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Abstract

In this thesis we study the heterotic string compactified on K3 with non-trivial gauge
bundles. We focus on two backgrounds, the well-known standard embedding and
abelian line bundles. Using a Kaluza-Klein reduction, the six-dimensional effective
action is computed up to terms of order α′2 with special attention on the hypermul-
tiplet sector. We compute the moduli dependent couplings of the matter fields and
analyze the geometry of the hyperscalar sigma model. Moreover, we prove the con-
sistency with six-dimensional supergravity and derive the appropriate D-term scalar
potential. For the line bundle backgrounds we show that the gauge flux stabilizes
some geometrical moduli and renders some abelian vector multiplets massive.

Zusammenfassung

In dieser Dissertation untersuchen wir die Kompaktifizierung des heterotischen Strings
aufK3 mit nicht-trivialen Eichbündeln. Wir konzentrieren uns auf zwei Hintergründe,
die wohlbekannte Standard-Einbettung und abelsche Linienbündel. Durch Anwen-
dung einer Kaluza-Klein Reduktion wird die sechsdimensionale effektive Wirkung
bis zu Termen der Ordnung α′2 berechnet, wobei besonderes Augenmerk auf den
Hypermultiplet Sektor gelegt wird. Wir berechnen die Moduli abhängigen Kopplun-
gen der Materiefelder and analysieren die Geometrie des Hyperskalaren Sigma Mod-
ells. Weiterhin beweisen wir die Konsistenz mit sechsdimensionaler Supergravita-
tion und leiten das entsprechende D-Term skalare Potential her. Bezüglich der Lin-
ienbündelhintergründe zeigen wir, dass der Eichfluss einige der geometrischen Moduli
stabilisiert und einige der abelschen Vektormultiplets massiv werden lässt.
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Chapter 1

Introduction

The reason why particle physics appears to us more fundamental than other
branches of physics is because it is more fundamental.

- Steven Weinberg -

1.1 Road to the standard model

Over the course of the last century our understanding of the fundamental constituents
of the physical world has evolved dramatically. From the structure of atoms to sub-
nuclear particles and forces, nature has revealed its rich and beautiful microcosmic
structure. The ongoing adventure of theoretical physics is to cast the experimental
discoveries into a consistent picture and to predict future results. Understanding
of the microcosm was driven by two major achievements of the twentieth century,
relativity and quantum theory. Apart from well verified quantitative predictions,
both theories changed our view of the world radically. Relativity presents to us a
geometrized unified picture of space, time and gravitation [1]. At the same time,
it introduces an observer dependence of various notions which before were believed
to have objective meaning. Quantum theory, on the other hand, delivers a quasi-
picture of the microscopic world. The discreteness of physical quantities at small
scales solved many paradoxes of classical physics [2]. At the same time, the theory
introduces new notions that appear to be paradoxical from a classical point of view,
e.g. entanglement, non-separability and contextuality. The act of observation is so
intimately linked to the very basics of the theory, that its theoretical terms seem
to have only epistemological character or even that the notion of reality loses its
objective meaning [3, 4].

Unfortunately, only the special theory of relativity could successfully be uni-
fied with quantum theory. This amounts, at first, to incorporate the symmetry of
Minkowskian space-time into the quantum theory. Elementary (free) particles are
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8 CHAPTER 1. INTRODUCTION

understood and classified as irreducible representations of the Poincaré symmetry
group [5]. To save the causal structure in the quantum regime, the interactions are
required to be local, leading to a description in terms of local fields [6, 7]. In these
fields the quantum non-commutative structure is realized, bearing the name quantum
field theory [8, 9]. It was soon realized that electromagnetic interactions of electrons
could be described in this framework and led to extraordinarily good predictions, e.g.
the electron’s magnetic moment. In particular, quantum field theory was, and is,
powerful in application to high energy particle collisions. However, it was troubled
by some technical issues. Calculations of scattering amplitudes were, and mostly are,
limited to an asymptotic series expansion in a small coupling parameter, which was
shown to be non-convergent. Even worse, also the individual series terms seemed to
give meaningless answers at first sight. The infrared divergencies of massless particles
could be solved heuristically by a redefinition of measurable asymptotic states and the
ultra-violet infinities could be solved from first principles by clarifying the mathemat-
ical structure of quantum field theory [10]. However, the latter inevitably introduces
an ambiguity of the scattering matrix encoded in undetermined parameters. If the
number of these parameters stays finite in higher orders in perturbation theory, they
can be eliminated by an (energy dependent) redefinition of the Lagrangian. Such
a theory is called renormalizable and from this perspective, renormalization inter-
polates between perturbative expansions at different energy and parameter values.1

Remarkably, a different approach to quantum field theory, coming from condensed
matter physics, led to a more intuitive interpretation of renormalization and changed
our view on the physical meaning of coupling constants. The concept of effective field
theory gives up the ambition of renormalizability and fundamental fields, but gains
applicability over a wide range of phenomena [11]. Such a theory has a finite range of
validity bounded from above by a ‘cutoff mass scale’ with additional massive degrees
of freedom appearing above this threshold.2 Conversely, the effects of a theory in its
low energy regime can be obtained by integrating out the massive degrees of freedom
in the (Euclidean) path integral. The (infinite parameter) extension of an effective
field theory to arbitrarily high mass scales is called an ultra-violet completion of the
theory. The value of a coupling constant generically depends on the given energy and
cutoff scale. Every theory that is not scale invariant contains renormalized running
couplings which are interpreted as physically changing their strength. Despite this
modern change of paradigm, the standard model of particle physics was originally
constructed to match the old premise of a renormalizable quantum field theory.

In the mid twentieth century the plethora of baryons and mesons discovered in
high energy collision experiments was a drawback for quantum field theory since a
description in terms of hundreds of elementary fields was very unconvincing. More-
over, the experiments revealed that the sub-nuclear interactions are strongly coupled,

1Here the center-of-mass energy is meant which is a Lorentz-invariant quantity.
2Strictly speaking, a mass scale cutoff only works consistently in Euclidean momentum space

where it defines a compact region.



1.1. ROAD TO THE STANDARD MODEL 9

rendering the coupling expansion series useless. Only at higher energies a weakly
coupled behavior was observed. Both of these issues remained obscure until some
ingenious symmetry arguments brought the chaotic particle zoo into order. With the
application of representation theory of Lie algebras the particles were collected into
multiplets. Their structure was deducible from the assumption of a set of elementary
fields called quarks [12]. The symmetry group SU(3) underlying the multiplets also
led to the identification of the correct interactions. They are encoded by a Yang-Mills
theory which is the natural non-abelian generalization of electromagnetism, consid-
ered as an abelian gauge theory. Classical Yang-Mills theory can be understood well in
terms of geometrical quantities, e.g. vector bundles and curved connections on them.
In this description there is even a strong similarity to gravity, considered as a gauge
theory with local gauge group SO(3, 1). However, the quantized version of Yang-Mills
theory became a much tougher challenge and a rigorous treatment remains unsolved
to this day [13]. Nevertheless, its renormalizability could be proven and it was possi-
ble to derive the observed behavior of the running coupling of the strong interactions
from the renormalization group [14]. The weak coupling at high energies is referred
to as asymptotic freedom, whereas the strong coupling at low energies is referred
to as the confining phase. In a parallel development the electromagnetic and weak
interactions, e.g. governing the radioactive beta decay, were found to be governed by
a Yang-Mills theory with gauge group SU(2) × U(1). However, in contrast to the
strong interactions, the electro-weak sector exhibits properties which seemed quite
unfamiliar in the first place. Most importantly, the interactions depend on particle
helicities in such a way that observables are not invariant under spatial reflections,
i.e. the theory is said to be parity violating. Accordingly, different gauge quantum
numbers are assigned to left- and right-handed components of matter spinor fields,
which is the characteristic chiral structure of the electro-weak interaction [15]. Sec-
ond, the short range of the weak force could only be understood as being generated
by massive gauge bosons. This phenomenon however seemed to be in conflict with
the gauge principle, renormalizability and unitarity of the theory. It took another
brilliant idea to realize that the masses could be dynamically generated by a non-
symmetric vacuum state of an additional electro-weakly charged scalar field. This
phenomenon is called the Higgs-effect, or spontaneous gauge symmetry breaking [16].
It guarantees renormalizability and generates masses for the weak gauge bosons, the
coupled matter fields and for the scalar itself. As of this writing, the very existence
of the massive Higgs boson has been verified at the Large Hadron Collider.

Despite of the great predictive success of the standard model of particle physics
there are good reasons to believe that it only presents an incomplete picture of nature.
It contains a number of about twenty dimensionless parameters which had to be de-
termined by experiment. The reductionist principle, also called unification principle
by physicists, suggests that one should search for a better theory that reduces this
number. Unification has ever been a guiding principle in physics, aiming to explain a
variety of phenomena as huge as possible via a number of parameters and equations
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as small as possible. Unfortunately, most modern unifying theories are not reduc-
tions but extensions of the standard model. In ‘grand unified theories’ the standard
model gauge group is taken to be a low energy phenomenon of a unified (simple)
gauge group at high energy scales. While the number of gauge couplings is reduced
to one at best, the field content and the number of non-gauge (Yukawa-)couplings is
larger than in the standard model. This is not a problem in principle since we do not
know how many heavy particles still hide from our current observations. From this
perspective, it is most natural to consider the standard model as an effective field
theory. Its cutoff is to be defined at some point above the current experimentally
accessible mass scale with an upper bound believed to be given by the Planck mass
mPL ∼ 1019GeV. At this mass scale, thought experiments suggest that quantum ef-
fects get affected by black hole formation marking the regime of (the yet unknown)
quantum gravity. In any case, the effective field theory philosophy brings in some
problems for the standard model. Numerical parameter values, like the Higgs mass,
are considered ‘unnatural’ as they receive quantum corrections which are large com-
pared to their measured values. One could argue that the asymptotic convergence of
the perturbative expansion simply fails in these cases. However, since no exact cal-
culations apart from perturbation theory are available, one searches for extensions of
the standard model which restore the power of perturbation theory.3 Also, the large
mass gap between the scale of electro-weak symmetry breaking and the Planck scale
is often considered as an unnatural hierarchy.4 The most popular standard model
extensions refer to supersymmetry [17]. Supersymmetry is a conjectured extension
of the Poincaré group, in fact a unique one circumventing the Coleman-Mandula
theorem with fermionic symmetry generators [18, 19]. It follows that particles come
in supermultiplets with equal number of bosonic and fermionic degrees of freedom
and equal masses. This is empirically falsified but our world can still be realized
as a non-supersymmetric vacuum state of a supersymmetric theory. Supersymme-
try improves the power of perturbation theory due to loop cancellations of bosonic
and fermionic super-partners and thus stabilizing quantum corrections of the Higgs
mass to the moderate logarithmic behavior. Under the further assumption of the dis-
crete R-parity symmetry, it also provides candidates for dark matter particles whose
existence is suggested by astrophysical observations. Finally, supersymmetric grand
unified theories suggest that, via renormalization group running, the three gauge cou-
plings numerically merge at a mass scale of about 1016GeV. However, at the other
side of the coin, supersymmetric field theories introduce an additional large number
of fields and parameters.

3Note that this reasoning is opposite to the reductionist principle. One should be aware of the
danger of introducing a theory of epicycles to stay within possibly inappropriate calculative methods.

4The author does not share most concerns about naturalness of parameter values. They should
be considered as environmental parameters which do not ask for a fundamental explanation. In
a multiverse, as suggested by string theory and eternal inflation scenarios we can apply the weak
anthropic principle.
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The most serious handicap of the standard model of particle physics is the lack
of containing gravity. There are, to this date, no empirical indications of a quantum
theory of gravity, since the gravitational interaction strength is too small to influ-
ence particle scatterings at available energies. Even classical gravitational waves have
not been observed yet. Nevertheless, it is believed that the quantum structure is
a universal feature of our world, affecting gravity at the Planck scale as mentioned
above. There exists a generalization of quantum field theory on curved space-times
and some remarkable conclusions, e.g. Hawking radiation, Unruh radiation and black
hole entropy, could be drawn from that setting [20–22]. However, it was shown that
the coupling of classical gravity to quantum matter leads to inconsistencies, rendering
a quantum version of gravity inevitable. But the very construction of a dynamical
quantum gravity seems to be impossible in the canonical framework. From the parti-
cle physicist’s point of view, a canonically quantized gravity, containing the graviton
as an excitation of the linearized Einstein equations, yields a non-renormalizable
quantum field theory. Therefore, it is believed that also general relativity, defined by
the Einstein-Hilbert action, is an effective field theory which has to be supplemented
by additional interactions which render the scattering amplitudes renormalizable or
even finite.5 However, simple modifications of the gravity action either yield non-
renormalizability or non-unitarity. Hence, it was suggested that it may be incon-
sistent to consider gravity in isolation of matter. The problem of quantum gravity
may be solved by finding the correct unification with the (standard model) matter
fields. This unification is far from unique, however, if we again refer to symmetry
arguments, there exists a preferred class of theories called supergravities [17, 23].
These field theories exhibit a local version of supersymmetry and always contain a
graviton field together with a gravitino being the fermionic gauge field of the local
supersymmetry. On the technical side, theories with extended supersymmetry gained
interest because they are restrictive in the structure of couplings. The more super-
symmetries are present the more rigid is the theory’s interaction structure. For the
maximal supergravities the interaction structure and couplings are uniquely fixed and
scalar target spaces are symmetric (pseudo-)Riemannian manifolds.6 From the phe-
nomenological point of view, minimal supergravities (N = 1 in four dimensions) are
most relevant because only these allow chiral matter couplings. In this case, there
is an infinite set of supergravities specified by the gauge group, the matter spectrum
and couplings defined by a Kähler potential, a superpotential and a gauge kinetic
function. Considered as quantum theories, the supergravities are non-renormalizable
and hence have to be considered as effective field theories as well.7 Remarkably, their

5There exists an alternative theory stating that gravity may have an ultra-violet fixed point of
the renormalization group. It is called the ‘asymptotic safety scenario’.

6Maximal supersymmetry comes with 32 real supercharges. Its smallest massless supermultiplet
contains fields up to helicity two, which is the largest value for consistent gauge interactions.

7There are conjectures that maximal N = 8 supergravity in four dimensions yields finite loop
amplitudes at all orders in perturbation theory.
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ultra-violet completion was found to be related to a totally different set of ideas and
a more sophisticated framework called superstring theory.

1.2 String theory

The paradigm of string theory is the existence of one-dimensional extended objects
constituting the fundamental degrees of freedom of our world. Their characteris-
tic length ls is assumed to be so small that current experiments are not able to
resolve their extended structure directly. The classical dynamics of a string in a
background spacetime M , sweeping out a two-dimensional world-sheet Σ, is defined
by the Polyakov action [24, 25]

S = 1
4πα′

∫
Σ

d2σ
√
−hhab∂aXM∂bX

NGMN(X) . (1.2.1)

Here X : Σ→M is the embedding of the world-sheet into M , GMN is the background
metric of M and hab is the induced metric on Σ.8 For a closed string the world-sheet
has the topology of a cylinder and for an open string that of a strip. Classical so-
lutions which minimize S correspond to world-sheets being minimal surfaces. The
quantum structure of string theory is given by first quantizing the vibrational modes
of the world-sheet which can be considered as a generalization of the ‘first quanti-
zation’ of a relativistic point particle. In flat Minkowskian space this quantization
is straightforward but on a curved background (1.2.1) describes a non-linear sigma
model. In the former case the spectrum of the system can be shown to consist of
an infinite tower of modes of increasing mass. Therefore, in contrast to the point
particle, a single string exhibits an unbounded number of degrees of freedom. Phe-
nomenologically most relevant are the states of zero mass, which are degenerate and
can be grouped into a finite number of irreducible representations of the ambient
Lorentz group. The corresponding wave functions consist, amongst others, of a scalar
Φ, the dilaton, an antisymmetric tensor field BMN , also called Kalb-Ramond field,
and a symmetric tensor field GMN . It is one of string theory’s celebrated results that
GMN can be identified with the graviton, the linearized Einstein equations arising
from conditions of conformal symmetry. It has become clear that a ‘realistic’ spec-
trum of massless states, including fermions, can only be achieved from superstrings,
i.e. supersymmetric extensions of the world-sheet field theory [26, 27]. However, the
supersymmetric extensions are not unique. Instead, one finds five (apparently differ-
ent) superstring theories, labeled type I, IIA, IIB and two heterotic superstrings [28].9

8Sometimes one allows also singular maps X : Σ → M which are no embeddings in the mathe-
matical sense.

9Interestingly, the construction of the two heterotic theories was guided by the idea to find
superstrings which reproduce the ten-dimensional N = 1 supergravities not connected to string
theory so far.
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Moreover, the quantum consistency of these theories forces the ambient spacetime to
be ten-dimensional. It can be shown that the spectra of massless states are also su-
persymmetric with respect to the ambient spacetime. The type IIA theory enjoys
N = (1, 1) supersymmetry, the type IIB theory N = (0, 2) supersymmetry and the
heterotic and type I theories have N = (0, 1) supersymmetry in ten dimensions.

A second quantized theory, i.e. string field theory, is not fully established to this
date [29]. Nevertheless, string scattering amplitudes have been constructed in a con-
sistent way from the path integral approach. The loop order of these amplitudes is
given by the topological genus of the world-sheet embedding X and every loop carries
one power of the string coupling constant gs. Together with the world-sheet sigma
model we have a string perturbation expansion in two small parameters, α′ = l2s
and gs. α

′ corrections encode the extended ‘stringiness’ and higher genus corrections
encode the quantum properties of string theory. Remarkably, loop diagrams of the
string perturbation theory are finite and it is believed that this holds for arbitrarily
high orders. Technically, the extended world-sheet acts as a natural smearing func-
tion for interactions, yielding finite loop integrals. Due to this behavior, it is believed
that string theory defines an ultra-violet complete scattering theory for gravitons,
i.e. a consistent quantum gravity.10 From the amplitudes and their Feynman rules
not only the S-matrix can be calculated but also crucial information about classical
background solutions can be gained. This is achieved by applying the background
field method to the world-sheet theory, yielding the modified action

S = 1
4πα′

∫
Σ

d2σ
(√
−hhabGMN + εabBMN

)
∂aX

M∂bX
N + 1

2π

∫
Σ

d2σ
√
−hRΦ + . . . ,

(1.2.2)
where ε12 = −ε21 = 1 is the antisymmetric tensor and R is the Ricci-scalar of the
world-sheet metric h. For a constant dilaton, the last term in (1.2.2) is proportional
to a topological invariant, the Euler characteristic χ of Σ. As a consequence, for a
fixed world-sheet topology the path integral is weighted by a factor exp(−Φχ) such
that one can identify

gs = exp(Φ) . (1.2.3)

Thus, the string coupling is actually a dynamical field leaving ls to be the only
undetermined fundamental parameter of string theory.

The absence of conformal anomalies of the world-sheet theory and the vanishing
of tadpole amplitudes lead to constraints which turn out to be dynamical equations
for the massless background fields GMN , BMN ,Φ, etc. The low energy string effective
action is defined as the field theory action reproducing these dynamical equations

10A common critics about string theory is the lack of background independence which should be
manifest in quantum gravity. Indeed, string quantization is usually accomplished only relative to
fixed backgrounds. However, from the string point of view, general relativity is just an emergent
low energy theory with (active) diffeomorphisms as an accidental gauge symmetry.
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[30, 31]. For all (closed) superstrings the string effective action contains a first sector
which reads

S1 = 1
2

∫
d10x
√
−Ge−2Φ

(
R + 4∂MΦ∂MΦ− 1

12
HMNPH

MNP
)
. (1.2.4)

Here R is the ten-dimensional Ricci-scalar and H is the field strength of the Kalb-
Ramond field. Depending on the type of superstring, additional bosonic and fermionic
fields appear in the effective action which can be interpreted as a point particle ap-
proximation of string theory. Remarkably, the effective action in each case describes a
supergravity theory in ten dimensions. In the type II superstrings all massless modes
fall into the N = 2 gravity-supermultiplet. In the type I and heterotic superstring
the massless modes exhibit an N = 1 gravity-supermultiplet and a Yang-Mills su-
permultiplet. At first sight, it seemed that the latter superstrings were plagued by
gravitational and gauge anomalies which would render the theories inconsistent [32].
Amazingly, it could be shown that the anomalies disappear via the Green-Schwarz
mechanism only under a very specific restriction: The Yang-Mills gauge group must
be chosen to be either SO(32) or E8 × E8 [33].11

In the mid nineties an amazing conjecture emerged, stating that the different
superstrings are connected by a net of duality relations [34–40]. A duality is not a
mere symmetry of one theory but rather a map between apparently different theories
which describe the same physics in (possibly) different parameter regimes by different
‘fundamental’ degrees of freedom. It extends the paradigm of effective field theory,
where the notion of fundamental and composite fields also depends on the parameter
regime. Examples of duality relations in field theory are the electro-magnetic duality
of electromagnetism (with magnetic monopoles) and its supersymmetric, non-Abelian
generalization called Seiberg duality. In string theory there exist strong-weak coupling
dualities (S-dualities), large-small scale dualities (T-dualities) and certain mixtures
called U-dualities. In string theory it can happen that the fundamental degrees of
freedom of one framework are solitonic objects of the dual framework, e.g. D-branes
[41]. Since the superstring theories are defined only perturbatively, the dualities
cannot be proven rigorously. However, there is strong evidence in form of identical
moduli spaces, global symmetry groups and BPS-spectra between the conjectured
dual theories. The hidden nonperturbative physics behind the net of string theories
is termed M-theory and its low energy approximation is known to be the unique
eleven-dimensional supergravity [37, 42].

Besides the quest for understanding the true nature of what string theory actually
is, there exists the branch of string phenomenology [45]. In this branch the connection
of string theory to the empirically known particle physics and cosmology is studied.
It is the ultimate goal to identify the (supersymmetric) standard model of particle
physics inside the framework of string theory. In contrast to the early expectations,

11The gauge group E8 × E8 is possible only for the heterotic superstring.
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this problem may not have a unique solution. In any case, it demands an explanation
why out of the necessary ten spacetime dimensions only four are visible. There are two
major possible scenarios: First, the visible world is embedded inside a ten-dimensional
large ambient space and our ways of interaction are constrained to be inside this
subspace [43, 44]. Second, the six invisible dimensions have taken a compact ‘curled-
up’ vacuum state with length scales so tiny that our ways of interaction cannot resolve
them. This idea was first taken up in the early twentieth century by Kaluza and Klein
[46, 47]. In this thesis we will be concerned with this latter possibility known under
the name string compactifications.

1.3 Calabi-Yau compactifications

Conformal invariance of the string world-sheet theory (to lowest order in α′) restricts
the compactified dimensions to constitute a Ricci-flat manifold Y . Additionally, su-
persymmetry of the world-sheet theory requires Y to be a complex Kähler manifold
[49]. A necessary condition for the existence of a Kähler metric is that the holonomy
group is reduced to U(n) and Ricci-flatness further requires that the holonomy group
is at least reduced to SU(n), where n is the complex dimension of Y . These con-
ditions together define the so-called Calabi-Yau manifolds [48]. Hence, the simplest
space-time vacuum solutions are direct product manifolds of the form

M9−d,1 × Y d . (1.3.1)

For the heterotic string which is not fully supersymmetric on the world-sheet an ana-
logue conclusion can be drawn by considering (spacetime-)supersymmetric solutions
of the supergravity approximation [49]. In particular, the compactification (1.3.1)
should be a solution of the gravitational equations of motion. Such background so-
lutions are generically not invariant under the supersymmetry transformations of
the theory. In this case, supersymmetry is spontaneously broken similar to the Higgs
mechanism. A solution is (partially) supersymmetric if there exist (some set of) super-
symmetry parameters which leave the solution invariant. There are phenomenological
and technical reasons to consider compactifications which leave some supersymme-
try unbroken at the TeV scale. For example, it can explain the existence of rather
light scalar fields (like the Higgs boson) by protecting their mass from large quantum
corrections.12 Technically, the equations for unbroken supersymmetry are usually
first order differential equations and hence, easier to solve than the full equations of
motion.

12From a top down string theoretic point of view, field theory states are called light, if they have
a mass much smaller than the Planck-scale or the compactification scale. Perturbatively, they arise
from the massless string excitations.
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A solution is invariant under supersymmetry if the infinitesimal transformations
of the background fields vanish. They generically take the form

δε〈B〉 ≈ 〈F 〉ε , δε〈F 〉 ≈ 〈B〉ε , (1.3.2)

where B stands for the bosonic fields, F for the fermionic fields of the theory and ε is
a supersymmetry parameter spinor. Fermionic background solutions 〈F 〉 6= 0 are not
allowed, since coherent quantum states of fermionic degrees of freedom do not exist.
Hence, the left equation in (1.3.2) gives no obstruction to supersymmetric solutions.
The variation of the fermionic fields vanish only under specific conditions which, in
particular, determine the shape of the compact manifold. For example, the variation
of the gravitino generically reads

δεψM ≈ ∇Mε+
∑
i

F i
Mε , (1.3.3)

where F i
M are certain gamma matrix contractions of the tensor field strengths F i of

the theory. In the type II theories these are the Kalb-Ramond field H and the various
Ramond-Ramond fields. In the heterotic theories only the Kalb-Ramond field appears
at this place. Clearly, Lorentz symmetry of the lower dimensional theory on M1,9−d

requires that non-zero tensor fields only exist along the compactified dimensions or are
proportional to the volume form of the extended spacetime. In the simplest case where
〈H〉 = 〈F i〉 = 0 along Y d (1.3.3) requires the existence of a covariantly constant spinor
on Y d. This requires the holonomy group of the compact manifold to be maximally
SU(d/2), which corresponds to Calabi-Yau manifolds. If the holonomy group is even
smaller, several constant spinors exist and, roughly speaking, each spinor gives rise
to an unbroken supersymmetry on M1,9−d. Maximal unbroken supersymmetry can
always be achieved by compactifications on tori.

