4.42) with
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respect to e−D, qK and uses the inverse of the Jacobian matrix for the change of
variables (eD, qK) to (lk, Lλ). Applying equations (B.12) one finds its first derivatives

K̃Lλ = −8 Re
[

CFλ(q)
]

K̃lk = 8 e2D Im
[

CFk(q)
]

. (4.43)

Repeating the procedure and differentiating (4.43) with respect to e−D, qK and using
once again the inverse Jacobian one applies (B.11) to show (4.41). Knowing (4.42)
one can also extract the functions F (L,N, N̄) and K(L,N, N̄) by applying (4.9). As
we will show momentarily K and F = 1

3
(K − K̃) are given by

K(L, l) = − ln
[

e−4D
]

, F (L, l) = −8
3
e2DIm

[

ρ∗F(CZ)
]

+ 1
3
. (4.44)

It suffices to determine K which expressed in the correct coordinates serves as the
Kähler potential in the chiral description.

As explained in the beginning of this section the actual Kähler potential of M̃Q

is the Legendre transform (4.16) of K̃ with respect to the variables Lλ. There we
also found the explicit definition of the complex coordinates Tλ combining (Lλ, ξ̃λ).
Using (4.43) in (4.15) and fixing the normalization of the imaginary part of Tλ by
comparing (4.39) with (4.18) one finds

Tλ = iξ̃λ + 1
4
K̃Lλ = iξ̃λ − 2 Re

(

CFλ

)

, (4.45)

which coincides with (3.100) already quoted in section 3.4.3. To give an explicit
expression for KQ we insert equation (4.42) into (4.16). Applying the N = 2 identity

F = 1
2
ZK̂FK̂ , the constraint equations (3.98) and (4.38),(4.43) we rewrite

KQ = − ln
[

e−4D
]

+ 1
2
(lkK̃lk − LλK̃Lλ) . (4.46)

It is possible to evaluate the terms appearing in the parentheses. In order to do that
we combine the equations (4.38) and (4.43) to the simple form

Re
(

CΩ
)

= lkαk + 1
8
K̃Lλβλ , e2DIm

(

CΩ
)

= −Lλαλ − 1
8
K̃lkβ

k . (4.47)

We now use equation (2.11) and the definition (3.89) of C to calculate

2

∫

Y

Re(CΩ) ∧ Im(CΩ) = i

∫

Y

CΩ ∧ CΩ = e−2D . (4.48)

Inserting the equations (4.47) into (4.48) we find

LλK̃Lλ − lkK̃lk = 4 . (4.49)

Inserted back into (4.46) we have shown that the Kähler potential has indeed the
form (3.95).7 Moreover, (4.49) directly translates into a no-scale type condition for
KQ

KwK̂K
wK̂ w̄L̂

Kw̄L̂ = 4 , (4.50)

7By using the equation (4.48) and ∗Ω = −iΩ it is straight forward to show e−2D = 2
∫

Re(CΩ)∧
∗Re(CΩ)
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where wK̂ = (Tκ, N
k). In order to see this, one inserts the inverse Kähler metric

(C.30), the Kähler derivatives (C.28) and the derivatives of (4.49) back into (4.49).
In other words, we were able to translate one of the special Kähler conditions present
in the underlying N = 2 theory into a constraint on the geometry of M̃Q. Two non-
trivial examples fulfilling (4.49) are the O3/O7 and O5/O9 kinetic potentials (4.23)
and (4.31). They admit this simple form since instanton corrections are not taken
into account.

4.2 The geometry of the moduli space

In this section we give an alternative formulation of the geometric structures of the
moduli space M̃Q which is closely related the moduli space of supersymmetric La-
grangian submanifolds in a Calabi-Yau threefold [74].8 In this set-up also the no-scale
conditions (3.96), (4.49) are interpreted geometrically. This provides a more elegant
description of the N = 1 moduli space and its special properties. Moreover, we con-
struct the N = 1 analog (4.5) of the N = 2 c-map (4.2). Our analysis can serve as
a starting point for the analysis of non-Calabi-Yau orientifolds by using the language
of generalized complex manifolds invented by Hitchin [75].

In section 3.4 we started from a N = 2 quaternionic manifold MQ and determined
the submanifold M̃Q by imposing the orientifold projection. N = 1 supersymmetry
ensured that this submanifold is Kähler. MQ has a second but different Kähler
submanifold Mcs which intersects with M̃Q on the real manifold Mcs

R
. The c-map

is in some sense the reverse operation where MQ is constructed starting from Mcs

and shown to be quaternionic [94, 91]. In this section we analogously construct the
Kähler manifold M̃Q starting from Mcs

R
.

Figure 4.1: The local moduli space MR = Mcs
R
× R in Mcs × C ≃ Mcs ×H(3,0).

In fact the proper starting point is not Mcs
R

but rather MR = Mcs
R
× R which

is the local product of the moduli space of real complex structure deformations of a
Calabi-Yau orientifold times the real dilaton direction. The N = 2 analog of MR is
the extended moduli space M̂cs = Mcs × C where C is the complex line normalizing

8This analysis can equivalently be applied to the moduli space of G2 compactifications of M-
theory.
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Ω. The corresponding modulus can be identified with the complex dilaton [121]. The
orientifold projection fixes the phase of the complex dilaton (it projects out the four-
dimensional B2) to be θ and thus reduces C to R (figure 4.1). The local geometry
of MR is encoded in the variations of the real and imaginary part of the normalized
holomorphic three-form CΩ. This form naturally defines an embedding

E : MR → V × V ∗ = H3
+(R) ×H3

−(R) . (4.51)

where V = H3
+(R) and we used the intersection form

〈

α, β
〉

=
∫

α ∧ β on H3(Y ) to
identify V ∗ ∼= H3

−(R). V ×V ∗ naturally admits a symplectic form W and an indefinite
metric G defined as

W((α+, α−), (β+, β−)) =
〈

α+, β−
〉

−
〈

β+, α−
〉

,

G((α+, α−), (β+, β−)) =
〈

α+, β−
〉

+
〈

β+, α−
〉

, (4.52)

where α±, β± ∈ H3
±(R).

Now we construct E in such a way that MR is a Lagrangian submanifold of V ×V ∗

with respect to W and its metric is induced from G, i.e.

E∗(W) = 0 , E∗(G) = g (4.53)

where
1
2
g = dD ⊗ dD +GKLdq

K ⊗ dqL (4.54)

is the metric on MR as determined in (3.75). As we are going to show momentarily
E is given by

E(qK̂) = 2
(

U ,−e2DÛ
)

, (4.55)

where U + i Û = CΩ, qK̂ = (e−D, qK) and Ω is evaluated at qK ∈ Mcs
R
. Additionally

E satisfies
G(E(qK̂), E(qK̂)) = 4 , (4.56)

for all qK . This implies that the image of all points in MR have the same distance
from the origin. Later on we will show that this translates into the no-scale condition
(4.50).

Let us first show that the E given in (4.55) indeed satisfies (4.53) and (4.56).
The explicit calculation is straightforward and essentially included in the calculation
presented in section 4.1.2.9 In order to connect with section 4.1.2 let us first recall
how we applied the map (4.4) to extract the chiral data of the N = 1 moduli space.
We started with a special Kähler manifold Msk with metric determined in terms of
a holomorphic prepotential F(Z). Next we assumed that the N = 2 theory with

9Formally one has to first evaluate E∗(∂QK̂ ) and expresses the result in terms of the (3, 0)-

form Ω and the (2, 1)-forms χK . One then uses that by definition of the pull-back E∗ω(∂
qK̂ , ·) =

ω(E∗(∂qK̂ ), ·) for a form ω on V × V ∗. Applied to G and W one finds that the truncation of the

special Kähler potential (2.11) and (2.9) indeed imply (4.53). This calculation does not make use of
any specific basis of H3

±.
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quaternionic space MQ constructed via the local c-map (4.2) allows a reduction to

N = 1. Accordingly the section Ω(z) = ZK̂αK̂ − FK̂β
K̂ fulfills equation (3.98) for

some basis
(αk, β

λ) ∈ H3
+ , (αλ, β

k) ∈ H3
− . (4.57)

Using this basis we found the kinetic potential K̃(L, l) given in (4.42), which explicitly
depends on the prepotential F . It encodes the metric on M̃Q ⊂ MQ via the Kähler
potential (4.16). On the other hand, equation (4.15) defines the complex structure
on M̃Q.

These steps can be translated into the language of this section. Namely, choosing
the basis (4.57) to expand the map E defined in (4.55) one finds

E(qK̂) =
(

2lkαk + 1
4
K̃Lλβλ, 2Lλαλ + 1

4
K̃lkβ

k
)

, (4.58)

where lk, Lλ and K̃Lλ , K̃lk are functions of qK̂ as given in (4.38) and (4.43). We define

coordinates uK̂ = (2lk, 1
4
K̃Lλ) on V and coordinates vK̂ = (1

4
K̃lk ,−2Lλ) on V ∗. In

these coordinates the first two conditions in (4.53) simply read

E∗(duK̂ ∧ dvK̂) = 0 , E∗(duK̂ ⊗ dvK̂) = g . (4.59)

From section 4.1.2 we further know that K̃Lκ , K̃lk are derivatives of a kinetic potential
K̃ and thus we can evaluate duK̂ and dvK̂ in terms of lk, Lκ. Inserting the result into
(4.59) the second equation can be rewritten as

1
2
g = 1

4
K̃lkll dl

k ⊗ dll − 1
4
K̃LκLλ dLκ ⊗ dLλ , (4.60)

while the first equation is trivially fulfilled due to the symmetry of K̃lkll and K̃LκLλ .
This metric is exactly the one appearing in the action (4.39) when using (4.41).
Expressing g in coordinates eD, qK leads to (4.54), as we have already checked by
going from (4.36) to (4.39) above. Furthermore, inserting (4.58) into (4.56) it exactly
translates into the no-scale condition (4.49), which was shown in section 4.1.2 to be
equivalent to (3.96).

We have just shown that MR is a Lagrangian submanifold of V ×V ∗. Identifying
T ∗V ∼= V ×V ∗ we conclude that MR can be obtained as the graph (α(u), u) of a closed
one-form α. This implies that we can locally find a generating function K ′ : V → R

such that α = dK ′. In local coordinates (vK̂ , u
K̂) this amounts to

vK̂(u) =
∂K ′

∂uK̂
(4.61)

such that

−Lκ(u) = 2
∂K ′(u)

∂K̃Lκ

, K̃lk(u) = 2
∂K ′(u)

∂lk
. (4.62)

These equations are satisfied if we define K ′ in terms of K̃ as

2K ′ = K̃(L(u), l) − K̃Lκ(u)Lκ(u) , (4.63)
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which is nothing but the Legendre transform of K̃ with respect to Lκ. Later on we
show that the function 2K ′ is identified with the Kähler potential K given in (3.95).

In order to do that, we now extend our discussion to the full moduli space M̃Q in-
cluding the scalars ζK̂ = (ξk, ξ̃κ) parameterizing the three-form Ĉ3 in H3

+(R). Locally
one has

M̃Q = MR ×H3
+(R) . (4.64)

The tangent space at a point p in M̃Q can be identified as

TpM̃Q ∼= H3
+(R) ⊕H3

+(R) ∼= H3
+(R) ⊗ C , (4.65)

where the first isomorphism is induced by the embedding E given in (4.55). This
is a complex vector space and thus M̃Q admits an almost complex structure I. In
components it is given by

I(∂qK̂ ) = (∂uL̂/∂qK̂) ∂ζL̂ , I((∂uL̂/∂qK̂) ∂ζL̂) = −∂qK̂ , (4.66)

where we have used that I is induced by the embedding map E. One can show that
the almost complex structure I is integrable, since

dwK̂ = duK̂ + idζK̂ = (∂uL̂/∂qK̂)dqK̂ + idζK̂ , (4.67)

are a basis of (1, 0) forms and wK̂ = uK̂ + iζK̂ are complex coordinates on M̃Q.

Using the definition of uK̂ one infers that as expected wK̂ = (Nk, Tκ). Moreover,
one naturally extends the metric g on TMR to a hermitian metric on TM̃Q. The
corresponding two-form is then given by

ω̃(∂ζL̂ , ∂qK̂ ) = g(I∂ζL̂, ∂qK̂ ) , ω̃(∂ζK̂ , ∂ζL̂) = ω̃(∂qK̂ , ∂qL̂) = 0 . (4.68)

Using the definition (4.66) of the almost complex structure and equation (4.53), one
concludes that ω̃ is given by

ω̃ = dvK̂ ∧ dζK̂ = 2i
∂2K ′

∂wK̂∂w̄L̂
dwK̂ ∧ dw̄L̂ , (4.69)

where for the second equality we applied (4.61) and expressed the result in coordinates

wK̂ = uK̂ + iζK̂ . Note that K ′ is a function of uK̂ only, such that derivatives with
respect to wK̂ translate to ones with respect to uK̂. Equation (4.69) implies that
KQ = 2K ′ is indeed the correct Kähler potential for the moduli space M̃Q.

So far we restricted ourselves to type IIA orientifolds. However, by using the
mirror map (3.130) one easily translates the above construction to IIB setups. In the
IIB case the real manifold started with is simply the local product MB

R
= Mks

R
× R,

where Mks
R

is a real slice in the complexified Kähler cone Mks and R parameterizes
the four-dimensional dilaton direction. Mks

R
is locally spanned by the fields vα and

ba introduced in section 3.3. Once again we aim to find the embedding map E

E : MB
R
→ V × V ∗ . (4.70)
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In order to be more explicit we distinguish O3/O7 and O5/O9 setups and define

EO3/7(q
K̂) = 2 (E , e2DB Ê) , EO5/9(q

K̂) = 2 (Ê , e2DBE) , (4.71)

where E + iÊ = e−φe−B+iJ and qÂ = (e−DB , vα, ba). Correspondingly we need to set

VO3/7 = Hev
+ , V ∗

O3/7 = Hev
− VO5/9 = Hev

− , V ∗
O5/9 = Hev

+ , (4.72)

where we have abbreviated 10

Hev
+ = H

(0,0)
+ ⊕H

(1,1)
− ⊕H

(2,2)
+ , Hev

− = H
(1,1)
+ ⊕H

(2,2)
− ⊕H

(3,3)
+ . (4.73)

Given a vector space V of even forms, the identification of V ∗ with the respective
cohomology groups is done by using the intersection form

〈

·, ·
〉

defined in (3.50). To
check that EO3/7 and EO5/9 are defined correctly, one proceeds in full analogy to
the type IIA case. Once again, the calculation simplifies considerably by using the
existence of the kinetic potentials (4.23) and (4.31).

