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Zusammenfassung

Die in den letzten Jahren mit dem Large Hadron Collider (LHC) gesammelten Daten haben
keine Anzeichen für neue, direkt beobachtete Freiheitsgrade bis zu TeV-Skalen gezeigt, die über
die vom Standardmodell der Teilchenphysik (SM) vorhergesagten hinausgehen. Diese Erken-
ntnis lässt den Schluss zu, dass eine beträchtliche Masselücke die bekannten Teilchen von der
Neuen Physik (NP) trennt, wie auch immer sie aussehen könnte. In diesem Kontext haben
sich die Werkzeuge der Effektiven Feldtheorien (EFT) als am besten geeignet erwiesen, um
die möglichen Abweichungen vom etablierten Modell zu berücksichtigen und zu untersuchen.
Unter der Annahme, dass die neuen Freiheitsgrade von der Physik bei den Energien entkop-
pelt werden können, zu denen wir an den Collidern Zugang haben, ermöglichen die EFTs
die Parametrisierung jeder Andeutung von NP auf eine Weise, die eine große Vielfalt möglicher
Modelle zulässt. Ein solcher Bottom-up-Ansatz hat jedoch den Nachteil, dass wir einen riesigen
Parameterraum aufspannen müssen, der durch eine Fülle von freien Koeffizienten gekennzeich-
net ist, die wir im Prinzip durch direkte Messung bestimmen müssen. Aus diesem Grund ist es
von entscheidender Bedeutung, jede mögliche Information zu nutzen, die wir sammeln können,
um den von den EFTs aufgespannten Parameterraum einzuschränken und so viel Wissen wie
möglich aus dem Verständnis der Auswirkungen von Symmetrien auf ihre Struktur zu gewin-
nen. Aufgrund dieser zwingenden Argumente konzentrieren wir uns in dieser Arbeit auf die
Untersuchung bemerkenswerter Eigenschaften der effektiven Feldtheorie des Standardmodells
(SMEFT), d. h. das Ergebnis der Anwendung des EFT-Ansatzes auf das SM.

Deshalb müssen wir zunächst genau verstehen, wie eine Effektive Feldtheorie aufgebaut
ist, und zu diesem Zweck werden wir eine gründliche Einführung in die Instrumente der EFT
geben. Insbesondere werden wir die Bedeutung der Hilfsmittel hervorheben, die uns von der
Mathematik und Geometrie geschenkt werden, wie z. B. die Hilbert-Serie (HS), und wie man
sie einsetzen kann.

Wir werden dann sehen, wie es möglich ist, Beschränkungen für einige der Koeffizienten
aufzuzeigen, die den EFT-Parameterraum charakterisieren, indem man nur fordert, dass die
Theorie im UV immer noch eine ziemlich lockere Reihe von Eigenschaften respektiert, wie
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Kausalität und Lokalität. Diese Schranken weisen eine immer komplexere und interessan-
tere Struktur auf, je mehr Symmetrie zur Theorie selbst hinzugefügt wird. Hier werden wir
uns speziell auf das Zusammenspiel zwischen den Schranken und der Flavor-Symmetrie der
SMEFT konzentrieren und als konkreten Bezugswert ihre Kompatibilität mit dem Minimal
Flavor Violation-Ansatz untersuchen.

Die Beziehung zwischen EFTs und Symmetrien ist jedoch nicht auf ihre Auswirkungen auf
die Koeffizientenschranken begrenzt. In der Tat wissen wir, dass die besondere Struktur des SM
zur Folge hat, dass einige Symmetrien fast konserviert sind, d.h. dass ihre Verletzung extrem
gedämpft wird. Dies gilt zum Beispiel für die CP-Symmetrie, die im elektroschwachen Sektor
durch den CKM-Mechanismus über ein einzigartiges Wechselspiel zwischen allen drei Quark-
Generationen gebrochen wird. Eine solche Besonderheit wird nicht direkt auf die SMEFT
übertragen, und wir werden uns mit der korrekten Art und Weise befassen, die Verletzung der
CP-Symmetrie in diesem Zusammenhang mit Hilfe von Objekten zu untersuchen, die invariant
bleiben, auch wenn wir die Flavor-Parametrisierung wechseln.



Summary

The recent years of data collected by the Large Hadron Collider (LHC) have shown no sign of
new directly observed excitations, up to TeV scales, beyond those predicted by the Standard
Model of Particle Physics (SM). This knowledge allows us to infer that a sizable mass gap
separates the known particles from the New Physics (NP), whatever shape it may take. In
this context, the tools of Effective Field Theories (EFTs) have emerged as the most suitable to
accommodate and study what the possible deviations from the established model will look like.
Indeed, with the assumption that the new degrees of freedom can be decoupled from the physics
at the energies we can access at colliders, EFTs allow to parametrize any hint of NP in a way
that accommodates a huge variety of possible models. Such a bottom-up approach, however,
has the disadvantage of leaving us with a vast parameter space to explore, characterized by a
plethora of free coefficients that we need in principle to fix by direct measurement. For this
reason, it is crucial to exploit every possible piece of information we can gather to constrain such
parameter space, and gain as much knowledge as possible from understanding the impact that
symmetries have on its structure. Driven by such compelling arguments, we focus in this thesis
on the study of specific properties of the Standard Model Effective Field Theory (SMEFT),
which is the result of applying the EFT approach to the SM.