In this thesis, we consider compactifications of the heterotic string which has
historically been the first possibility to connect string theory with particle physics [49–
52]. In contrast to the type II case, the perturbative heterotic string has an intrinsic
gauge symmetry involving the gauge groups SO(32) or E8 × E8.13 The unbroken
gauge group in four dimensions is a subgroup thereof determined by the choice of a
principal G-bundle over the compactified space. An N = 1 supersymmetric theory
with a chiral massless spectrum in four dimensions is obtained by compactifying
on Calabi-Yau threefolds Y , appropriate ZN orbifolds [55] or more abstractly, two-
dimensional (0, 2) superconformal field theories. The relation between orbifolds and
smooth Calabi-Yau compactifications (with line bundles) has been studied in refs. [56–
63]. Focusing on the smooth Calabi-Yau case, string phenomenological conclusions
are derivable most reliably under the following assumptions: Characteristic radii of
the Calabi-Yau be much larger than the string length ls, and the curvature of Y be

13In the type II theories non-abelian gauge symmetries are only realized at localized solitonic
objects as D-branes or at geometrical singularities of the compactified space [53, 54].
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small compared to the string scale. In this case, a Kaluza-Klein reduction can be
applied to the ten-dimensional heterotic supergravity approximation. Let Ψ be some
ten-dimensional field satisfying the (free) equation of motion

D10Ψ = 0 , (1.3.4)

where D10 is some ten-dimensional differential operator. In the simplest case, this
operator splits as D10 = D4+D6 with D6 being a differential operator on Y . Solutions
are given by a product ansatz Ψ(x, y) = ψ(x)⊗ f(y), where x are coordinates of M1,3

and y are coordinates on Y . Since Y is compact, the spectrum of D6 is discrete with
eigenfunctions fn satisfying

D6fn(y) = λnfn(y) . (1.3.5)

Expanding Ψ in these eigenfunctions, Ψ(x, y) =
∑

n ψn(x) ⊗ fn(y), it follows that
the eigenvalues λn = m2

n appear as mass terms in the four-dimensional equations of
motion

(D4 + λn)ψn(x) = 0 . (1.3.6)

Hence, there exist massless fields in four dimensions if D6 has zero-eigenvalues (with
some multiplicity). For the Laplace operator D6 = ∆6 and a simple circle com-
pactification the eigenvalues scale like m2

n = n2/R2 where R is the circle radius.
Experimental bounds imply that the characteristic radii are so small that even the
lightest non-zero mass fields are out of current reach of observation. Therefore, in
string phenomenology the Kaluza-Klein spectrum is truncated to the massless modes
only. It turns out that in many cases the massless modes can be interpreted as de-
formations of a background structure, preserving some special condition. The four
dimensional effective action then generically depends on topological invariants of Y
and coupling functions which may depend on the geometric moduli [64–70]. The chi-
ral spectrum, for example, is determined by the geometry of the chosen gauge bundle
over the Calabi-Yau. In the simplest construction (the standard embedding) the net
number of chiral families is given by an index theorem to be half of the Euler charac-
teristic χ(Y ). Hence, the solution of connecting string theory with particle physics is
the problem of finding the correct vacuum solution of an a priori unique theory. The
highly degenerate set of vacua is called the ‘string landscape’ and its full classification
in terms of topological data of the Calabi-Yau, the gauge bundle and possibly flux
parameters remains to be completed.14

Besides the above discrete degeneracy, it is well known that compact Calabi-Yau
manifolds come in smooth families in which the metric varies, while preserving Ricci-
flatness. As a consequence, these metric deformations show up in the lower dimen-
sional theory as massless free scalar fields, the so called geometrical moduli. Though
explicit metrics of compact Calabi-Yau manifolds are not known, the metric on the
space of metric deformations can be determined (at least locally). For Calabi-Yau

14See for example [71] for a recent review.
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manifolds the space of Ricci-flat metrics can be expressed, via algebraic geometry,
as the space of complex structure deformations times the space of deformations of
the Kähler class [72]. Phenomenologically the moduli are highly problematic since
their number can be rather large. They would mediate fifth forces which are em-
pirically strongly disfavored. Moreover, most coupling functions of other light fields
depend on these moduli, in particular the overall volume modulus, spoiling the phe-
nomenological predictions. To make contact with the empirical particle physics it is
of great importance to find mechanisms which give mass to these moduli via gener-
ating a non-trivial scalar potential. This program is termed moduli stabilization. It
was early on realized that quantum corrections of the (supersymmetrically broken)
effective theory can in principle give mass to the moduli. However, these corrections
are either trustful but insufficient or they are sufficiently big but lead away from the
perturbative regime [73]. Therefore, most research has concentrated on tree-level and
non-perturbative contributions to the scalar potential. In fact, it has been found
that the geometrical moduli can partly be stabilized already at the classical level by
so-called flux compactifications.15 These are vacuum solutions where (some of) the
tensor fields strengths H,F i take non-zero values along Y d. The equations of mo-
tion restrict the tensor fields to be harmonic, and hence, they can be described by
cohomology classes

Fp ∈ Hp(Y,Z) ,

∫
ΓI
Fp = mI , mI ∈ Z . (1.3.7)

The fluxes Fp are quantized, i.e. taking integer values when integrated over integral
p-cycles ΓI . Whereas in type II theories the Ramond-Ramond fields offer a variety of
flux configurations, in the heterotic theories only the Kalb-Ramond field is available.
If there is a U(1) gauge bundle involved, we can also speak of a gauge flux. In the
general non-Abelian case, however, the Yang-Mills field strength plays a role quite
different from the other tensor fields, as we will explain later. Unfortunately, most
flux compactifications exclude Calabi-Yau manifolds as a base space due to the non-
trivial back-reaction onto the metric. From (1.3.3) it follows that supersymmetry
requires a global spinor constant with respect to a generalized, torsionful connec-
tion ∇̃ = ∇ + ΣiF

i. Hence, the frame bundle of Y d has reduced structure group
SU(d/2). However, the almost complex structure, constructed from spinor bilinears,
is no longer ∇-constant and hence not compatible with the metric. Depending on the
torsion class of the generalized connection one looses the Kähler property or even the
complex structure of the compactified space. In the heterotic case this back-reaction
is particularly strong and given by the Strominger equations [76]. On the other hand,
it became clear recently that for heterotic compactifications the näıve counting of
geometrical moduli has to be replaced by a more sophisticated analysis taking into
account the gauge bundle. Roughly speaking, the equations of the gauge bundle de-
pend on the complex structure in such a way that the moduli space of the latter is

15See for example [74] and [75].
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smaller than expected and the Kähler moduli space gets bounded by domain walls
[77, 78].

1.4 The heterotic string on K3

This thesis was partly motivated by the analysis of heterotic T 6/Z6 orbifolds which
can be considered as (anisotropic) two-step compactifications, first on T 4/Z3 and
then extending to (T 4/Z3 × T 2)/Z2 [87–90]. In the intermediate step, T 4/Z3 can be
identified with a singular orbifold limit of the four-dimensional Calabi-Yau manifold
K3, i.e. a special point in the geometric moduli space of K3. While on the (flat)
orbifold the massless spectrum and effective action can be derived from the string
world-sheet theory, on the smooth Calabi-Yau we use the supergravity approximation
from the beginning. Focusing on this intermediate step, we consider in this thesis the
heterotic string theory compactified on

M = M5,1 ×K3 , (1.4.1)

where M5,1 is the six-dimensional Minkowski spacetime andK3 is the four-dimensional
Calabi-Yau. The resulting six-dimensional theory has the minimal amount of eight
supercharges, corresponding to minimal N = 1 supersymmetry.16 The main goal is
to derive the effective action via a Kaluza-Klein reduction and to focus on the hy-
permultiplet sector, where the matter fields reside. For this purpose, we pay special
attention to the non-trivial gauge bundle, forced upon us by the heterotic Bianchi
identity (2.1.4) to have a consistent background. In particular, we derive in detail the
matter fields and bundle moduli from deformations of the gauge connection, which
has, to our knowledge, not been discussed in the physics literature. Since the effec-
tive action sensitively depends on the discrete choice of the gauge bundle topology
we cannot give a model-independent answer. Instead, we focus on two prominent
sub-classes of gauge bundles embedded in E8 ×E8: We discuss the well-known stan-
dard embedding of the gauge bundle into the tangent bundle and backgrounds with
U(1) line bundles. The dimensional reduction of the heterotic string effective action
has been studied for Calabi-Yau three-folds in [65, 91, 92] and as truncations of torus
compactifications in [93, 94]. The dimensional reduction on K3 respectively K3×T 2

was performed only at leading order in α′ and excluding the matter fields in [79–85].
In this thesis we extend their analysis to terms up to order α′2 including the mat-
ter couplings descending from the Chern-Simons three-forms. It is well known that
the hypermultiplet sector stays unchanged when the theory compactified on K3 is
further compactified on K3 × T 2, yielding an N = 2 supersymmetric theory in four

16In some references the minimal supersymmetry in six dimensions is denoted as N = (1, 0) to
emphasize its chiral structure, or even as N = 2 due to its similarity to the corresponding extended
supersymmetry in four dimensions.
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dimensions.17 Therefore, our results can be seen as a step to better understand the
hypermultiplet sector of four-dimensional N = 2 compactifications. Despite they are
not ultimately relevant for phenomenology, N = 2 supergravities have been inves-
tigated intensely in the last decade due to their rich mathematical structure.18 A
crucial feature are their moduli spaces, i.e. the target spaces of scalar fields. They
exhibit an interesting geometrical structure, not as rigid as for ≥ 16 supercharges and
not as arbitrary as for four supercharges. For N = 2 theories in four dimensions the
moduli space factorizes as

M =MV ×MH , (1.4.2)

where MV is the moduli space of vector multiplets and MH is the moduli space of
hypermultiplets. The vector multiplet moduli space of heterotic compactifications on
K3× T 2 is known to be (at leading order in gs) [96]

MV =
SU(1, 1)

U(1)
× SO(2, nV − 1)

SO(2)× SO(nV − 1)
, (1.4.3)

where the first factor is spanned by the axion-dilaton. We will solely be concerned
in this thesis with MH which is governed by quaternionic-Kähler geometry [97]. At
order α′0 the space MH of neutral moduli is known to be [98]

MH =
SO(4, 20)

SO(4)× SO(20)
, (1.4.4)

spanned by the K3 moduli and B-field moduli. The moduli spaces are of central
importance in establishing the duality relations of string theory. Since the string
effective actions are modified if higher genus (i.e. gs) and higher order α′ corrections
are taken into account, also the compactified theory’s moduli spaces are subject to
these ‘quantum corrections’. It is well known that we have the following perturbative
quantum corrections

MV MH

IIA on CY3 α′ gs
IIB on CY3 exact α′ and gs

Het on K3× T 2 gs α′

Table 1.4.1: Quantum corrections of moduli spaces

This can be made plausible as gs corrections only apply to the sector where the
dilaton resides and α′ corrections apply to the sector involving the Kähler moduli
which incorporate sizes of radii. In particular, the moduli space MH is extended at

17See for example the review [86].
18See [95] for a comprehensive review.
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higher order in α′ by the deformations of the gauge bundle and is unknown in general
(see however [99–101, 103, 104]). The classically exact moduli space of type IIB vector
multiplets can be taken as a reference point for possible dualities. In the type IIA case,
the hyperscalar metric enjoys another special property, that is, for gs → 0 it is in the
image of the c-map [105]. It describes a fibre bundle over a special-Kähler submanifold
and can be characterized by a prepotential of this submanifold. This sigma model
metric, including the Ramond-Ramond scalars, is known as the ‘Ferrara-Sabharwal
metric’ [106]. In the heterotic case no such special condition holds. In this thesis we
derive α′ corrections to the heterotic hypermultiplet sector and it is our goal to prove
the quaternionic-Kähler geometry for the case of included matter fields.

1.5 Outline of the thesis

In this thesis, we study the perturbative heterotic string compactified on K3 with
nontrivial gauge bundles, e.g. the standard embedding and U(1) line bundles. The ef-
fective action in six dimensions is derived via a Kaluza-Klein reduction up to terms of
order α′2, extending the analysis of [79–85]. In chapter 2, we set the stage and collect
all necessary ingredients. We recall the heterotic supergravity in ten dimensions and
the conditions for unbroken supersymmetry in section 2.1, i.e. the Calabi-Yau con-
dition and the hermitean Yang-Mills equations for the gauge bundle. In section 2.2,
some basic geometrical properties of K3 such as hyperkählerity and anti-selfduality
are presented. Subsequently, we describe the moduli space of Ricci-flat metrics on
K3 as well as the moduli space metric. As a reference for the later results, we recall
in section 2.3 the generic six-dimensional action of minimal supergravity coupled to
vector-multiplets, hypermultiplets and one tensor-multiplet. We pay special atten-
tion to the hypermultiplets which lie in the focus of this thesis. In section 2.4, we
study in more detail the supersymmetric gauge bundle and its (massless) deforma-
tions. We apply the deformation theory of gauge connections and derive differential
equations on K3 which, to our knowledge, have not been discussed in the literature.
In particular, we derive the properties of zero modes relevant for the Kaluza-Klein
reduction.

In chapter 3, we apply the Kaluza-Klein reduction to the gauge bundle back-
ground known as the standard embedding. We focus on the gauge sector and derive
the six-dimensional effective action including the nontrivial moduli dependent matter
field couplings which arise from the Chern-Simons couplings in ten dimensions. In
section 3.3 our main result is presented where we pay special attention to the hy-
perscalar sigma model and the scalar potential. The latter is shown to be consistent
with supergravity by applying a topological vanishing argument. The only surviving
contribution is the D-term scalar potential involving the charged matter fields. We
analyze the moduli space of the hyperscalar sigma model in more detail in section 3.4.
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Due to the invariance of the hypermultiplet sector under a further compactification
on T 2 our results can be interpreted as α′ corrections to the (charged) moduli space
of N = 2 locally supersymmetric theories in four dimensions. Their kinetic couplings
are governed by quaternionic-Kähler geometry which however we cannot prove in
full generality. Subsequently, we focus on submanifolds like the charged scalar fibre
and a certain truncation where the complex structure moduli are frozen. Finally, we
compare a further truncation of our results to a known orbifold limit of K3.

In chapter 4 we consider abelian gauge bundles which are equivalent to quantized
two-form fluxes. We derive the effective action and show its consistency with super-
gravity. However, most coupling functions are only given as abstract integrals such
that the moduli dependence is hidden. Due to the rigidity of the fluxes some geomet-
rical moduli get stabilized which we describe in section 4.3.1. The U(1) subgroups
defined by the line bundles first appear in the unbroken gauge group but their gauge
bosons may acquire non-zero masses due to the Stückelberg mechanism involving the
flux parameters, as we show in section 4.3.2.

In appendix A we provide additional mathematical details and calculations. In
particular, we prove in appendix A.3 a Weitzenböck formula which is central for the
derivation of zero mode properties in section 2.4. In appendix B we present a detailed
derivation of the moduli dependent coupling functions in the standard embedding as
well as kinetic terms from the proposed Kähler potential in section 3.4.3.



Chapter 2

Preliminaries

2.1 Heterotic supergravity

The string effective action governing the massless modes of the heterotic string in ten
dimensions is given by the N = 1 supergravity coupled to a super-Yang-Mills theory
with gauge group SO(32) or E8 × E8; in this thesis we will only consider E8 × E8.
The corresponding supermultiplets have the following field content

bosonic fermionic

gravity multiplet GMN , BMN ,Φ ψM , λ
Yang-Mills multiplet A496

M χ496

Table 2.1.1: Massless fields of the heterotic string in ten dimensions

Here GMN is the graviton, BMN is the Kalb-Ramond two-form potential, Φ is the
dilaton, ψM is the Majorana-Weyl gravitino and λ is the Majorana-Weyl dilatino.
Furthermore, A496

M is the Yang-Mills gauge potential and χ496 is the gaugino, both
valued in the adjoint representation of E8 × E8. We will restrict our analysis to the
bosonic part of the theory. The ten-dimensional bosonic Lagrangian, up to α′2-terms,
is given by [24]

L = 1
2
e−2Φ

(
R ∗ 1 + 4dΦ ∧ ∗dΦ− 1

3
H ∧ ∗H + α′(tr F ∧ ∗F − tr R̃ ∧ ∗R̃)

)
. (2.1.1)

Throughout this thesis we use the space-time metric signature (−,+,+,+, ...) and
anti-hermitean gauge generators with negative definite Killing form. F = dA+A∧A
is the Yang-Mills field strength and H is the field strength of the Kalb-Ramond field
B defined as

H = dB + α′(ωL − ωYM) , (2.1.2)

23
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where ωL, ωYM are the Lorentz- and Yang-Mills Chern-Simons three-forms

ωYM = tr(F ∧ A)− 1
3
tr(A ∧ A ∧ A) ,

ωL = tr(R ∧Θ)− 1
3
tr(Θ ∧Θ ∧Θ) .

(2.1.3)

A is the gauge connection, R is the Riemann curvature two-form and Θ is the spin
connection.1 As a consequence, H satisfies the Bianchi identity (also called tadpole
condition)

dH = α′(tr R ∧R− tr F ∧ F ) . (2.1.4)

Finally, the last term in (2.1.1) is the Gauss-Bonnet combination [107]

trR̃ ∧ ∗R̃ = RMNPQR
MNPQ − 4RMNR

MN +R2 . (2.1.5)

Besides (2.1.1) the ten-dimensional action contains the Green-Schwarz counter-term
which is crucial for the anomaly freedom of the theory. We will however neglect this
term in our analysis since it is a higher derivative term.

2.1.1 Supersymmetric string vacua

In the search for consistent string vacua one has to solve the equations of motion
and certain constraint equations. For the heterotic string the crucial constraint arises
from the integrated Bianchi identity (2.1.4)

1
2

∫
Y

tr(F ∧ F ) = 1
2

∫
Y

tr(R ∧R) , (2.1.6)

which is a topological equation enforcing a non-trivial gauge bundle H over Y . In-
stead of solving the equations of motion in full generality, one usually looks, for
phenomenological and technical reasons, for compactifications which preserve some
of the supersymmetries of the ten-dimensional theory. A heterotic compactification
on M5,1 × Y is supersymmetric (at tree level) if there exist nonzero supersymmetry
parameters ε such that the variations of all fermionic fields vanish

δελ = ΓM(∇MΦ)ε+ 1
24
HMNPΓMNP ε ,

δεψM = ∇Mε− 1
4
HMNPΓNP ε ,

δεχ = FMNΓMNε .

(2.1.7)

Here we denote the background tensor fields by calligraphic letters, i.e. 〈H〉 = H
and 〈F 〉 = F . The supersymmetry parameter in ten dimensions is a Majorana-
Weyl spinor ε in the representation 16 of SO(9, 1). To preserve isotropy and Lorentz

1The trace trR ∧ R is evaluated in the vector representation 10 of SO(9, 1) and trF ∧ F =
1
30TrF ∧ F is defined as 1

30 of the trace in the adjoint representation of E8 × E8.
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symmetry in M5,1 all background spinor fields must vanish and the tensor fields are
allowed to take nontrivial values only along Y .2

We consider in this thesis the standard background ansatz given by3

H = 0 , Φ = const . (2.1.8)

Then the variation of the dilatino in (2.1.7) vanishes explicitly and the variation of the
gravitino requires that there exists at least one covariantly constant spinor section,
∇ε = 0. This is a topological constraint which requires the holonomy group of Y to
be some proper subgroup of SO(4). The simplest example is a four-torus, Y = T 4,
where the holonomy group is trivial. In this case, the local decomposition of the
supersymmetry spinor

16→ (4,2)⊕ (4′,2′) (2.1.9)

can be globally extended, i.e. both internal spinors 2 and 2′ exist as global covariantly
constant sections. One arrives at two six-dimensional spinors 4 and 4′ corresponding
to N = 2 supersymmetry. The minimal number of spinors can be obtained from
Y having SU(2) holonomy, which is one definition of a four-dimensional Calabi-Yau
manifold. In this case there exists only one covariantly constant spinor, 2 or 2′, and
one arrives at N = 1 supersymmetry (eight real supercharges) in six dimensions.4

Finally, the vanishing of the gaugino variation restricts the gauge bundle to satisfy

Fαβ = Fᾱβ̄ = 0 , gαβ̄Fαβ̄ = 0 , (2.1.10)

where the indices correspond to (anti-)holomorphic coordinates zα, z̄ᾱ and gαβ̄ is the
Kähler metric on Y . (2.1.10) are called Hermitean Yang-Mills (HYM) equations. The
nontrivial gauge bundle is realized by switching on curvature in a sub-bundle of the
E8 × E8 principal bundle over Y . Let H be the subgroup of E8 × E8 in which the
curvature resides. Then, analogous to a Higgs mechanism, the gauge group breaks
according to

E8 × E8 −→ G× 〈H〉 , (2.1.11)

where G is the maximal commutant of H. Summarizing, a minimally supersymmetric
vacuum of the heterotic string consists of a Calabi-Yau manifold Y = K3 and a
nontrivial H-bundle over Y satisfying the hermitean Yang-Mills equations and the
topological constraint (2.1.4). For K3 the integral 1

2

∫
trR ∧ R is known to be equal

to the Euler characteristic χ = 24. Hence, the gauge bundle is often said to be an
instanton of charge 24. We will analyze K3 and the gauge bundle in more detail in
the following sections.

2Hence, the SUSY variations of the bosonic fields automatically vanish and we are justified to
leave out additional fermionic terms on the right hand sides of (2.1.7).

3Kalb-Ramond flux is not possible onK3 due toH3(K3,Z) = 0. However away from the standard
embedding we have H 6= 0 and the back-reaction to the geometry is mentioned in chapter 4.

4The details of the spinor decompositions are a bit more intricate than presented here due to the
Majorana condition. They can be found in appendix A.1.
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2.2 K3 surfaces

We would like to collect here some geometrical properties of K3 which we will need for
our later analysis.5 A K3 surface is a compact four-dimensional Calabi Yau manifold.
As such, it is a Kähler manifold with vanishing first Chern class, c1(K3) = 0. By Yau’s
theorem, there exists a unique Ricci-flat Kähler metric for every chosen Kähler class.
In the following we will always refer to Ricci-flat K3’s, since only these constitute
consistent backgrounds for the string world sheet, preserving the conformal symmetry.
K3 surfaces are not only Calabi-Yau but also hyper-Kähler manifolds, a property
which will affect the structure of the lower-dimensional theory.

A crucial observation is that in four dimensions the structure group of orthonormal
frames is non-simple and decomposes as

SO(4) ∼= SU(2)+ × SU(2)− , (2.2.1)

in the sense of complex Lie groups. This is related to the existence of the Weyl-spinor
bundles S+ and S− which are linked to the (complexified) tangent bundle as

TC
K3
∼= S+ ⊗ S− . (2.2.2)

S+ and S− are both complex two-dimensional bundles transforming irreducibly under
the corresponding factors in (2.2.1). As a Calabi-Yau manifold, K3 has a reduced
structure and holonomy group G = SU(2) which can be identified with, say, the
second factor in (2.2.1). As a consequence, there exist two non-vanishing and covari-
antly constant spinor sections. The Dirac-spinor S = S+⊕S− decomposes under the
reduced structure group as

4 = 2+ ⊕ 2− −→ 1⊕ 1⊕ 2− , (2.2.3)

where the two singlets are non-vanishing spinors of the same chirality. Accordingly,
vectors of the tangent bundle decompose under the reduced structure group as

4 = 2+ ⊗ 2− −→ (1⊕ 1)⊗ 2− = 2− ⊕ 2− . (2.2.4)

As a Calabi-Yau manifold, there exists a complex structure I ∈ End(TK3) satisfying

I2 = −idTK3
, ∇I = 0 , (2.2.5)

where ∇ is the Levi-Civita connection of the Kähler metric g. Under this com-
plex structure the complexified tangent bundle splits into the holomorphic and anti-
holomorphic tangent bundle

TC
K3 = TK3 ⊕ T K3 , (2.2.6)

5For a comprehensive review see for example [108].
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where I(TK3) = iTK3 and I(T K3) = −iTK3, understood as acting on elements. Com-
paring to (2.2.4) we can identify the elements as the 2−⊕ 2−. The reduced structure
group SU(2)− preserves the complex structure and acts irreducibly on each of the
two terms. On the other hand, the first factor SU(2)+ rotates the two singlet spinors
and, accordingly, the tuple (TK3, T K3) transforms as a doublet. In fact, it will turn
out that SU(2)+ becomes the R-symmetry group of the compactified theory.

Let us now deduce the hyperkähler structure from the fact that also the holon-
omy is reduced to SU(2)− due to the Kähler property and Ricci-flatness. Since the
curvature of K3 takes values in the Lie algebra of the holonomy group, SU(2)+ must
be a flat sub-bundle of the frame bundle. Thus, it can be spanned by three global
covariantly constant sections I1, I2, I3, satisfying the su(2) algebra. From ∇I = 0 it
follows that the complex structure must be a linear combination of I1, I2, I3, which
therefore square to −1, separately. These two conditions can be summarized in the
quaternionic algebra

IrIs = −idTK3
δrs + εrstIt . (2.2.7)

Hence, the chosen Kähler metric is compatible not only with the complex structure
I, but for every complex structure constructed as

I = aI1 + bI2 + cI3 with a2 + b2 + c2 = 1 . (2.2.8)

That is, K3 carries an integrable hypercomplex structure, i.e. it is a hyper-Kähler
manifold.6 The metric is hermitean with respect to all Is,

g(IsX, IsY ) = g(X, Y ) . (2.2.9)

Moreover, we have a basis of three associated fundamental two-forms Js = g(Is·, ·),
satisfying

∇Js = dJs = 0 , Jr ∧ Js = 2δrsvol . (2.2.10)

It can be shown that the above differential conditions define K3 as a topologically
unique manifold with the Hodge numbers

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

=

1
0 0

1 20 1
0 0

1

. (2.2.11)

Here hp,q are the dimensions of the Dolbeault cohomology groups

Hp,q(K3,R) =
ker ∂̄ : Λp,q → Λp,q+1

im ∂̄ : Λp,q−1 → Λp,q
. (2.2.12)

6This is consistent with the holonomy being SU(2) ∼= Sp(1), according to Berger’s classification
[109].
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Let us consider the set of two-forms Λ2(K3) which carries an action of the Hodge star
operator ?. There exists a positive scalar product on Λ2(K3) given by

〈η1, η2〉 =

∫
K3

η1 ∧ ?η2 , (2.2.13)

which is volume independent. Since ?2 = idΛ2 on a four-dimensional Riemannian
manifold, the two-forms decompose locally into two three-dimensional eigenspaces,
Λ2 = Λ2

+⊕Λ2
−, orthogonal with respect to (2.2.13). Moreover, ? maps harmonic two-

forms to harmonic two-forms, thus the middle cohomology group decomposes into
the eigenspaces

H2(K3,R) = H+ ⊕H− , (2.2.14)

such that ?H+ = H+ and ?H− = −H− (understood as acting on elements). Clearly,
this decomposition is metric dependent, but the dimensions are fixed by the signature
index of K3 to be [108]

dimH+ = 3 , dimH− = 19 . (2.2.15)

By Poincaré duality, there is a bilinear form on the (integral) middle cohomology

ρ : H2(K3,Z)×H2(K3,Z)→ 2Z , (η1, η2) =

∫
K3

η1 ∧ η2 . (2.2.16)

of signature (3, 19).7 Clearly, selfdual two-forms have positive norm and anti-selfdual
two-forms have negative norm with respect to ρ. For a given basis ηI , I = 1, . . . , 22
of H2(K3,R) the bilinear form ρ is represented by the ‘intersection’ matrix 8

ρIJ =

∫
K3

ηI ∧ ηJ . (2.2.17)

Using that the three fundamental two-forms Js square to the positive volume form
(2.2.10), it follows that they must be a basis of H+,

H+ = span(J1, J2, J3) . (2.2.18)

From this basis not only the Kähler-form but also the holomorphic volume form Ω
can be constructed. A convenient choice will be

J =
√
VJ3 , Ω = 1√

2
(J1 + iJ2) , (2.2.19)

7It can be shown that the bilinear form ρ promotes H2(K3,Z) to an even unimodular lattice.
However we will only be concerned with the R-valued cohomology as a vector space in the following.