Let us summarize our results. We constructed the metric and complex structure
of the Kähler manifold M̃Q ⊂ MQ by specifying a map

E : MR → V × V ∗ , (4.74)

where MR parameterizes the real four-dimensional dilaton direction times certain
deformations of the Calabi-Yau orientifold. V is an appropriately chosen vector space

VIIA = Hodd
+ , VIIB = Hev

± , (4.75)

where Hodd
+ = H3

+ and Hev
± is given in (4.73). More explicitly E takes the form

E(qK̂) = 2
(

ρ,−ρ̂/ΦA,B

)

, (4.76)

where ΦA,B(ρ) is given in (3.49), (3.58) and ρ = (U , E , Ê) depending on the ori-
entifold setup. In order to evaluate ΦA,B(ρ) = e−2D we use the definition of the
four-dimensional dilaton (3.39). Since MR is embedded as a Lagrange submanifold
in V × V ∗ it can be locally given by the graph of the one-form dK ′. Moreover, since
E induces the metric on MR and a complex structure on MR × V the function 2K ′

is nothing but the Kähler potential on the local moduli space M̃Q = MR ×V . Thus,
the difficulty is to find the map E or, by recalling (4.61), the functional dependence
ρ̂(ρ). This non-linear map

ρ 7→ ρ̂(ρ) , (4.77)

lies at the heart of Hitchins approach to extract the geometry of even and odd forms
on six-manifolds [82, 75]. One may thus hope to generalize Calabi-Yau orientifolds
to non-Calabi-Yau orientifolds [117].

10Recall that H
(0,0)
− = H

(3,3)
− = 0 as discussed in section 3.3.
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Chapter 5

Calabi-Yau orientifolds with

NS-NS and R-R background fluxes

In this chapter we redo the reduction of type IIB and type IIA on Calabi-Yau orien-
tifolds by additionally allowing for non-trivial R-R and NS-NS background fluxes. As
we will show, these fluxes result in non-trivial potentials for the supergravity fields
and can lead to charged scalars or massive tensors.

We first discuss the two type IIB setups. In section 5.1 we show that in orientifolds
with O3/O7 planes fluxes introduce a superpotential only. More intriguingly, we
point out in section 5.2 that O5/O9 setups with background flux in general admit a
superpotential as well as a massive linear multiplet. Thus, additionally to the kinetic
terms studied in section 4.1.1 we find D−terms and a direct mass term for a linear
multiplet [39, 77]. In both IIB orientifold cases the induced potentials depend only
on some but not all bulk moduli fields in the theory. In order to find potentials for
the remaining moduli one has to take non-perturbative contributions into account. In
[42] it was argued that certain D-instantons induce corrections to the superpotential.
To gain a better understanding of these corrections is subject of various recent work
[44, 46]. In section 5.4 we do only a very moderate step and check if the resulting
leading order superpotentials are holomorphic in the bulk coordinates. Assuming
a generic form of such a superpotential one might achieve that all bulk fields are
stabilized in the vacuum [35, 44, 46].

In type IIA orientifolds the situation is slightly different. As we show in section
5.3 generic NS-NS and R-R background fluxes induce a superpotential which depends
on all bulk moduli of the theory. Hence, appropriately chosen background fluxes
could stabilize all geometric moduli in type IIA orientifolds. Additionally, one can
attempt to include corrections due to non-perturbative effects. A brief discussion
of superpotential contributions due to world-sheet or D-instantons can be found in
section 5.4.
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5.1 O3/O7 orientifolds: GVW superpotential

In this section we study O3/O7 orientifolds by also allowing background three-form
fluxes H3 and F3 on the Calabi-Yau manifold [13, 17, 18, 20, 39]. The Bianchi
identities together with the equations of motion imply that H3 and F3 have to be
harmonic three-forms. In orientifold compactifications they are further constrained
by the orientifold projection. From (3.20) we see that for the projection given in
(3.10) they both have to be odd under σ∗ and hence are parameterized by elements

of H
(3)
− (Y ).1 It is convenient to combine the two three-forms into a complex G3

according to
G3 = F3 − τH3 , τ = C0 + ie−φ . (5.1)

G3 can be explicitly expanded into a symplectic basis of H
(3)
− as

G3 = mk̂αk̂ − ek̂β
k̂ , k̂ = 0, . . . , h(1,2) , (5.2)

with 2(h
(1,2)
− + 1) complex flux parameters

mk̂ = mk̂
F − τmk̂

H , ek̂ = eF
k̂
− τeH

k̂
. (5.3)

However, in the following we do not need this explicit expansion and express our
results in terms of G3.

The reduction of the IIB theory is performed by replacing

dB̂2 → dB̂2 +H3 , dĈ2 → dĈ2 + F3 , (5.4)

in the field-strengths (2.28). H3 and F3 are the background value of the field strengths
F̂3 and Ĥ3 but do not effect F̂5 since the only possible terms would be of the form
H3∧C2 or B2∧F3 but both C2 and B2 are projected out by the orientifold projection.2

The only effect of non-trivial background fluxes is the appearance of a potential V .
It is manifestly positive semi-definite and found to be [17, 20, 27, 29]

V = eK
(

∫

Ω ∧ Ḡ3

∫

Ω̄ ∧G3 +Gkl

∫

χk ∧G3

∫

χ̄l ∧ Ḡ3

)

, (5.5)

where K is given in (3.46), χk is a basis of H
(2,1)
− defined in (3.23) and the background

fluxG3 is defined in (5.1). The details of the computation of V can be found in [20, 39].

Strictly speaking the additional term L(4)
top ∼

∫

Y
H3∧F3 arises in the Kaluza-Klein

reduction. However, consistency of the compactifications requires its cancellation
against Wess-Zumino like couplings of the orientifold planes to the R-R flux [20].

Finally, one checks that the potential (5.5) can be derived from a superpotential
W via the expression given in (3.41) with vanishing D-term Dκ = 0. For orientifolds
with ca = ba = 0 W was shown to be [15, 17, 20, 27, 29]

W (τ, zk) =

∫

Y

Ω ∧G3 . (5.6)

1This uses the fact that the exterior derivative on Y commutes with σ∗.
2We neglect subtleties appearing when B̂2, Ĉ2 do not arise with a derivative. These can be

approached along the lines of [79].
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This continues to be the correct superpotential also if ca and ba are in the spectrum
[39], which is due to the fact that KQ satisfies the no-scale condition (3.51). This ends
our analysis for O3/O7 setups. Surprisingly, for O5/O9 orientifolds the computation
is more involved and forces us to once more apply and extend the linear multiplet
techniques developed in chapter 4.

5.2 O5/O9 orientifolds: Gaugings and the massive

linear multiplet

We now turn to the effective action of O5/O9 orientifolds with background fluxes. In
order to detect the changes due to this non-trivial background, we proceed as in the
O3/O7 case and first evaluate the field strengths (2.28) including the possibility of
background three-form fluxes H3 and F3. Since B̂2 and hence H3 is odd it is again
parameterized by H

(3)
− while Ĉ2 and F3 are even and therefore parameterized by H

(3)
+ .

As a consequence the explicit expansions of the background fluxes H3 and F3 are
given by

H3 = mk
Hαk − eH

k β
k , k = 1, . . . , h

(2,1)
− ,

F3 = mκ̂
F ακ̂ − eF

κ̂ β
κ̂ , κ̂ = 0, . . . , h

(2,1)
+ , (5.7)

where the (mk
H , e

H
k ) are 2h

(2,1)
− constant flux parameters determining H3 and (mκ̂

F , e
F
κ̂ )

are 2h
(2,1)
+ + 2 constant flux parameters corresponding to F3. Inserting (3.24), (3.26)

and (5.7) into (2.28) we obtain

Ĥ3 = dba ∧ ωa +mk
Hαk − eH

k β
k , F̂3 = dC2 + dcα ∧ ωα + F3 ,

F̂5 = dDa
2 ∧ ωa + F̃ k ∧ αk − G̃k ∧ βk + dρa ∧ ω̃a (5.8)

−dba ∧ C2 ∧ ωa − cαdbaωa ∧ ωα ,

where we defined

F̃ k = dV k −mk
HC2 , G̃k = dUk − eH

k C2 . (5.9)

As in section 3.3 the self-duality condition on F̂5 is imposed by a Lagrange multiplier
[24] and we eliminate Da

2 and Uk by inserting their equations of motion into the action.
After Weyl rescaling the four-dimensional metric with a factor K/6 theN = 1 effective
action reads

S
(4)
O5/O9 =

∫

−1
2
R ∗ 1 −Gκλ dz

κ ∧ ∗dz̄λ −Gαβ dv
α ∧ ∗dvβ −Gab db

a ∧ ∗dbb

−e2D

6
KGαβ dc

α ∧ ∗dcβ − e−2D

24
K dC2 ∧ ∗dC2 − 1

4
dC2 ∧ (ρadb

a − badρa)

−dD ∧ ∗dD − 3e2D

8K Gab(dρa −Kacαc
αdbc) ∧ ∗(dρb −Kbdβc

βdbd) − V ∗ 1

+1
4
Re Mkl F̃

k ∧ F̃ l + 1
4
Im Mkl F̃

k ∧ ∗F̃ l + 1
4
ek(dV

k + F̃ k) ∧ C2 ,

(5.10)
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where

V =
18i e4φ

K2
∫

Ω ∧ Ω̄

(
∫

Ω ∧ F3

∫

Ω̄ ∧ F3 +Gκλ

∫

χκ ∧ F3

∫

χ̄λ ∧ F3

)

(5.11)

− 9 e2φ

K2

[

mk
H (ImM)klm

l
H +

(

eH
k − (mHReM)k

)(

ImM
)−1kl(

eH
l − (mHReM)l

)

]

.

The derivation of this potential can be found in ref. [39].3

The action (5.10) has the standard one-form gauge invariance V k → V k + dΛk
0

but due to the modification in (5.9) also a modified (Stückelberg) two-form gauge
invariance given by

C2 → C2 + dΛ1 , V k → V k +mk
HΛ1 . (5.12)

Thus for mk
H 6= 0 one vector can be set to zero by an appropriate gauge transforma-

tion. This is directly related to the fact that (5.10) includes mass terms proportional
to mk

H for C2 arising from (5.9). In this case gauge invariance requires the presence
of Goldstone degrees of freedom which can be ‘eaten’ by C2.

4 Finally note that the
last term in (5.10) also includes a standard D = 4 Green-Schwarz term F k ∧ C2.

5.2.1 Vanishing magnetic fluxes mk
H = 0

The next step is to show that S
(4)
O5/O9 is consistent with the constraints of N = 1

supergravity. However, due to the possibility of C2 mass terms this is not completely
straightforward. A massive C2 is no longer dual to a scalar but rather to a vector.
We find it more convenient to keep the massive tensor in the spectrum and discuss
the N = 1 constraints in terms of a massive linear multiplet. Before doing so, let us
first discuss the situation mk

H = 0 where F̃ l = F l holds. In this case the C2 remains
massless and can be dualized to a scalar field h which together with the dilaton φ
combines to form a chiral multiplet (φ, h). Using the standard dualization procedure
(see section 2.3) one obtains the effective action (3.38) plus the potential V given in
(5.11) evaluated at mk

H = 0. Furthermore, due to electric NS-NS fluxes the scalar h
is gauged and we have to replace in (3.38)

dh → Dh = dh− eH
k V

k . (5.13)

Hence, h couples non-trivially to the gauge fields as a direct consequence of the Green-
Schwarz coupling F k∧C2 in (5.10). In the dualized action the scalar h then is charged
under the U(1) gauge transformation h→ h+ eH

k Λk
0 with V k → V k + dΛk

0. Note that
the gauge charges are set by the electric fluxes.

3Note that in this class of orientifolds the topological term
∫

Y
H3 ∧ F3 vanishes since there is

no intersection between H
(3)
+ and H

(3)
− . Thus strictly speaking background D-branes have to be

included in order to satisfy the tadpole cancellation condition.
4Exactly the same situation occurs in Calabi-Yau compactifications of type IIB with background

fluxes where both B2 and C2 can become massive [26].
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The Kähler potential (3.56) with chiral coordinates (3.54) and the gauge-couplings
(3.61) remain unchanged for the theory with mk

H = 0. However, due to the non-trivial
electric NS-NS fluxes the covariant derivative of h given in (5.13) translates into the
covariant derivative DS = dS − iekV

k. It remains to cast the potential V given in
(5.11), evaluated at mk

H = 0, into the standard N = 1 supergravity form (3.41).
From eq. (5.13) we see that the axion is charged and as a consequence we expect a
non-vanishing D-term in the potential. Recall the general formula for the D-term
[115]

KIJ̄X̄
J̄
k = i∂IDk , (5.14)

where XI is the Killing vector of the U(1) gauge transformations defined as δM I =
Λk

0X
J
k ∂JM

I . Inserting (3.56) and (3.54) we obtain

Dk = −eH
k

∂K

∂S̄
= 3 eH

k e
φK−1 . (5.15)

Using also (3.59) we arrive at the D-term contribution to the potential

1
2
(Re f)−1 klDkDl = − 9

K2 e
2φ eH

k (Im M)−1 kl eH
l , (5.16)

which indeed reproduces the last term in (5.11) for mk
H = 0.

The first term in (5.11) arises from the superpotential

W =

∫

Y

Ω ∧ F3 , (5.17)

which follows from a calculation analog to the O3/O7 case [39]. It is interesting
that for this class of orientifolds the RR-flux F3 results in a contribution to the
superpotential while the NS-flux H3 contributes instead to a D-term.

5.2.2 Non-vanishing magnetic fluxes mk
H 6= 0

Let us now turn to the case where both electric and magnetic fluxes are non-zero and
the two-form C2 is massive. In this case C2 is dual to a massive vector or equivalently
the massive linear multiplet is dual to massive vector multiplet. Here we do not
discuss this duality but instead show how the couplings of a massive linear multiplet
is consistent with the action (5.10) [77].

In section 4.1.1 we already examined the kinetic terms and couplings for the
O5/O9 theory in the presence of one tensor multiplet L = (φ, C2). We found that
they are determined in terms of the generalized Kähler potential and the function
F both given in (4.25). Let us now briefly discuss the situation of a massive linear
multiplet coupled toN = 1 vector- and chiral multiplets. For simplicity we discuss the
situation in flat space and do not couple the massive linear multiplet to supergravity.
However, we expect our results to generalize to the supergravity case. More details
can be found in [116, 77].

As we already said, a linear multiplet L contains a real scalar (also denote by L)
and the field strength of a two-form C2 as bosonic components. However, it does not
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contain the two-form itself which instead is a member of the chiral ‘prepotential’ Φ
defined as5

L = DΦ + D̄Φ̄ , D̄Φ = 0 . (5.18)

This definition solves the constraint (4.6) (in flat space). The kinetic term for L (or
rather for Φ) is given in (4.7) and a mass-term can be added via the chiral integral

Lm = 1
4

∫

d2θ
[

fkl(N)(W k − 2imk
HΦ)(W l − 2iml

HΦ) + 2eH
k (W k − imk

HΦ)Φ
]

+ h.c. ,

(5.19)
where W k = −1

4
D̄2DV k are the chiral field strengths supermultiplets of the vector

multiplets V k and fkl(N) are the gauge kinetic function which can depend holomor-
phically on the chiral multiplets N . (mk

H , e
H
k ) are constant parameters which will turn

out to correspond to the flux parameters defined in (5.7). The Lagrangian (5.19) is
invariant under the standard one-form gauge invariance V k → V k + Λk

0 + Λ̄k
0 (Λk

0 are
chiral superfields) which leaves both W k and Φ invariant. In addition (5.19) has a
two-form gauge invariance corresponding to (5.12) given by

Φ → Φ + i
8
D̄2DΛ1 , V k → V k +mk

HΛ1 , (5.20)

where Λ1 now is a real superfield. From (5.20) we see that one entire vector multiplet
can be gauged away and thus plays the role of the Goldstone degrees of freedom which
are ‘eaten’ by the massive linear multiplet.

In components one finds the bosonic action

Lm = −1
2
Refkl F̃

k ∧ ∗F̃ l − 1
2
Imfkl F̃

k ∧ F̃ l + 1
4
ek(dV

k + F̃ k) ∧ C2 − V ∗ 1 , (5.21)

where F̃ l is defined exactly as in (5.9) and the potential V receives two distinct
contributions

V = 1
2
(Ref)−1klDkDl + 2mk

HRefklm
l
H L

2 , Dk =
(

eH
k + 2 Imfklm

l
H

)

L . (5.22)

The first term arises from eliminating the D-terms in the U(1) field strength W k

while the second term is a ‘direct’ mass term for the scalar L.6 Inserting the D-term
yields a second contribution to the mass term and one obtains altogether

V = 1
2

[(

eH
k + 2Imfkpm

p
)

(Ref)−1kl
(

eH
l + 2Imflr m

r
)

+ 4mk
H Refklm

l
H

]

L2 . (5.23)

Using (4.26) and (3.59) this precisely agrees with the second term in the potential
(5.11).

As before the first term in (5.11) can be derived from the superpotential (5.17).
This ends our discussion of type IIB orientifolds in a general NS-NS and R-R flux
background. As we have seen, switching on fluxes yields a potential for only part of
the moduli fields. This changes in IIA orientifolds to which we will turn now.

5We suppress the spinorial indices and use the convention DΦ ≡ DαΦα, D̄Φ̄ ≡ D̄α̇Φ̄α̇.
6Note that this second term is a contribution to the potential which is neither a D- nor an F -term

but instead a ‘direct’ mass term whose presence is enforced by the massive two-form.
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5.3 O6 orientifolds: Flux superpotentials

In this section we derive the effective action of type IIA orientifolds in the presence
of background fluxes. For standard N = 2 Calabi-Yau compactifications of type IIA
a similar analysis is carried out in refs. [26, 40]. In order to do so we need to start
from the ten-dimensional action of massive type IIA supergravity which differs from
the action (2.18) in that the two-form B̂2 is massive. In the Einstein frame it is given
by [124]

S
(10)
MIIA =

∫

−1
2
R̂ ∗ 1 − 1

4
dφ̂ ∧ ∗dφ̂− 1

4
e−φ̂Ĥ3 ∧ ∗Ĥ3 − 1

2
e

3
2
φ̂F̂2 ∧ ∗F̂2

−1
2
e

1
2
φ̂F̂4 ∧ ∗F̂4 − 1

2
e

5
2
φ̂ (m0)2 ∗ 1 + Ltop , (5.24)

where

Ltop = −1
2

[

B̂2 ∧ dĈ3 ∧ dĈ3 − (B̂2)
2 ∧ dĈ3 ∧ dĈ1 + 1

3
(B̂2)

3 ∧ (dĈ1)
2

−m0

3
(B̂2)

3 ∧ dĈ3 + m0

4
(B̂2)

4 ∧ dĈ1 + (m0)2

20
(B̂2)

5
]

, (5.25)

and the field strengths are defined as

Ĥ3 = dB̂2 , F̂2 = dĈ1 +m0B̂2 , F̂4 = dĈ3 − Ĉ1 ∧ Ĥ3 − m0

2
(B̂2)

2 . (5.26)

Compared to the analysis of the previous section we now include non-trivial back-
ground fluxes of the field strengths F2, H3 and F4 on the Calabi-Yau orientifold. We
keep the Bianchi identity and the equation of motion intact and therefore expand
F2, H3 and F4 in terms of harmonic forms compatible with the orientifold projection.
From (3.62) we infer that F2 is expanded in harmonic forms ofH2

−(Y ), H3 in harmonic
forms of H3

−(Y ) and F4 in harmonic forms of H4
+(Y ).7 Explicitly the expansions read

H3 = qλαλ − pk β
k , F2 = −maωa , F4 = ea ω̃

a , (5.27)

where (qλ, pk) are h(2,1) + 1 real NS flux parameters while (ea, m
a) are 2h1,1

− real RR
flux parameters. The harmonic forms (αλ, β

k) are the elements of the real symplectic

basis of H3
− introduced in (3.97). The basis ω̃a of H

(2,2)
+ is defined to be the dual basis

of ωa while the basis ω̃α denotes a basis of H
(2,2)
− dual to ωα.

Inserting (3.66), (3.72) and (5.27) into (5.26) we arrive at

Ĥ3 = dba ∧ ωa + qλαλ − pk β
k , F̂2 = (m0ba +ma)ωa , (5.28)

F̂4 = dC3 + dAα ∧ ωα + dξk ∧ αk − dξ̃λ ∧ βλ +
(

bamb − 1
2
m0babb

)

Kabcω̃
c + ea ω̃

a ,

where we have used ωa ∧ ωb = Kabc ω̃
c. Now we repeat the KK-reduction of the

previous section using the modified field strength (5.28) and the action (5.24) instead

7As we observed in the previous section there is no Ĉ1 due to the absence of one-forms on the
orientifold. Nevertheless its field strength F2 can be non-trivial on the orientifold since Y generically
possesses non-vanishing harmonic two-forms.
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of (2.18). This results in8

S(4) = S
(4)
O6 −

∫

g
2
dc3 ∧ ∗dc3 + h dc3 + U ∗ 1 , (5.29)

where S
(4)
O6 is given in (3.75). c3 is the four-dimensional part of the ten-dimensional

three-form Ĉ3 defined in (3.72) and its couplings to the scalar fields are given by

g = e−4φ
(K

6

)3
, h = eab

a + ξ̃λq
λ − ξkpk + 1

2
ReN0âm

â , (5.30)

where we denoted mâ = (m0, ma). The potential term U of (5.29) is given by

U = 9
K2e

2φ

∫

Y

H3∧∗H3− 18
K2e

4φImNâb̂m
âmb̂+ 27

K3e
4φGab(ea−ReNaâm

â)(eb−ReNbb̂m
b̂) .

(5.31)
The matrix Nâb̂(t, t̄) is defined to be the corresponding part of the N = 2 gauge-

coupling matrix (B.19) restricted to M̃SK by applying (3.76) and (3.34).

In four space-time dimensions c3 is dual to a constant which plays the role of an
additional electric flux e0 in complete analogy with the situation in N = 2 discussed
in [26]. Eliminating c3 in favor of e0 by following [26] or [84] the potential takes the
form [41]

V = 9
K2 e

2φ

∫

H3 ∧ ∗H3 − 18
K2 e

4φ(ẽâ −Nâĉm
ĉ)(ImN )−1 âb̂(ẽb̂ − N̄b̂ĉ m

ĉ) , (5.32)

where we introduced the shorthand notation ẽâ = (e0 + ξλq
λ − ξk̂pk̂, ea) and mâ =

(m0, ma). Note that in the presence of NS flux one can absorb e0 by shifting the
fields ξ, ξ̃. This corresponds to adding an integral form to C3 as carefully discussed
in [84]. However, for the discussion of mirror symmetry it is more convenient to keep
the parameter e0 explicitly in the action.

In order to establish the consistency with N = 1 supergravity one needs to rewrite
V given in (5.32) in terms of (3.41) or in other words we need express V in terms of
a superpotential W and appropriate D-terms. From (5.29) we infer that turning on
fluxes does not charge any of the fields and therefore all D-terms have to vanish. In
[41] it was checked that the potential (5.32) can be entirely expressed in terms of the
superpotential

W = WQ(N, T ) +WK(t) , (5.33)

where

WQ(Nk, Tλ) =

∫

Y

Ωc ∧H3 = −2Nkpk − iTλq
λ , (5.34)

WK(ta) = e0 +

∫

Y

Jc ∧ F4 − 1
2

∫

Y

Jc ∧ Jc ∧ F2 − 1
6
m0

∫

Y

Jc ∧ Jc ∧ Jc ,

= e0 + eat
a + 1

2
Kabcm

atbtc − 1
6
m0Kabct

atbtc ,

8The action S
(4)
O6 is given in (3.75). However, due to the fact that we perform the Kaluza-Klein

reduction in the generic basis introduced in (3.97) the kinetic terms for M̃Q are replaced by (4.36).
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and Ωc and Jc are defined in (3.102). Using the definitions (3.50) and (3.104) of the
skew-symmetric products

〈

·, ·
〉

for even and odd forms W is rewritten as

W =
〈

eJc, F
〉

+
〈

Ωc, H3

〉

, F = m0 − F2 − F4 + F6 , (5.35)

where we have defined F6 via e0 =
∫

Y
F6. We see that the superpotential is the

sum of two terms. WQ depends on the NS fluxes (pk, q
λ) of H3 and the chiral fields

Nk, Tλ parameterizing the space M̃Q. WK depends on the RR fluxes (eâ, m
b̂) of

F2 and F4 (together with m0 and e0) and the complexified Kähler deformations ta

parameterizing MSK. We see that contrary to the type IIB case both types of moduli,
Kähler and complex structure deformations appear in the superpotential suggesting
the possibility that all moduli can be fixed in this set-up. This has recently also been
observed in ref. [40].

Let us end this section by comparing the R-R superpotentials of type IIA and
type IIB orientifolds. Recall that for both IIB orientifold setups R-R fluxes induce
superpotentials (5.6) and (5.17) holomorphic in the complex structure deformations
z. Hence, we compare

WA(t) =
〈

eJc, F
〉

, WB(z) =
〈

Ω, F3

〉

, (5.36)

where the skew-products are defined in (3.50) and (3.104). As just discussed F

depends on 2h
(1,1)
− + 2 RR fluxes (eâ, m

â). To count the flux parameters labeling F3

recall that it transforms differently in the two IIB orientifolds. F3 sits in H3
−(Ỹ ) and is

determined in terms of 2h
(2,1)
− +2 real flux parameters for the O3/O7 case and sits in

H3
+(Ỹ ) depending on 2h

(2,1)
+ + 2 real flux parameters for the O5/O9 case. Therefore,

the number of flux parameters matches when choosing mirror involutions satisfying
(3.105). Exchanging [125]

eJc(t) ↔ Ω(z) , F ↔ F3 , (5.37)

as in equation (3.108) the two superpotentials WA(t) and WB(z) get identified. In
N = 2 the mirror identification of the complex structure moduli space Mcs with the
complexified Kähler moduli space Mks can be used to calculate world-sheet instanton
corrections to Mks. It would be interesting to generalize this to N = 1 orientifold
theories which allow additionally for non-oriented world-sheets as discussed at the end
of section 3.4. In addition to world-sheet instantons also certain D-instantons induce
correction terms to the superpotential. We will end this chapter by a few comments
on their generic structure.

5.4 D-instanton corrections to the superpotentials

Let us close this chapter by briefly discussing possible D-instanton corrections to the
superpotentials (5.6), (5.17) and (5.33). They can arise from wrapping D(p − 1)-
branes around p-cycles Σp [103]. In addition to corrections of the Kähler potential
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D-instantons induce extra superpotential terms [42]. These depend on brane moduli
as well as bulk fields and found recent phenomenological application in moduli stabi-
lization [35, 44, 46]. It would be interesting to fully incorporate these effects and to
understand the additional contributions due to non-orientable world-volumes. First
steps into this direction are done in the recent works [44, 46]. In this section we will
take only a very moderate step and apply the calibration conditions to show that the
D-brane action becomes linear in the bulk fields. This ensures holomorphicity of the
induces superpotential terms when expressed in the proper Kähler variables of the
respective orientifold setup.

To make this more precise, recall that any correlation function is weighted by the
string-frame world-volume action of the wrapped Euclidean D(p−1)-branes and thus
includes a factor e−SD(p−1) where

SD(p−1) = iµp

∫

Wp

(

dpλ e−φ̂
√

det
(

ϕ∗(ĝ + B̂2) + ℓF
)

− iϕ∗
(

∑

q

Ĉq ∧ e−B̂2

)

∧ eℓF
)

.