8Strictly speaking, the term ‘intersection matrix’ refers only to an integral (co-)homology basis
and contains information about the geometry of the Poincaré dual two-cycles. For K3 the integral
intersection matrix takes the form ρ = σ1⊕σ1⊕σ1⊕ (E8)⊕ (E8), where σ1 is the first Pauli matrix
and (E8) is the Cartan matrix of the Lie algebra of E8.
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where the basis elements are now normalized as (Jr, Js) = 2δrs. With respect to the
complex structure corresponding to J , Ω is a holomorphic (2,0)-form and J is a real
(1,1)-form. They are normalized as∫

J ∧ J = 2V ,
∫

Ω ∧ Ω̄ = 2 , ‖Ω‖2 = 1
2
ΩαβΩ̄αβ = V−1 . (2.2.20)

It follows from the Hodge diamond (2.2.11) that H− is the subspace of H1,1(K3,R)
orthogonal to J (with respect to ρ). By Yau’s theorem [110] every embedding H+ ⊂
H2(K3,R) defines a Ricci-flat Kähler metric, since it specifies the complex structure
and the Kähler class, up to SO(3) rotations. From (2.2.18) it follows that every
selfdual two-form η+ there exists a representative in the same cohomology class which
is d-closed and covariantly constant with the following expansion

η+ =
∑
s

(∫
Js ∧ η+

)
Js . (2.2.21)

In the rest of this thesis we will often identify representatives of the same cohomology
class.

Finally, let us show that the curvature two-form R of K3 takes values in

R ∈ su(2)⊗ Λ2
−(K3) , (2.2.22)

i.e. it is anti-selfdual itself (we follow [111]). On a four-dimensional manifold the
Riemann curvature tensor R acts as an endomorphism on two-forms

R : Λ2(M)→ Λ2(M) , R(dxm ∧ dxn) = 1
2
Rmn

pqdx
p ∧ dxq . (2.2.23)

Moreover, if M is Ricci-flat, R acts block-diagonally on the decomposition Λ2
+ ⊕ Λ2

−
of two-forms

R(η) = R+(η+) +R−(η−) , (2.2.24)

where R+ and R− are related to the Weyl-tensor. On the other hand, using the
metric, the local two-forms can be identified with skew-adjoint endomorphisms of the
tangent bundle, Λ2(K3) ∼= End(TK3), Tmn = gmpηpn. Under this isomorphism the
selfdual and anti-selfdual two-forms give rise to the decomposition

so(4) = so(3)+ ⊕ so(3)− , (2.2.25)

which can be identified with the Lie algebra of the holonomy group decomposition
(2.2.1). However, we know from (2.2.10), (2.2.18) that the bundle of selfdual two-
forms is flat, that is, R+ vanishes on K3. Hence, Λ2

− is a non-trivial eigenspace of R
and of the Hodge star operator, which therefore commute on this domain

R(?η−) = ?R(η−) . (2.2.26)

This implies anti-selfduality of the curvature tensor, 1
2
Rmn

pqε
pq
rs = −Rmn

rs.
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2.2.1 Moduli space of K3

In contrast to Calabi-Yau three-folds the moduli space of K3 does not factorize into a
moduli space of the complex structure and the Kähler class. Instead, its global form
is known. As shown above, a Ricci-flat Kähler metric is determined by the vector
space embedding

H+ ⊂ H2(K3,R) ⇔ R3
+ ⊂ R3,19 . (2.2.27)

The space of all such embeddings is given by the Grassmannian manifold

Gr3,19 =
SO(3, 19)

SO(3)× SO(19)
, (2.2.28)

where SO(3) corresponds to basis rotations inside H+ and SO(19) corresponds to
basis rotations in the orthogonal complement H⊥+ . The overall volume of K3 is an
additional independent parameter, such that the local moduli space of K3 takes the
form9

MK3 = Gr3,19 × R+ . (2.2.29)

It has a dimension of 58. In the following we will use a particular parametrization
of Gr3,19, taken from [113]. Let ηI , I = 1, . . . , 22 be a basis of H2(K3,R) and
Js, s = 1, 2, 3 be an orthogonal basis of H+, as in (2.2.18). Then we have the following
expansion and normalization

Js = tIsηI , ρIJt
I
rt
J
s = 2δrs , (2.2.30)

where tIs are the vector components, i.e. 66 parameters subject to six normalization
equations and to the equivalence relation

tIs ∼ t̃Is = R r
s tr , R ∈ SO(3) . (2.2.31)

These parameters will be used in the rest of this thesis to describe the moduli de-
pendence of certain coupling functions which appear in the six-dimensional effective
action. As a first example, let us state the metric on the moduli space (2.2.29) itself.
Starting from the canonical line element [72]

δs2
K3 = − 1

4V

∫
K3

gmngpqδgmpδgnq , (2.2.32)

it was shown in [113] that the metric deformations can be expressed as deforma-
tions of the three fundamental two-forms, δgmn = −

∑
s(Is)

p
m (δJs)pn. Projecting out

deformations which leave the three-plane H+ invariant, one arrives at

δs2
K3 = 1

2

(
ρIJ − 1

2
ρIKρJLt

K
r t

L
r

)
δtIsδt

J
s − 1

4V2 δVδV , (2.2.33)

9For the global moduli space of K3, orientation changes of the vector spaces are included and
the automorphisms of the H2(K3,Z) lattice have to be modded out additionally. This detail will
not be relevant for our analysis.
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where summation over r, s is understood. It is well known that the geometrical moduli
space is enhanced by the internal components of the Kalb-Ramond field [72]

δs2
B = − 1

4V

∫
K3

gmngpqδBmpδBnq . (2.2.34)

The massless deformations are given by harmonic two-forms, so there arise 22 real
moduli scalars. We will see in the following chapter that, due to the Chern-Simons
couplings (2.1.2), the metric (2.2.34) gets mixed with the gauge bundle moduli space
at higher order in α′. If these corrections are neglected, the geometrical moduli space
with torsion is locally isomorphic to

M̃K3 =
SO(4, 20)

SO(4)× SO(20)
, (2.2.35)

which is a quaternionic-Kähler manifold of real dimension 80. For a parametrization
in terms of coset space matrices, see for example [114].

2.3 N = 1 supergravity in six dimensions

In this section we review the generic form of N = 1 locally supersymmetric field
theories in six dimensions. This will be the reference for our later results on the
compactified effective action. As shown in appendix A.1, the supercharges form
a doublet of two Weyl spinors QA with the same chirality, satisfying a symplectic
Majorana condition

Q̄A = εABQ
B . (2.3.1)

Their supersymmetry algebra (without central charges) reads

{Q̄Aᾱ, Q
B
β } = δBA (σµ)ᾱβP

µ , A,B = 1, 2 , (2.3.2)

which implies that the R-symmetry, i.e. the automorphism group of the algebra
(2.3.2), is Sp(1) ∼= SU(2) with the supercharges in the fundamental representation.
The component fields of the massless supermultiplets are given by [115]

bosonic fermionic

gravity multiplet gµν , B
+
µν ψ−µ

tensor multiplet B−µν , φ χ+

vector multiplet Vµ χ−

hypermultiplet 4q 2λ+

Table 2.3.1: Supermultiplets of N = 1 supergravity in six dimensions
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Here gµν is the graviton of the six-dimensional space-time, B+
µν is an antisymmetric

tensor with selfdual field strength and ψ−µ is the negative chirality gravitino. The
tensor multiplet contains a tensor B−µν with anti-selfdual field strength, the dilaton
φ and the the dilatino χ−. The vector multiplet contains a gauge boson Vµ and the
gaugino χ+. Finally, the hypermultiplet features four real scalars q and the hyperino
λ+.10

Clearly, the vector multiplet takes values in the adjoint representation of the
gauge group G while the hypermultiplets take either values in some representation
R of G or are neutral singlets. Note that all scalars, except the dilaton, reside in
hypermultiplets. The absence of local anomalies constrains the massless spectrum to
obey [116, 117]

29nT + nH − nV = 273 , (2.3.3)

where nT denotes the number of tensor multiplets, nH the number of hypermultiplets
and nV the number of vector multiplets. This condition is automatically satisfied in
any K3 compactifications with supersymmetric bundle (2.1.10). In this paper we only
consider perturbative K3-compactifications where nT = 1, such that nH − nV = 244
holds.

For gauge groups of the form

G =
∏
α

Gα ×
∏
m

U(1)m , (2.3.4)

where Gα denotes any simple factor and U(1)m any abelian factor, the generic bosonic
Lagrangian is given by [118, 119]

L6 = 1
4
R ∗ 1− 1

2
e−2φH ∧ ∗H + 1

4
dφ ∧ ∗dφ

+ 1
2
(cαe

−φ + c̃αe
φ)trF gα ∧ ∗F gα − c̃αB ∧ trF gα ∧ F gα

+ 1
2
(cmn e

−φ + c̃mn e
φ)Fm ∧ ∗F n − c̃mn B ∧ Fm ∧ F n

− 1
2
guv(q)Dqu ∧ ∗Dqv − V ∗ 1 ,

(2.3.5)

where the non-abelian Yang-Mills field strengths are labeled as F gα and the abelian
field strengths as Fm. Due to supersymmetry, the gauge kinetic functions only depend
on the six-dimensional dilaton φ, with numerical factors cα, c̃α, cmn, c̃mn.11 For the
abelian factors kinetic mixing, parametrized by the off-diagonal part of cmn, c̃mn is
possible [121]. B is the sum of B+ and B−, and it is coupled to the vector multiplets
via Chern-Simons forms appearing in its field strength H = dB + ωL − cαω

YM
gα −

10Note that χ+ and χ− are each doublets of SU(2)R while 2λ+ are two singlets. The number of
on-shell degrees of freedom is always four.

11It was shown recently that these numerical factors are constrained to take values in a selfdual
lattice [120].
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cmnω
YM
mn , where ωL and ωYMgα are standard Chern-Simons forms while the ‘mixed’

abelian Chern-Simons form is given by

ωYMmn = dV m ∧ V n . (2.3.6)

The real hypermultiplet scalars are denoted by qu, u = 1, . . . , 4nH and their kinetic
terms are governed by the tensor guv(q) defining a metric on the scalar field space.
They are possibly charged under the gauge group, encoded in the covariant derivatives

Dqu = dqu − V aKua(q) , (2.3.7)

where a denotes the adjoint index of the gauge group and Kua(q) is a Killing vector
on the hyperscalar field space. Gauging of hypermultiplets necessarily leads to a
non-trivial scalar potential which takes the form of D-terms

V = 1
2

∑
a,s

DasDas

cαe−φ + c̃αeφ
+ 1

2

∑
m,n,s

DmsDns

cmne−φ + c̃mneφ
, (2.3.8)

where s = 1, 2, 3 is an adjoint SU(2)R-index. Moreover, we have

(Da,m)AB = ΓAuBK
ua,m , A,B = 1, 2 , (2.3.9)

with ΓAuB being a composite su(2)R-valued connection on the hyperscalar field space
[118, 119]. Our main interest in the following will be to derive the six-dimensional
couplings, i.e. the hyperscalar metric guv(q) and the explicit form of the D-term.

2.3.1 Hypermultiplet sector

In this section we collect some basic facts about hypermultiplets which are important
for the rest of this thesis. When constructing the smallest supermultiplet of N = 1 in
six dimensions (or N = 2 in four dimensions) one encounters the half-hypermultiplet
containing the following helicity degrees of freedom12

half-hypermultiplet : {−1
2
, 0, 0, 1

2
} . (2.3.10)

It has the same helicity content as a chiral multiplet in four dimensions, however, it
is generically not CPT-complete. All states in (2.3.10) have the same gauge quantum
numbers, hence, for non-zero charge q the CPT-conjugate antiparticle states have to
be added

hypermultiplet : {−1
2
, 0, 0, 1

2
}︸ ︷︷ ︸

q

+ {−1
2
, 0, 0, 1

2
}︸ ︷︷ ︸

−q

. (2.3.11)

12Note that in six dimensions the notion of helicity is different from the four-dimensional one.
The massless little group SO(4) ∼= SU(2)+ × SU(2)− has rank two such that there are two helicity
quantum numbers. The values ± 1

2 in (2.3.10) refer to the Cartan generator of SU(2)+ corresponding
to a chiral fermion λ+
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Thus, chiral fermions of a full hypermultiplet always occur in pairs of charge ±q or
in vector-like representations R⊕R in the non-abelian case. This is the reason why
the chiral gauge spectrum of the standard model cannot be realized in an N = 2
theory in four dimensions. For a neutral singlet half-hypermultiplet one might think
that (2.3.10) can be its own anti-multiplet. However, this is impossible due to the
following reason: Neutral spin-zero particles are described by real-valued scalar fields.
On the other hand, the two spin-zero states form a doublet of SU(2)R which cannot
be realized with two real scalar fields. Therefore, the CPT-conjugate states have
to be added even in the case of zero charge. The full hypermultiplet contains an
SU(2)R-doublet of complex scalar fields Φ = (C,D) or more generally

ΦR =

(
CR

DR

)
(2.3.12)

in the charged case. Finally, a half-hypermultiplet can be its own anti-multiplet
only if its gauge representation R is pseudoreal. Its spin-zero degrees of freedom are
described by the scalar fields of a full hypermultiplet, subject to the reality conditions
C̄x = εxyD

y and D̄x = −εxyCy. A solution is easily found to be [122]

half-hyperscalar : Φx =

(
Cx

±εxyC̄y

)
, (2.3.13)

where εxy is the (antisymmetric) intertwiner between R and R.

In a supersymmetric field theory (2.3.5) the kinetic terms of the hyperscalars
define a non-linear sigma model. The coupling function guv(q) defines a (pseudo-)
Riemannian metric on the scalar target spaceM. Characteristically, supersymmetry
restricts the geometry of M in the following way. By general arguments the super-
symmetry parameter spinors have to be seen as a bundle over M and the algebra
(2.3.2) holds at every point in M. This implies that there exists a covariantly con-
stant tensor field δAB such that the holonomy of the spinor bundle is reduced to the
R-symmetry group Sp(1) ∼= SU(2). Furthermore, the supersymmetry variation of
the hyperscalars reads

δεq
u = V u

aAε
Aλa+ , a = 1, . . . , 2nH , A = 1, 2 (2.3.14)

where εA are the two supersymmetry spinors, λa+ are the hyperinos and V u
aA is a

vielbein on M. Non-degeneracy of the vielbein implies that the tangent bundle of
the target space factorizes (at least locally) as

TM = H ⊗ E , (2.3.15)

into a two-dimensional vector bundleH and a 2nH-dimensional vector bundle E which
are both assumed to be pseudoreal. Covariant constancy of the vielbein further
implies that the holonomy group of M is contained in SU(2) × Sp(nH). In local
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supersymmetry the SU(2) curvature is necessarily non-zero, hence the target space
is a quaternionic-Kähler manifold. Moreover, the total scalar curvature is fixed by
supersymmetry to the specific value [97]

R = −8nH(nH + 2) . (2.3.16)

Quaternionic-Kähler manifolds are generically not analytic in the quaternionic
numbers, i.e. they cannot be covered by quaternionic coordinates. Nevertheless, the
four scalars of one hypermultiplet can be formally grouped into a quaternion repre-
sented by a complex two-by-two matrix of the form [123]

Q =

(
C D
−D̄ C̄

)
. (2.3.17)

Then SU(2)R acts by multiplication from the right and can be interpreted as multi-
plication with quaternion of unit norm. Clearly, our previous description in terms of
the doublet Φ = (C,D) corresponds to the first row of Q. A half-hypermultiplet then
can be written as a quaternion which is further constrained to the form

Q =

(
Cx ±εxyC̄y

∓εxyCy C̄x

)
. (2.3.18)

In both cases, the first and second row transforms in R and R, respectively.
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2.4 The gauge bundle and its deformations

In this chapter we set the stage for the dimensional reduction in the main part. As we
saw in section 2.1 a heterotic compactification M = M1,5 × Y consists of an internal
manifold Y and a gauge bundle (i.e. a principalH-bundle) over Y . Group theoretically
the gauge bundle is defined by an embedding G×H ⊂ E8×E8, where the unbroken
gauge group G is the commutant of H. For simplicity we assume that H is embedded
inside one E8 factor. For the dimensional reduction we have to study the properties of
the background solution as well as its space of deformations. In particular, all bosonic
matter fields arise from massless deformations of the background gauge connection.
It is well known that the spectrum of matter fields can be derived from the chiral
index of the appropriate Dirac operator and Dolbeault cohomology [79]. However,
for the bosonic effective action the multiplicities are not sufficient, one also needs the
precise properties of Kaluza-Klein zero modes. For a K3 compactification these zero
modes have, to our knowledge, not been discussed in the literature. We therefore
apply the local deformation theory of gauge connections, see for example chapter 4
of [112].

Let us focus on the hermitean Yang-Mills equations (2.1.10) which on K3 can be
written in the more concise way

F ∧ J = 0 , F ∈ H1,1(K3, h) , (2.4.1)

where h denotes the adjoint H-bundle. The first equation in (2.4.1) states that F is a
primitive two-form. The second equation in (2.4.1) implies that the gauge bundle is a
hermitean, holomorphic bundle with F being its curvature. The hermitean metric h
is locally given by the Killing form of the Lie algebra h and the hermitean connection
dA = d+A is compatible with the metric

dh(ψ1, ψ2) = h(dAψ1, ψ2) + h(ψ1, dAψ2) , (2.4.2)

where ψ1, ψ2 are local sections of the h-bundle. The curvature is given by

F = d2
A = dA+ 1

2
[A,A] . (2.4.3)

Acting on differential forms, we always understand dA as the exterior gauge-covariant
derivative. The holomorphic structure is given by the split dA = ∂A + ∂̄A, with the
Dolbeault operator ∂̄A = ∂̄ +A0,1 satisfying

∂̄2
A = F0,2 = 0 . (2.4.4)

Hence, on a holomorphic bundle there exists a (twisted) ∂̄A-Dolbeault complex and
corresponding cohomology groups Hp,q(K3, E), where E is the adjoint bundle or any
associated vector bundle. Let us note that both Hermitean Yang-Mills equations in
(2.4.1) together are equivalent to the anti-selfduality (ASD) condition [124]

? F = −F . (2.4.5)
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In fact, we know from section 2.2 that the anti-selfdual two-forms are in the or-
thogonal complement of J inside H1,1(K3,R). There is a topological obstruction to
the existence of a gauge bundle satisfying (2.4.5). In addition to the holomorphic
structure (2.4.4) the bundle E must be slope-stable, i.e. every sub-bundle E ′ ⊂ E
satisfies13

µ(E ′) =

∫
K3

c1(E ′) ∧ J < 0 . (2.4.6)

Conversely, the Donaldson-Uhlenbeck-Yau theorem [125, 126] ensures that given a
slope-stable bundle (2.4.6), there exists a unique solution of the hermitean Yang-Mills
equations (2.4.1). In particular, (2.4.6) implies that there are no trivial line bundles
(with c1(L) = 0) inside E. It also implies that the bundle is irreducible, that is, the
H-connection cannot be reduced to any proper subgroup H ′ ⊂ H. Let us note that
slope-stability condition (2.4.6) depends on the Kähler-class of the compact manifold
and therefore µ(E ′) can vary over the Kähler moduli space. As shown recently (for
Calabi-Yau three-folds), this effect leads to domain walls in the Kähler moduli space
of heterotic compactifications [77].

There is an alternative perspective towards supersymmetric vacuum solutions. By
general arguments, solutions with unbroken supersymmetry in Minkowski space are
necessarily located at the zero locus of the effective scalar potential. A first approx-
imation of the six-dimensional scalar potential can easily be found from integrating
(2.1.1) over K3 with inserted background fields

V6 ∼ −1
2

∫
K3

tr(F ∧ ?F) + 1
2

∫
K3

tr(R∧R)

= −1
2

∫
K3

tr(F ∧ ?F)− 1
2

∫
K3

tr(F ∧ F)

= −
∫
K3

tr(F+ ∧ ?F+) ,

(2.4.7)

where we used the integrated tadpole condition (2.1.4). F+ denotes selfdual fields,
?F+ = F+. Obviously, the zero locus of V6 is just given by an anti-selfdual Yang-
Mills background (2.4.5). Note that (2.4.7) defines a positive semidefinite scalar
potential, because the trace is the negative definite Killing form of the Lie algebra
(using antihermitean generators). In the following, we want to study the massless
deformations of a background solution (2.4.5). First, there are deformations which
strictly preserve (2.4.5), analogous to the geometrical Calabi-Yau moduli preserving
Ricci-flatness. Second, there are deformations which violate (2.4.5) but nevertheless
are massless.

13For simplicity we avoid the notion of sub-sheaves here.
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2.4.1 Massless deformations

It is known that on a hermitean, holomorphic bundle there exists a unique connection
compatible with both structures, called the Chern-connection. The physical fields
arise from deformations of the connection which preserve the hermitean structure of
the e8-bundle but change its holomorphic structure. It is known that these form an
affine space which can be parametrized by [112]

A = A+ a , a ∈ e8 ⊗ Λ1(M) , (2.4.8)

with A a background solution of (2.4.5). Then the field strength deforms as

F = F + f , f = dAa+ 1
2
[a, a] . (2.4.9)

Gauge equivalent deformations are modded out by fixing the Lorenz gauge

d∗Aa = 0 . (2.4.10)

For a compactification M = M5,1 ×K3 we decompose a = a1 + a1̄, where a1 denotes
an external one-form on M5,1 and a1̄ denotes an internal one-form on K3. They
deform the flat G- and the curved H-connection, respectively. In six dimensions,
gauge bosons will arise from a1 and (matter) scalars will arise from a1̄. Working with
complex coordinates on K3 the internal one-form decomposes as a1̄ = a0,1 +a1,0. The
hermitean structure is preserved if a1̄ satisfies the reality condition

(a1,0)† = −a0,1 , (2.4.11)

with respect to the hermitean metric.

Let us consider the ten-dimensional Yang-Mills Lagrangian

LYM ∼ tr(F ∧ ∗F ) . (2.4.12)

Inserting (2.4.9) the six-dimensional effective mass terms are given by

Lmass
6 [a1] ∼

∫
K3

tr(dAa1 ∧ ?dAa1) , (2.4.13)

Lmass
6 [a1̄] ∼

∫
K3

tr(dAa1̄ ∧ ?dAa1̄) +

∫
K3

tr(a1̄ ∧ ?[F , a1̄]) . (2.4.14)

From (2.4.13) it follows that massless gauge bosons Vi in six dimensions arise from
the deformations a1. The Kaluza-Klein expansion reads

a1 = Vi · ψi , dAψi = 0 , (2.4.15)
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i.e. the zero modes in this case are covariantly constant functions (sections), and the
multiplicity of gauge bosons depends on the number of independent sections ψi. In
fact, for sections of a HYM-bundle we have the identity14

d∗AdA = 2∂̄∗A∂̄A , (2.4.16)

It follows that ker(dA) = ker(∂̄A), such that the zero modes of (2.4.15) are counted by
the appropriate Dolbeault cohomology. The mass operator for the scalars is identified
from (2.4.14) as

∆YMa1̄ = d∗AdAa1̄ + ?[FA, a1̄] . (2.4.17)

Since this is not a usual Laplacian, the zero modes are unknown and their connection
to Dolbeault cohomology is obscure at first sight. (2.4.17) only implies that being
dA-closed is a sufficient condition

ker(dA) ⊂ ker(∆YM) . (2.4.18)

We will now show that one-form zero modes of ∆YM are in one-to-one correspondence
with zero modes of the ordinary Laplacian ∆∂̄A = ∂̄∗A∂̄A+ ∂̄A∂̄

∗
A. In other words, there

exists a Weitzenböck formula between the two Laplacians. We find the following
operator identity on one-forms15

d∗AdAa1̄ = 2∆∂̄Aa1̄ − dAd∗Aa1̄ + iJ · [F , a1̄] , (2.4.19)

which we prove in the appendix A.3. Here · denotes the contraction of differential
forms using the metric. The second term on the right hand side clearly vanishes in the
Lorenz gauge d∗Aa1̄ = 0. Moreover, on a complex Kähler surface with HYM-bundle
we have the second identity

? [F , a1̄] = −iJ · [F , a1̄] , (2.4.20)

proved in appendix (A.3) as well. Inserting both identities into the mass operator
(2.4.17), we are left with the (gauge fixed) identity on one-forms

∆YM = 2∆∂̄A = 2∆∂A . (2.4.21)

Hence, we arrive at

ker(∆YM) =
(
ker(∂̄A) ∪ ker(∂A)

)
⊂ ker(dA) , (2.4.22)

which together with (2.4.18) implies the equality

ker(∆YM) = ker(dA) . (2.4.23)

14A proof can be found, for example, in appendix E of [128].
15There is an equivalent identity with ∆∂A instead of ∆∂̄A

.
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On the one hand, (2.4.21) establishes the link to Dolbeault cohomology, i.e. the zero
modes are harmonic representatives of H0,1(K3, E). On the other hand, by (2.4.23)
the zero modes are gauge-covariantly constant. This fact will be crucial for the
derivation of the effective action, where it gives rise to a vanishing theorem. Finally,
massless scalars Cj in six dimensions arise from the deformations a1̄. The Kaluza-
Klein expansion reads

a1̄ = Cj · ωj , dAωj = ∆∂̄Aωj = ∆∂Aωj = 0 . (2.4.24)

2.4.2 Matter fields and bundle moduli

In the previous section we studied the general properties of local massless defor-
mations of the gauge connection (of one E8 factor), parametrized by the one-form
a ∈ e8 ⊗ Λ1(M). However, taking into account the nontrivial background solution
(2.4.1) valued in a subgroup H, the gauge group is broken to the maximal commutant
G. This is equivalent to the usual Higgs mechanism sourced by the gauge field itself.
Due to the breaking, the deformations a are grouped into multiplets according to the
decomposition of the adjoint representation e8 = 248

E8 → G×H : 248→
⊕
i

(Ri,Si)⊕ (g,1)⊕ (1, h) , (2.4.25)

where g and h denote the adjoint representations of G and H, respectively. The
1 is the trivial representation and (Ri,Si) are group-specific representations. The
right entries of (2.4.25) define vector bundles ESi with fibers RSi or CSi , depending
on the representation. They are associated with the principal H-bundle, i.e. they
have the same topology and are HYM. The left entries define the representations
of the six dimensional fields under the unbroken gauge group G. It is known from
supersymmetry that in six dimensions massless hypermultiplets with representations
Ri occur with multiplicities given by the chiral index16 [79]

χ(ESi) = h0,0(K3, ESi)− h0,1(K3, ESi) + h0,2(K3, ESi) , (2.4.26)

In fact, h0,0(K3, E) and h0,2(K3, E) vanish on every HYM-bundle E. This can be
seen as follows: H0,0(K3, E) is the space of global sections of E, which are closed
with respect to the Dolbeault operator ∂̄A on K3. Due to the identity (2.4.16) any
such section is also covariantly constant. However, no constant sections exist, because
E is nontrivial and irreducible. The vanishing of H0,2(K3, E) then follows by Serre
duality [129]

H0,q(K3, E) ∼= H0,2−q(K3, E∗) . (2.4.27)

16χ is called chiral index due to the equivalent definition χ(E) = n+
E − n

−
E , where n±E count the

chiral zero modes of the Dirac operator. On K3 one has χ(E) = χ(E∗), so complex conjugate
representations always occur with equal multiplicities. Due to the definite chiralities in the vector-
and hypermultiplets, χ(E) counts the difference of them.
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Let us return to the different terms in (2.4.25), and ask which representations
occur with gauge bosons and scalars in six dimensions. Gauge bosons only arise from
the term (g,1), because non-vanishing zero modes (2.4.15) only exist in the trivial
bundle E1. The multiplicity is given by Dolbeault cohomology

h0,0(K3, E1) = h0,0(K3) = 1 , (2.4.28)

yielding one gauge boson in the adjoint representation of the unbroken gauge group.
In contrast, no scalars can occur in the adjoint representation g, because their zero
modes take values in

H0,1(K3, E1) = H0,1(K3) = 0 . (2.4.29)

Generically, one gets scalars from representations (R,S) with some multiplicity given
by h0,1(K3, ES). Here three cases can arise: First, if R and S are both real represen-
tations, the Kaluza-Klein expansion (2.4.24) yields real scalars

a1̄ = BR
j ⊗ ωS

j . (2.4.30)

Second, if (R,S) is a real representation but R and S are each pseudoreal, we are
forced to use a real combination of complex scalars CR

j and complex one-forms in the
Kaluza-Klein expansion

a1̄ = a0,1 + a1,0 = CR
j ⊗ ωS

j + σ(C̄R
j ⊗ ω̄S

j ) . (2.4.31)

Here σ is the intertwiner which maps R to R and S to S. The complex scalars CR
j

align in half-hypermultiplets in six dimensions. Third, if (R,S) is a complex repre-
sentation, (A.1.7) also restricts the Kaluza-Klein expansion to be a real combination
of complex scalars. But a complex representation always occurs pairwise with its
complex conjugate, (R,S)⊕ (R,S), because e8 is real. This yields a pair of complex

scalars CR
j , D̄R

j

a1̄ = CR
j ⊗ ωS

j + σ(C̄R
j ⊗ ω̄S

j ) + D̄R
j ⊗ $̄S

j + σ−1(DR
j ⊗$S

j ) . (2.4.32)

From (2.4.24) it follows that the zero modes are harmonic representatives of the
cohomology groups

ωk ∈ H0,1(K3, ES) , ωk ∈ H1,0(K3, ES̄) ,

$k ∈ H1,0(K3, ES) , $k ∈ H0,1(K3, ES̄) .
(2.4.33)

Here ES̄ = (ES)∗ is the dual vector bundle. On K3 the multiplicities of the scalars

CR
j , D̄R

j are the same due to Serre duality

H0,1(K3, ES) ∼= H0,1(K3, ES̄) (2.4.34)
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and can be computed via the chiral index (2.4.26).17 Thus, in six dimensions the

scalars align in hypermultiplets with scalar components ΦR⊕R
k = (CR

k , D
R

k ).