(5.38)
where ℓ = 2πα′. This is the Euclidean analog of the Dirac-Born-Infeld action (3.1)
plus the Chern-Simons action (3.2). Wp is the world-volume of the D(p − 1)-brane
and ϕ∗ is the pull-back of the map ϕ which embeds Wp into Calabi-Yau orientifold
Y , ϕ : Wp →֒ Y . We have chosen the R-R charge µp equal to the tension since the
wrapped D(p − 1)-branes must be BPS in order to preserve N = 1 supersymmetry.
In fact, as we already discussed in section (3.1) there are additional condition arising
from the requirement that the Dp-branes preserves the same supersymmetry that is
left intact by the orientifold projections. This in turn implies that O3/O7 orientifolds
can admit corrections from D3 instantons, O5/O9 setups from D1 and D5 instantons
and O6 setups fromD2 instantons. Moreover, these have to be calibrated with respect
to the same forms as the internal parts of the orientifold planes.

The calibration conditions for Euclidean D(p−1)-branes in a Calabi-Yau manifold
have been derived in refs. [103, 104]. Let us first apply their results to type IIA
orientifolds with O6 planes. Recall that the unbroken supercharge has to be some
linear combination ǫ = a+ǫ+ +a−ǫ− of the two covariantly constant spinors ǫ+ and ǫ−
of the original N = 2 supersymmetry. Let us denote the relative phase of a+ and a−

by a−/a+ = −ieiθD2 while the absolute magnitude can be fixed by the normalization
of Ω. As forms J and Ω have to obey the condition

J ∧ J ∧ J = 3i
2
e−2UΩ ∧ Ω̄ (5.39)

at every point in the moduli space. Note however, that J depends on Kähler structure
deformations va while Ω is a function of the complex structure deformations qK .
Hence, eU is a non-trivial function of va and qK and from

∫

J3 = 3i
2
e−2U

∫

Ω ∧ Ω̄ one
infers

eU =
√

2 e
1
2
(KK−Kcs) , (5.40)

where Kähler potential KK(t) is given in (3.87) while Kcs(q) is the restriction of the
Kähler potential (2.11) to the real slice Mcs

R
. The existence of ǫ imposes constraints
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on the map ϕ. These BPS conditions read [103, 104]

ϕ∗(Ω) = eU+iθD2

√

det
(

ϕ∗(ĝ + B̂2) + ℓF2

)

d3λ , ϕ∗Jc + i2πα′F2 = 0 , (5.41)

where Jc is given in (3.67). The second condition in (5.41) enforces ϕ∗(J) = 0 as well
as ϕ∗B̂2 + ℓF2 = 0, such that the first equation simplifies to

ϕ∗Re(e−iθD2Ω) = eU
√

det
(

ϕ∗ĝ
)

d3λ , ϕ∗Im(e−iθD2Ω) = 0 , (5.42)

where we have used that the volume element on W3 is real. For vanishing F these
conditions coincide with those displayed in equation (3.5). Even in the general case
(5.41) and (5.42) imply that the Euclidean D2 branes have to wrap special La-
grangian cycles in Y , which are calibrated with respect to Re(e−U−iθD2Ω). On the
other hand, recall that the orientifold planes are located at the fixed points of the
anti-holomorphic involution σ in Y which are special Lagrangian cycles calibrated
with respect to Re(e−U−iθΩ) as was argued in eqs. (3.18) and (3.19).9 Thus, in order
for the D-instantons to preserve the same linear combination of the supercharges as
the orientifold, we have to demand θD2 = θ. Using this constraint and inserting the
calibration conditions (5.42) back into (5.38) one finds

SD2 = iµ3

∫

W3

(

ϕ∗[2Re(CΩ)
]

− iϕ∗(Ĉ3)
)

=

∫

W3

ϕ∗Ωc , (5.43)

where C = 1
2
e−φ−iθe−U was defined in eqs. (3.89), (2.22) and Ωc is given in (3.102).

The coefficients of Ωc expanded in a basis of H3
+(Y ) are exactly the N = 1 Kähler

coordinates (Nk, Tλ) introduced in (3.100). As a consequence the instanton action
(5.43) is linear and thus holomorphic in these coordinates which shows that D2-
instantons can correct the superpotential. Explicitly such corrections can be obtained
by evaluating appropriate fermionic 2-point functions which are weighted by e−SD2

[43]. Applying (5.43) and keeping only the lowest term in the fluctuations of the
instanton one obtains corrections of the form

WD3 ∝ e
−

∫

Σ3
Ωc , (5.44)

where Σ3 is the three-cycle wrapped by the D2 instanton.

This result can be lifted to M-theory by embedding Calabi-Yau orientifolds into
compactifications on special G2 manifolds. In this case the D2 instantons correspond
to membranes wrapping three-cycles in the G2 space which do not extend in the
dilaton direction [43, 80]. The embedding of IIA orientifolds into G2 manifolds and
the comparison of the respective effective actions is the subject of section 6.2.

Let us next extend this observation to IIB orientifolds. For simplicity we set F = 0
for these cases, since brane fluxes would correct the Kähler coordinates as discussed
e.g. in [99]. Hence, the calibration conditions for the respective D(p − 1)-instantons
read [104]

ϕ∗(e−B2+iJ
)

p
= eiθD(p−1)

√

detϕ∗(ĝ + B̂2) d
pλ , p = 2, 4, 6 , (5.45)

9e−U is the normalization factor which was left undetermined in (3.19).
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where
(

e−B2+iJ
)

p
denotes the p-form in the sum over even forms. In order that these

instantons preserve the same supersymmetry as the orientifold planes we furthermore
have to set θD(p−1) = θO(p+3), where θO(p+3) is given in (3.12). Multiplying (5.45) by
e−φ and comparing real and imaginary parts we find

ϕ∗E4 = e−φ

√

detϕ∗(ĝ + B̂2) d
4λ , (5.46)

where E4 is the four-form in E defined in (3.43) and we have only displayed the
equation for D3 instantons. Furthermore, by comparing (5.38) and (3.43) one finds
that

∫

Wp
ϕ∗A exactly reproduces the Chern-Simons action, since the vectors in the

expansions of the R-R forms Cp vanish when the pulled back to Wp ⊂ Y . Hence,
together with (5.46) we conclude that the instanton actions take the form

SD3 = iµ4

∫

W4

ϕ∗E4 − iϕ∗A = −iµ4 Tα

∫

W4

ϕ∗ω̃α , (5.47)

where the definition of Tα is given in (3.42). This shows that also in type IIB ori-
entifolds the N = 1 Kähler coordinates defined in (3.42) and (3.53) linearize the
instanton actions. By a similar reasoning as in the IIA case this ensures holomor-
phicity of instanton induced superpotentials in these coordinates.



Chapter 6

Embedding into M- and F-theory

In this chapter we discuss the embedding of type IIA and type IIB orientifolds into
compactifications of M- and F-theory. Let us first review the basic idea, by briefly
introducing F- and M-theory in the limit needed for our considerations.

F-theory provides a geometrical interpretation of the non-perturbative Sl(2,Z)
symmetry (3.52) of type IIB string theory. Under this symmetry the complex dilaton
τ transforms in a non-trivial manner and can be interpreted as the complex structure
modulus of a two-dimensional torus. In [68] this idea was put forward in arguing for a
natural interpretation in terms of a twelve-dimensional F-theory. Compactifying this
theory on a two-torus gives back type IIB in ten dimensions. However, in going to
lower dimensions, this torus can be fibered over the internal manifold. Compactifica-
tion of F-theory on such elliptically fibered manifolds Yn+2 → Bn is defined to be type
IIB string theory compactified on the base Bn, with a complex dilaton field τ varying
over the internal manifold. One interesting case is when Y4 is a elliptically fibered
Calabi-Yau fourfold with base B3. It was shown in [69] that in a special limit which
corresponds to a weak coupling limit of type IIB string theory the two-fold cover of
B3 is a Calabi-Yau manifold. Furthermore, the compactification on B3 corresponds
to an orientifold compactification with O7 planes and D7 branes, which are located
at points where the torus fibers become singular. This limit is called the orientifold
limit

F-theory / Y4
orientifold−−−−−−−−→

limit
Type IIB / OY6 . (6.1)

Section 6.1 is devoted to check this correspondence for the effective bulk actions of the
two theories. However, since there is no known effective action for F-theory we will
take a detour over M-theory compactified on Y4. We compare the resulting three-
dimensional effective action with the D = 3 action obtained by compactifying the
O3/O7 orientifold action on a circle. Later on we lift the correspondence to D = 4
and compare it with (6.1).

In section 6.2 we discuss the embedding of Type IIA orientifolds into M-theory.
Recall that type IIA supergravity can be obtained by compactifying 11-dimensional
supergravity (the low energy limit of M-theory) on a circle. Correspondingly the
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D = 4, N = 2 theories arising in Calabi-Yau compactifications are lifted as

Type IIA / Y6
∼= M-theory / S1 × Y6 . (6.2)

Hence, the immediate question is to find some analog for the orientifold compactifi-
cations. In order to do that, one has to identify appropriate manifolds which upon
compactification of M-theory (understood as 11-dimensional supergravity) yield a
four-dimensional N = 1 theory. Recalling that the number of supersymmetries is
related to the number of covariantly constant spinors, the only possible candidates
are seven-manifolds with structure group or holonomy G2. This implies that the
reduction of the SO(7) spinor representation yields one singlet, which in the case
of G2 holonomy is furthermore covariantly constant with respect to the Levi-Cevita
connection. It was argued in [80] that for a special class of G2 manifolds X the re-
sulting four-dimensional theory coincides with the one of IIA Calabi-Yau orientifolds.
Schematically one has

Type IIA / OY6
∼= M-theory / X . (6.3)

In section 6.2 we verify this conjecture for a certain limit of the two theories. This
enables us to match the N = 1 characteristic functions determined in section 3.4.3
for IIA orientifolds with the one obtained for G2 compactifications on X. As we
will show, this includes the Kähler potential, the gauge-couplings as well as the flux
superpotentials. In ref. [41] only part of the orientifold superpotentials were found
to have an origin in an M-theory compactification on a manifold with G2 holonomy.
As we will show, the remaining terms are due to a non-trivial fibration of a manifold
with G2 structure introduced in [130, 131].

6.1 F-theory and O3/O7 orientifolds

In this section we discuss the embedding of O3/O7 orientifolds into a F-theory com-
pactification, which corresponds to the limit (6.1). To analyze the two theories on the
level of the effective bulk actions we start by compactifying M-theory on a Calabi-Yau
four-fold. When shrinking the volume of the elliptic fiber the M-theory compactifica-
tion on Y4 is equivalent to an F-theory compactification on Y4. We only perform this
limit at the very end and rather compare the two theories in three dimensions. In
order to do that we first briefly review compactifications of eleven-dimensional super-
gravity on Calabi-Yau fourfolds following [22, 34]. We determine the effective action
and characteristic functions encoding the supergravity theory. Next we compactify
the four-dimensional effective action of O3/O7 orientifolds to three dimensions on a
circle. We are then in the position to show, that the characteristic data of the two
three-dimensional theories coincide if we choose a Calabi-Yau fourfold of the form

Y4 = (Y × T 2)/σ̂ , (6.4)

where Y is a Calabi-Yau threefold and σ̂ = (σ,−1,−1). The involution σ̂ acts as a
holomorphic isometric involution on Y and inverts both coordinates on T 2. Note that
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Y4 generically admits singularities if σ has a non-trivial fix-point set. These have to
be smoothed out which yields additional moduli in the theory. The analog on the
orientifold are moduli corresponding to D-branes and orientifold planes. However,
since we only restricted to the bulk fields we will also freeze moduli arising in the
process of smoothing out Y4 defined in (6.4). Having matched the three-dimensional
theories we comment on the lift to D = 4. Finally, we also include a brief discussion
on the lift of orientifold three-form flux G3 to four-form flux G4.

M-theory compactified on a Calabi-Yau fourfold

Let us start by summarizing compactification of M-theory on a Calabi-Yau fourfold by
following the analysis of [22, 34]. The low energy effective action of 11d supergravity
is given by [70]

S(11) =

∫

−1
2
R ∗ 1 − 1

4
F4 ∧ ∗F4 − 1

12
C3 ∧ F4 ∧ F4 , (6.5)

where F4 = dC3 is the field strength of C3. The three-form C3 together with the
eleven-dimensional metric are the only bosonic fields in the low energy description of
M-theory. Recall that the action (6.5) is given to lowest order in κ11. One-loop cor-
rections associated to the sigma model anomaly of a M5-brane contribute additional
terms to (6.5) and induce a C3 tadpole term −χ(Y4)

24
[132, 133]. This contribution can

be canceled by considering setups with a certain number of background M3-branes
or switched on background fluxes. However, for the moment we keep our analysis
simple in sticking to the action (6.5) without extra source terms.

The fields of the three-dimensional theory arise from the expansion of the eleven-
dimensional supergravity fields into harmonic forms. For a Calabi-Yau fourfold Y4,
the only non-vanishing cohomologies are given by

H0(Y4) = H(0,0) , H2(Y4) = H(1,1) , H3(Y4) = H(2,1) ⊕H(1,2) ,

H4(Y4) = H(4,0) ⊕H(3,1) ⊕H(2,2) ⊕H(1,3) ⊕H(0,4) , (6.6)

with their Hodge duals H5, H6 and H8. Let us extract the spectrum obtained by
expansion into harmonic basis forms of these cohomologies. This is done in analogy
to the case of type II compactifications discussed in chapter 2. The deformations
of the metric of the fourfold respecting the Calabi-Yau condition split into two sets:
h(1,1)(Y4) real scalar Kähler structure deformations MA(x) and h(3,1)(Y4) complex
structure moduli ZK(x). Similar to (2.5) and (2.7) for Calabi-Yau threefolds they
parameterize the expansions

JF = MA(x)eA , δgı̄̄ = − 1

3||Ω||2 Ω̄ klm
F ı̄ ZK(x)ΦK klm̄ (6.7)

where JF and ΩF are the Kähler form and the holomorphic (4, 0)-form on the Calabi-
Yau fourfold. The harmonic forms eA,A = 1, . . . , h(1,1)(Y4) form a basis of H(1,1)(Y4),
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while ΦK,K = 1, . . . , h(3,1)(Y4) form a basis of H(3,1)(Y4). Also C3 is expanded into
harmonic forms via the Kaluza-Klein Ansatz

C3 = AA(x) ∧ eA +N I(x) ΨI + N̄ I(x) Ψ̄I , (6.8)

where AA(x) are vectors and N I(x) are complex scalars in three dimensions. The
harmonic forms ΨI , Ψ̄I , I = 1, . . . h(2,1) define a basis of H3(Y4), which can be chosen
to obey 1

∂ZKΨI = A J
KI ΨJ , ∂Z̄KΨI = B J̄

K̄I Ψ̄J , (6.9)

where A J
KI and B J̄

K̄I
are model dependent functions of Z and Z̄. Differentiating

these equations with respect to ZK and Z̄L and comparing ∂ZK∂Z̄LΨI with ∂Z̄L∂ZKΨI

we extract the consistency conditions

∂Z̄KA J
LI = B L̄

K̄I B̄ J
LL̄ , ∂Z̄KB̄ J

LĪ = A L̄
K̄Ī B̄ J

LL̄ . (6.10)

In summary, the bosonic part of the D = 3, N = 2 supergravity spectrum obtained
by compactification on a Calabi-Yau fourfold is displayed in table 6.1.

gravity multiplet 1 g
(3)
pq

vector multiplets h(1,1) (MA, AA)

chiral multiplets h(3,1) + h(2,1) ZK, N I

Table 6.1: D = 3, N = 2 spectrum for M-theory on a Calabi-Yau fourfold.

Also the calculation of the three-dimensional low energy effective action is similar
to the analysis performed in chapter 2. The field strength F4 = dC3 is evaluated by
using (6.8) and (6.9) as

F4 = dAA ∧ eA +DN IΨI +DN̄ IΨ̄I , (6.11)

with
DN I = dN I + (NJA I

KJ + N̄JB I
KJ̄ )dZK , DN̄ I = DN I (6.12)

Inserting (6.7), (6.11) and (6.8) and performing the standard Weyl rescaling the
effective action takes the form [22]

S
(3)
F =

∫

−1
2
R−GKL dZ

K ∧ ∗dZL − 1
2
d lnV ∧ ∗d lnV − 1

2
GAB dM

A ∧ ∗dMB

−1
2
GIJ̄ DN

I ∧ ∗DN̄J − 1
2
V2 GAB dA

A ∧ dAB

+ i
4
dAIJ̄ dA

A ∧ (N IDN̄J − N̄ IDNJ) , (6.13)

1This needs some words of justification. First, recall that for a complex manifold Y4 the filtration
F 3(M) = H(3,0), F 2(M) = H(3,0) ⊕ H(2,1), etc. can be shown to consist of holomorphic bundles
F i(M) over the space of complex structure deformations. Since H(3,0) is empty for Calabi-Yau
fourfolds, H(2,1) is a holomorphic bundle and one can locally choose a basis ψI(Z), ∂Z̄KψI = 0.
Hence, the holomorphic derivative is expanded as ∂ZKψI = (σK)J

I ψJ +(λK)J̄
I ψ̄J̄ , where (σK)J

I , (λK)J̄
I

are functions of Z, Z̄. One can now show, that there exists a basis ΨI = M J̄
I ψ̄ (for some real

M J̄
I ) which obeys (6.9). In order that this is the case one has to demand: ∂ZK lnM Ī

J = A I
KJ ,

B J̄
K̄I

= (M−1)J̄
KM

L̄
I (λ̄K̄)K

L̄
and A J̄

KI = −(σK)J
I . A possible definition of M Ī

J can be found in [22].
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where GKL, GIJ̄ and GAB are the metrics on H4, H3 and H2 respectively and will
be discussed in turn. Let us first comment on the complex structure and Kähler
structure deformations. The higher-dimensional analog of (2.11) is the metric GKL
on the space of complex structure deformations of Y4. It is Kähler and takes the form

GKL̄ = ∂ZK∂Z̄LKcs
F , Kcs

F = − ln
[

∫

Y4

ΩF ∧ Ω̄F

]

. (6.14)

In analogy to (2.15) and (2.17) we define on the space of (1, 1)-forms intersection
numbers dABCD and a metric GAB via

dABCD =

∫

Y4

eA ∧ eB ∧ eC ∧ eD , GAB =
1

2V

∫

Y4

eA ∧ ∗eB , (6.15)

where V = 1
4!

∫

JF ∧ JF ∧ JF ∧ JF is the volume of the Calabi-Yau four-fold.

In contrast to a Calabi-Yau threefold the four-dimensional manifold Y4 admits a
third non-trivial cohomology H3(Y4) with metric GIJ̄ . It has non-vanishing intersec-
tions dAIJ̄ with H2 such that

dAIJ̄ = i

∫

Y4

eA ∧ ΨI ∧ Ψ̄J , GIJ̄ =
1

4V

∫

Y4

ΨI ∧ ∗Ψ̄J = −MAdAIJ̄

4V , (6.16)

where we have used ∗Ψ̄I = −iJF ∧ Ψ̄I in order to evaluate the last equality. However,
in general GIJ̄ as well as dAIJ̄ depend on the complex structure deformations ZK,
since their definition involves the forms ΨI(Z, Z̄). Hence, by using (6.9) we obtain
differential equations for dAIJ̄ and GIJ̄ , which read

∂ZKdAIJ̄ = A K
KI dAKJ̄ , ∂ZKGIJ̄ = A K

KI GKJ̄ . (6.17)

Having determined the effective action (6.13) we can now proceed in two ways.
Either we dualize the vectors AA into scalars PA and combine them into chiral mul-
tiplets TA = (MA, PA). The Kähler potential of this D = 3, N = 2 theory was
determined in [22]. It takes the form

KF (Z,N, T ) = − ln
[

∫

Y4

ΩF ∧ Ω̄F

]

− 3 lnV(T,N) , (6.18)

where V(T,N) is the volume of Y4, which depends implicitly on the Kähler coordi-
nates. This is indeed analog to the situation in type IIB orientifolds with O3/O7
planes. However, in section 4.1.1 we explored a way around this implicit definition by
changing to the dual picture. In D = 4 this amounts to by keeping linear multiplets
(Lα, Dα

2 ) in the spectrum, which allows to give K as an explicit function of Lα. As
we will review momentarily, this is equivalently true for the D = 3 theory (6.13) and
amounts to keeping the vector multiplets (MA, AA) in the spectrum [34].

General D = 3, N = 2 supergravity theories with vector and chiral multiplets are
discussed e.g. in [34]. To avoid a detailed review of their results we make contact
with section 4.1 by observing that the effective action (4.10) for chiral and linear
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multiplets in D = 4 can be translated to D = 3 chiral-vector setups by replacing dDA
2

with dAA.2 Using these identifications, one compares (4.10) with (6.13) to find

LA =
MA

V , K̃LALB = −1
2
V2GAB . (6.19)

The kinetic potential for the vector multiplet (LA, AA) is found to be [34]

K̃(L,N, Z) = − ln
[

∫

Y4

ΩF ∧ Ω̄F

]

+ ln
(

dABCDL
ALBLCLD)

+ LAζA (6.20)

with
ζR
A = 1

2
dAIJ̄N̄

INJ + ωAIJN
INJ + ωAĪJ̄N̄

IN̄J . (6.21)

The functions ωAĪJ̄(Z, Z̄) obey

∂Z̄KωAĪJ̄ = B K̄
K̄I dAJK̄ , (6.22)

but are otherwise unconstraint. It is now straight forward to check, that the effective
action determined in terms of K̃(L,N, Z) is indeed equivalent to (6.13) up to a total
derivative [34].3 This ends our review of the M-theory compactification. In order
to compare (6.26) with the O3/O7 orientifold data, we first have to compactify the
orientifold theory to three dimensions.

The O3/O7 orientifolds in three-dimensions

Let us now compactify the four-dimensional O3/O7 orientifold theory determined
by (3.37) on a circle S1. In order to do that we partly follow [22], where general
compactifications of D = 4, N = 1 theories are discussed. Due to the fact that D = 4
chiral multiplets reduce to D = 3 multiplets we turn our attention to the vectors
V κ with kinetic terms (3.32). In three dimensions vectors are dual to scalars and for
four supercharges the dynamics can be encoded by a Kähler or kinetic potential. The
Kaluza-Klein reduction is performed by choosing the Ansatz

g(4)
µν =

(

g
(3)
pq + r2A0

pA
0
q r2A0

q

r2A0
p r2

)

, V κ
µ = (Aκ

p + A0
p n

κ, nκ) , (6.23)

where A0
p, A

κ
p , p = 1, 2, 3 are vectors and nκ as well as r (the radius of S1) are

scalars in three dimensions. The resulting D = 3 theory posses chiral multiplets
(zk, τ, Ga, Tα) and vector multiplets (A0, r) and (Aκ, nκ). Next we dualize the vectors
Aκ into scalars ñκ by the standard Lagrange multiplier method (see section 2.3).
However, we keep the vector multiplet (A0, r) and denote L = r−1. The scalars ñκ

and nκ combine into complex scalars Dκ via [91, 22]

Dκ = −fκλ(z)n
λ + i ñκ , (6.24)

2Furthermore, one has to replace in the potential (4.11) the factor 3 by a 4 [22].
3More precisely one finds i

4dAIJ̄ (N̄ IDNJ − N IDN̄J) = Im(K̃LAQmdQm)+ total derivative,
where Qm = (N I , ZK).
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where fkl(z) are the gauge-couplings of the O3/O7 theory given in (3.61). One next
inserts the Ansatz (6.23) into the D = 4 orientifolds action (3.37) and performs a
Weyl rescaling to obtain aD = 3 effective action with standard Einstein-Hilbert term.
Using the definition of Dκ this action is encoded by a kinetic potential

K̃3 = − ln
[

∫

Y

Ω ∧ Ω̄
]

+Kk(τ, G, T ) + ln(L) + LζR , (6.25)

where Kk(τ, G, T ) and ζR are given in (3.47) and (6.27). Replacing the chiral multi-
plets Tα by vector multiplets (Aα, Lα) we apply (4.23) to rewrite the kinetic potential
as

K̃3 = − ln
[

∫

Y

Ω∧Ω̄
]

−ln
(

−i(τ−τ̄ )
)

+ln(KαβγL
αLβLγ)+ln(L)+LαζR

α +LζR , (6.26)

where

ζR
α = − i

2(τ − τ̄)
Kαbc(G− Ḡ)b(G− Ḡ)c , ζR = −1

2
(Dk + D̄k)(Refkl)

−1(Dk + D̄k) .

(6.27)
The function ζR

α = ζα + ζ̄α was already given in (4.21). K̃3 fully encodes the dynamics
of the chiral multiplets zk, τ, Ga, Dk and the vector multiplets (Aα, Lα) and (A,L)
in three-dimensions. This enables us to compare the orientifold theory with the M-
theory compactification discussed at the beginning of this section.

F-theory embedding of O3/O7 orientifolds

In order to discuss the F-theory embedding of the O3/O7 bulk orientifold theory, we
restrict to the simple fourfolds defined in (6.4). Working on these manifolds the σ̂
invariant cohomologies split as

H2(Y4) = H2
+(Y ) ⊕H2

+(T 2) , H3(Y4) = H3
+(Y ) ⊕

(

H2
−(Y ) ∧H1

−(T 2)
)

H4(Y4) = H4
+(Y ) ⊕

(

H3
−(Y ) ∧H1

−(T 2)
)

⊕
(

H2
+(Y ) ∧H2

+(T 2)
)

, (6.28)

where Hq
±(Y ) are the cohomology groups of Y introduced in (3.21) and we denote by

H1
−(T 2), H2

+(T 2) the cohomologies of T 2. We denote a basis of the T 2-cohomologies
by α(1,0), α(0,1) ∈ H1

−(T 2) and vol(T 2) ∈ H2
+(T 2).4 We next analyze the spectrum

and couplings of the three-dimensional theory (6.13) on the manifolds (6.4). Let us
start with the complex structure deformations ZK. From (6.28) one concludes, that

the only (3, 1)-forms in H4(Y4) arise from the cohomology H
(2,1)
− (Y )∧H(1,0)

− (T 2) and

H
(3,0)
− (Y ) ∧H(0,1)

− (T 2). Hence we set

ZK ≡ (τ, zk) , K = 0, . . . , h2,1
− (Y ) . (6.29)

This is consistent with the fact that in F-theory the complex dilaton τ becomes the
complex structure modulus of the torus fiber of the fourfold Y4 given in (6.4). Hence,

4Recall, that for T 2 one finds h
(0,0)
+ = h

(1,1)
+ = h

(1,0)
− = h

(0,1)
− = 1.
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we will set α(1,0) = dq − τdp and lift τ to one of the complex structure deformations
of Y4. Moreover, in the orientifold limit the complex structure deformations of the
orientifold zk are the complex structure deformations of the base of Y4. On (6.4) also
the holomorphic four-form ΩF splits as ΩF = Ω ∧ α(1,0), such that

ln
[

∫

Y4

ΩF ∧ Ω̄F

]

= ln
[

− i

∫

Y

Ω ∧ Ω̄
]

+ ln
[

− i(τ − τ̄)
]

, (6.30)

where we have used
∫

T 2 dq ∧ dp = 1.

The Kähler structure deformations of Y4 assembled into the vector multiplets
(MA/V, AA) = (LA, AA). These split under the decomposition (6.28) into one modu-

lus parameterizing the torus volume and h
(1,1)
+ Kähler structure deformations of Y/σ.

In three dimensions this has an obvious counterpart in the orientifold theory, since
an additional Kähler modulus L = r−1 arose from the compactification on S1. This
leads us to identify

LA ≡ (L,Lα) , AA ≡ (A0, Aα) , A = 0, . . . , h1,1
+ (Y ) . (6.31)

Note that this implies that one matches the volume modulus of T 2 with the inverse
radius L = r−1 of the S1. Also the corresponding intersection numbers (6.15) split
on the manifolds (6.4) as

dABCD → d0αβγ , (6.32)

with all other intersections vanishing. Here we have chosen e0 = vol(T 2) to be the
invariant volume form of T 2. This implies that in the kinetic potential (6.20) the
logarithm involving Lα splits as

ln
(

dABCDL
ALBLCLD)

= lnL+ ln
(

KαβγL
αLβLγ

)

, (6.33)

where we have identified d0αβγ = Kαβγ, being the intersections of H2
+(Y ).