Finally, there may arise scalar fields from the term (1, h) in (2.4.25), which play
a special role. Applying the analysis of section 2.4.1 to this multiplet, there exist
massless deformations if the cohomology group H0,1(K3, h) is nontrivial. Let us now
show that any such deformation is not only massless but a true modulus, i.e. a flat
direction of the scalar potential

V6 ∼ −
∫

tr(F+ ∧ ?F+) . (2.4.35)

It is clear from (2.4.35) that flat deformations must preserve the anti-selfduality (or
equivalently the HYM property) of the gauge bundle. In fact, it is known that the
moduli space of ASD connections modulo gauge transformations is equivalent to the
moduli space of holomorphic structures on the bundle (see for example [124]). A
holomorphic structure is defined by a Dolbeault operator satisfying ∂̄2

A = F0,2 = 0
and a deformation A = A + a, with a ∈ Λ1(K3, h) defines another holomorphic
structure if F0,2

A = 0, i.e.
∂̄Aa

0,1 + 1
2
[a0,1, a0,1] = 0 . (2.4.36)

Infinitesimally this yields a0,1 ∈ ker(∂̄A). However, a ∈ ker(∂̄A) contains directions
which lead to gauge-equivalent holomorphic structures which have to be modded out.
The gauge-equivalent Dolbeault operators are related by conjugation in H

∂̄hA = h−1∂̄Ah ≈ ∂̄A + ∂̄Aδh , (2.4.37)

where h ∈ Λ0(K3, H) and h ≈ 1 + δh, δh ∈ Λ0(K3, h). Modding out the term
∂̄Aδh ∈ Im(∂̄A), infinitesimal deformations of the holomorphic structure are given by

a0,1 ∈ ker ∂̄A : Λ0,1(h)→ Λ0,2(h)

Im ∂̄A : Λ0(h)→ Λ0,1(h)
= H0,1(K3, h) , (2.4.38)

which is the same cohomology group as from the mass operator. By uniqueness, all
massless deformations in the multiplet (1, h) are actually complex structure moduli
of the H-bundle. The Kaluza-Klein expansion yields complex singlet scalars ξk in six
dimensions, which are termed bundle moduli

a1̄ = ξk ⊗ αk + ξ̄k ⊗ ᾱk , αk ∈ H0,1(K3, h) . (2.4.39)

17On a Calabi Yau three-fold the scalars CR and D
R

occur with different multiplicities, yielding
the four-dimensional chiral spectrum.



Chapter 3

Effective action from the standard
embedding

In this chapter we will apply the local deformation theory of gauge connections from
section 2.4 to a specific background solution. We derive the effective six-dimensional
action with explicit moduli dependent coupling functions of the charged matter fields.
Let us recall that heterotic compactifications are subject to the topological constraint

1
2

∫
K3

tr(F ∧ F) = 1
2

∫
K3

tr(R∧R) = χK3 = 24 , (3.0.1)

where χK3 is the Euler characteristic of K3. This holds in the absence of branes and
for vanishing H-flux, which is the only possibility on K3 due to H3(K3,R) = 0.1 The
standard embedding is defined as the solution of (3.0.1) with the integrands identified,
i.e. F ≡ R and H ≡ 0 in (2.1.4) [49]. This is a valid solution of the hermitean Yang-
Mills equations because R is anti-selfdual. Since the curvature two-form takes values
in the Lie algebra of the holonomy group SU(2), also the Yang-Mills field strength
takes non-zero values in a SU(2) sub-bundle inside one E8. Hence, in the standard
embedding we have the breaking pattern

E8 × E8 −→ E8 × E7 × 〈SU(2)〉 , (3.0.2)

where E7 is the maximal commutant of SU(2). Moreover, SU(2) can be identified
with structure group of the (anti-)holomorphic tangent bundle TK3, such that the Lie
algebra can be identified as

su(2) = End TK3 , (3.0.3)

i.e. with the bundle of linear transition functions acting on TK3. The hermitean
Yang-Mills equations can be written as

F ∈ H1,1(End TK3) , F ∧ J = 0 . (3.0.4)

1Solutions H 6= 0 are briefly discussed in chapter 4.

43
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The relation (3.0.3) will enable us to express the deformations of the gauge bundle in
a particular simple way and to find the explicit moduli dependence of their coupling
functions. This seems to be only possible in the standard embedding.

3.1 Yang-Mills sector

We now apply the analysis of section 2.4.2 to the standard embedding and derive
the Kaluza-Klein expansion of the Yang-Mills field. The deformations a now come
in multiplets determined by decomposition of the adjoint representation of E8 under
the breaking (3.0.2)

248→ (133,1)⊕ (1,3)⊕ (56,2) ,

TA → (Tn, Ts, Txa) .
(3.1.1)

In the second line we labeled the corresponding generators. The second E8 factor can
be neglected. The right entries in (3.1.1) can be identified with the following vector
bundles

E1 = O ,

E2 = TK3 ,

E3 = su(2) = End TK3 ,

(3.1.2)

where O is the trivial line bundle over K3. As explained in (2.4.28) the term (133,1)
yields one gauge field in the adjoint of the unbroken gauge group E7 in six dimensions

a
(133,1)
1 = V 133 = V nTn . (3.1.3)

The term (1,3) corresponds to the bundle moduli as specified in (2.4.39)

a
(1,3)

1̄
= ξk ⊗ α3

k + ξ̄k ⊗ ᾱ3
k = ξkα

s
kTs + ξ̄kᾱ

s
kTs (3.1.4)

and the zero modes are harmonic representatives αk ∈ H0,1(End TK3). Note that the
up-type and down-type notation for the adjoint indices n and s is unnecessary but
convenient when combined with the generators Txa. The multiplicity of the bundle
moduli (indexed by k) cannot be related to the Hodge numbers of K3 but can be
computed via the chiral index (2.4.26)

h0,1(End TK3) = −χ(End TK3) . (3.1.5)

The chiral index can be expressed with known characteristic classes via the Hirzebruch-
Riemann-Roch theorem2

χ(ES) =

∫
K3

Td(K3) ∧ ch(ES) = 2rk(ES) + ch2(ES) . (3.1.6)

2See for example chapter 5.1 of [112].
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Here Td(K3) is the Todd-class of K3, rk(E) is the rank of the vector bundle and
ch2(ES) = −1

2

∫
trSF ∧ F is the second Chern-character known from the tadpole

condition (3.0.1). Using rk(End TK3) = 3 and the fact that the trace in the adjoint
of SU(2) is four times the trace in the fundamental representation we get

h0,1(End TK3) = −6 + 1
2

∫
tr3(F ∧ F)

= −6 + 4
2

∫
tr2(F ∧ F)

= −6 + 4 · 24

= 90 .

(3.1.7)

Since (56,2) is a product of two pseudoreal representations, its massless Kaluza-Klein
components are given according to (2.4.31) by

a
(56,2)

1̄
= C56

j ⊗ ω2
j + σ(C̄56

j ⊗ ω̄2
j ) = Cx

j (ωj)
aTxa + εxyεab̄C̄jy(ω̄j)

b̄Txa . (3.1.8)

Here Cx
j are the massless charged matter scalars of the six-dimensional theory. The

zero modes are harmonic representatives ω2
j ∈ H0,1(TK3). The intertwiner σ :

(56,2) 7→ (56,2) is given by the antisymmetric invariant tensors εxy and εa
b̄

of
E7 and SU(2), respectively. Note that a, b = 1, 2 are flat tangent indices of TK3 as
well as ā, b̄ are flat tangent indices of T K3. Moreover, we use up-type and down-type
indices to distinguish TK3 from its dual T ∗K3 and to distinguish the 56 representation
from its complex conjugate 56.

Due to the standard embedding the zero modes ω2
j can be related to the usual

harmonic (1, 1)-forms ηj on K3 via the isomorphism

H0,1(TK3) ∼= H1,1(K3) ,

H1,0(TK3) ∼= H1,1(K3) .
(3.1.9)

From the Hodge diamond (2.2.11) we see that the multiplicity (indexed by j) is
20. The isomorphisms are realized by first converting into curved indices, (ωj)

a =
eaα(ωj)

α, via vielbeins and then using the holomorphic two-form Ω

(ωj)
β
ᾱ = 1

||Ω||2 Ω̄αβ(ηj)αᾱ ,

(ω̄j)
β̄
α = 1

||Ω||2 Ωᾱβ̄(ηj)αᾱ ,
(3.1.10)

Here we wrote also the one-form index explicitly. The prefactor ‖Ω‖−2 ensures that
the zero mode is independent of the K3 volume. Interestingly, there exists an alter-
native isomorphism

H0,1(TK3) ∼= [Ω̄]⊕H1,1(K3)\[J ] , (3.1.11)
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that is, the zero modes are mapped to the anti-holomorphic two-form and the (1, 1)-
forms with the Kähler form excluded. This isomorphism is realized as

ω β
ᾱ = gββ̄(t(ᾱβ̄) + t[ᾱβ̄]) = gββ̄(Ω̄δ

(ᾱηβ̄)δ + Ω̄ᾱβ̄) , (3.1.12)

where t(ᾱβ̄) and t[ᾱβ̄] is a symmetric and antisymmetric tensor, respectively. The
Kähler form is excluded due to the vanishing symmetrized contraction Ω̄δ

(ᾱJβ̄)δ = 0.
Both isomorphies are related by the rotation of the hypercomplex structure of K3
which rotates the triple (J1, J2, J3). We see here that the zero modes of the charged
matter fields are not independent of the geometric K3 moduli. They clearly depend
on the very definition of TK3 which involves the metric and the complex structure
of K3. Equivalently, the subspace H1,1(K3) ⊂ H2(K3) is only defined by specifying
Ω, i.e. the complex structure of K3. As a consequence, the coupling functions of the
charged matter fields will be given by integrals which are not topological invariants
but rather depend on the geometric K3 moduli. For definiteness we will use the first
isomorphism (3.1.10) in the rest of this thesis.

3.1.1 Expansion of the field strength

We now insert the deformations of the gauge connection into the field strength. Recall
that we generically have

F = F + f , f = dAa+ 1
2
[a, a] (3.1.13)

We split the ten-dimensional derivative dA into a derivative d along M5,1 which is just
the exterior differential and a derivative dA (by abuse of notation) along K3. Clearly,
the generators in the representations (133,1) and (1,3) commute and [133,56] = 56
is the action of E7 in the fundamental representation. Together, we arrive at the
following terms

f = f
(133,1)
2 + f

(1,3)

1,1̄
+ f

(56,2)

1,1̄
+ f

(1,3)

2̄
+ f

(133,1)

2̄
+ f

(56,2)

2̄
. (3.1.14)

Here we again denote by fR,S̄ a tensor with R indices along M5,1 and S indices along
K3. The first term in (3.1.14) is the field strength (fluctuation) of the unbroken gauge
group E7

f
(133,1)
2 = dV 133 + 1

2
[V 133, V 133] . (3.1.15)

The second term in (3.1.14) reads

f
(1,3)

1,1̄
= dξk ∧ α3

k + dξ̄k ∧ ᾱ3
k , (3.1.16)

with no contribution from the commutator. The third term reads

f
(56,2)

1,1̄
= da

(56,2)

1̄
+ [a

(133,1)
1 , a

(56,2)

1̄
]

= DC56
j ∧ ω2

j + σ(DC̄56
j ∧ ω̄2

j ) ,
(3.1.17)
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where we introduced the E7 gauge covariant derivative D defined by

DCx
j = dCx

j + V n(τn)xyC
y
j . (3.1.18)

Here (τn)xy is the E7 generator in the 56 representation. Since 56 is pseudoreal the
complex conjugate generators obey the reality condition

(τ̄n) y
x = εxx′ε

yy′(τn)x
′

y′ , (3.1.19)

with εxx
′

being the antisymmetric invariant tensor of E7 and εxx′ its inverse. Let
us now turn to the last two terms in (3.1.14). First recall from (2.4.24) that all
zero modes are closed under the differential operator dA along K3. Hence, the f2̄

terms only arise from the commutator in (3.1.13). The relevant antisymmetric tensor
products of representations are

(1,3)⊗A (1,3) = (1,3) ,

(56,2)⊗A (56,2) = (1,3)⊕ (133,1) ,

(1,3)⊗A (56,2) = (56,2) .

(3.1.20)

These are realized in terms of generators as

[Tr, Ts] = ε t
rs Tt ,

[Txa, Tyb] = εxy(σ
s)abTs + (τn)xyεabTn ,

[Ts, Txa] = (σs)
b
a Txb ,

(3.1.21)

where ε t
rs = εrst are the structure constants of SU(2) and (σs)

b
a are the Pauli ma-

trices. We now put the terms together and use the zero mode properties. For the
bundle moduli zero modes we not only know that they are dA-closed (infinitesimally)
but also that they satisfy the nonlinear equation (2.4.36) (and its complex conjugate).
This eliminates part of the commutator and we are left with

f
(1,3)

2̄
=
[
ξkα

3
k , ξ̄lᾱ

3
l

]
+ 1

2

[
C56
i ω2

i + σ(C̄56
i ω̄2

i ), C56
j ω2

j + σ(C̄56
j ω̄2

j )
]

= ξkξ̄lα
r
k ∧ ᾱsl εrstTt + +1

2

(
εxyC

x
i C

y
j ω

α
i ∧ ω

β
jR

s
αβ + εxyC̄ixC̄jyω̄

ᾱ
i ∧ ω̄

β̄
j R̄

s
ᾱβ̄

)
Ts ,

(3.1.22)
where we abbreviated the tensor Rs

αβ = e a
α e

b
β (σs)ab. Note that the mixed C̄C-terms

cancel out and that all terms in (3.1.22) are harmonic two-forms with values in the
endomorphism bundle

f
(1,3)

2̄
∈ H2(K3,End TK3) . (3.1.23)

This shows that (3.1.22) can be interpreted as a deformation of the background field
strength F . For the bundle moduli we know that they preserve the hermitean Yang-
Mills equations, hence the first term in (3.1.22) is a (1, 1)-form, i.e. a deformation
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δF along a flat direction of the scalar potential by construction. The second term
involving the matter fields is a (2, 0)- and (0, 2)-form, i.e. a deformation δF which
clearly violates the hermitean Yang-Mills equations. Returning to (3.1.14), we have
the next term

f
(56,2)

2̄
=
[
ξkα

3
k + ξ̄kᾱ

3
k , C

56
i ω2

i + σ(C̄56
i ω̄2

i )
]

=
(
ξkα

s
k + ξ̄kᾱ

s
k

)
∧
(
Cx
i ω

a
i (σs)

b
a + εxyC̄iyω̄

b̄
i ε
a
b̄(σs)

b
a

)
Txb ,

(3.1.24)

which clearly belongs to the cohomology group

f
(56,2)

2̄
∈ H2(K3, TK3) . (3.1.25)

Finally, we have the term
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(3.1.26)

Here we converted again to curved tangent indices for the zero modes ωi. We can
now identify the products of vielbeins and Levi-Civita symbols to be global tensors
on K3

e a
α e

b
β εab = Ωαβ ,

e ā
ᾱ e

b̄
β̄ ε

a
āε
b
b̄εab = Ω̄ᾱβ̄ ,

e a
α e

b̄
β̄ ε

b
b̄εab = gαβ̄ .

(3.1.27)

Here, since we take εab to be a constant tensor with respect to the spin connection, the
converted tensor is constant with respect to the Levi-Civita connection, ∇εαβ = 0.
Hence, it must be equal to the holomorphic two-form Ωαβ, up to a constant which we
omit. Clearly, gαβ̄ is the Kähler metric on K3 by construction. It will be convenient
to write the terms in (3.1.26) as a quadratic (hermitean) form

f
(133,1)
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2
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C̄ix
εxzC

z
i

)T (
ω̄ᾱi ∧ ω
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j gᾱβ ω̄ᾱi ∧ ω̄
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(τn)xy
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Cy
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εyzC̄jz

)
Tn . (3.1.28)

Due to the contractions these terms are harmonic two-forms on K3

f
(133,1)

2̄
∈ H2(K3,R) . (3.1.29)

This completes the Kaluza-Klein reduction of the Yang-Mills sector. We now turn to
the Kalb-Ramond field.
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3.2 Kalb-Ramond sector

In the heterotic string theory the B-field is not a usual two-form potential [102, 103].
In particular, it is not Yang-Mills gauge invariant, instead under an infinitesimal
gauge transformation parametrized by Λ we have

δΛA = dΛ + [A,Λ] , δΛB = tr(ΛdA) . (3.2.1)

The gauge invariant field strength contains the Yang-Mills and Lorentzian Chern-
Simons three-forms [24]

H = dB + α′(ωL − ωYM) . (3.2.2)

The Chern-Simons forms are local potential three-forms of the second Chern-characters

dωYM = trF ∧ F , dωL = trR ∧R . (3.2.3)

Since the gauge bundle and the tangent bundle of K3 are identified in the standard
embedding with background values satisfying F = R, also the background values of
the Chern-Simons forms can be taken to be equal, 〈ωYM〉 = 〈ωL〉. However, it is clear
that deformations of the K3 metric and of the gauge bundle are independent degrees
of freedom, yielding non-trivial contributions to a Kaluza-Klein reduction of (3.2.2)
at order α′. Starting from the ten-dimensional kinetic term

LKR ∼ H ∧ ∗H , (3.2.4)

the equation motion d∗H = 0 and Bianchi identity dH = 0 imply that solutions
are harmonic. Since we consider the trivial background solution H = 0, massless
(and in fact flat) deformations are given by an expansion into the harmonic zero- and
two-forms on K3

H = H3 +H1,2̄ . (3.2.5)

The first term is simply the six-dimensional field strength, analog of (3.2.2). On the
other hand, H1,2̄ will yield non-trivial couplings of the six-dimensional scalar fields.

3.2.1 Kaluza-Klein expansion

Let us start by considering the Yang-Mills Chern-Simons form in ten dimensions
which is defined by

ωYM = tr(F ∧ A)− 1
3
tr(A ∧ A ∧ A) . (3.2.6)

Using our previous results from the Yang-Mills sector the tangent indices of ωYM1,2̄

allow the following combination of terms

ωYM1,2̄ = tr(f1,1̄ ∧ A1̄) + tr(F2̄ ∧ a1)− tr(A1̄ ∧ A1̄ ∧ a1) , (3.2.7)
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where A1̄ = A+a1̄ and F2̄ = F +f2̄ contain background plus fluctuations. Under the
trace only terms in the same representations survive such that the only nonvanishing
terms are

ωYM1,2̄ = tr
(
f

(56,2)

1,1̄
∧ a(56,2)

1̄

)
+ tr

(
f

(1,3)

1,1̄
∧ (a

(1,3)

1̄
+A)

)
. (3.2.8)

The traces of the corresponding (antihermitean) generators read

tr(TsTt) = −δst ,

tr(TxaTyb) = −εxyεab .
(3.2.9)

where εxy and εab are the antisymmetric invariant tensors of E7 and SU(2), respec-
tively. Inserting the results of the previous section we obtain
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∧ a(56,2)

1̄

)
= εxyC
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j gᾱβ ω̄ᾱi ∧ ω̄

β̄
j Ω̄ᾱβ̄
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Cx
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εxzC̄jz
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,

(3.2.10)
where in the last line the term is written as a quadratic (hermitean) form, similar to
(3.1.28). The second term in (3.2.8) reads

tr
(
f

(1,3)

1,1̄
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(1,3)

1̄
+A)

)
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s
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(
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dξk
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αsk ∧ αsl αsk ∧ ᾱsl
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ξ̄l
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k + dξ̄kᾱ

s
k

)
∧ As .

(3.2.11)
Here the appearance of the background gauge connection A seems problematic since
a Kaluza-Klein expansion requires globally defined harmonic forms on K3. However,
the corresponding term is a total derivative in six dimensions which can be removed
by a redefinition of the B-field

B̃2̄ = B2̄ + tr
(
(ξkα

3
k + ξ̄kᾱ

3
k) ∧ A

)
. (3.2.12)

In fact, it is this combination which is invariant under SU(2) gauge transformations
of the curved Yang-Mills connection over K3. Writing a = ξkα

3
k + ξ̄kᾱ

3
k , the two terms

transform in the opposite way (up to a total derivative)

δΛB2̄ = tr
(
Λd(A+ a)

)
= −tr

(
dΛ ∧ (A+ a)

)
+ d-exact ,

δΛtr(a ∧ A) = tr
(
(dΛ + [a,Λ]) ∧ A

)
− tr

(
a ∧ (dΛ + [A,Λ])

)
= tr

(
dΛ ∧ (A+ a)

)
,

(3.2.13)
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where d is the exterior derivative on K3. Therefore, B̃2̄ can be expanded into globally
defined, harmonic two-forms

B̃2̄ = bIηI , ηI ∈ H2(K3,R) , (3.2.14)

where bI , I = 1, . . . , 22 are scalars in six dimensions.

3.2.2 Lorentz Chern-Simons form

We now turn to the Lorentzian Chern-Simons form. Recall that the background con-
tribution is canceled exactly by the Yang-Mills Chern-Simons form, 〈ωYM〉 = 〈ωL〉.
However, fluctuations of the K3 metric yield fluctuations of the Levi-Civita connec-
tion, preserving Ricci-flatness and anti-selfduality of the Riemann tensor. Let us
consider deformations of the Levi-Civita connection coming from the metric defor-
mations of K3. Whereas in the Yang-Mills case the deformations were defined to
preserve the hermitean metric of the E8 bundle, here the deformations clearly change
the metric on the tangent bundle. Since K3 has no isometries the ten-dimensional
metric is decomposed as

(GMN) =

(
Gµν 0

0 Gmn + gmn(t)

)
, (3.2.15)

where Gmn is the background K3 metric and gmn(t) are fluctuations which can be
parametrized by the K3 moduli t. They are constrained to preserve the Ricci-flatness
of K3, i.e. they satisfy the Lichnerowicz equations

∆Lgmn = ∇k∇kgmn + 2R p q
m n gpq = 0 ,

∇mgmn = 0 , Gmngmn = 0 .
(3.2.16)

In ten dimensions we have an orthonormal frame field eAMdx
M and the compatible

Levi-Civita connection Θ locally given by

(ΘM)ABdx
M = eAN∂Me

N
B + eANe

P
BΓNMP ∈ Λ1(M9,1, so(9, 1)) . (3.2.17)

The deformation of the Christoffel symbol to linear order in g reads

δΓPMN = 1
2
GPQ(∇MgNQ +∇NgMQ −∇QgMN) . (3.2.18)

Restricting to internal deformations gmn(t) we get a deformation θ1

θ1 = eame
n
b δΓ

m
µndx

µ

= 1
2
eame

n
bGmp∂µgnpdxµ ∈ Λ1(M5,1)⊗ End(TK3) .

(3.2.19)
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However, it cannot be considered as a deformation of the external flat connection
which would be valued in End(TM5,1). In contrast to the background connection, this
tensor need not be valued in so(4). Using (3.2.16) we only know that it is in the
traceless part of End(TK3), i.e. can be an arbitrary traceless matrix. Also, in contrast
to the Yang-Mills case, this one-form need not be a global section of the End(TK3)
bundle, because gmn may be a deformation with zeros. Second, we get a deformation
of the curved internal connection Θ1̄ → Θ1̄ + θ1̄

θ1̄ = eane
p
bδΓ

n
mpdx

m

= 1
2
eane

p
bG

nq(∇mgpq +∇pgmq −∇qgmp)dx
m ∈ Λ1(K3,End(TK3)) .

(3.2.20)

The curvature deforms accordingly

R∇+θ = R∇ +∇θ + 1
2
[θ, θ] , (3.2.21)

such that we group the contributions according to external and internal spacetime
indices.

δR1,1̄ = d1θ1̄ +∇1̄θ1 + [θ1, θ1̄] , (3.2.22)

δR2̄ = ∇1̄θ1̄ + 1
2
[θ1̄, θ1̄] . (3.2.23)

Taking all possible combinations the deformation of the Lorentz Chern-Simons form
ωL1,2̄, with one external and two internal spacetime indices, reads

ωL1,2̄ = tr(δR1,1̄ ∧ θ1̄) + tr((R+ δR2̄) ∧ θ1)− tr(θ1 ∧ (Θ1̄ + θ1̄) ∧ (Θ1̄ + θ1̄)) , (3.2.24)

and contains up to cubic terms in gmn.

ωL1,2̄ (linear) = tr(R∧ θ1 −Θ1̄ ∧Θ1̄ ∧ θ1)

= tr(d1̄Θ1̄ ∧ θ1) ,
(3.2.25)

ωL1,2̄ (quadratic) = tr
(
Θ1̄∧ [θ1, θ1̄] + (d1θ1̄)∧ θ1̄ + (∇1̄θ1)∧ θ1̄ + (∇1̄θ1̄)∧ θ1

)
, (3.2.26)

ωL1,2̄ (qubic) = tr
(
[θ1, θ1̄] ∧ θ1̄ + 1

2
[θ1̄, θ1̄] ∧ θ1 − θ1 ∧ θ1̄ ∧ θ1̄

)
= tr

(
[θ1, θ1̄] ∧ θ1̄

)
.

(3.2.27)

The linear term is a total derivative in six dimensions, however the others may give
non-trivial contributions to the geometrical moduli space metric. Unfortunately, we
cannot translate the Lichnerowicz equations into a simple (first order) differential
equation for θ1 and θ1̄ as we could do for the gauge connection (2.4.24). Therefore,
the relevance of the Lorentz Chern-Simons forms for the six-dimensional effective
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action remains obscure and we leave this issue for future studies. As the final Kaluza-
Klein expansion of H1,2̄ we take the result from the previous section

H1,2̄ = dbI ∧ ηI + α′
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dξ̄k
dξk

)T (
ᾱsk ∧ αsl ᾱsk ∧ ᾱsl
αsk ∧ αsl αsk ∧ ᾱsl

)(
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β̄
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)(
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εxzC̄jz
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(3.2.28)

3.3 6D Effective action

Using the results from the previous sections we now derive the six-dimensional effec-
tive action up to order α′2. This involves nontrivial integrals over K3 which yield
moduli-dependent coupling functions. These have not been determined explicitly be-
fore. We here present the results and refer the reader to appendix B for a detailed
computation. The effective action of the gravity-dilaton sector has been determined
in ref. [113] and we include their result in the following. For the Einstein frame in six
dimensions the dilaton has to be redefined as

φ = Φ− 1
2
lnV , (3.3.1)

where Φ is the ten-dimensional dilaton and V is the K3 volume. The Einstein-frame
metric is given by gµν = e−φGµν . From this redefinition a factor of V−1 appears in
front of all terms in the Lagrangian with nontrivial K3 integral. Altogether we arrive
at the bosonic Lagrangian

L6 = 1
2
R ∗ 1 − 1

6
e−2φH ∧ ∗H + α′

2
e−φtrF 133 ∧ ∗F 133

+ 9
2
dφ ∧ ∗dφ + Lσ − V ∗ 1 .

(3.3.2)

The first line contains the Einstein-Hilbert term, and kinetic terms of the Kalb-
Ramond field H (including Chern-Simons couplings) and the Yang-Mills field strength
F 133 with gauge group E7. The second line contains all scalars of the six-dimensional
theory. Lσ contains kinetic terms of the scalars which belong to hypermultiplets and
defines a non-linear sigma model. V is the corresponding scalar potential. The kinetic
term of the dilaton is written separately because it belongs to the tensor multiplet.
Note that we do not derive the six-dimensional Green-Schwarz counter-term since
we only considered the ten-dimensional tree level action (2.1.1). In the following we
concentrate on Lσ and V .

3.3.1 Kinetic terms

As explained in section 2.3 minimal local supersymmetry in six dimensions (equivalent
to N = 2 supersymmetry in four dimensions) puts severe constraints on the geome-
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try of the non-linear sigma model of hypermultiplet scalars. Their target space is a
quaternionic-Kähler manifold, consisting of a (pseudo-)Riemannian metric, three al-
most complex structures and a certain compatibility between them. The sigma model
containing the scalar fields belonging to hypermultiplets is given by the Lagrangian

Lσ = 1
4
hIJdt

I
s ∧ ∗dtJs − 1

8V2dV ∧ ∗dV

− α′gijDC̄ix ∧ ∗DCx
j − α′

V Gkldξ̄k ∧ ∗dξl

− 1
6V gIJDCb

I ∧ ∗DCbJ .

(3.3.3)

In the first line we have the kinetic terms defining the metric on the geometric K3
moduli space MK3 with

hIJ = ρIJ − 1
2
ρIKρJLt

K
s t

L
s , (3.3.4)

(see (2.2.29) and (2.2.33)). In the second line of (3.3.3) there are the kinetic terms
of the scalars from the Yang-Mills sector, i.e. the matter fields Cx

i and the bundle
moduli ξk. The matter fields are charged under the unbroken gauge group E7 and
exhibit multiplets in the 56 representation. Their covariant derivatives are given by

DCx
i = dCx

i + V n(τn)xyC
y
i , (3.3.5)

where V n , n = 1, . . . , 133 are the gauge bosons. From (3.3.5) we easily read off the
linear Killing vectors

(Kn)xi = (τn)xyC
y
i . (3.3.6)

The leading kinetic metric of the matter fields is derived in (B.1.7) and reads

gij =

∫
K3

ηi ∧ ?ηj , (3.3.7)

where ηi , i = 3, . . . , 22 is a basis of harmonic two-forms spanning H1,1(K3,R). gij
depends on the K3 moduli as it is a projection of gIJ defined below. If we fix
H1,1(K3,R) by fixing a complex structure on K3 via Ω = 1√

2
(J1 + iJ2), the moduli

tI1, t
I
2 are frozen. Then gij only depends on the remaining Kähler moduli ti3 according

to
gij = −ρij + ρikρjlt

i
3t
j
3 . (3.3.8)

We see here already that the couplings of the charged matter fields require the moduli
space of K3 to be considered as a fibre bundle of Kähler moduli over the base of
complex structure moduli. This division certainly spoils the hypercomplex structure
and hence, the manifest SU(2)R symmetry of the effective action. The bundle moduli
ξk are complex fields which are singlets under the gauge group E7. Their leading
kinetic metric of the bundle moduli is given by

Gkl =

∫
K3

ᾱsk ∧ ?αsl . (3.3.9)
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It certainly depends on the K3 moduli but we cannot derive the explicit form.3 In
the third line of (3.3.3) we find the kinetic term of the B-field scalars coupled to
the Yang-Mills scalars at order α′. The leading kinetic metric in front is derived in
(B.1.5) and reads

gIJ = −ρIJ + ρIKρJLt
K
s t

L
s . (3.3.10)

The further couplings are encoded in the expression

DCbI = dbI + α′M I
ij(C

x
jDC̄ix − C̄ixDCx

j ) + α′(N I
ijεxyC

x
i DC

y
j + N̄ I

ijε
xyC̄ixDC̄jy)

+ α′MI
kl(ξ̄kdξl − ξldξ̄k) + α′(N I

klξkdξl + N̄ I
klξ̄kdξ̄l)

(3.3.11)
Here the coupling functions M I

ij and N I
ij are derived in appendix B.1 and read

M I
ij = −iV

1
2

(
ρijt

I
3 − δIj ρKitK3 − δIi ρKjtK3

)
,

N I
ij = 1√

2
ρij(t

I
1 − itI2) .

(3.3.12)

Both, M I
ij and N I

ij, depend on the K3 moduli but for a fixed complex structure we
have the following simplification. In a basis (η1, η2, ηi) of H2(K3,R), where η1, η2 span
the complex structure two-plane, we have 〈J1,2, ηI〉 = 0 for I = i and 〈J3, ηI〉 = 0 for
I = 1, 2. This implies

N I
ij 6= 0 only for I = 1, 2 ,

M I
ij 6= 0 only for I = 3, . . . , 22 .

(3.3.13)

Moreover, since tI1, t
I
2 are frozen, we have

N1,2
ij = z1,2ρij , z1,2 = 1√

2
(〈tI1〉 − i〈tI2〉) , (3.3.14)

with two fixed complex numbers z1,2. In this case the couplings (3.3.11) factorize as

DCbI =

(
db1,2 + α′ρkl

(
z1,2εxyC

x
kDC

y
l + z̄1,2εxyC̄kxDC̄ly

)
+ . . .

dbi + α′M i
kl

(
C̄kxDCx

l − Cx
l DC̄kx

)
+ . . .

)
, (3.3.15)

where the dots stand for the ξdξ terms. Since ρij is symmetric and z1,2 is constant,
the matter couplings in the first line of (3.3.15) are total derivatives and they can be
absorbed by a redefinition of b1, b2

b̃1,2 = b1,2 + α′

2
ρkl
(
z1,2εxyC

x
kC

y
l + z̄1,2εxyC̄kxC̄ly

)
. (3.3.16)

Finally, the coupling functions MI
kl and N I

kl of the bundle moduli can only be
given as integrals

N I
kl = ρIJ

∫
K3

αsk ∧ αsl ∧ ηJ , MI
kl = ρIJ

∫
K3

αsk ∧ ᾱsl ∧ ηJ . (3.3.17)

3It would be helpful to find out how the Hodge star operator acts on the bundle valued one-forms
αs
k.
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whose moduli dependence is implicit but is expected to be non-trivial. Summarizing,
we see from the results that at order α′ the charged matter fields and bundle moduli
have non-trivial coupling functions and kinetically mix with the B-field scalars.

3.3.2 The scalar potential

We now turn to the scalar potential which consists of the terms descending from
(2.1.1) with all space-time indices tangent to K3. A priori, we should expect that the
geometric moduli preserving the Ricci-flatness of K3, as well as the bundle moduli
preserving the ASD condition of the Yang-Mills field strength, are flat directions of
the scalar potential, i.e. V should be independent of them. Conversely, the charged
matter fields are massless but we saw in (3.1.22) that they correspond to deformations
of the Yang-Mills field strength which violate the hermitean Yang-Mills equations.
Therefore the scalar potential should depend on them in a non-trivial way. From
(2.4.7) we also know that only selfdual components of the Yang-Mills field strength
can appear in the scalar potential. This reasoning is generalized here to the relevant
fluctuations in (3.1.14).

Recall from (2.4.7) that the scalar potential in six dimensions arises from dimen-
sional reduction of the Yang-Mills and Gauss-Bonnet term in (2.1.1). Including the
numerical factors, the scalar potential in the Einstein frame reads

V = −α′

V e
φ

∫
K3

tr(F+ ∧ ?F+) , (3.3.18)

where F+ is the selfdual component of the Yang-Mills field strength with all indices
tangent to K3.4 Instead of F we include here all relevant fluctuations F = F + f
which were derived in section 3.1.1. Terms like F+ can arise in two different ways.
First, the K3 metric deforms in such a way that a previously ASD background solu-
tion F acquires selfdual components. If the Yang-Mills bundle is not able to adjust
accordingly to another ASD solution, the corresponding K3 moduli are stabilized.
From the functional dependence of the projector (B.1.3) it follows that a quadratic
mass term of the corresponding K3 moduli is generated.

V ⊃ −α′

V e
φ

∫
K3

tr(F ∧ P+F)

= −α′

V e
φρJLt

L
s t
K
s

∫
K3

tr(ψIψJηI ∧ ηK) ,

(3.3.19)

where we locally expanded the background field strength as F = ψI ⊗ ηI with local
sections ψI ∈ Γ(End TK3). Second, for a fixed K3 metric, the charged matter fields,

4For brevity we leave out the label 2̄ in the expressions F2̄, f2̄, etc. which indicated that two
space-time indices are tangent to K3.
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despite being massless, correspond to deformations of the Yang-Mills field strength
which violate the hermitean Yang-Mills equations according to (3.1.22). Therefore,
the scalar potential should explicitly depend on the charged matter fields. In the
standard embedding the first mechanism does not apply because, due to F = R, one
always has an ASD curvature at each point in the K3 moduli space. In any case,
we consider continuous deformations of the gauge bundle curvature f , resulting from
the restricted set of deformations of the connection a as described in section 2.4.1.
By assumption, these do not change the topology of the bundle, especially its second
Chern character

0 =

∫
K3

tr(f ∧ f) =

∫
K3

tr(f+ ∧ f+) +

∫
K3

tr(f− ∧ f−) . (3.3.20)

Due to the signature (3, 19) of the K3 intersection matrix, the two terms are actually
of opposite sign. For consistency the deformations either satisfy (in cohomology)

f+ = f− = 0 or f+ 6= 0, f− 6= 0 . (3.3.21)

For a non-trivial scalar potential (3.3.29) it is necessary to have the second case.
In the following we will show that the above conditions, together with a vanishing
theorem, rule out all terms except one from the list (3.1.14) to appear in the scalar
potential. Let us check the conditions (3.3.21) for the bundle moduli (and vanishing
matter fields) where we know a priori that no potential exists. The only contribution
then comes from (3.1.22) and reads

f (1,3)(ξ) = ξkξ̄lα
r
k ∧ ᾱsl εrstTt ∈ H1,1(K3,End TK3) . (3.3.22)

This is a non-zero deformation of the background, which can possess selfdual and anti-
selfdual components. We now show by contradiction that the selfdual component is
trivial in cohomology. Any two-form in H2(End TK3) can be locally trivialized as

f (1,3) = f i ⊗ ωi ∈ Γ(End TK3)⊗ Λ2(K3) , (3.3.23)

where ωi, i = 1, ..., 6, is a local basis of two-forms (on a four-dimensional space).
Since the zero modes in αrk are dA-closed so is their product, dAf

(1,3) = 0. This is a
local property which implies

0 = dA(f i ⊗ ωi) = (dAf
i) ∧ ωi + f i(dωi) . (3.3.24)

Assume now that there exists a non-trivial selfdual component f
(1,3)
+ ∈ H2

+(End TK3).
Then (3.3.24) is satisfied for some selfdual two-forms ωi+. In fact, Λ2

+(K3) is a three-
dimensional vector space and we know from section 2.2 that there is a basis consisting
of J1, J2, J3. These two-forms ar d-closed and exist globally, hence, (3.3.24) implies

0 = dAf
(1,3)
+ = (dAf

i) ∧ ωi+ . (3.3.25)
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That is, there exists at least one global covariantly constant section fi ∈ Γ(End TK3).
However, since End TK3 is a nontrivial, irreducible bundle, no such section (except
the zero section) exists. Equivalently, global sections are counted by the cohomology
group H0(End TK3) which we showed to be zero in section 2.4.2. This argument can
be generalized to all terms f2̄ in (3.1.14) which take values in a non-trivial bundle.

f
(1,3)
+ = f

(56,2)
+ = 0 , (3.3.26)

where all terms with the bundle moduli and/or the charged matter fields are included.

It follows that f
(133,1)
+ is the only contribution to the scalar potential. This is con-

sistent with the constraints of supergravity in six dimensions, where only a D-term
potential exists containing the Killing vectors of the corresponding charged fields. We
compute the selfdual component of (3.1.28) in appendix B.2. The result reads

f
(133,1)
+ =

(
C̄ix
εxzC

z
i

)T (−igijJ 1
2
ρijΩ

1
2
ρijΩ̄ igijJ

)
(τn)xy

(
Cy
j

εyzC̄jz

)
Tn . (3.3.27)

In six-dimensional supergravity the D-term is valued in su(2)R as shown in (2.3.9).
Therefore, from the matrix in (3.3.27) we can deduce that the R-symmetry of the
six-dimensional theory is just given by the SU(2) ∼= SO(3) group which rotates the
three complex structures (J1, J2, J3) on K3. In fact, the D-term with values in the
Pauli matrices σ(s) can be derived by taking the projection integrals

fn+ = D̃n(s)Js , D̃n(s) = 1
2

∫
K3

fn+ ∧ Js . (3.3.28)

Inserting this into (3.3.18) the full scalar potential takes the form5

V = − α′

4V e
φD̃n(s)D̃m(t)tr(TnTm)

∫
K3

Js ∧ Jt

= α′

2V e
φD̃n(s)D̃n(s) .

(3.3.29)

The actual D-term is then identified by including the volume factor as

Dn(s) = 1√
V

∫
K3

fn+ ∧ Js

= Φ̄T
ix

(
1√
2V ρijσ

(1),−i 1√
2V ρijσ

(2),−2igijσ
(3)
)
(τn)xyΦ

y
j ,

(3.3.30)

where we abbreviated the half-hypermultiplet doublet as Φx
i = (Cx

i , ε
xyC̄iy)

T . Hence,
our result for the scalar potential is consistent with the generic six-dimensional su-
pergravity (2.4.35). It is a quartic potential for the charged matter fields which may
contain flat directions (which depend on the K3 moduli). In these directions the
moduli space of vacua has a Higgs branch, where the gauge group is broken further.

5The sign in V changes here because for anti-hermitean generators we have tr(TnTm) = −δnm.
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3.4 Geometry of the hyperscalar sigma model

In this section we interpret the hyperscalar sector of our derived six-dimensional
Lagrangian Lσ as a non-linear sigma model. The scalar fields take values in a target
space M whose metric is determined by their kinetic terms. Since compactification
on a further torus, i.e. on K3 × T 2, leaves the hypermultiplet sector unchanged, we
can interpret the results as part of an N = 2 locally supersymmetric theory in four
dimensions. In both cases, supersymmetry restricts the target space of hyperscalars to
be a quaternionic-Kähler (QK) manifold with a constant negative scalar curvature.6

The simplest non-trivial QK sigma models are given by the quaternionic projective
space HPn and its pseudo-Riemannian analogues. Using homogeneous quaternionic
coordinates as in (2.3.17), the quaternionic Fubini-Study metric on HPn for example
reads [132]

ds2 =
tr(dQ† · dQ)

tr(Q† ·Q)
− tr(Q† · dQ) tr(dQ† ·Q)

tr(Q† ·Q)2
, (3.4.1)

where Q† · Q =
∑n

a=0Q
a†Qa. Further examples are given by ‘quaternionic-Kähler

quotients’ thereof [123, 131] or symmetric coset spaces of the form G/K with holon-
omy group K ⊃ SU(2) × Sp(nH). Symmetric QK manifolds (with positive scalar
curvature) are classified as the Wolf spaces [133]. They have non-compact analogues
with indefinite metric signature. The other homogeneous non-symmetric spaces have
been classified by Alekseevskii [134]. Further examples (of dimension 4n) are given
by a certain reduction, the ‘superconformal quotient’, of hyperkähler cones (of di-
mension 4n + 4) [135]. From the type II string theory compactified on Calabi-Yau
threefolds, another class of QK manifolds is known as ‘special QK’ or as QK man-
ifolds in the image of the c-map [105]. These have the special property that there
exists a special-Kähler submanifold inside, such that the full QK geometry is gov-
erned by the Kähler prepotential of the submanifold. The explicit c-map metric is
also known under the name ’Ferrara-Sabharwal metric’ [106]. It describes a fibre
bundle of Ramond-Ramond scalars over the special-Kähler base space of complex
structure deformations.

Our results for the kinetic terms in section 3.3.1 suggest that the scalar target
space should also be viewed as certain fibre bundle. All coupling functions only
depend on the geometric K3 moduli which therefore should span the base manifold.
The union of the K3 moduli and B-field moduli, encoded in the moduli space M̃K3

in (2.2.35), is divided by the Yang-Mills scalars which only mix with the B-scalars.
However, as mentioned before, the very definition of the matter fields requires the
specification of H1,1(K3,R), i.e. a choice of specific complex structure on K3. This
formally breaks the SU(2)R symmetry of the hypercomplex structure and hence, the
common moduli spaceMK3 gets divided into complex structure and Kähler moduli.

6We refer to the review [130] for the mathematical definition of a quaternionic-Kähler manifold.
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However, unlike for Calabi-Yau threefolds this factorization can only be locally defined
at each point in the moduli space, and is somewhat arbitrary. It would be helpful
to restore manifest SU(2)R symmetry in our final expressions. Hence, we consider as
the base manifold the space of complex structures on K3 which is known to be the
Grassmannian manifold [108]

MΩ =
SO(3, 19)

SO(2)× SO(1, 19)
, (3.4.2)

of dimension 40.7 For every fixed complex structure the Kähler form can be chosen as
a positive vector in H1,1(K3,R) ∼= R1,19. The volume modulus is counted separately.
Hence, over each point inMΩ there is a fibreMJ of Kähler moduli. Next, over each
point in MJ (and fixed gauge bundle topology) there is the fibre of charged matter
fieldsMC , an independent fibre of bundle moduliMξ and the fibre of B-scalarsMB.
This fibration can be summarized by the projections

(MC ×Mξ)×MB −→MJ −→MΩ . (3.4.3)

The basis for the analysis of the sigma model targetM space is its metric defined
by the kinetic terms of section 3.3.1. Since this turns out to be quite involved we
will consider in the following certain submanifolds of M. As a first simplification
we truncate the bundle moduli out off the theory because their coupling functions
are only known in terms of abstract integrals. Second, we neglect the gauging of the
matter fields under E7, i.e. we replace the covariant derivatives by normal differentials.
The remaining sigma model metric is then given by

ds2 = 1
4
hIJdt

I
sdt

J
s − 1

8V2dVdV − gijdC̄ixdCx
j

− 1
6V gIJ

(
dbI +M I

kl(C
x
kdC̄lx − C̄lxdCx

k ) +N I
ijεxyC

x
i dC

y
j + N̄ I

ijε
xyC̄ixdC̄jy)

)2
.

(3.4.4)
This metric should still be quaternionic-Kähler since we truncated a number of full
hypermultiplets.

Let us collect some facts about the parametrization of the geometrical moduli
space M̃K3 which we used so far. The 66 fields tIs, defined in (2.2.30), are not
independent but subject to six normalization conditions (2.2.30) and three equivalence
equations (2.4.36). Therefore, we first introduce a reference point p ∈ MK3 which is
defined by the background values

〈tI1, tI2, tI3〉 = (δI1 , δ
I
2 , δ

I
3) , 〈V〉 ∈ R+ , (3.4.5)

and which satisfy the normalization (2.2.30). That is, p defines a fixed (but arbitrary)
background metric on K3 where we choose the three-plane H+ ⊂ H2(K3,R) to be

7Here we neglect modding out MΩ by the discrete automorphism group of H2(K3,Z).
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spanned by the first three basis elements η1, η2, η3. Infinitesimal metric fluctuations
are then orthogonal to H+ and satisfy the linear equation

ρIJ〈tIr〉tJs = 0 . (3.4.6)

Choosing a (non-integral) basis such that ρ ∝ diag(1, 1, 1,−1,−1, . . .), the fluctua-
tions can be parametrized by V and

tA1 , t
A
2 , t

A
3 , A = 4, . . . , 22 , (3.4.7)

which are 57 independent and unconstrained fields. They define the tangent directions
in TpMK3. Using these fields the only natural hypermultiplet pairings of M̃K3 are
given by8

ΦA = {bA, tA1 , tA2 , tA3 } , A = 4, . . . , 22

Φ0 = {V , b1, b2, b3} .
(3.4.8)

Note however that these scalars do not build complex doublets of SU(2)R as described
in section 2.3.1, but rather (tA1 , t

A
2 , t

A
3 ) and (b1, b2, b3) are triplets whereas bA and V

are singlets.

3.4.1 Charged scalar fibre

Before considering the total space let us study the charged matter fibre for fixed
geometrical moduli and B-field. First, the charged matter fields occur as half-
hypermultiplets, consistent with their pseudoreal gauge representation 56 of E7. In
contrast to the geometric moduli of M̃K3, the matter fields arise naturally as doublets
of the SU(2)R symmetry, as we already manifestly used in the formulas above. Let
us see how the SU(2)R acts on these fields. Recall from (3.1.8) that the Kaluza-Klein
expansion is

a
(56,2)

1̄
=
(
Cx
j (ωj)

a + εxyεab̄C̄jy(ω̄j)
b̄
)
Txa , (3.4.9)

where (ωj)
a ∈ H0,1(K3, TK3) and εa

b̄
(ω̄j)

b̄ ∈ H1,0(K3, TK3). We know from section

2.2 that the tuple (TK3, T K3) and hence also (T ∗K3, T
∗
K3), i.e. the tuple of (1, 0)- and

(0, 1)-forms, transforms as a doublet under SU(2)R. Therefore the coefficients of the
one-forms in (3.4.9) also transform as the (dual) doublets

Φx
j =

(
Cx
j

εxyC̄jy

)
, Φ̄jx =

(
C̄jx
εxyC

y
j

)
, (3.4.10)

where we recognize the generic half-hypermultiplet structure (2.3.13). This is in fact
the reason why we expressed all couplings as quadratic forms involving the doublets
in (3.4.10).

8There is an analog statement in [98] due to conformal field theory methods.
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Let us consider the sigma model metric (3.4.4) restricted to the charged fibre
directions

ds2
C = −gijdC̄i

xdC
jx− 1

6V gIJ
(
M I

kl(C
x
kdC̄lx−C̄lxdCx

k )+N I
ijεxyC

x
i dC

y
j +N̄ I

ijε
xyC̄ixdC̄jy)

)2
.

(3.4.11)
This metric resembles a Fubini-Study metric on the quaternionic projective space,
written in homogeneous coordinates [131]. For a complete match with the Fubini-
Study metric, the coupling functions should combine to a form which can be expressed
entirely in terms of gij. This is however not the case and we rather find

gIJN
I
klN̄

J
mn = 4ρklρmn ,

gIJN
I
klN

J
mn = gIJN̄

I
klN̄

J
mn = 0 ,

gIJM
I
klN

J
mn = i

√
V
2
(ρlIρkJ + ρkIρlJ)tI3(tJ1 − itJ2 )ρmn ,

gIJM
I
klM

J
mn = −2Vgklgmn − 2Vt3kt3lt3mt3n

− V
[
(t1k + it2k)(t1m − it2m)t3lt3n + (t1l + it2l)(t1n − it2n)t3kt3m

+ (t1k + it2k)(t1n − it2n)t3lt3m + (t1l + it2l)(t1m − it2m)t3kt3n
]
.

(3.4.12)
We will see in the next section that these expressions simplify if we consider the limit
of frozen complex structure moduli.

3.4.2 Fixed complex structure limit

Since the quaternionic geometry of the full sigma model is hard to handle, we study
in this section truncations of the geometry which resemble the more familiar N = 1
case in four dimensions. In particular, we search for Kähler submanifolds of the full
target space. We saw in section 3.1 that the matter fields in the standard embedding
require the specification of TK3 which requires a specific complex structure on K3.
Therefore, we formally divided the geometric moduli space MK3 into the moduli
space of complex structures and the moduli space of the Kähler class. This division
is unnatural from the global point of view but can be done at least locally, in a
neighborhood of each point in MK3. Clearly, the hypermultiplet structure is broken
by this division. Recall from section 2.2 that a Ricci-flat metric on K3 is given by the
orthonormalized triple (J1, J2, J2) ∈ H2(K3,R) modulo SO(3) rotations. We define
the Kähler form J and the holomorphic two-form by

J =
√
VJ3 , Ω = 1√

2
(J1 + iJ2) . (3.4.13)

The corresponding moduli fields tI1, t
I
2, t

I
3 showed up in the coupling functions (3.3.12)

already in a distinguished manner. We take the complex structure moduli spaceMΩ
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in (3.4.2) as the base which is parametrized globally by a set of 44 homogeneous
coordinates tI1, t

I
2 subject to the conditions

ρIJt
I
at
J
b = δab , tIa ∼ t̃Ia = R b

a t
I
b , R ∈ SO(2) . (3.4.14)

Locally, it can be parametrized by choosing a reference point q ∈ MΩ via the back-
ground values, say

(〈tI1〉, 〈tI2〉) = (δI1 , δ
I
2) . (3.4.15)

Here we take the two-plane Ω ∈ H2(K3,R) to be spanned by the first two basis
elements η1, η2. Infinitesimal deformations are then orthogonal to Ω. Choosing a
basis of H2(K3,R) such that ρ = diag(1, 1, 1,−1,−1, . . .) the deformations can be
parametrized by a set of 40 independent fields

ti1 , t
i
2 , i = 3, . . . , 22 . (3.4.16)

For every fixed complex structure, the Kähler form can be chosen as a positive vector
in H1,1(K3,R) ∼= R1,19, yielding twenty Kähler moduli ti (with the volume modulus
included). They are related to the previous moduli ti3 by

ti =
√
Vti3 , ρijt

itj = 2V . (3.4.17)

Together, two unphysical moduli are included for the time being, which can be elim-
inated by taking the full hypercomplex symmetry SO(3) into account.