Finally, the remaining chiral multiplets N I and the orientifold fields Ga, Dλ have
to be matched

N I ≡ (Ga, Dλ) , I = 1, . . . , h
(1,1)
− (Y ) + h

(2,1)
+ (Y ) . (6.34)

Once again, this is consistent with the split (6.28) of H3(Y4). The intersection num-
bers dAIJ̄ given in (6.16) decompose as

dAIJ̄ → d0κλ , dαab , (6.35)

while all other intersections vanish. Note however, that in general dAIJ̄ depends on
the complex structure moduli ZK and a naive identification dαab

∼= Kαab can only be
true up to a complex structure dependent part. To extract this dependence we can
proceed in two ways. Either we compare the two kinetic potentials (6.20) and (6.26)
to determine dAIJ̄ as well as ωAIJ and check if the equations (6.17), (6.22) and (6.10)
are obeyed. However, we choose a different route and look for simple solutions of
the consistency conditions (6.10). Having determined A J

KI and B J̄
K̄I

we are in the
position to solve (6.17), (6.22) to determine dAIJ̄ and ωAIJ̄ .
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To construct a simple solution to (6.10) we start with a holomorphic functions
fIJ(Z), which can arise e.g. as gauge couplings of a supersymmetric theory. In terms
of fIJ the equations (6.10) are solved by

A J
KI = −(Ref)−1JK ∂ZKfKI , B J̄

K̄I = (Ref)−1 JK ∂Z̄K f̄KI . (6.36)

Relevant for the orientifold embedding are the two special cases

fκλ(Z
k) = fκλ(z

k) , f00(Z
0) = −iτ , (6.37)

where fκλ are the gauge-couplings of the orientifold given in (3.61) and −iτ are the
gauge-couplings of a gauge-theory on space-time filling D3 branes (see for example
[31]). Not to surprisingly, these are exactly the right functions to match the kinetic
potentials (6.20) and (6.26). Namely, consistent with (6.17) and (6.22) we identify

d0κλ = ω0κλ = (Ref)κλ , dαab = ωαab =
1

τ − τ̄
Kαab , (6.38)

where Kαab are the intersections on Y , which are independent of τ and zk. Equations
(6.30), (6.33) and (6.38) imply that the kinetic potential of the M-theory compacti-
fication reduces to the one for O3/O7 orientifolds on the Calabi-Yau fourfold (6.4).

The final step is to lift this correspondence to four dimensions. On the orientifold
side this simply amounts to performing the decompactification limit L0 = r−1

0 → 0,
where r0 arises in r0 + r(x) as the background radius. Of course, the resulting theory
coincides with the D = 4 orientifold theory, if identifying the correct four-vectors.
More subtle is the lift of the M-theory compactification, which is known as the F-
theory limit. It amounts to shrinking the volume of the two-torus (identified in (6.31)
with L0) on an elliptically fibered Calabi-Yau fourfold. However, for the simple
manifold (6.4) this limes is rather straightforward and coincides with the decompact-
ification limit for the orientifold.

In addition to the bulk theory one can allow for non-trivial four-form background
flux G4 =

〈

dC3

〉

on Y4. The theory will be changed by a non-vanishing potential,
which is obtained from the Gukov-Vafa-Witten superpotential

∫

ΩF ∧G4. In order to
relate it to the O3/O7 orientifold three-form flux G3 given in (5.1) one locally writes
[16, 19, 20]

G4 = −G3 ∧ α(0,1)

τ − τ̄
+ h.c. . (6.39)

This implies that the Gukov-Vafa-Witten superpotential reduces as
∫

Y4

ΩF ∧G4 =

∫

Y

Ω ∧G3 , (6.40)

which coincides with the orientifold superpotential found in (5.6).

This ends our discussion of the F-theory embedding of O3/O7 orientifolds. Their
are many directions for further research. It would be desirable to include D7 branes
into the setup, which correspond to certain singularities on the Calabi-Yau fourfold.
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The naive fourfold given (6.4) is only valid in the regime were moduli for D-branes
and orientifold branes are frozen. F-theory compactifications provide powerful tools
to approach regimes where these fields are included [44]. A second issue is to discuss
moduli stabilization in those setups, resent results [46] suggest that all moduli can
be stabilized in F-theory compactifications by including fluxes and non-perturbative
corrections.

6.2 Type IIA orientifolds and special G2 manifolds

In this section we discuss the relationship between the type IIA Calabi-Yau orien-
tifolds considered so far and G2 compactifications of M-theory. In refs. [80] it was
argued that for a specific class of G2 compactifications X, type IIA orientifolds appear
at special loci in their moduli space. More precisely, these G2 manifolds have to be
such that they admit the form

X = (Y × S1)/σ̂ , (6.41)

where Y is a Calabi-Yau threefold and σ̂ = (σ,−1) is an involution which inverts
the coordinates of the circle S1 and acts as an anti-holomorphic isometric involution
on Y . σ and σ̂ can have a non-trivial fix-point set and as a consequence X is a
singular G2 manifold. In terms of the type IIA orientifolds the fix-points of σ are the
locations of the O6 planes in Y and as we already discussed earlier cancellation of
the appearing tadpoles require the presence of appropriate D6-branes. In this paper
we froze all excitation of the D6-branes and only discussed the effective action of the
orientifold bulk. In terms of G2 compactification this corresponds to the limit where
X is smoothed out and all additional moduli arising in this process are frozen.

The purpose of this section is to check the embedding of type IIA orientifolds
into G2 compactifications of M-theory at the level of the N = 1 effective action.
For orientifolds the effective action was derived in sections 3 and 4 and so as a first
step we need to recall the effective action of M-theory (or rather eleven-dimensional
supergravity) on smooth G2 manifolds [81, 43, 82, 83, 84].

The bosonic part of the eleven-dimensional supergravity theory was already given
in equation (6.5). It encodes the dynamic of the bosonic components g11 and C3 of
the supergravity multiplet. As in the reduction on Calabi-Yau manifolds one chooses
the background metric to admit a block-diagonal form

ds2 = ds2
4(x) + ds2

G2
(y) , (6.42)

where ds2
4 and ds2

G2
are the line elements of a Minkowski and a G2 metric, respectively.

The Kaluza-Klein Ansatz for the three-form C3 reads

C3 = ci(x)φi + Aα(x) ∧ ωα , i = 1, . . . , b3(X) , α = 1, . . . , b2(X) (6.43)

where ci are real scalars and Aα are one-forms in four space-time dimensions. The
harmonic forms φi and ωα span a basis of H3(X) and H2(X), respectively. The G2
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holonomy allows for exactly one covariantly constant spinor which can be used to de-
fine a real, harmonic and covariantly constant three-form Φ.5 The deformation space
of the G2 metric has dimension b3(X) = dimH3(X,R) and can be parameterized by
expanding Φ into the basis φi [134]

Φ = si(x)φi . (6.44)

One combines the real scalars si and ci into complex coordinates according to

Si = ci + isi , (6.45)

which form the bosonic components of b3(X) chiral multiplets. In addition the ef-
fective four-dimensional supergravity features b2(X) vector multiplets with the Aα as
bosonic components. Due to the N = 1 supersymmetry, the couplings of these mul-
tiplet are again expressed in terms of a Kähler potential KG2, gauge-kinetic coupling
functions fG2 and a (flux induced) superpotential WG2 . Let us discuss these functions
in turn.

The Kähler potential was found to be [43, 82, 83, 84]

KG2 = −3 ln
(

1
κ2
11

1
7

∫

X

Φ ∧ ∗Φ
)

, (6.46)

where 1
7

∫

Φ ∧ ∗Φ = vol(X) is the volume of the G2 manifold X. The associated
Kähler metric is given by

∂i∂̄̄KG2 = 1
4
vol(X)−1

∫

X

φi ∧ ∗φj , ∂iKG2 = i
2
vol(X)−1

∫

X

φi ∧ ∗Φ , (6.47)

and obeys the no-scale type condition

(∂iKG2)K
i̄
G2

(∂̄KG2) = 7 . (6.48)

The holomorphic gauge coupling functions fG2 arise from the couplings of C3 in
(6.5). At the tree level they are linear in Si and read [43, 83]

(fG2)αβ = i
2κ2

11
Si

∫

X

φi ∧ ωα ∧ ωβ . (6.49)

Finally, non-vanishing background flux G4 of F4 = dC3 induces a scalar potential
which via (3.41) can be expressed in terms of the superpotential [126, 127, 84]

WG2 = 1
4κ2

11

∫

X

(

1
2
C3 + iΦ) ∧G4 . (6.50)

(The factor 1/2 ensures holomorphicity of WG2 in the coordinates Si and compensates
the quadratic dependence on C3 [84].)

5The covariantly constant three-form is the analog of the holomorphic three-form Ω on Calabi-Yau
manifolds.
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In order to compare the low energy effective theory of G2 compactifications with
the one of the orientifold we first have to restrict to the special G2 manifolds X
introduced in (6.41). This can be done by analyzing how the cohomologies of X
are related to the ones of Y . As in equation (3.63) we consider the splits Hp(Y ) =
Hp

+ ⊕ Hp
− of the cohomologies into eigenspaces of the involution σ. Working on the

G2 manifold X given in (6.41) we thus find the σ̂-invariant cohomologies

H2(X) = H2
+(Y ) , H3(X) = H3

+(Y ) ⊕
[

H2
−(Y ) ∧H1

−(S1)
]

,

H5(X) = H4
−(Y ) ∧H1

−(S1) , H4(X) = H4
+(Y ) ⊕

[

H3
−(Y ) ∧H1

−(S1)
]

,
(6.51)

where H2(X) and H5(X) as well as H3(X) and H4(X) are Hodge duals. H1
−(S1) is

the one-dimensional space containing the odd one-form of S1. The split of H3(X)
induces a split of the G2-form Φ which is most easily seen by introducing locally an
orthonormal basis (e1, . . . , e7) ∈ Λ1(X) of one-forms. In terms of this basis one has
[134, 82, 130]

Φ = JM ∧ e7 + ReΩM , ∗Φ = 1
2
JM ∧ JM + ImΩM ∧ e7 , (6.52)

where

JM = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6 , ΩM = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6) .(6.53)

Applied to the manifold (6.41) we may interpret e7 = dy7 as being the odd one-form
along S1. Since Φ is required to be invariant under σ̂ and σ is anti-holomorphic the
decomposition (6.52) implies

σ̂∗JM = −JM , σ̂∗ΩM = Ω̄M . (6.54)

In terms of the basis vectors e1, . . . , e6 this is ensured by choosing e4, e5, e6 to be odd
and e1, e2, e3 to be even under σ. We see that JM and ΩM satisfy the exact same
conditions as the corresponding forms of the orientifold (c.f. (3.14), (3.16)) and thus
have to be proportional to J and CΩ used in section 3.4. In order to determine
the exact relation it is necessary to fix their relative normalization. The relation
between JM and the Kähler form J in the string frame can be determined from the
relation of the respective metrics. Reducing eleven-dimensional supergravity to type
IIA supergravity in the string frame requires the line element (6.42) of the eleven-
dimensional metric to take the form

ds2 = e−2φ̂/3ds2
4(x) + e−2φ̂/3g(s) ab dy

adyb + e4φ̂/3(dy7)2 , (6.55)

where a, b = 1, . . . , 6. The factors eφ̂ of the ten-dimensional dilaton are chosen such
that the type IIA supergravity action takes the standard form with g(s) being the
Calabi-Yau metric in string frame (see e.g. [4]). Consequently we have to identify

JM = e−2φ̂/3J . (6.56)
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Similarly, using (6.53) we find that the normalization of ΩM is given by

JM ∧ JM ∧ JM =
3i

4
ΩM ∧ Ω̄M . (6.57)

Integrating over Y and using (6.56), (3.87) and (2.11) we obtain

ΩM = e−φ̂−iθe
1
2
(Kcs−KK) Ω =

√
8CΩ , (6.58)

where C is given in (3.89). The phase eiθ drops out in (6.57) such that we can choose
it as in (3.16) in order to fulfill (6.54). Inserting JM and ΩM into equation (6.54) one
arrives at

Φ = J ∧ dỹ7 +
√

8Re(CΩ) , (6.59)

where we defined dỹ7 = e−
2φ̂
3 dy7. The form dỹ7 is normalized such that

∫

S1 dỹ
7 = 2πR

where the metric (6.55) was used and R is the φ-independent radius of the internal
circle. We also set κ2

10 = κ2
11/2πR = 1 henceforth. Using (6.59), (6.52) and (3.89) we

calculate
1

κ2
11

1
7

∫

Φ ∧ ∗Φ = e−
4φ̂
3 1

6

∫

J ∧ J ∧ J , (6.60)

which equivalently can be obtained by applying the split vol(X) = vol(Y ) · vol(S1) of
the G2 volume when evaluated in the metric (6.55). Inserting (6.60) into (6.46) using
(3.89) we obtain

KG2 = − ln
[

1
6

∫

Y

J ∧ J ∧ J
]

− 2 ln
[

2

∫

Y

Re(CΩ) ∧ ∗6Re(CΩ)
]

. (6.61)

Thus we find exactly the Kähler potential K of the type IIA orientifold as given in
(3.101).6

In order to compare the gauge kinetic functions and the superpotential we also
need to identify the Kähler coordinates of the two theories. C3 splits under the
decomposition (6.51) of the cohomologies as7

C3 = B̂2 ∧ dỹ7 +
√

2Ĉ3 , (6.62)

where B̂2 is an odd two-form on Y and Ĉ3 an even three-form on Y . Combining
(6.59) and (6.62) using (3.102) one finds

Siφi = C3 + iΦ = Jc ∧ dỹ7 +
√

2Ωc . (6.63)

As discussed after (3.102) the coefficients arising in the expansions of Jc and Ωc into
the basis (αk, β

λ) of H3
+(Y ) and ωa of H2(Y ) are exactly the orientifold coordinates

and therefore we have to identify Sa ∼= ta and SK ∼= (Nk, Tλ). With this information

6In terms of the Hitchin functionals [82] recently discussed in [128, 129] the reduction of the G2

Kähler potential (6.46) corresponds to the split of the seven-dimensional Hitchin functional to the
two six-dimensional ones 6.61.