We now show that, given a fixed complex structure, the remaining (complexified)
Kähler moduli span a Kähler submanifold. Let us choose the reference point q from
(3.4.15) and freeze the complex structure deformations tI1,2 = dtI1,2 = 0. The sigma
model metric of MK3 in this case reduces to

ds2
fixed c.s. = 1

4
hijdt

i
3dt

j
3 − 1

8V2dVdV = − 1
4V gijdt

idtj , (3.4.18)

where gij is the coupling function (3.3.8).9 This metric can also be written explicitly
in a Fubini-Study-like form (with homogeneous coordinates)

ds2
fixed c.s. =

dt · dt
2t · t

− (t · dt)(t · dt)
(t · t)2

, (3.4.19)

where we abbreviated t · t = ρijt
itj. From (3.4.18) we see that in this limit, the

leading coupling functions of ti and bi coincide to be gij. Hence, if we additionally
freeze b1 and b2 the remaining fields combine to complexified Kähler moduli whose
metric reads

ds2
compl.K. = − 1

4V gijdt
idtj − 1

6V gijdb
idbj = KijdT

idT̄ j . (3.4.20)

9Note that the background values from (3.4.15) disappear from the metric expression due to the
orthogonality condition ρIJ〈tI1,2〉tJ3 = 0 = ρIJ〈tI1,2〉dtJ3 .
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The Kähler potential given by

K = log
(
ρij(T

i + T̄ j)(T j + T̄ j)
)
, T i = 1

2
ti + i√

6
bi . (3.4.21)

This is just the standard Kähler potential of the Kähler moduli, i.e. K = log(2V).
The submanifold of M̃K3 described by (3.4.21) is the fibre of complexified Kähler
moduli over the base of complex structure moduli. This result is invariant under
the hypercomplex symmetry SO(3) because for any other choice of the Kähler form,
different from (3.4.13), an equivalent submanifold exists.

3.4.3 Inclusion of the matter fields

Starting from the fixed complex structure limit, described in the previous section,
we now include the charged matter fields. The truncation of the sigma model metric
(3.4.4) takes the form

ds̃2 = − 1
4V gijdt

idtj − gijdC̄ixdCx
j

− 1
6V gij

(
dbi +M i

kl(C
x
kdC̄lx − C̄lxdCx

k )
)(
dbj +M j

kl(C
x
kdC̄lx − C̄lxdCx

k )
)

(3.4.22)
Recall that the terms involving N i

kl were absorbed by the redefinition (3.3.16) of b1 and
b2 which then are frozen. All couplings now only depend on ti, hence we can interpret
the matter fields as fibred over the (complexified) Kähler moduli space. Moreover, in
the fixed complex structure limit we have the following algebraic equation between
coupling functions10

gij = − i
2V ρklM

l
ijt

k , (3.4.23)

which is similar to a relation in the Calabi-Yau three-fold case [91]. The charged
scalar fibre metric now takes the form

ds̃2
C = −gijdC̄ixdCx

j + 1
3
(gklgmn+ t3kt3lt3mt3n)(Cx

kdC̄lx− C̄lxdCx
k )(Cy

mdC̄ny− C̄nydCy
m) .

(3.4.24)
which resembles the metric on the quaternionic projective space [123]. Note that the
metric is diagonal in the 56-index such that the charged fibre has the structure C⊗56

for some manifold C. It is tempting to expect that the full metric (3.4.22) can be
described by the standard modification of the Kähler potential

K = log(2V) = log
(
ρij(T

i + T̄ j + 2iM i
klC̄kxC

x
l )(T j + T̄ j + 2iM i

klC̄kxC
x
l )
)
, (3.4.25)

where the complexified Kähler moduli are now defined by [92, 93]

T i = 1
2
ti + i√

6
bi − iM i

kl(t)C̄kxC
x
l . (3.4.26)

10We did not find a simple generalization of this equation (including the functions N I
kl) in the

non-fixed complex structure case. Regarding only the complex structure moduli, we have the similar
relation ρij = 1

4ρKLN
L
ij(t

K
1 + itK2 ).
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However, we find that the metric derived from (3.4.25) not only reproduces the terms
in (3.4.22) but also additional terms, most importantly mixing terms between matter
and geometric moduli ∼ C̄dCdt + c.c.. We derive them in appendix B.3. Clearly,
they arise due to the moduli dependence of the coupling function M i

kl(t). One may
conjecture that the unexpected mixing terms also occur in the dimensional reduction
if the Lorenz-Chern-Simons forms are properly taken into account.

3.4.4 Isometries

For the identification of the full quaternionic-Kähler space it might be useful to find
the isometries of the metric (3.4.22). For example, it is known that 4n-dimensional
QK manifolds with n + 1 abelian isometries are in the image of the superconformal
quotient and can be classified by a homogeneous function. In this case, the (neutral)
hypermultiplets are dual to superconformal tensor multiplets [135–137].

Considering the standard embedding on K3 (and neglecting the bundle mod-
uli) we have a spectrum of twenty moduli-hypermultiplets and 20 · 56 matter half-
hypermultiplets, spanning a target space of real dimension 2320. Let us consider the
isometries of the hyperscalar sigma model which can be read off from the coordi-
nate expression of the metric (3.4.22). As already mentioned, the charged fibre has
the structure C⊗56 such that we clearly have SO(56) as part of the isometry group,
containing 28 abelian isometries. Additionally, there are circular translations inside
each C

Cx 7→ eiφxCx , (3.4.27)

constituting 56 further abelian isometries. From the charged fibre metric (3.4.24)
we see that the couplings are not diagonal in the generation indices i, j = 1, . . . , 20.
Therefore, the isometries (3.4.27) only act simultaneously on all generations. Isome-
tries mixing the generations are only given by the combined action of O(1, 19)

ti 7→ Oi
jt
j , bi 7→ Oi

jb
j , Cxi 7→ Oi

jC
xj . (3.4.28)

This corresponds to base transformations in H1,1(K3,R) for a fixed complex struc-
ture and contains ten abelian isometries. We also expect the full metric (3.4.4) to
be invariant under SO(3) rotations of the hyperkähler structure of K3, i.e. under
tIs 7→ R t

s tIt which is however not manifest in our formulation. Together, the low
number of abelian isometries and the fact that we are dealing with charged hypermul-
tiplets seems to make a description in terms of the dual tensor multiplets impossible.

3.4.5 Orbifold limit

In this section we perform a further truncation of the hyperscalar sigma model and
compare it to a known orbifold limit of the heterotic string compactified on T 4/Z3.
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An orbifold of K3 is a singular deformation limit of its metric such that the non-zero
curvature gets asymptotically concentrated at separate discrete points. Apart from
these points the manifold is flat such that the string world-sheet can be quantized
rigorously on this background. The singular geometry can be described by a flat
torus T 4 acted upon by some discrete symmetry operation ZN . The symmetry ac-
tion typically has fixed points with non-trivial holonomy, therefore these fixed points
can be identified with the singular points of infinite curvature. The massless string
excitations on an orbifold are divided into the ‘twisted’ and ‘untwisted’ states. The
former are states located at the fixed points while the latter are states propagating in
the ‘bulk’, i.e. the flat region in between. The supergravity approximation of string
theory assumes that ls � L where L is any characteristic length scale of the com-
pactified space. For orbifold limits of K3 it is known that certain two-cycles shrink
to zero at the fixed points which clearly violates this assumption. As a consequence,
to compare the supergravity approximation to orbifold string calculations it is more
reliable to consider only the untwisted state sector.

There exists an orbifold construction which mimics the standard embedding on
K3, realized by a non-trivial gauge shift vector [117].11 In this case the unbroken
gauge group in six dimensions is E7 ×E8 and the massless spectrum of the standard
embedding is reproduced

(56,1)untw ⊕ 2(1,1)untw ⊕ 9(56,1)tw ⊕ 45(1,1)tw ⊕ 18(1,1)tw . (3.4.29)

In the untwisted sector there are two hypermultiplets of geometrical moduli and one
matter hypermultiplet. Furthermore, it is known that the hyperscalar sigma model
of the untwisted orbifold spectrum is described by the coset space

Morb =
SU(2, 2 + 56)

U(1)× SU(2)× SU(2 + 56)
, (3.4.30)

obtained by a compactifying the heterotic string on the torus T 4 and then performing
a suitable truncation [94]. The manifold (3.4.30) is known to be quaternionic-Kähler
and Kähler, with a metric determined by the Kähler potential

K = − log det(T + T † − 2ΦxΦ†x) . (3.4.31)

Here Φx = (Φx
1 ,Φ

x
2) is a doublet of complex fields constituting one hypermultiplet as

in (2.3.12) and T is a 2× 2 complex matrix given by

(Tij) =

(
g11̄ + iB11̄ + Φ1Φ̄1 g12 + iB12 + Φ1Φ̄2

ḡ12 + iB̄12 + Φ2Φ̄1 g22̄ + iB22̄ + Φ2Φ̄2

)
. (3.4.32)

It contains the real g11̄, g22̄ and the complex g12 metric elements and the the cor-
responding components of the B-field. Here the 56-index was omitted such that

11The shift vector corresponds to a vector in the Cartan subalgebra of E8×E8 which partly defines
a non-trivial line bundle.
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ΦiΦ̄j = Φx
i Φ̄jx includes a summation over the 56 components. In the following we

compare the orbifold result with the fixed complex structure limit of our smooth com-
pactification. On the orbifold side, the fixed complex structure limit can be realized
by setting g12 = 0. In this limit, the Kähler potential (3.4.31) yields the kinetic terms

KTij T̄kldTijdT̄kl = 1
4g2

11̄

dT11dT̄11+ 1
4g2

22̄

dT22dT̄22+ 1
4g11̄g22̄

(dT12dT̄12+dT21dT̄21) , (3.4.33)

KΦiΦ̄jdΦidΦ̄j = ( 1
g11̄

+ Φ2Φ̄2

g11̄g22̄
+ Φ1Φ̄1

g2
11̄

)dΦ1dΦ̄1 + ( 1
g22̄

+ Φ1Φ̄1

g11̄g22̄
+ Φ2Φ̄2

g2
22̄

)dΦ2dΦ̄2 , (3.4.34)

KTijΦ̄kdTijdΦ̄k = − Φ1

2g2
11̄

dT11dΦ̄1 − Φ2

2g2
22̄

dT22dΦ̄2 − Φ2

2g11̄g22̄
dT12dΦ̄1 − Φ1

2g11̄g22̄
dT21dΦ̄2 .

(3.4.35)
Inserting (3.4.32) we get the kinetic terms in terms of the Kaluza-Klein modes [93, 94].
The leading term for the charged scalars reads∑

i=1,2

1
gīi
dΦidΦ̄i . (3.4.36)

The terms for the two complexified Kähler moduli read∑
i=1,2

1
4g2
īi

|dgīi + idBīi + Φ̄idΦi − ΦidΦ̄i|2 . (3.4.37)

The terms for the off-diagonal fields in T read

1
4g11̄g22̄

(
|idB12 + Φ1dΦ̄2 − Φ̄2dΦ1|2 + |idB̄12 + Φ2dΦ̄1 − Φ̄1dΦ2|2

)
. (3.4.38)

We now compare the above kinetic couplings with our results (3.3.3) coming from
the smooth K3. To make contact with the ones just derived, we have to take the
orbifold limit and identify the K3 moduli related to gīi. The T 4/Z3 limit of K3
corresponds to taking the three-planeH+ orthogonal to 18 two-cycles with intersection
matrix12

A⊕9
2 =

(
−2 1
1 −2

)⊕9

, (3.4.39)

which corresponds to a vector space of signature (0, 18). The remaining geometrical
moduli space is given by the embedding H+ ⊂ R3,1 ⊂ H2(K3,Z). The basis elements
of R3,1 correspond to the two complex two-tori (that we call η1, η2) spanned by the
coordinates zi, plus two two-cycles (called η3, η4) with positive self-intersection and
that are not of type (1, 1). In the following we denote by ηi the two-cycles as well as
their Poincaré dual two-forms. They have the following intersection matrix:

0 3
3 0

2 −1
−1 2

 . (3.4.40)

12The statements about intersection matrices of singular limits of K3 have been computed by
Roberto Valandro.
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The complex structure is fixed by restricting Ω to live in the positive definite subspace
spanned by {η3, η4}. Then the remaining Kähler moduli are given by the expansion

J = t1 η1 + t2 η2 (3.4.41)

and can be identified as gīi ↔ ti. The volume modulus is given by V = 6t1t2.
Similarly, we consider the Kalb-Ramond field restricted to η1, η2 such that

B = b1η1 + b2η2 (3.4.42)

and we can identify Bīi ↔ bi.

The coupling function in front of (3.4.37) matches with our formula (up to a
numerical constant) as the truncation of the smooth result reads

1
V gij = 1

V

∫
K3

ηi ∧ ?ηj = 1
6t1t2

(
t2

t1
t1

t2

)
=

(
1

6(t1)2

1
6(t2)2

)
(3.4.43)

The truncation of our leading coupling of the charged matter fields reads

gij =

∫
K3

ηi ∧ ?ηj =

(
t2

t1
t1

t2

)
, (3.4.44)

which does not match with (3.4.36) but suggests the correspondence

Φ1 =
√
t2C1 , Φ2 =

√
t1C2 . (3.4.45)

The same redefinition also works for the match of the coupling function M I
kl which is

linear in the Kähler moduli. The truncation of our smooth result reads

M1
12 = M2

12 = M2
11 = M1

22 = 0 ,

M1
11 = 6it2 , M2

22 = 6it1 .
(3.4.46)

However, the redefinition (3.4.45) is problematic since then the Kähler potential
(3.4.31) leads to additional kinetic terms as ∼ C1C̄1dt

2dt2 which are unexpected.
This problem may be connected to the similar undesired kinetic terms mentioned in
the previous section. A possible way out is a refinement of the isomorphism (3.1.10)
at the very first steps of the calculation according to

(ωj)
β
ᾱ =

γj
‖Ω‖2 Ω̄αβ(ηj)αᾱ , (3.4.47)

where we added a moduli dependent function

γj =
(∫

K3

J ∧ ηj
)− 1

2
. (3.4.48)

If the zero modes ωj are treated as constant over six-dimensional spacetime, the results
from the Kähler potential (3.4.31) are reproduced in the orbifold limit. However, the
general sigma model gets complicated dramatically by this change as the simple linear
moduli dependence of M I

kl is modified to include square root dependences. Also it
should be noted that there is no reason from first principles to include the function
γj in the isomorphism of zero modes.



Chapter 4

Effective action from line bundles

In this chapter we consider heterotic compactifications on K3 different from the stan-
dard embedding, i.e. F 6= R, which satisfy the integrated tadpole condition (2.1.6).
Although no Kalb-Ramond flux exists on K3 due to H3(K3,R) = 0, we generically
have H 6= 0 such that

dH = α′(tr R∧R− tr F ∧ F) (4.0.1)

is satisfied locally. The back-reaction onto the internal geometry is well known and
supersymmetric solutions satisfy the Strominger equations [76]

d∗J = i(∂ − ∂̄)ln‖Ω‖ ,

H = i
2
(∂̄ − ∂)J ,

‖Ω‖2 = e−4(Φ+Φ0) ,

(4.0.2)

where J is the fundamental two-form of a complex structure and Ω is a holomorphic
volume form. In particular, H 6= 0 implies that J is not closed, thus Kähler man-
ifolds (and hence Calabi-Yau manifolds) are excluded. In the case of four compact
dimensions, it is known that the Strominger equations can be solved by a conformal
deformation of the Ricci-flat K3 metric

gmn = e2ΦgK3
mn , (4.0.3)

yielding a ‘conformal Calabi-Yau’ [76]. The hermitean Yang-Mills equations, relating
F and J , are conformally invariant and hence unaffected. Therefore, the analysis of
section 2.4 can be applied to the conformal K3 without changes. The simplest gauge
bundles, apart from the standard embedding, are given by principal bundles with
structure group U(1). These backgrounds have been studied intensely [56, 79, 84, 85,
138–143] for being able to yield smaller unbroken gauge groups, including unbroken

69
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U(1) factors, and standard model like particle spectra.1 All irreducible associated
vector bundles are one-dimensional, hence these backgrounds are also denoted as
complex line bundles.

In the present chapter we consider K3 compactifications with line bundles, where
the tadpole condition is solved by assigning F to be the curvature of one (or several)
principal U(1) bundle(s) . Let us, for simplicity, describe a background with one U(1)
bundle L inside one E8 factor. The gauge group is then broken according to

E8 −→ G× 〈U(1)〉 , (4.0.4)

where G is the commutant of U(1) inside E8. Since the Lie algebra of U(1) is iR, its
field strength is a usual differential two-form. Moreover, U(1) bundles are completely
characterized by their first Chern class c1(L) given by

c1(L) = i trF ∈ H2(K3,Z) . (4.0.5)

Therefore, line bundles are equivalent to integrally quantized, two-form fluxes.2 A line
bundle is specified by a vector X in the Cartan subalgebra E8 × E8 and an integral
linear combination of the two-cycles of K3.3 X determines the group theoretical
embedding and the unbroken gauge group while the two-cycles determine the location
of the flux. It can be expanded as

iF = X ⊗mIηI , I = 1, ..., 22 , (4.0.6)

with ηI being an integral basis of H2(K3,Z). Note that in our convention F is anti-
hermitean, i.e. imaginary in the Abelian case, such that iF is a real valued two-form.
The flux satisfies the quantization condition

i

∫
ΓI

trF = −‖X‖ mI ∈ Z , (4.0.7)

for all integral two-cycles ΓI ∈ H2(K3,Z). Here ‖X‖ is the Euclidean norm in the
Cartan subalgebra of E8. If there are several line bundles we label their field strengths
by Fn , n = 1, . . . , N

iFn = Xn ⊗mInηI . (4.0.8)

1In the standard embedding further gauge symmetry breaking of E7 (or E6 for Calabi-Yau three-
folds) to the standard model gauge group is problematic due to the absence of adjoint scalar multi-
plets. Non-simply connected Calabi-Yau manifolds and discrete Wilson lines have to be applied in
this case.

2There exist no abelian local instantons on K3 because in four dimensions these are characterized
by the winding number of the map S3 7→ U(1) which is trivial, i.e. π3(U(1)) = 0.

3The specific choice of two-cycles can be motivated by making contact with heterotic orbifold
models which arise as singular limits of K3 with shrinking two-cycles [56, 57].



4.1. YANG-MILLS SECTOR 71

Since E8 × E8 has rank 16, there are at most 16 independent line bundles available.
The integrated tadpole condition then takes the form

24 = 1
2

∫
K3

tr(F ∧ F) = −1
2
(Xn ·Xm) mInmJmρIJ . (4.0.9)

Here · is the Euclidean scalar product in the Cartan subalgebra and ρIJ is the two-
cycle intersection matrix of K3. The hermitean Yang-Mills equations (2.4.1) for line
bundles take a particular simple form. If we denote by F ∈ H2(K3,Z) the two-
cycle combination Poincaré dual to the flux and by H+ ∈ H2(K3,R) the positive
three-plane defining the K3 metric, the bundle is hermitean Yang-Mills if

F ⊥ H+ . (4.0.10)

Here orthogonality is defined with respect to the bilinear intersection form ρIJ . Due
to the quantization condition (4.0.7), the gauge flux is rigid and cannot be deformed
continuously. According to the general argument in section 3.3.2, this stabilizes some
of the geometrical moduli, as we will show in section 4.3.1.

In the following sections we derive the six-dimensional effective action. However,
in contrast to the standard embedding, our result involves abstract integrals which
we cannot solve explicitly such that the moduli dependence is hidden. Hence, we can
only show here that the effective action is consistent with six-dimensional supergravity
without knowing the details of the hypermultiplet sigma model. Instead we focus on
two aspects which are peculiar for line bundle compactifications: moduli stabilization
via Fayet-Iliopoulos terms and the occurrence of Stückelberg masses for (some of) the
unbroken U(1) gauge bosons.

4.1 Yang-Mills sector

For simplicity, let us assume that the background is given by a single U(1) bundle over
K3 as in (4.0.4). The massless matter spectrum is determined by the decomposition
of the adjoint representation

248 −→ (g,10)⊕ (1,10)
⊕
i

(
(Ri,1qi)⊕ (Ri,1−qi)

)
, (4.1.1)

where g is the adjoint representation of G while the second term includes 10 as the
adjoint representation of U(1). The Ri are model dependent representations of G
and 1qi are representations of U(1) with charge qi. The right entries define associated
vector bundles E1q which are tensor products of the line bundle L with charge q:

E1q = Lq = L⊗ ...⊗ L . (4.1.2)
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Negative charges correspond to the dual bundle, L−1 = L∗, and L0 = O is the trivial
bundle. Since 1q is a complex representation for q 6= 0, the matter fields occur as full
hypermultiplets in vector-like representations. Applying the deformation theory of
gauge connections to this setup yields the multiplicities of the corresponding massless
fields. Specifically, one finds via the chiral index theorem

h0,1(Lq) = −2− q2ch2(L) , (4.1.3)

where ch2(L) = −1
2

∫
trF ∧ F is the second Chern-character. Moreover, no bundle

moduli exist, as u(1) = E10 is the trivial line bundle. In other words, the endomor-
phism bundle is End L = L⊗L∗ = L0 such that all transition functions can be chosen
to be the identity. According to (2.4.39) the multiplicity of bundle moduli is given by

H0,1(End Lq) = H0,1(K3,R) = 0 . (4.1.4)

Applying the analysis from section 2.4.2, the Kaluza-Klein expansion of the gauge
potential reads

a1 = V g + V 1 ,

a1̄ =
∑
i

(CRi
ki
⊗ ωqiki + C̄Ri

ki
⊗ ω̄−qiki

) + (D̄Ri
ki
⊗ $̄−qiki

+DRi
ki
⊗$qi

ki
) .

(4.1.5)

Here V g is the six-dimensional gauge potential in the adjoint representation of G.
Additionally, there is the abelian gauge potential V 1, hence, the U(1) defined by the
line bundle is (possibly) part of the unbroken gauge group in six dimensions. We will
see in section 4.3.2 however that generically the gauge fluxes generate Stückelberg
masses for the abelian gauge bosons. For qi 6= 0 the representations in (4.1.1) are
complex and always occur pairwise, with corresponding charged scalars Cki and D̄ki ,
respectively. Their four real degrees of freedom align in one hypermultiplet in the
representation Ri ⊕Ri. The zero modes belong to

ωqiki ∈ H
0,1(Lqi) , ω̄−qiki

∈ H1,0(L−qi) ,

$qi
ki
∈ H1,0(Lqi) , $̄−qiki

∈ H0,1(L−qi) ,
(4.1.6)

with multiplicities ki = 1, ..., h0,1(Lqi). Moreover, according to (2.4.24) the zero modes
are annihilated by the operators dA,∆∂̄A and ∆∂A . The scalars are grouped into a
hypermultiplet as a doublet of SU(2)R

ΦRi
ki

= (CRi
ki
, DRi

ki
) . (4.1.7)

The Kaluza-Klein expansion of the field strength is performed analog to (3.1.13)
such that we only give the result here

f = f1
2 + f g

2 +
∑
i

(fRi

1,1̄
+ f̄Ri

1,1̄
) + f2̄ . (4.1.8)
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Here f1
2 = dV 1 is the abelian field strength and f g

2 = dV g + 1
2
[V g, V g] is the non-

abelian field strength in six dimensions. The terms with one external and one internal
tangent index give rise to gauge covariant derivatives of the charged scalars,

fRi

1,1
= DΦRi

ki
∧ ωqiki , DΦRi = dΦRi − qiV 1ΦRi − V a(τaΦ)Ri . (4.1.9)

Finally, the term f2̄ contains possible contributions to the scalar potential. By the
same reasoning as in (3.3.26) all terms with values in non-trivial internal bundles
have vanishing selfdual components such that the only relevant terms for the scalar
potential read

f
(g,10)

2̄
=
∑
i

(
C̄Ri

D̄Ri

)T (
ω̄−qi ∧ ωqi ω̄−qi ∧$qi

$̄−qi ∧ ωqi $̄−qi ∧$qi

)
(τa)

(
CRi

DRi

)
, (4.1.10)

f
(1,10)

2̄
=
∑
i

qi

(
C̄Ri

D̄Ri

)T (
ω̄−qi ∧ ωqi ω̄−qi ∧$qi

$̄−qi ∧ ωqi $̄−qi ∧$qi

)
(I)
(
CRi

DRi

)
, (4.1.11)

where we suppressed the multiplicity indices. Here τa are the g-generators in the
appropriate representation Ri. The products of zero modes belong toH2(Lqi⊗L−qi) =
H2(K3,R).

4.2 Kalb-Ramond sector

The Kaluza-Klein reduction of the Kalb-Ramond field is essentially the same as in
section 3.2, so we only present the new features. The coupling between the b-scalars
and the charged scalars again arises from the ωYM1,2̄ component of the Chern-Simons
three-form. But due to the abelian character of the flux the non-vanishing terms are

ωYM1,2̄ =
∑
i

tr
(
f̄Ri

1,1̄
∧ a(Ri,1qi )

1̄
+ c.c.

)
+ tr

(
F1 ∧ a11

)
. (4.2.1)

Compared to the standard embedding result (3.2.8) we see that the second term
in (4.2.1) is new here since in the present case there exists a six-dimensional gauge
boson in the same representation as the background field strength F . The first term

in (4.2.1) generates the skew-symmetric Φ̄
←→
D Φ couplings and the second term affinely

gauges the b-scalars under the unbroken U(1). Using the expansion F = −iX⊗mIηI
we get

dB1,2̄ + α′ωYM1,2̄ =
(
dbI − α′V 1‖X‖2mI

)
ηI + α′

∑
i

tr
(

Φ̄Ri
←→
D ΦRi

)
, (4.2.2)



74 CHAPTER 4. EFFECTIVE ACTION FROM LINE BUNDLES

where the skew-symmetric derivatives (including the zero modes) are given by

Φ̄Ri
←→
D ΦRi = 1

2

(
C̄Ri
ki

D̄Ri
ki

)T (
ω̄−qiki

∧ ωqili ω̄−qiki
∧$qi

li

$̄−qiki
∧ ωqili $̄−qiki

∧$qi
li

)(
DCRi

li

DDRi
li

)

− 1
2

(
DC̄Ri

ki

DD̄Ri
ki

)T (
ω̄−qiki

∧ ωqili ω̄−qiki
∧$qi

li

$̄−qiki
∧ ωqili $̄−qiki

∧$qi
li

)(
CRi
li

DRi
li

)
.

(4.2.3)

4.3 6D Effective action

Combining the previous results, the effective action in six dimensions takes the form

L6 = 1
2
R ∗ 1 − 1

6
e−2φH ∧ ∗H + α′

2
e−φtrF g ∧ ∗F g − α′

2
e−φ‖X‖2F 1 ∧ ∗F 1

+ 9
2
dφ ∧ ∗dφ + 1

4
hIJdt

I
s ∧ ∗dtJs − 1

8V2dV ∧ ∗dV

− α′
∑
i

GRi
kili

tr
(
DΦ̄Ri

ki
∧ ∗DΦRi

li

)
− 1

6V gIJDb
I ∧ ∗DbJ − V ∗ 1 .