7We have introduced a factor of
√

2 for later convenience.
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at hand, it is not difficult to show that the gauge-kinetic couplings (6.49) coincide
with (3.85). One splits φa = ωa ∧ dỹ7 and obtains

(fG2)αβ = i
2
Sa

∫

Y

ωa ∧ ωα ∧ ωβ ∼ itaKaαβ = (fOY )αβ , (6.64)

where the precise factor depends on the normalization of the gauge fields.

It remains to compare the flux induced superpotentials (6.50) with (5.33). Using
the cohomology splits (6.51) and (6.62) the background flux splits accordingly as
G4 = H3 ∧ dỹ7 +

√
2F4. Inserted into (6.50) using (6.63) we arrive at

WG2 = 1√
8

∫

Y

Jc ∧ F4 + 1√
8

∫

Y

Ωc ∧H3 (6.65)

Compared to (5.33) the superpotential WG2 only includes terms proportional to the
fluxes H3 and F4.

8 An interesting question is to identify the remaining terms in (5.33)
which are likely to arise once manifolds with G2 structure (instead of G2 holonomy)
are considered. The term due to F2 arises in compactifications on fibered G2 manifolds
X → Y [130, 131]. In our case we restrict to circle fibrations over the quotient Y/σ,
where Y is a Calabi-Yau manifold. We introduce the projection π : X → Y . The
metric on such a manifold takes the form

gG2 = α⊗ α+ π∗g , (6.66)

where g is the metric on Y and dα = π∗F2. This implies that X has not anymore
G2 holonomy but rather G2 structure with dΦ = F2 ∧ J being not closed. Following
[135] this induces a superpotential term of the form

W =

∫

X

(dC3 + idΦ) ∧ (C3 + iΦ) + . . . =

∫

Y

F2 ∧ Jc ∧ Jc + . . . , (6.67)

where Φ and C3 are given in (6.59) and (6.62) with dỹ7 = α and dC3 = B̂2 ∧F2 + . . ..
This reproduces exactly the F2 superpotential term (5.34) in type IIA orientifolds.
It remains to reveal the origin the superpotential term linear in m0. Unfortunately,
this is less straightforward and is likely to involve more general G2 manifolds [136].9

It would be nice to make this more explicit and to point out the relation to the
Scherk-Schwarz constructions of massive IIA supergravity.

8The term proportional to e0 in (5.34) can be absorbed into a redefinition of Reta [84].
9We like to thank A. Micu for discussions on this point.
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Conclusions

In this work we determined the low energy effective action for type IIB and type IIA
Calabi-Yau orientifolds in the presence of background fluxes. In our analysis we did
not specify a particular Calabi-Yau manifold but merely demanded that it admits an
isometric involution σ. Furthermore, in order to preserve N = 1 supersymmetry σ
was chosen to be a holomorphic map in type IIB and an anti-holomorphic map in
type IIA. Depending on the explicit action of σ on the holomorphic three-form Ω,
we analyzed three distinct cases: (1) orientifolds with O3/O7-planes, (2) orientifolds
with O5/O9-planes and (3) orientifolds with O6-planes. For each case we calculated
the characteristic functions of the corresponding N = 1 supergravity theories and
discussed their generic properties.

In chapter 3 we restricted to the case where background fluxes are absent and no
potential is generated. We computed the effective action by a Kaluza-Klein analy-
sis valid in the large volume limit and determined the chiral variables, the Kähler
potentials and the gauge kinetic functions for all three setups. We found that the
moduli space of the N = 1 theory inherits a product structure M̃SK ×M̃Q from the
underlying N = 2 theory obtained by ordinary Calabi-Yau compactification of type II
theories. M̃SK is a special Kähler manifold parameterized by the complex structure
deformations in type IIB and by the complexified Kähler deformations in type IIA.
For type IIB orientifolds the second component M̃Q is parameterized by the periods
of the complex even form E − iA for setups with O3/O7 planes and by the periods

of Ê − iA for setups with O5/O9. The form E + i Ê = e−φ̂ e−B̂2+iJ comprises of the
complexified Kähler deformations while A is a sum of the even R-R forms defined in
(3.43). On the other hand, for type IIA orientifolds with O6 planes M̃Q is spanned
by the periods of the complex three-form Ωc = C3 + 2iReCΩ containing the complex
structure deformations of the Calabi-Yau orientifold. M̃Q is a Kähler submanifold
inside the quaternionic manifold with a Kähler potential encoding the dynamics of
the even/odd forms of the respective orientifold setup. Finally we showed that in
the large volume – large complex structure limit one finds mirror symmetric effective
actions if one compares type IIA and type IIB supergravity compactified on mir-
ror manifolds and in addition chooses a set of ‘mirror involutions’. For M̃K mirror
symmetry amounts to a truncated versions of N = 2 mirror symmetry in that it
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still relates two holomorphic prepotentials. In this case the corrections computed by
mirror symmetry are likely to be analogous to the situation in N = 2. For M̃Q the
situation is more involved since the geometry of the moduli space changes drastically.
Nevertheless we were able to show that mirror symmetry holds in the large volume -
large complex structure limit. However, understanding the nature of the corrections
computed by mirror symmetry appear to be more involved and certainly deserves
further study. It is interesting to note that mirror symmetry can be understood as
an exchange of the odd form Ωc with the even forms E + iA or Ê + iA in accord
with [125]. Two choices of special coordinates in Ωc single out the corresponding
orientifold setup on the mirror side. It would be desirable to reveal the origin of this
mapping and finally to generalize it to non-Calabi-Yau compactifications.

In chapter 4 we presented a more detailed investigation of the N = 1 moduli
space of Calabi-Yau orientifold compactifications. The special Kähler manifold M̃SK

inherits its geometrical structure directly from N = 2, such that we focused on the
Kähler manifold M̃Q inside the quaternionic space. It turned out that the definition
of the Kähler coordinates as well as the no-scale type conditions on M̃Q can be more
easily understood in terms of the ‘dual’ formulation where some chiral multiplets of
the Calabi-Yau orientifold are replaced by linear multiplets. After a brief review of
N = 1 supergravity with several linear multiplets we reformulated all three orien-
tifold setups by dualizing a certain set of chiral multiplets. The transformation into
linear multiplets corresponds to a Legendre transformation of the Kähler potential
and coordinates. The new kinetic potential of O3/O7 and O5/O9 orientifolds takes
a particularly simple form induced from a tree-level prepotential. In contrast for O6
orientifolds it is given in terms of a generic prepotential satisfying the orientifold con-
strains and generically includes correction corresponding to world-sheet instantons
in type IIB. For orientifolds with O6 planes the Legendre transform was essential
to make contact with the underlying N = 2 special geometry. As a byproduct we
determined an entire new class of no-scale Kähler potentials which in the chiral for-
mulation can only be given implicitly as the solution of some constraint equation.
We closed this chapter by giving an explicit construction of the Kähler manifold M̃Q

replacing the N = 2 c-map. The space M̃Q was shown to admit a geometric structure
similar to the one of the moduli space of supersymmetric Lagrangian submanifolds
[74]. This also provides the ground for a more general investigation of non-Calabi-Yau
orientifolds. Namely, we found that the Kähler potential of M̃Q is the logarithm of
Hitchins functional for a generalized complex sixfold evaluated for the simple even
and odd forms associated to the orientifold setup.

In chapter 5 we repeated the Kaluza-Klein compactification by additionally allow-
ing for non-trivial background fluxes. In the O3/O7 case the background fluxes induce
a non-trivial scalar potential which is determined in terms of a superpotential previ-
ously given in [15, 17, 20, 27]. We also included the scalar fields (ba, ca) arising from
the two type IIB two-forms B2 and C2. We showed that in this case the potential is
unmodified which can be traced to the no-scale property of the Kähler potential. For
orientifolds with O5/O9 planes the influence of background fluxes is more involved.
This is due to the fact that the space-time two-form C2 arising in the expansion of
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the RR field Ĉ2 remains in the spectrum. It combines with the dilaton into a linear
multiplet, which only if it is massless can be dualized to a chiral multiplet. However,
generic NS three-form background fluxes render this form massive. We therefore first
restricted our attention to the case were the mass term vanishes which occurs if the
magnetic fluxes arising from the NS three-form H3 are set to zero. In the resulting
chiral description the axion dual to C2 is gauged with the gauge charges set by the
electric fluxes. The scalar potential now consists of two distinct contributions. The
term which depends on the RR fluxes arising from F3 is obtained from a (truncated)
superpotential of the previous case whereas the second contribution depends on the
electric fluxes of H3 and arises from D-terms which are present due to the gauged
isometry. Finally, we also analyzed non-vanishing magnetic fluxes in the NS sector
which can be described by an N = 1 theory including a massive linear multiplet
coupled to vector and chiral multiplets. In this case the scalar potential additionally
includes a direct mass term for the scalar in the linear multiplet which is neither a D-
nor an F -term. For type IIA orientifolds all background fluxes induce a superpoten-
tial W which depends on all geometrical moduli. It splits into the sum of two terms
with one term depending on the RR fluxes and the complexified Kähler form Jc while
the second term features the NS fluxes and Ωc. Both terms are expected to receive
non-perturbative corrections from world-sheet- and D-brane instantons. We showed
that for supersymmetric type IIA and type IIB instantons the respective actions are
linear in the chiral coordinates and thus can result in holomorphic corrections to W .

In the last chapter 6 we analyzed the embedding of type IIB and type IIA ori-
entifolds into F- and M-theory compactifications. Orientifolds with O3/O7-planes
can be obtained as a limit of F-theory compactified on elliptically fibered Calabi-Yau
fourfolds [68, 69]. To check this correspondence on the level of the effective action
we took a sideway by first compactifying M-theory on a Calabi-Yau fourfold. This
yields a three-dimensional N = 2 supergravity theory determined in terms of the
characteristic data of the Calabi-Yau fourfold. Restricting to a specific fourfold this
effective theory can be compared to the one obtained by compactifying the effective
action of O3/O7 orientifolds on a circle to D = 3. We determined simple solutions
to the fourfold consistency conditions for which we found perfect matching between
the orientifold and M-theory compactifications. This correspondence can be lifted to
D = 4 where the M-theory on the elliptically fibered fourfold descends to an F-theory
compactification. In our analysis we neglected contributions due to singularities of
the Calabi-Yau fourfold. Smoothed out they yield additional moduli, which are iden-
tified with D7 or O7 moduli in the orientifold limit. In a next step one can attempt
to include these into the analysis and later deform away from the orientifold limes.
Non-trivial fibrations appear if the orientifold charges are not canceled locally and the
F-theory picture becomes essential. Finally we also discussed the embedding of type
IIA orientifolds into a specific class of G2 compactification of M-theory. Neglecting
the contributions arising from the singularities of the G2 manifold we were able to
show agreement between the low energy effective actions. Comparing the superpoten-
tials we only discovered the terms which are due to four-form flux from in M-theory.
However, relaxing the condition of G2 holonomy we were able to identify one of the
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remaining terms as corresponding to a non-trivial fibration of a G2 structure manifold.
It remains to identify the counterpart of the orientifold superpotential term cubic in
the complexified Kähler moduli. This term is propotional to the mass parameter of
massive IIA supergravity and plays the essential role in moduli stabilization.

Let us end our conclusions with some directions for further research. Firstly, it
would be desirable to include D-brane matter fields into the orientifold setups. For
type IIB setups with D3 and D7 branes this was done, for example, in refs. [31, 99].
An important task is to extend these results to type IIA orientifolds with space-time
filling D6 branes. The knowledge of the full effective action enables to perform a
calculation of soft supersymmetry breaking terms of semi-realistic D-brane scenarios.

As already mentioned, a generalization to non-Calabi-Yau orientifolds is of par-
ticular interest [117]. Orientifolds allow for consistent D = 4 Minkowski or Anti-de
Sitter vacua for which the internal manifold possesses non-trivial torsion. As we have
argued, the orientifold projections specify a Kähler submanifold in the quaternionic
N = 2 moduli space with geometry encoded by special even and odd forms. The
Kähler potential is Hitchins functional truncated by the projection. A similar analy-
sis is likely to apply to orientifolds of generalized complex manifolds as introduced in
[75].

Brane worlds in orientifolds are a prominent arena for model building in particle
physics and cosmology. However, finding a particular vacuum featuring the properties
of our universe is a highly non-trivial task. One major step into this direction is to
extract vacua with stabilized moduli fields. Assuming that this can be achieved, for
example by background fluxes, one encounters a huge set of possible vacua labeled
by different flux quantum numbers. In the pioneering paper [137] it was argued that
a statistical analysis of this ‘landscape’ could lead a deeper understanding of the
vacuum structure of string theory. These considerations were mostly applied to type
IIB orientifolds and certain M-theory vacua. It is an interesting task to generalize this
to type IIA orientifolds. For early time cosmology a wave-function for flux vacua could
yield an interesting attempt to approach quantum cosmological questions within the
framework of string theory [138]. It would be nice to relate these new developments in
topological string theories to the results of N = 1 flux compactifications. Surprisingly
various similarities appear, which hint to at least a formal relation.
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Appendix

A Conventions

In this appendix we summarize our conventions.

• The coordinates of the four-dimensional Minkowski space-time are denoted
by xµ, µ = 0, . . . , 3. The corresponding metric is chosen to have signature
(−,+,+,+). The coordinates of the compact Calabi-Yau manifold Y are de-
noted by yi, ȳ ı̄, i, ı̄ = 1, 2, 3.