(4.3.1)
F g is the Yang-Mills field strength of the semi-simple part of the unbroken gauge
group and F 1 is the field strength of the unbroken U(1) corresponding to the line
bundle. The derivatives of the scalars read

DΦRi = dΦRi − qiV 1ΦRi − V a(τaΦ)Ri ,

DbI = dbI − α′V 1‖X‖2mI + α′ρIJtr
(

Φ̄Ri
ki

(N qi
Jkili

)
←→
D ΦRi

li

)
.

(4.3.2)

We see that the scalars ΦRi
ki

= (CRi
ki
, DRi

ki
) are linearly gauged under the entire un-

broken gauge group. The b-scalars are affinely gauged under the unbroken U(1) due
to the flux of the line bundle, with charges given by the flux vector mI . The Killing
vectors are easily identified as

Ka
ki

= (τaΦki)
Ri ,

K1
ki

= qiΦ
Ri
ki
,

KI1 = ‖X‖2mI ,

(4.3.3)

The coupling matrix (N qi
Jkili

) is given by

(N qi
Jkili

) =

∫
K3

ηJ ∧
(
ω̄−qiki

∧ ωqili ω̄−qiki
∧$qi

li

$̄−qiki
∧ ωqili $̄−qiki

∧$qi
li

)
. (4.3.4)

This integral is expected to depend on the geometrical moduli, however we cannot find
an explicit expression. The leading kinetic metrics of the hyperscalars were already
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given for hIJ and gIJ in (3.3.4) and (B.1.5), respectively. The leading kinetic metric
for the matter fields is given by

(GRi
kili

) = V−1

∫
K3

(
ωqiki ∧ ?ω̄

−qi
li

0

0 $qi
ki
∧ ?$̄−qili

)
, (4.3.5)

which is diagonal in the CRi and DRi fields. Unfortunately, we cannot compute the
moduli dependence of this coupling function either. Therefore it is not possible to
analyze the hyperscalar sigma model in more detail for the line bundle background.

We now turn to the scalar potential. As shown in (3.3.18), only the selfdual
components of the field strength fluctuations f2̄ contribute to the scalar potential.
Applying the vanishing argument (3.3.26), the only non-trivial contributions arising
from (4.1.10) and (4.1.11) read

f g
2̄+

=
∑
i

Φ̄Ri
ki

(Ukili)(τ
aΦ)Ri

li
,

f1
2̄+ =

∑
i

Φ̄Ri
ki

(Ukili)qiΦ
Ri
li
,

(4.3.6)

where the coupling matrix is given by

(Ukili) =

(
i
2
GC
kili
J 1

2
ckiliΩ

1
2
ckiliΩ

i
2
GD
kili
J

)
. (4.3.7)

Note that a is used for the adjoint g index and that the matrix (Ukili depends on
the representation Ri. As in the standard embedding we find on the diagonal the
scalar metrics GC

kili
and GD

kili
which are the two matrix elements of (4.3.5). In the

off-diagonal entries we find a generalized ‘intersection matrix’

ckili =

∫
K3

ω̄−qiki
∧$qi

li
∧ Ω̄ , (4.3.8)

which we cannot compute explicitly. The terms (4.3.6), (4.3.7) are proportional to
the first two Killing vectors in (4.3.3), hence they are consistent with the generic
D-term scalar potential in six dimensions. Together, the scalar potential reads

V = −α′

V e
φ

∫
K3

tr
(
(f1

2̄+ + F+) ∧ ?(f1
2̄+ + F+)

)
− α′

V e
φ

∫
K3

tr
(
f g

2̄+
∧ ?f g

2̄+

)
. (4.3.9)

Here the selfdual component of the gauge flux appears as a Fayet-Iliopoulos term.
Equivalently to (3.3.29) the single D-terms can be extracted from (4.3.9) by the
integrals

Da(s) = 1√
V

∫
K3

fa2̄+ ∧ Js ,

D1(s) = 1√
V

∫
K3

(f1
2̄+ + F+) ∧ Js .

(4.3.10)
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The generalization of the above results to several line bundles is straightforward.
The b-scalars are then gauged under all abelian factors U(1)m with charges propor-
tional to the flux vectors mIn. For line bundles which are not orthogonal in the Cartan
subalgebra, Xn ·Xm 6= 0, kinetic mixing of the different abelian field strengths occurs

Lmix6 = −α′

2
e−φ

∑
m,n

(Xm ·Xn)F 1m ∧ ∗F 1n . (4.3.11)

In this case also the six-dimensional Kalb-Ramond field contains mixed abelian Chern-
Simons couplings of the form (2.3.6). The scalar potential contains similar mixing
terms

V = α′

V e
φ(Xn ·Xm)

∫
K3

(f1n
2̄+

+Fn+)∧?(f1m
2̄+

+Fm+ )− α′

V e
φ

∫
K3

tr
(
f g

2̄+
∧ ?f g

2̄+

)
. (4.3.12)

Here f1n
2̄+

is the direct generalization of (4.1.11) containing all charged matter fields
charged under U(1)n. The explicit form of the scalar potential reads

V = α′eφ

V (Xn ·Xm)

∫
K3

(∑
i

Φ̄Ri
ki

(Ukili)q
n
i ΦRi

li
+ Fn+

)
∧ ?
(∑

i

Φ̄Ri
ki

(Ukili)q
m
i ΦRi

li
+ Fm+

)
+ α′eφ

V

∑
a

∫
K3

(∑
i

Φ̄Ri
ki

(Ukili)(τ
aΦ)Ri

li

)
∧ ?
(∑

i

Φ̄Ri
ki

(Ukili)(τ
aΦ)Ri

li

)
,

(4.3.13)
where qni is the charge of the field ΦRi under the group U(1)n.

4.3.1 Moduli stabilization

Recalling the general argument in section 3.3.2, the rigid gauge flux of a line bundle
background stabilizes some of the K3 moduli. The hermitean Yang-Mills equations,
or equivalently the anti-selfduality condition, takes the simple form

F ⊥ H+ , (4.3.14)

in terms of two-cycles and the bilinear intersection form ρ. Since F is discretely quan-
tized and H+ is determined by the K3 metric there exist metric deformations which
violate (4.3.14). If F does not satisfy (4.3.14) it contains a selfdual component which
appears as the Fayet-Iliopoulos term in the scalar potential (4.3.9). This is equivalent
to a quadratic mass term for geometrical moduli as we saw in (3.3.19). Hence, truly
massless deformations of the K3 metric are given by all motions of H+, preserving
(4.3.14). Obviously, the more gauge fluxes are present, independent in H2(K3,Z),
the more constrained is this motion and the remaining moduli space is reduced. Let
us consider N line bundles characterized by the flux vectors {m1, ...,mN}. If all N
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flux vector are linearly independent, the remaining moduli space is described by the
Grassmannian manifold

M̃K3 =
O(3, 19−N)

O(3)×O(19−N)
× R+, (4.3.15)

so there are 3N moduli stabilized and dim(M̃K3) = 58 − 3N . For E8 × E8 we
have Nmax = 16, which stabilizes all but ten moduli and leaves the gauge group
U(1)16 unbroken. For a GUT group to survive at the compactification scale a larger
number of moduli necessarily stays unfixed. Finally, let us mention that the moduli
space of vacua also contains all D-flat directions of non-zero charged matter fields,
satisfying Da = D1 = 0. These non-trivial vacua define the Higgs branch of the
six-dimensional theory where the gauge group is broken further and the spectrum of
massless hypermultiplets is reduced [144].

4.3.2 Stückelberg mechanism and massive U(1)’s

We close this thesis by analyzing the effect of the affinely gauged scalars bI (cf. (4.3.2)).
Let us first focus on one line bundle for simplicity. In this case the U(1) gauge
symmetry acts according to

V 1 −→ V 1 + dχ , bI −→ bI + α′mIχ . (4.3.16)

This implies that one combination of bI can be gauged to zero with V 1 becoming
massive which is known as the Stückelberg mechanism.4 The mass term (in the
Einstein frame) is found from (4.3.2) to be

α′2

6V ‖X‖
2V 1 ∧ ∗V 1

∫
K3

tr(F ∧ ?F) = −α′2

6V ‖X‖
4V 1 ∧ ∗V 1ρIJm

ImJ , (4.3.17)

where we used the ASD condition ?F = −F . To identify the physical mass we need
to absorb a factor

√
α′‖X‖ into V 1 in order to get a canonical kinetic term as can be

seen from (4.3.1). Using the tadpole condition (4.0.9) the physical mass reads

m = 4
√

α′

V . (4.3.18)

Note that the physical mass only depends on the K3 volume.

If there are N line bundles with flux parameters mIn = (mI1, ...,mIN), the bI are
coupled to all of them and generically all U(1)’s become massive. However, if some
flux vectors are linearly dependent, dim span{m1, ...,mN} = K < N , the rank of the
mass matrix is reduced and there remain N − K massless U(1)’s in the spectrum.

4In six dimensions this effect is independent of possible abelian anomalies [85].
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Let us show which combination of bI-scalars is eaten by which combination of U(1)’s.
In an integral basis of H2(K3,Z) we define qIn = ‖Xn‖mIn ∈ Z and look for the
orthogonalization

L6 ∼ gIJ(dbI − qInV 1
n )2 = g̃IJ(db̃I − λInṼ 1

n )2 . (4.3.19)

For K linear independent flux vectors the 22×N matrix qIn has rank K and hence
can be be brought to the following form (e.g. N = 3, K = 2)

qIn 7→ OI
Jq

JmUn
m = λIn =

λ1 0 0 . . .
0 λ2 0 . . .
0 0 0 . . .

 , (4.3.20)

where O ∈ O(22) and U ∈ O(N). This determines the preferred basis

Ṽ 1
n = U p

n V
1
p , b̃I = OI

Jb
J , (4.3.21)

in which the first K b̃ scalars are the Goldstone bosons of the first K gauge poten-
tials. More precisely, one goes to a basis of H2(K3,Z) where the flux hyperplane
span(m1, . . . ,mn) is spanned by the first K harmonic 2-forms η̃1, . . . η̃K . The special
form of λIn however does not tell us if this basis is orthogonal with respect to the
intersection matrix ρIJ . Since we have ?Fn = −Fn for each gauge flux, the mass
terms read

α′

6VV
1
n ∧ ∗V 1

m

∫
Fn ∧ ?Fm = − α′

6V Ṽ
1
n ∧ ∗Ṽ 1

mρ̃IJλ
InλJm , (4.3.22)

where ρ̃IJ = O K
I O L

J ρKL. In general ρ̃IJ will not be diagonal and hence the mass term
will not be diagonal in n,m. Therefore, the mass eigenbasis is generically different
from the ‘Goldstone eigenbasis’. Note that again the mass matrix only depends on the
volume modulus and the topological flux configuration. The trace of the (squared)
mass matrix is fixed by the tadpole condition

tr(M2) =
∑
n

(−1
3
α′

V ρ̃IJλ
InλJn) = 16 α′

V . (4.3.23)



Chapter 5

Conclusions

In this thesis we derive the six dimensional low energy effective action of the heterotic
string compactified on K3 up to terms of order α′2. Consistent backgrounds require
the existence of a non-trivial gauge bundle on K3 with instanton number 24. We
choose to study two classes of backgrounds, the well-known standard embedding of
the tangent bundle into the gauge bundle and U(1) line bundles. OnK3 the hermitean
Yang-Mills equations preserving supersymmetry are equivalent to the anti-selfduality
of the gauge curvature. For the Kaluza-Klein reduction of the gauge sector we study
the local deformation theory of gauge connections. The effective mass operators are
studied in detail and the relevant properties of the zero modes, corresponding to
massless matter fields and bundle moduli in six dimensions, are derived. For K3
this has, to our knowledge, not been discussed in the literature before. We focus
on the hypermultiplet sector such that our results, due to invariance under further
compactification on K3 × T 2, can be interpreted as α′ corrections to the (charged)
hypermultiplet moduli space of an N = 2 locally supersymmetric theory in four
dimensions.

For the standard embedding we compute the couplings of the charged matter fields
with explicit dependence on the geometrical moduli. The non-trivial couplings arise
from the Kaluza-Klein reduction of the Chern-Simons three-forms in ten dimensions.
While we can give explicit results for the Yang-Mills Chern-Simons form, the reduction
of the Lorentz Chern-Simons form is obscure and we have to leave it for future studies.
Using a topological vanishing argument we show that the scalar potential only consists
of D-terms, consistent with six-dimensional supergravity. We focus on the non-linear
sigma model of the hyperscalars defined by their kinetic terms. By general arguments
of supersymmetry it is governed by quaternionic-Kähler geometry. Our result implies
that the target space is a fibre bundle of the matter fields and bundle moduli over the
base of geometrical and B-field moduli. Hence, we expect that the target space is not
contained in the set of symmetric quaternionic-Kähler manifolds but rather has some
similarities to the Ferrara-Sabharwal metric. The metric on the charged scalar fibre

79



80 CHAPTER 5. CONCLUSIONS

has resemblance to the quaternionic projective space, however a full match seems to
be not possible. Subsequently, we consider submanifolds which correspond to the
more familiar case of N = 1 Kähler manifolds. The very definition of the matter
fields suggest to consider a fibration of the Kähler moduli over the base of complex
structure moduli. For a fixed point in the base the remaining Kähler moduli and
B-field moduli are shown to span a Kähler manifold. The canonical inclusion of
the matter fields, known from Calabi-Yau threefold compactifications, however does
not reproduce our results due to the moduli dependence of some coupling functions.
Finally, the Kähler submanifold known from an orbifold limit of K3 can only be
discovered via a truncation and unnatural field redefinition of our results.

For the line bundle background we compute the effective action and show its con-
sistency with six-dimensional supergravity. However, most coupling functions can
only be given as abstract integrals whose moduli dependence is implicit. The line
bundle curvature is equivalent to two-form gauge fluxes which, due to their rigidity,
stabilize those geometrical moduli which violate the hermitean Yang-Mills equations.
In the six-dimensional theory these are stabilized via Fayet-Iliopoulos terms contain-
ing the gauge flux parameters. The U(1) gauge bosons, first appearing in the unbroken
gauge group, gauge the axionic B-field moduli in an affine way such that they gener-
ically acquire masses via the Stückelberg mechanism. For several gauge fluxes some
of which are linearly dependent in cohomology, some abelian gauge bosons may stay
massless. These two mechanisms occur simultaneously and combine hypermultiplets
and vector-multiplets to massive vector multiplets.



Appendix A

Mathematical supplementary

A.1 Spinor reduction

In this section we derive the six-dimensional supersymmetry parameter spinor arising
from the heterotic compactification on K3. We first consider the decomposition of the
rotation group yielding a factorization of the spinor bundle. In the ten-dimensional
heterotic string theory the supersymmetry parameter is a Majorana-Weyl spinor ε̂ ∈
16 of the local rotation group SO(9, 1). For a four-dimensional compactification the
rotation group factorizes as SO(9, 1)→ SO(5, 1)×SO(4). Since there is a subtlety in
spinor reality conditions in six dimensions, let us first consider a Weyl-spinor ε̂ ∈ 16C
which decomposes as [26]

16C → (4C,2C)⊕ (4′C,2
′
C) ,

ε̂ → ε+ ⊗ η+ + ε− ⊗ η− .
(A.1.1)

Now, imposing the Majorana reality condition ε̂ = B¯̂ε in ten dimensions, it descends
with B = B6 ⊗B4 to the lower dimensional spinors as

ε+ ⊗ η+ + ε− ⊗ η− = B6ε̄+ ⊗B4η̄+ +B6ε̄− ⊗B4η̄− . (A.1.2)

Here no reality conditions like ε+ = B6ε̄+ and η+ = B4η̄+ can be set, because the
single spinor factors transform in pseudoreal representations and B̄6B6 = B̄4B4 = −1.
In other words, in six-dimensional Minkowski space as well as in four-dimensional Rie-
mannian space the Weyl-condition is incompatible with a further Majorana-condition.
However, the product of two pseudoreal representations is real, so there exists a reality
condition only for the whole products

ε+ ⊗ η+ = B6ε̄+ ⊗B4η̄+ ,

ε− ⊗ η− = B6ε̄− ⊗B4η̄− .
(A.1.3)
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This reduces the complex degrees of freedom of each product to four, so we have for
SO(9, 1)→ SO(5, 1)

16R −→ 4C ⊕ 4′C . (A.1.4)

Hence, the ten-dimensional Majorana-Weyl spinor reduces to N = (1, 1) supersym-
metry in six dimensions, considering just the rotation groups. For a compactification
on the flat torus T 4 (A.1.4) would be the complete answer.

Let us now impose the restrictions coming from the nontrivial topology of K3.
From (A.1.1) only those spinors which have a global non-vanishing section on K3
give rise to supersymmetry spinors in six dimensions. On K3 the rotation group
is reducible, SO(4) ∼= SU(2) × SU(2)R, and the spinor representations in (A.1.1)
actually are

(4C,1,2C)⊕ (4′C,2
′
C,1) . (A.1.5)

A non-vanishing spinor section can only exist in the (associated) trivial SU(2)R bun-
dle, i.e. is a singlet of the holonomy group. Thus, only the first term in (A.1.5)
globally exists on K3, yielding the dimensional reduction

ε̂
K3−→ ε+ ⊗ η+ . (A.1.6)

We now again impose the Majorana condition such that

ε+ ⊗ η+ = B6ε̄+ ⊗B4η̄+ . (A.1.7)

Therefore, the number of real supercharges is reduced to eight and we arrive at the
chiral N = (1, 0) supergravity in six dimensions. (A.1.7) is explicitly solved by the
spinor superposition

ε+ ⊗ η+ + εc+ ⊗ ηc+ , (A.1.8)

where εc+ = B6ε̄+ and ηc+ = B4ε̄+. It defines a real eight-dimensional subspace inside
the vector space defined by (4C,2C). Alternatively, (4C,2C) can be considered as two
six-dimensional Weyl-spinors (of the same chirality) transforming as a doublet under
SU(2)R due to (A.1.5). The Majorana condition can then be solved by setting a
symplectic Majorana condition(

ε1

ε2

)
with

(
ε̄1

ε̄2

)
=

(
ε2

−ε1

)
. (A.1.9)

The components are related to the previous solution by

ε1 = 1
2
(ε+ + εc+) , ε2 = 1

2
(ε+ − εc+) . (A.1.10)
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A.2 Lie algebra valued forms

Throughout this thesis we deal with Lie algebra valued differential forms which are
the zero modes of the (matter) fields in the Yang-Mills sector. We want to collect
here some symmetry properties of wedge products of these forms which differ from
wedge products of usual differential forms. Let G be a Lie group and g its Lie algebra
and M a manifold of Euclidean signature. A g-valued p-form α ∈ g ⊗ Λp(M) then
can be expanded in the generators

α = αaTa , Ta ∈ g , (A.2.1)

where αa, a = 1, . . . , dim(G) is a set of usual p-forms

αa = 1
p!
αaµ1...µp

dxµ1 ∧ . . . ∧ dxµp . (A.2.2)

The natural product of Lie algebra valued p-forms is given by

[α, β] = αa ∧ βb[Ta, Tb] = αa ∧ βbf cabTc , (A.2.3)

where f cab are the structure constants of the Lie algebra. It follows that, for α ∈
g⊗ Λp(M) and β ∈ g⊗ Λq(M) we have the symmetry property

[α, β] = (−1)pq+1[β, α] . (A.2.4)

If G is defined as a matrix Lie group also its generators have a matrix representation
and a second product can be defined

α ∧ β = αa ∧ βbTaTb . (A.2.5)

This product is generically not g-valued but is used in the construction of character-
istic classes such as

tr(F ∧ F ) = F a ∧ F btr(TaTb) , (A.2.6)

where F ∈ g⊗ Λ2(M) is the Yang-Mills field strength. The first product (A.2.3) can
be written in terms of the second product (A.2.5), and for two odd forms we have the
unusual symmetry relation

[α, β] = α ∧ β + β ∧ α . (A.2.7)

In particular, for a one-form A ∈ g⊗ Λ1(M) we have

[A,A] = 2A ∧ A , (A.2.8)

which is the reason for the two equivalent notations for the Yang-Mills field strength

F = dA+ 1
2
[A,A] = dA+ A ∧ A . (A.2.9)
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Moreover, in the Kaluza-Klein reduction of the Chern-Simons three-form we encoun-
tered in section 3.2.1 double and triple products. For αp, βq, etc. Lie algebra valued
p- and q-forms we have the following symmetry properties

tr(α2 ∧ β1) = tr(β1 ∧ α2) ,

tr(α1 ∧ β1 ∧ γ1) = tr(β1 ∧ γ1 ∧ α1) = tr(γ1 ∧ α1 ∧ β1) ,

tr([α1, β1] ∧ γ1) = tr(α1 ∧ [β1, γ1]) = tr(β1 ∧ [γ1, α1]) .

(A.2.10)

A.3 Identities on a HYM-bundle

The Kaluza-Klein reduction of the Yang-Mills sector is based on the mass operators
(2.4.13) and (2.4.14). Massless fields in six dimensions arise from their corresponding
zero modes. Since the mass operators are not usual Laplacians the properties of the
zero modes are only recognizable using some operator identities (2.4.16), (A.3.5) and
(A.3.11) which we prove in this appendix. For sections ψ of a HYM-bundle we have

d∗AdA = 2∂̄∗A∂̄A . (A.3.1)

proof:
d∗AdAψ = (∂∗A + ∂̄∗A)(∂A + ∂̄A)ψ

=
(
−i[∂̄A, J ·] + i[∂A, J ·]

)
(∂A + ∂̄A)ψ

= (J · ∂̄A − iJ · ∂A)(∂A + ∂̄A)ψ

= iJ · (∂̄A∂A − ∂A∂̄A)

= iJ · (F − 2∂A∂̄A)

= iJ · F − 2i[J ·, ∂A]∂̄A

= iJ · F + 2∂̄∗A∂̄A .

(A.3.2)

Here J · is the contraction with the Kähler form and (A.3.1) follows after using the
HYM property J · F = 0. In the second and the last line of (A.3.2) we made use of
the well-known Kähler identities

∂∗A = −i[∂̄A, J ·] , ∂̄∗A = i[∂A, J ·] , (A.3.3)

In the fifth line we identified the field strength as

F = d2
A = ∂̄A∂A + ∂A∂̄A . (A.3.4)

For one-forms with values in the HYM-bundle we find that the mass operator
∆YM in (2.4.17) can be simplified using the second identity

d∗AdAa1̄ = 2∆∂̄Aa1̄ − dAd∗Aa1̄ + iJ · [F , a1̄] . (A.3.5)
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proof: We expand the gauge covariant derivatives for a ∈ Λ1(K3, E)

d∗AdAa = (∂̄∗A∂̄A + ∂∗A∂A)a+ (∂̄∗A∂A + ∂∗A∂̄A)a (A.3.6)

The first term can be written as

(∂̄∗A∂̄A + ∂∗A∂A)a = i([∂A, J ·]∂̄A − [∂̄A, J ·]∂A)a

= i(∂AJ · ∂̄A − ∂̄AJ · ∂A)a− iJ · (∂A∂̄Aa− ∂̄A∂Aa)

= (∂A∂
∗
A + ∂̄A∂̄

∗
A)a+ iJ · [F , a]− 2iJ · (∂A∂̄Aa) ,

(A.3.7)

Here we used the Kähler identities (A.3.3) as well as J ·∂Aa = [J ·, ∂A]a since J ·a = 0.
We now write the last term in (A.3.7) as

2iJ · (∂A∂̄Aa) = 2i([J ·, ∂A] + ∂AJ ·)∂̄Aa

= −2∂̄∗A∂̄Aa+ 2i∂A[J ·, ∂̄A]a

= −2∂̄∗A∂̄Aa+ 2∂A∂
∗
Aa .

(A.3.8)

With this we arrive at

(∂̄∗A∂̄A + ∂∗A∂A)a = (∂̄A∂̄
∗
A − ∂A∂∗A)a+ iJ · [F , a] + 2∂̄∗A∂̄Aa . (A.3.9)

Now we consider the second term in (A.3.6)

(∂̄∗A∂A + ∂∗A∂̄A)a = (∂A∂̄
∗
A + ∂̄A∂

∗
A)a = dAd

∗
Aa− (∂A∂

∗
A + ∂̄A∂̄

∗
A)a , (A.3.10)

where we used {∂A, ∂̄∗A} = 0 (which follows from the Kähler identities). Together we
end up with the claimed result (A.3.5)

Finally, on a complex Kähler surface with HYM-bundle we have the third identity

? [F , a1̄] = −iJ · [F , a1̄] , (A.3.11)

proof: The left hand side reads in complex components

?[F , a1̄] =
[
Fαβ̄, aγ

]
? (dzα ∧ dz̄β̄ ∧ dzγ) + [Fαβ̄, āγ̄] ? (dzα ∧ dz̄β̄ ∧ dz̄γ̄)

= gγγ̄[εαγ̄ε
β̄
δFαβ̄, aγ]dz

δ + gγ̄γ[εβ̄γε
α
δ̄Fαβ̄, āγ̄]dz̄

δ̄

= −gγγ̄[Fγ̄δ, aγ]dzδ − gγγ̄[Fδ̄γ, āγ̄]dz̄δ̄

= −iJ · [F , a1̄]

(A.3.12)

In the third line we used the ASD condition εαγ̄ε
β̄
δFαβ̄ = −Fγ̄δ and in the last line

we used the vanishing of the contraction Jαβ̄Fαβ̄. Together with the Lorenz-gauge
d∗Aa1̄ = 0 this proves the crucial relation

∆YM = 2∆∂̄A = 2∆∂A . (A.3.13)



Appendix B

Coupling functions in the standard
embedding

In this appendix we derive the coupling functions of the effective action. First we
consider the kinetic terms in (3.3.3) and in particular the couplings of the charged
scalars. Due to the correspondence of their zero-modes to harmonic (1, 1)-forms
(3.1.10) these functions exhibit a characteristic dependence on the K3 moduli.1 The
very definition of TK3 in the standard embedding defines the charged scalar zero
modes only with respect to a chosen complex structure. Hence, the discussion of
their couplings implicitly requires a formal breaking of the Hyperkähler structure of
K3. In the end, we argue that all results are invariant under SU(2)R which rotates
the hypercomplex structure. Defining the complex structure via the (periods of the)
holomorphic two-form Ω = 1√

2
(J1 + iJ2), the harmonic (1, 1)-forms are defined by the

projection

P 1,1 : H2(K3,R)→ H1,1(K3,R) , (P 1,1) J
I = δJI −

∑
s=1,2

ρIKt
K
s t

J
s , (B.0.1)

where ρIJ is the intersection form on K3. They depend on the complex structure
moduli tI1, t

I
2. Hence, it is natural to (arbitrarily) fix the complex structure of K3

and discuss the dependence of the charged scalar couplings on the remaining Kähler
moduli tI3. As in (3.1.10) we denote with a lower case index, ηi , i = 3, . . . 22, a basis
of H1,1(K3,R) with respect to the fixed complex structure. The remaining Kähler
moduli are denoted by ti3 , i = 3, . . . , 22.

1Recall that on K3 the embedding H1,1(K3,R) ⊂ H2(K3,R) is a moduli dependent subspace.
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B.1 Kinetic terms

The metric on the geometrical moduli space of K3 was already presented in section
2.2.29, which we repeat here for completeness

ds2
K3 = 1

2

(
ρIJ − 1

2
ρIKρJLt

K
r t

L
r

)
dtIsdt

J
s − 1

4V2dVdV . (B.1.1)

Here the variations δ in (2.2.33) are converted to spacetime derivatives d in M5,1.
Turning to the Kalb-Ramond field, the leading kinetic term for the B-field scalars (in
the six-dimensional Einstein frame) is obtained by the integrals

− 1
6V

∫
K3

H1,2̄ ∧H1,2̄ = − 1
6V gIJdb

I ∧ ∗dbJ + . . . , (B.1.2)

where we first neglected the Chern-Simons couplings. The Hodge star operator acts
on H2(K3,R) as ?|H+ = idH+ and ?|H− = −idH− . Using the projector

P+ : H2(K3,R)→ H+ , (P+) J
I = 1

2
ρIKt

K
s t

J
s (B.1.3)

the Hodge star operator can be explicitly written as

(?) J
I = (P+) J

I −
(
δJI − (P+) J

I

)
= −δJI + ρIKt

K
s t

J
s . (B.1.4)

Hence, the leading coupling function takes the form

gIJ =

∫
K3

ηI ∧ ?ηJ = (?) K
J ρIK = −ρIJ + ρIKρJLt

K
s t

L
s . (B.1.5)

It depends on the geometrical moduli of K3 but is clearly independent of SU(2)R
rotations of the hypercomplex structure.

Let us turn to the charged matter scalars whose leading kinetic term (in the
six-dimensional Einstein frame) reads

1
2V

∫
K3

tr
(
f

(56,2)

1,1̄
∧ ∗f (56,2)

1,1̄

)
= −gij DCx

i ∧ ∗DC̄jx , (B.1.6)

where the coupling functions is given by the integral

gij = 1
V

∫
K3

(ωi)
α
ᾱ (ω̄j)

β̄
β g

ᾱβgαβ̄
√
g d4x

= 1
V‖Ω‖4

∫
K3

Ω̄γα(ηi)γᾱΩγ̄β̄(ηj)βγ̄g
ᾱβgαβ̄

√
g d4x

= 1
V‖Ω‖2

∫
K3

(ηi)γᾱ(ηj)βγ̄g
γγ̄gβᾱ

√
g d4x

=

∫
K3

ηi ∧ ?ηj .

(B.1.7)
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Here we used in the second line the isomorphism (3.1.10) and in the third line the
Calabi-Yau relations

Ωαβ = f(z)εαβ , |f |2 = ‖Ω‖2√g . (B.1.8)

In the last line we used the normalization ‖Ω‖2 = V−1 from (2.2.30). Interestingly, the
coupling function (B.1.7) is the restriction of (B.1.5) to the subspace H1,1(K3,R) ⊂
H2(K3,R). Since the charged matter fields are only defined with respect to a fixed
complex structure, (B.1.7) actually only depends on the remaining Kähler moduli
ti3 , i = 3, . . . , 22.

We turn to the Chern-Simons couplings between the B-field scalars and the scalars
from the gauge bundle. Recall from (3.2.28) that the Kaluza-Klein expansion of H1,2̄

reads

H1,2̄ = dbI ∧ ηI + α′
(
dξ̄k
dξk

)T (
ᾱsk ∧ αsl ᾱsk ∧ ᾱsl
αsk ∧ αsl αsk ∧ ᾱsl

)(
ξl
ξ̄l

)

+ α′
(
DC̄ix
εxyDCy

i

)T (
ω̄ᾱi ∧ ω

β
j gᾱβ ω̄ᾱi ∧ ω̄

β̄
j Ω̄ᾱβ̄

ωαi ∧ ω
β
j Ωαβ ωαi ∧ ω̄

β̄
j gαβ̄

)(
Cx
j

εxzC̄jz

)
.

(B.1.9)

Considering first the matter fields, we compute the products of zero modes. The
off-diagonal terms read

Nij := Ωαβω
α
i ∧ ω

β
j

= 1
2‖Ω‖4 ΩαβΩ̄αγΩ̄βδ(ηi)γγ̄(ηj)δδ̄dz̄

γ̄ ∧ dz̄δ̄

= 1
‖Ω‖2 Ω̄ · (ηi ∧ ηj)

= ρijΩ̄

= 1√
2
ρij(J1 − iJ2) .

(B.1.10)

In the fourth line we used that ηi ∧ ηj = ρijvol1 is a constant four-form and that the
contraction Ω̄ · vol1 = V−1Ω̄.2. On the other off-diagonal entry in (B.1.9) we have the
complex conjugate

N̄ij = Ω̄ᾱβ̄ω̄
ᾱ
i ∧ ω̄

β̄
j = 1√

2
ρij(J1 + iJ2) . (B.1.11)

The second diagonal term reads

Mij := gαβ̄ω
α
i ∧ ω̄

β̄
j

= 1
‖Ω‖4 gαβ̄ΩαβΩ̄β̄δ̄(ηi)βγ̄(ηj)γδ̄dz̄

γ̄ ∧ dzγ

= 1
‖Ω‖2 g

βδ̄(ηi)βγ̄(ηj)γδ̄dz̄
γ̄ ∧ dzγ

(B.1.12)

2Note that in (B.1.19) products like ηi ∧ ηj are independent of the K3 metric whereas every
contraction · involves an inverse metric and hence, volume dependence.
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Identifying the components of the Kähler form as gαβ̄ = −iJαβ̄ and gᾱβ = iJᾱβ we
can express Mij as the special contraction

Mij =− iV
(
J · (ηi ∧ ηj)− (J · ηi)ηj − (J · ηj)ηi

)
=− iV

(
V−1ρijJ − V−1〈J, ηi〉ηj − V−1〈J, ηj〉ηi

)
=− iV

1
2

(
ρijJ3 − 〈J3, ηi〉ηj − 〈J3, ηj〉ηi

)
.

(B.1.13)

Here we used that J · vol1 = V−1J and that the contraction J · ηi is a constant scalar
function along K3 satisfying

(J · ηi)
√
g d4y = J ∧ ηi . (B.1.14)

From the last line in (B.1.13) we see that that Mij is proportional to the square root
of the volume modulus V . The second diagonal element in (B.1.9) reads

gᾱβω̄
ᾱ
i ∧ ω

β
j = −Mij . (B.1.15)

From the results (B.1.19) and (B.1.12) it is clear that Nij,Mij ∈ H2(K3,R) i.e. the
traced products of matter zero modes exhibit the cohomology ring

H1(K3, TK3)⊗H1(K3, T K3) = H2(K3,R) . (B.1.16)

The products are d-closed

dtr(ω2
i ∧ ω̄2

j ) = tr(dAω
2
i ∧ ω̄2

j )− tr(ω2
i ∧ dAω̄2

j ) = 0 , (B.1.17)

due to the zero mode property dAω
2
i = 0, and also d-co-closed by the analog argument.

Hence, Mij and Nij are harmonic two-forms which can be expanded into ηI

Nij = N I
ijηI , Mij = M I

ijηI . (B.1.18)

The coefficients are given by the integrals

N I
ij = ρIJ

∫
K3

Nij ∧ ηJ

= 1√
2
ρijρ

IJ(〈J1, ηJ〉 − i〈J2, ηJ〉)

= 1√
2
ρij(t

I
1 − itI2) ,

(B.1.19)

M I
ij = ρIJ

∫
K3

Mij ∧ ηJ

= −iV
1
2ρIJ

(
ρij〈J3, ηJ〉 − 〈J3, ηi〉〈ηj, ηJ〉 − 〈J3, ηj〉〈ηi, ηJ〉

)
= −iV

1
2

(
ρijt

I
3 − δIj ρKitK3 − δIi ρKjtK3

)
.

(B.1.20)
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We see here explicitly that these integrals are not topological but depend on the K3
moduli.

For the bundle moduli term in (B.1.9) we similarly define the functions

Nkl := tr(α3
k ∧ α3

l ) ∈ H0,2(K3,R) ,

Mkl := tr(α3
k ∧ ᾱ3

l ) ∈ H1,1(K3,R) ,
(B.1.21)

where summation over s = 1, 2, 3 is understood. They are two-forms which are d-
closed

dtr(α3
k ∧ ᾱ3

l ) = tr(dAα
3
k ∧ ᾱ3

l )− tr(α3
k ∧ dAᾱ3

l ) = 0 , (B.1.22)

due to the (linearized) zero mode property dAα
3
k = 0, and also d-co-closed by the ana-

log argument. Hence, Mkl and Nkl are harmonic two-forms which can be expanded
as

Nkl = N I
klηI , Mkl =MI

klηI , (B.1.23)

The coefficients are given by the integrals

N I
kl = ρIJ

∫
K3

Nkl ∧ ηJ , MI
kl = ρIJ

∫
K3

Mkl ∧ ηJ . (B.1.24)

These integrals are expected to depend on the K3 moduli as well. However due
to the lack of an analog isomorphism (3.1.9) for the bundle moduli zero modes, we
cannot find this dependence explicitly. Using the above results we can express the
Chern-Simons couplings (B.1.9) as

H1,2̄ =
(
dbI + α′M I

ij(C
x
jDC̄ix − C̄ixDCx

j ) + α′(N I
ijεxyC

x
i DC

y
j + N̄ I

ijε
xyC̄ixDC̄jy)

+ α′MI
kl(ξ̄kdξl − ξldξ̄k) + α′(N I

klξkdξl + N̄ I
klξ̄kdξ̄l)

)
∧ ηI

(B.1.25)

B.2 Scalar potential

In this appendix we compute the selfdual component of f
(133,1)

2̄
which is the only term

in (3.1.14) surviving the vanishing theorem of section 3.3.2. Recall from (3.1.28) that
we have

f
(133,1)

2̄
= 1

2

(
C̄ix
εxzC

z
i

)T (
ω̄ᾱi ∧ ω

β
j gᾱβ ω̄ᾱi ∧ ω̄

β̄
j Ω̄ᾱβ̄

ωαi ∧ ω
β
j Ωαβ ωαi ∧ ω̄

β̄
j gαβ̄

)
(τn)xy

(
Cy
j

εyzC̄jz

)
Tn , (B.2.1)

First note that the matrix elements are the same two-forms Mij, Nij, N̄ij as we en-
countered in the Chern-Simons couplings (B.1.9)

f
(133,1)

2̄
= 1

2

(
C̄ix
εxzC

z
i

)T (−Mij N̄ij

Nij Mij

)
(τn)xy

(
Cy
j

εyzC̄jz

)
Tn . (B.2.2)
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The elements on the off-diagonal are already selfdual because Nij ∝ Ω̄ and N̄ij ∝ Ω.
The diagonal elements are harmonic (1, 1)-forms so their selfdual projection is given
by

Mij+ = 1
2

(∫
Mij ∧ J3

)
J3

= −iV
1
2

(
ρij − 〈J3, ηi〉〈J3, ηj〉

)
J3

= −iV
1
2

(
ρij − ρikρjltk3tl3

)
J3

= igijJ .

(B.2.3)

Here we identified the leading kinetic coupling function gij known from (3.3.8) for a
fixed complex structure. Finally, we arrive at

f
(133,1)

2̄+
=

(
C̄ix
εxzC

z
i

)T (−igijJ 1
2
ρijΩ

1
2
ρijΩ̄ igijJ

)
(τn)xy

(
Cy
j

εyzC̄jz

)
Tn . (B.2.4)

B.3 Details of the fixed complex structure limit

When including the charged matter fields into the sigma model of the fixed complex
structure limit, the resulting target space metric (3.4.22) strongly resembles known
expressions from N = 1 compactifications in four dimensions. It therefore seems
likely that its geometry can be described by a Kähler potential of standard type

K = log(2V) = log
(
ρij(T

i + T̄ i − iM i
klC̄

kC l)(T j + T̄ j − iM i
mnC̄

mCn)
)
, (B.3.1)

where the Kähler coordinates are defined by

T i = 1
2
ti + i√

6
bi + i

2
M i

kl(t)C̄
kC l (B.3.2)

Here we omitted the 56 index of the matter fields for brevity. Note that the C-
dependent shift in (B.3.2) belongs to the real part of T i. We know from (3.3.12) that
the coupling function M i

kl(t) is linear in the Kähler moduli ti, hence we introduce the
notation

M i
kl = −iX i

jklt
j , X i

jkl = ρklδ
i
j − ρjkδil − ρjlδik . (B.3.3)

Furthermore, we write the Kähler coordinates as

T i = 1
2
Y i
jt
j + i√

6
bi , Y i

j = δij +X i
jklC̄

kC l . (B.3.4)

We can easily solve this equation for ti, yielding

ti = (Y −1)ij(T
j + T̄ j) . (B.3.5)
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The second derivatives of the Kähler potential then read

KT iT̄ j = 1
V gkl(Y

−1)ki(Y
−1)l j ,

KCiC̄j =− 1
V gkl(Y

−1 · ∂Y
∂Ci

)kp(Y
−1 · ∂Y

∂C̄j
)l qt

ptq − 1
V ρklt

l ∂
∂C̄j

(Y −1 · ∂Y
∂Ci
· Y −1)kmt

m ,

KT iC̄j =− 1
V2ρklt

k(Y −1)l iρmnt
m(Y −1 · ∂Y

∂C̄j
)npt

p

+ 1
V ρkl

(
tk(Y −1 · ∂Y

∂C̄j
· Y −1)l i + (Y −1)ki(Y

−1 · ∂Y
∂C̄j

)lmt
m
)
,

KCiT̄ j =− 1
V2ρklt

k(Y −1)l jρmnt
m(Y −1 · ∂Y

∂Ci
)npt

p

+ 1
V ρkl

(
tk(Y −1 · ∂Y

∂Ci
· Y −1)l j + (Y −1)kj(Y

−1 · ∂Y
∂Ci

)lmt
m
)
.

(B.3.6)
To make contact with our results from the dimensional reduction the Kähler metric
has to be restricted to terms up to order C2. We have to take into account that the
differential dT , written in the original variables, already contains terms of order C

dT i = 1
2
Y i
jdt

j + 1
2
tjX i

jkl(C̄
kdC l + C ldC̄k) + i√

6
dbi . (B.3.7)

We also have the approximation for small matter fields

(Y −1)i j ≈ δij −X i
jklC̄

kC l . (B.3.8)

Using the above formulas we arrive at the following metric (up to C2-terms)

KT iT̄ jdT
idT̄ j = 1

4V gkldt
idtj + 1

6V gijdb
idbj − 1

6V (gikX
k
jmn + gjkX

k
imn)C̄mCndbidbj

− 1
4V gijM

i
kl(C̄

kdC l + C ldC̄k)M j
mn(C̄mdCn + CndC̄m)

+ i
2V gijM

j
kldt

i(C̄mdCn + CndC̄m) ,
(B.3.9)

KCiC̄jdC
idC̄j = 2gijdC

idC̄j + 1
V gklM

k
imC̄

mdCiM l
jnC

ndC̄j

− 1
V ρkl(M

k
pqM

l
ij +Mk

ijM
l
pq +Mk

jqM
l
ip +Mk

ipM
l
jp)C̄

pCqdCidC̄j ,
(B.3.10)

KT iC̄jdT
idC̄j = + 1

2V gikM
k
lj(C

ldC̄j)M i
mn(C̄mdCn + CndC̄m)

+ 1
V ρkit

kdtigljC
ldC̄j + 1

2V ρklX
l
imj(t

kdti + dtkti)CmdC̄j

+ 1
2V ρklt

kX l
iqjX

i
pmnt

p(C̄mdCn + CndC̄m)CqdC̄j

+ 1
V
√

6
gikM

k
qjdb

iCqdC̄j + i
V
√

6
ρklt

kX l
ipjdb

iCpdC̄j .

(B.3.11)

Together, the Kähler potential reproduces our derived kinetic terms (3.4.22), however
also additional terms ∼ tC̄dCdt+c.c. appear which we did not find in the dimensional
reduction.
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[90] W. Buchmüller, C. Lüdeling and J. Schmidt, “Local SU(5) Unification from the
Heterotic String,” JHEP 0709 (2007) 113 [arXiv:0707.1651 [hep-ph]]

[91] S. Gurrieri, A. Lukas and A. Micu, “Heterotic String Compactifications on Half-
flat Manifolds II,” JHEP 0712 (2007) 081 [arXiv:0709.1932 [hep-th]]

[92] C. Andrey and C. A. Scrucca, “Sequestering by Global Symmetries in Calabi-Yau
String Models,” Nucl. Phys. B 851 (2011) 245 [arXiv:1104.4061 [hep-th]]

[93] E. Witten, “Dimensional Reduction of Superstring Models,”
Phys. Lett. B155 (1985) 151

[94] S. Ferrara, C. Kounnas and M. Porrati, “General Dimensional Reduction of
Ten-Dimensional Supergravity and Superstring,” Phys. Lett. B181 (1986) 263

[95] P. S. Aspinwall, “Compactification, Geometry and Duality: N=2,”
hep-th/0001001

[96] B. de Wit, V. Kaplunovsky, J. Louis and D. Lust, “Perturbative Couplings of
Vector Multiplets in N=2 Heterotic String Vacua,”
Nucl. Phys. B 451 (1995) 53 [hep-th/9504006]

[97] J. Bagger, E. Witten, “Matter Couplings in N=2 Supergravity,”
Nucl. Phys. B222 (1983) 1

[98] N. Seiberg, “Observations on the Moduli Space of Superconformal Field Theo-
ries,” Nucl. Phys. B303 (1988) 286

[99] E. Perevalov, “On the Hypermultiplet Moduli Space of Heterotic Compactifica-
tions with Small Instantons,” hep-th/9812253

[100] P. S. Aspinwall, “Aspects of the Hypermultiplet Moduli Space in String Dual-
ity,” JHEP 9804 (1998) 019 [hep-th/9802194]

[101] P. S. Aspinwall and M. R. Plesser, “Heterotic String Corrections from the Dual
Type II String,” JHEP 0004 (2000) 025 [hep-th/9910248]

[102] R. Rohm and E. Witten, “The Antisymmetric Tensor Field in Superstring The-
ory,” Annals Phys. 170 (1986) 454

[103] E. Witten, “World Sheet Corrections via D Instantons,” JHEP 0002 (2000)
030 [hep-th/9907041]

[104] E. Witten, “Heterotic String Conformal Field Theory and A-D-E Singularities,”
JHEP 0002 (2000) 025 [hep-th/9909229]



100 BIBLIOGRAPHY

[105] S. Cecotti, S. Ferrara and L. Girardello, “Geometry of Type II Superstrings and
the Moduli of Superconformal Field Theories,” Int. J. Mod. Phys. A 4 (1989)
2475

[106] S. Ferrara and S. Sabharwal, “Dimensional Reduction Of Type II Superstrings,”
Class. Quant. Grav. 6 (1989) L77

[107] B. Zwiebach, “Curvature Squared Terms and String Theories,”
Phys. Lett. B156 (1985) 315

[108] P. S. Aspinwall, “K3 Surfaces and String Duality,”
hep-th/9611137

[109] M. Berger, “Sur les groupes d’holonomie des varits a connexion affine et des
varits riemanniennes,” Bull. Soc. Math. France 83: (1953) 279330

[110] S. -T. Yau, “Calabi’s Conjecture and some new Results in Algebraic Geometry,”
Proc. Nat. Acad. Sci. 74 (1977) 1798

[111] M. F. Atiyah, N. J. Hitchin and I. M. Singer, “Selfduality in Four-Dimensional
Riemannian Geometry,” Proc. Roy. Soc. Lond. A 362 (1978) 425

[112] D. Huybrechts, Complex Geometry - An Introduction,
Springer 2004

[113] J. Louis, D. Martinez-Pedrera and A. Micu, “Heterotic Compactifications on
SU(2)-Structure Backgrounds,” JHEP 0909 (2009) 012 [arXiv:0907.3799 [hep-
th]].

[114] M. Haack, J. Louis and H. Singh, “Massive Type IIA Theory on K3,”
JHEP 0104 (2001) 040 [hep-th/0102110]

[115] P. K. Townsend, “A New Anomaly Free Chiral Supergravity Theory From Com-
pactification On K3,” Phys. Lett. B 139 (1984) 283

[116] S. Randjbar-Daemi, A. Salam, E. Sezgin and J. A. Strathdee, “An Anomaly
Free Model in Six-Dimensions,” Phys. Lett. B151 (1985) 351-356

[117] J. Erler, “Anomaly Cancellation in Six-Dimensions,”
J. Math. Phys. 35 (1994) 1819-1833 [hep-th/9304104].

[118] H. Nishino and E. Sezgin, “The Complete N=2, D=6 Supergravity with Matter
and Yang-Mills Couplings,” Nucl. Phys. B278 (1986) 353-379

[119] F. Riccioni, “All Couplings of Minimal Six-Dimensional Supergravity,”
Nucl. Phys. B605 (2001) 245-265 [hep-th/0101074].



BIBLIOGRAPHY 101

[120] N. Seiberg, W. Taylor, “Charge Lattices and Consistency of 6D Supergravity,”
JHEP 1106 (2011) 001 [arXiv:1103.0019 [hep-th]]

[121] F. Riccioni, “Abelian Vector Multiplets in Six-Dimensional Supergravity,”
Phys. Lett. B474 (2000) 79-84 [hep-th/9910246]

[122] L. Hollands, C. A. Keller and J. Song, “Towards a 4d/2d Correspondence for
Sicilian Quivers,” JHEP 1110 (2011) 100 [arXiv:1107.0973 [hep-th]]

[123] K. Galicki, “Quaternionic Kähler and Hyperkähler Nonlinear Sigma Models,”
Nucl. Phys. B 271 (1986) 402

[124] J. Li, “Anti-Self-Dual Connections and Stable Vector Bundles” in “Gauge
Theory and the Topology of Four-Manifolds,” Proceedings, Graduate Summer
School, Park City, USA, July 10-30, 1994

[125] S. K. Donaldson, “Anti Self-Dual Yang-Mills Connections over Complex Alge-
braic Surfaces and Stable Vector Bundles,” Proc. Lond. Math. Soc. 50 (1985)
1

[126] K. Uhlenbeck and S. T. Yau, “On the Existence of Hermitean-Yang-Mills Con-
nections in Stable Vector Bundles,” Comm. Pure Appl. Math. 39 (1986)

[127] L. B. Anderson, J. Gray, A. Lukas and B. Ovrut, “Stabilizing all Geometric
Moduli in Heterotic Calabi-Yau Vacua,”
Phys. Rev. D 83 (2011) 106011 [arXiv:1102.0011 [hep-th]]

[128] C. Beasley, J. J. Heckman and C. Vafa, “GUTs and Exceptional Branes in
F-theory - I,” JHEP 0901 (2009) 058 [arXiv:0802.3391 [hep-th]]

[129] T. Hubsch, “Calabi-Yau manifolds: A Bestiary for physicists,”
Singapore, Singapore: World Scientific 1992

[130] L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fre and
T. Magri, “N=2 Supergravity and N=2 Super-Yang-Mills Theory on General
Scalar Manifolds,” J. Geom. Phys. 23 (1997) 111 [hep-th/9605032]

[131] K. Galicki, “Geometry of the Scalar Couplings in N=2 Supergravity Models,”
Class. Quant. Grav. 9 (1992) 27

[132] K. Dasgupta, V. Hussin and A. Wissanji, “Quaternionic Kahler Manifolds,
Constrained Instantons and the Magic Square I,”
Nucl. Phys. B 793 (2008) 34 [arXiv:0708.1023 [hep-th]]

[133] J. A. Wolf, “Complex Homogeneous Contact Manifolds and Quaternionic Sym-
metric Spaces,” J. Math. Mechanics 14 (1965), 1033 - 1048



102 BIBLIOGRAPHY

[134] D. V. Alekseevsky, “Classification of Quaternionic Spaces with a Ttransitive
Solvable group of Motions,” Math. USSR Izv. 9 (1975) 297

[135] B. de Wit, M. Rocek and S. Vandoren, “Hypermultiplets, Hyperkähler Cones
and Quaternion Kähler Geometry,” JHEP 0102 (2001) 039 [hep-th/0101161]

[136] N. J. Hitchin, A. Karlhede, U. Lindstrom and M. Rocek, “Hyperkahler Metrics
and Supersymmetry,” Commun. Math. Phys. 108 (1987) 535

[137] B. de Wit and F. Saueressig, “Tensor supermultiplets and toric quaternion-
Kahler geometry,” Fortsch. Phys. 55 (2007) 699 [hep-th/0701223]

[138] B. Andreas and D. Hernandez Ruiperez, “U(n) Vector Bundles on Calabi-Yau
Threefolds for String Theory Compactifications,”
Adv. Theor. Math. Phys. 9, 253 (2005) [hep-th/0410170]

[139] G. Aldazabal, A. Font, L. E. Ibanez and A. M. Uranga, “New Branches of
String Compactifications and their F-theory Duals,”
Nucl. Phys. B 492 (1997) 119 [hep-th/9607121]

[140] R. Blumenhagen, G. Honecker and T. Weigand, “Loop-Corrected Compactifi-
cations of the Heterotic String with Line Bundles,”
JHEP 0506 (2005) 020 [hep-th/0504232]

[141] R. Blumenhagen, S. Moster and T. Weigand, “Heterotic GUT and Standard
Model Vacua from Simply Connected Calabi-Yau Manifolds,”
Nucl. Phys. B 751 (2006) 186 [hep-th/0603015]

[142] V. Kumar and W. Taylor, “A Bound on 6D N=1 Supergravities,”
JHEP 0912 (2009) 050 [arXiv:0910.1586 [hep-th]]

[143] V. Kumar and W. Taylor, “Freedom and Constraints in the K3 Landscape,”
JHEP 0905 (2009) 066 [arXiv:0903.0386 [hep-th]]

[144] S. Kachru and C. Vafa, “Exact Results for N=2 Compactifications of Heterotic
Strings,” Nucl. Phys. Proc. Suppl. 46 (1996) 210-224


	Introduction
	Road to the standard model
	String theory
	Calabi-Yau compactifications
	The heterotic string on K3
	Outline of the thesis

	Preliminaries
	Heterotic supergravity
	Supersymmetric string vacua

	K3 surfaces
	Moduli space of K3

	N=1 supergravity in six dimensions
	Hypermultiplet sector

	The gauge bundle and its deformations
	Massless deformations
	Matter fields and bundle moduli


	Effective action from the standard embedding
	Yang-Mills sector
	Expansion of the field strength

	Kalb-Ramond sector
	Kaluza-Klein expansion
	Lorentz Chern-Simons form

	6D Effective action
	Kinetic terms
	The scalar potential

	Geometry of the hyperscalar sigma model
	Charged scalar fibre
	Fixed complex structure limit
	Inclusion of the matter fields
	Isometries
	Orbifold limit


	Effective action from line bundles
	Yang-Mills sector
	Kalb-Ramond sector
	6D Effective action
	Moduli stabilization
	Stückelberg mechanism and massive U(1)'s


	Conclusions
	Mathematical supplementary
	Spinor reduction
	Lie algebra valued forms
	Identities on a HYM-bundle

	Coupling functions in the standard embedding
	Kinetic terms
	Scalar potential
	Details of the fixed complex structure limit