• p-forms are expanded into a real basis according to

Ap =
1

p!
Aµ1...µp

dxµ1 ∧ . . . ∧ dxµp . (A.1)

• (p, q)-forms are expanded into a complex basis as

Ap,q =
1

p!q!
Ai1...ip ı̄1...̄ıqdy

i1 ∧ . . . ∧ dyip ∧ dȳ ı̄1 ∧ . . . ∧ dȳ ı̄q . (A.2)

• The exterior derivative is defined as

dAp =
1

p!
∂µAµ1...µp

dxµ ∧ dxµ1 ∧ . . . ∧ dxµp . (A.3)

• The field strength of a p-form Fp+1 = dAp is given by

Fµ1...µp+1 = (p+ 1) ∂[µ1
Aµ2...µp+1] . (A.4)

• The inner product for real forms is defined by using the Hodge-∗ operator. In
components we have

∫

Fp ∧ ∗Fp =
1

p!

∫

Fµ1...µp
F µ1...µp ∗ 1 , (A.5)

where ∗1 = ddx
√−g is the d-dimensional measure.



118 Appendix

• The Hodge-∗ satisfies ∗ ∗ Fp = (−1)p(d−p)+κFp, where κ = 1 for Lorentzian
signature and κ = 0 for Euclidean signature.

• Let σ1 and σ2 be an orientiation preserving and an orientation reversing map
σ1,2 : M → M , where M is an n-dimensional manifold. Then one finds for a
n-form ω on M that

∫

σ1(M)

ω =

∫

M

σ∗
1(ω) ,

∫

σ2(M)

ω = −
∫

M

σ∗
2(ω) . (A.6)

However, if we choose ωM = ∗1 to be the canonical volume form of M then
ωσ1(M) = σ∗

1(ωM) and ωσ2(M) = −σ∗
2(ωM), such that

∫

σ1,2(M)

ωσ1,2(M) =

∫

M

σ∗
1,2(ωM) . (A.7)

B N=2 supergravity and special geometry

In this appendix we briefly summarize the N = 2 special geometry of the Calabi-
Yau moduli space. A more detailed discussion can be found, for example, in refs.
[88, 87, 140, 92, 139]. A special Kähler manifold M is a Hodge-Kähler manifold (with
line bundle L) of real dimension 2n with associated holomorphic flat Sp(2n + 2,R)
vector bundle H over M. Furthermore there exists a holomorphic section Ω(z) of L
such that

K(z, z̄) = − ln i
〈

Ω(z), Ω̄(z̄)
〉

,
〈

Ω, ∂zKΩ
〉

= 0 , K = 1, . . . n , (B.8)

whereK is the Kähler potential of M and
〈

·, ·
〉

is the symplectic product on the fibers.
This is precisely what one encounters in the moduli space of the complex structure
deformations of a Calabi-Yau manifold with Ω being the holomorphic three-form. In
this case one is lead to set n = h(2,1) and identify the fibers of the associated Sp-bundle
with H3(Y,C). The symplectic product is given by the intersections on H3(Y,C) as

〈

α, β
〉

=

∫

Y

α ∧ β . (B.9)

The Kähler covariant derivatives of Ω are denoted by χK as explicitly given in (2.10).

In terms of the symplectic basis (αK̂ , β
K̂) introduced in (2.4) both Ω and χK enjoy

the expansion

Ω = ZK̂ αK̂ − FK̂ β
K̂ , χK = χL̂

K αL̂ − χL̂|K βL̂ . (B.10)

The holomorphic functions ZK̂(z) and FK̂(z) are called the periods of Ω, while

χL̂
K(z, z̄) and χL̂|K(z, z̄) are the periods of χK . In terms of ZK̂ ,FK̂ the Kähler poten-

tial (B.8) can be rewritten as in (2.11).
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For every special Kähler manifold there exists a complex matrix MK̂L̂(z, z̄) defined
as

MK̂L̂ = (χ̄K̂|M̄ FK̂)(χ̄L̂
M̄ Z L̂)−1 , (B.11)

where χL̂
K and χL̂|K are given in (B.10). Furthermore, one extracts from (B.11) the

identities

FK̂ = MK̂L̂Z
L̂ , χL̂|K = M̄L̂M̂χ

M̂
K , (B.12)

which can be used to rewrite (B.8) as

GMN̄ = −2eKχK̂
M ImMK̂L̂ χ̄

L̂
N̄ , 1 = −2eKZK̂ ImMK̂L̂ Z̄

L̂ , (B.13)

0 = −2χ̄K̂
M̄ ImMK̂L̂ Z̄

L̂ .

If one assumes that the Jacobian matrix ∂zL

(

ZK/Z0
)

is invertible FK̂ is the deriva-

tive of a holomorphic prepotential F with respect to the periods ZK̂ . It is homoge-
neous of degree two and obeys

F = 1
2
ZK̂FK̂ , FK̂ = ∂ZK̂F , FK̂L̂ = ∂ZK̂FL̂ , FL̂ = ZK̂FK̂L̂ , (B.14)

which implies that FK̂L̂(Z) is invariant under rescalings of ZK̂ . Notice that F is only
invariant under a restricted class of symplectic transformations and thus depends on
the choice of symplectic basis.

The complex matrix MK̂L̂ defined in (B.11) can be rewritten in terms of the

periods ZK̂ and the matrix FK̂L̂(Z) as

MK̂L̂ = F K̂L̂ + 2i
(Im F)K̂M̂Z

M̂(Im F)L̂N̂Z
N̂

ZN̂ (Im F)N̂M̂Z
M̂

. (B.15)

Whenever the Jacobian matrix ∂zL

(

ZK/Z0
)

is invertible the ZK̂ can be viewed
as projective coordinates of Ph(2,1)+1. Going to a special gauge, i.e. fixing the Kähler
transformations (2.14), one introduces special coordinates zK by setting zK = ZK/Z0.
Due to the homogeneity of F it is possible to define a holomorphic prepotential f(z)
which only depends on the special coordinates as

F(Z) = (Z0)2f(z) . (B.16)

In terms of f the Kähler potential given in (B.8) reads

K = − ln i|Z0|2
[

2(f − f̄) − (∂K f + ∂K̄ f̄)(zK − z̄K)
]

. (B.17)

A special example of the situation just discussed is the moduli space spanned by
the complexified Kähler deformations tA introduced in (2.22). These fields can be
interpreted as special coordinates on a special Kähler manifold MSK(t, t̄) [88]. The
Kähler potential of the metric GAB given in (2.15) is of the form (B.17) with

f(t) = −1
6
KABCt

AtBtC . (B.18)



120 Appendix

Furthermore, inserting (B.18) into (B.15) using (B.16) one determine the gauge-
couplings NÂB̂(t, t̄) to be

ReN =

(

−1
3
KABCb

AbBbC 1
2
KABCb

BbC
1
2
KABCb

BbC −KABCb
C

)

,

ImN = −K
6

(

1 + 4GABb
AbB −4GABb

B

−4GABb
B 4GAB

)

,

(ImN )−1 = − 6

K

(

1 bA

bA 1
4
GAB + bAbB

)

, (B.19)

where GAB is given in (2.15).

C Supergravity with several linear multiplets

In this appendix we briefly discuss the dualization of several massless linear multiplets
to chiral multiplets. We only discuss the bosonic component fields and do not include
possible couplings to vector multiplets. Our aim is to extract the Kähler potential
for the N = 1, D = 4 supergravity theory with all linear multiplets replaced by
chiral ones. Let us begin by recalling the effective action for a set of linear multiplets
(Lλ, Dλ

2 ) couplet to chiral multiplets Nk. It takes the form1

L = −1
2
R ∗ 1 − K̃NkN̄ l dNk ∧ ∗dN̄ l + 1

4
K̃LκLλ dLκ ∧ ∗dLλ

+1
4
K̃LκLλ dDκ

2 ∧ ∗dDλ
2 − i

2
dDλ

2 ∧
(

K̃LλNk dNk − K̃LλN̄k dN̄k
)

, (C.20)

where K̃(L,N, N̄) is a function of the scalars Lλ and the chiral multiplets Nk. The
kinetic potential K̃ is the analog of the Kähler potential in the sense that it encodes
the dynamics of the linear and chiral multiplets. In order to dualize the linear mul-
tiplets (Lλ, Dλ

2 ) into chiral multiplets (Lλ, ξ̃λ) one replaces dDλ
2 by the form Dλ

3 and
adds the term

L → L + δL , δL = −2ξ̃λ dD
λ
3 = −2Dλ

3 ∧ dξ̃λ , (C.21)

where ξ̃λ(x) is a Lagrange multiplier. Eliminating ξ̃λ one finds that dDλ
3 = 0 such

that locally Dλ
3 = dDλ

2 as required. Alternatively one can consistently eliminate Dλ
3

by inserting its equations of motion

∗Dκ
3 = 4K̃LκLλ

(

dξ̃λ + i
4

(

K̃LλNk dNk − K̃LλN̄k dN̄k
)

)

(C.22)

back into the Lagrangian (C.20). The resulting dual Lagrangian takes the form

L = −1
2
R ∗ 1 − K̃NkN̄ l dNk ∧ ∗dN̄ l + 1

4
K̃LκLλ dLκ ∧ ∗dLλ (C.23)

+4K̃LκLλ
(

dξ̃κ − 1
2
Im

(

K̃LκN l dN l
)

)

∧ ∗
(

dξ̃λ − 1
2
Im

(

K̃LλNk dNk
)

)

.

1This action can be obtained by a straight forward generalization of the action for one linear
multiplet given in [73].
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Since we intend to use these results in the effective action for Calabi-Yau orientifolds,
we make a further simplification. We demand that the kinetic potential K̃ is only a
function of Lλ and the imaginary part of Nk, which we denote by lk = ImNk. This
implies that all chiral fields Nk admit a Peccei-Quinn shift symmetry acting on the
real parts of Nk as it is indeed the case for the orientifold setups. Thus the effective
Lagrangian (C.23) simplifies to

L = −1
2
R ∗ 1 − 1

4
K̃lkll dN

k ∧ ∗dN̄ l + 1
4
K̃LκLλ dLκ ∧ ∗dLλ (C.24)

+4K̃LκLλ
(

dξ̃κ + 1
4
K̃Lκll dReN l

)

∧ ∗
(

dξ̃λ + 1
4
K̃Lλlk dReNk

)

.

This N = 1 Lagrangian is written completely in terms of chiral multiplets and there-
fore can be derived from a Kähler potential when choosing appropriate complex coor-
dinates Nk and Tλ = (Lλ, ξ̃λ). As we will see in a moment, a direct calculation yields
that this Kähler potential is the Legendre transform of K̃ with respect to the scalars
Lκ. It takes the form

K(T,N) = K̃(L,N − N̄) − 2(Tκ + T̄κ)L
κ (C.25)

where Lκ(N, T ) is a function of the complex fields Nk, Tλ. This dependence is im-
plicitly given via the definition of the coordinates Tλ

Tλ = iξ̃λ + 1
4
K̃Lλ . (C.26)

However, in order to calculate the Kähler metric, one only needs to determine the
derivatives of Lκ(N, T ) with respect to Nk, Tλ. They are obtained by differentiating
(C.26) and simply read

∂Lκ/∂Tλ = 2K̃LκLλ

, ∂Lκ/∂N l = − 1
2i
K̃LκLλ

K̃Lλll . (C.27)

Using these identities one easily calculates the first derivatives of the Kähler potential
(C.25) as

KTα
= −2Lα , KNA = 1

2i
K̃lA . (C.28)

Applying the equations (C.27) once more when differentiating (C.28) one finds the
Kähler metric

KTαT̄β
= −4K̃LαLβ

, KTαN̄A = iK̃LαLβ

K̃LβlA ,

KNAN̄B = 1
4
K̃lAlB − 1

4
K̃lALα K̃LαLβ

K̃LβlB , (C.29)

with inverse

KTαT̄β = −1
4
K̃LαLβ + 1

4
K̃lALα K̃ lAlB K̃Lβ lB ,

KTαN̄B

= −iK̃ lAlB K̃lALα , KNAN̄B

= 4K̃ lAlB . (C.30)

Finally, one checks that K(T,N) is indeed the Kähler potential for the chiral part
of the Lagrangian (C.24). This is done by plugging in the definition of Tκ given in
(C.26) and the Kähler metric (C.29) into

L = −1
2
R ∗ 1 −KMIM̄J dM I ∧ ∗dM̄J , (C.31)

where M I = (Nk, Tλ).
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G. Curio, A. Klemm, B. Körs and D. Lüst, “Fluxes in heterotic and type II string
compactifications,” Nucl. Phys. B 620 (2002) 237 [arXiv:hep-th/0106155].

[22] M. Haack and J. Louis, “Duality in heterotic vacua with four supercharges,”
Nucl. Phys. B 575 (2000) 107 [arXiv:hep-th/9912181];
“M-theory compactified on Calabi-Yau fourfolds with background flux,” Phys.
Lett. B 507 (2001) 296 [arXiv:hep-th/0103068].

[23] K. Becker and M. Becker, “Supersymmetry breaking, M-theory and fluxes,”
JHEP 0107 (2001) 038 [arXiv:hep-th/0107044].

[24] G. Dall’Agata, “Type IIB supergravity compactified on a Calabi-Yau manifold
with H-fluxes,” JHEP 0111 (2001) 005 [arXiv:hep-th/0107264].

[25] S. Kachru, M. B. Schulz and S. Trivedi, “Moduli stabilization from fluxes in a
simple IIB orientifold,” JHEP 0310 (2003) 007 [arXiv:hep-th/0201028].

[26] J. Louis and A. Micu, “Type II theories compactified on Calabi-Yau threefolds
in the presence of background fluxes,” Nucl. Phys. B 635 (2002) 395 [arXiv:hep-
th/0202168].

[27] K. Becker, M. Becker, M. Haack and J. Louis, “Supersymmetry breaking and
alpha’-corrections to flux induced potentials,” JHEP 0206 (2002) 060 [arXiv:hep-
th/0204254].

[28] S. Ferrara and M. Porrati, “N = 1 no-scale supergravity from IIB orientifolds,”
Phys. Lett. B 545 (2002) 411 [arXiv:hep-th/0207135].

[29] O. DeWolfe and S. B. Giddings, “Scales and hierarchies in warped compactifica-
tions and brane worlds,” Phys. Rev. D 67, 066008 (2003) [arXiv:hep-th/0208123].

[30] M. Graña, “MSSM parameters from supergravity backgrounds,” Phys. Rev. D
67, 066006 (2003) [arXiv:hep-th/0209200];
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