Accordingly, we will first need to understand precisely how an Effective Field Theory is built,
and a thorough introduction to the tools of EFTs will be provided to this end. Particularly, we
will emphasize the importance of the machinery handed to us by Mathematics and Geometry,
such as the Hilbert Series (HS), and how to put it to use.

We will then see how it is possible to exhibit constraints on some of the coefficients char-
acterizing the EFT parameter space, just by requiring that the theory in the UV still respects
a quite loose set of properties, such as causality and locality. Particularly, these bounds turn
out to exhibit structure of growing complexity and interest the more symmetries are added
to the theory itself. Here, we will focus specifically on the interplay between the bounds and
flavor symmetry of the SMEFT, and study as a concrete benchmark their compatibility with
the Minimal Flavor Violation ansatz.
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The relationship between EFTs and symmetries is not however limited to their impact on
the coefficients bounds. Indeed, we know that the peculiar structure of the SM has within its
consequence that some symmetries are almost conserved, i.e. that their violation is extremely
suppressed. This happens, for example, for the CP symmetry, broken in the electroweak sector
through the CKM mechanism via a unique interplay between all three quark generations. Such
a distinctive feature is not strictly carried over to the SMEFT, and we will address the correct
way to study the breaking of CP in this context through the language of flavor-reparametrization
invariant objects.



List of publications

The present work is mainly based on the references in [1] and [2]. Chapter 3 contains the results
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CHAPTER 1

Introduction

With the benefit of hindsight, the whole history of modern physics can be summarized as a
history of scales and specifically of scales separations.

Being part of this history, and being a high energy physicist at the beginning of the 21st
centuries is certainly a challenging and at the same time privileged position. Challenging,
because the last decade has been characterized by a lack of indisputable experimental signatures
of New Physics (NP) at colliders, and privileged, because we have the advantage of being able
to look back at the progress that has come before us, and observe each of its steps with the
awareness of their impact. In such a time of seeming impasse, we have to make use of this
privilege to try and identify the patterns that have lead to the success of the scientific method,
to build a systematic way of applying them, and to spot the points where the biases that plague
our perspective both as individuals and as a community have led us astray. A clear structure
that emerges when undertaking this attitude is, precisely, that of scales separations. First of
all, thanks to Special Relativity, we now understand that (inverse) time and space lengths and
energies are different realization of the same concept. With this in mind, we can retrospectively
place all the most successful and predictive theories that the brilliant minds of the past and the
present have worked out on a rather single dimensional axis, where they occupy a range of some
extension and have to give way to their neighboring, more fundamental companion when their
range is exhausted. This is how Classical Mechanics had to concede to its Quantum version,
which had itself to make room to the Quantum Theory of Fields to accommodate the laws of
Special Relativity.

Such a seemingly clear pattern poses the physicist in front of a crossroad: on one hand, the
ideal goal is the enticing perspective that this single dimensional axis actually stops somewhere,
and a final Theory of Everything can be reached. On the other hand, there is, up to this point,
no clear indication that the end of this axis is within reach. On the contrary, the single
point in this axis indicating that at least a paradigm shift is necessary, namely the Planck scale
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MPl ≈ 1019GeV, where quantum effects of gravity are supposed to become strong, is well beyond
any experimentally testable region. Setting aside, for the time being, the discussion around the
Final Theory, which surely deserves a deeper investigation than the few lines invested here, we
set ourselves to try and continue the journey of understanding what are the phenomena, and
theories describing them, that lie on the axis of scales by starting with where we are now and
try to figure out what the next step will look like.

This is hardly a drawback, and for a number of reasons. Most importantly, it is not even
guaranteed that this task is strictly separated from the one above. To better justify this
statement, we need to go a bit deeper and give more details about the setting we are dealing
with. Let us start from the symbolic end: as it is widely known, in 2012 the ATLAS and CMS
collaborations announce the discovery of a scalar particle with properties compatible with those
of the Standard Model Higgs boson [1, 2]. It was the last particle of the Standard Model of
Particle Physics (SM in the following) that had still not been observed. Its discovery was
the final confirmation that the SM is the most suitable model to describe all the interactions
between the known particles in a quantum mechanical framework, with the notable exception of
the gravitational one, who still evades a quantum description. This model makes use of the most
refined theoretical framework at our disposal, namely Quantum Field Theory, and it is a Gauge
Theory based on the SU(3)c × SU(2)L × U(1)Y gauge group. The SM has been introduced in
various pieces and steps going back to the beginning of the ’60s [3–12]. As it has been around
and established for all our life, it is easy for those belonging to the younger generations of
physicists to take it for granted and thus underestimate its incredible value. However, it is
actually really hard to overestimate how remarkable this rather simple looking model is. With
as few as 19 free parameters, we can describe all non-gravitational microscopic interactions, and
thus, scrolling back the axis of scales, virtually all phenomena. Rather, the problem may be the
fact that the SM works too well. Indeed, as of now, no experimental or theoretical challenge
has been able to convincingly point to its breakdown, although some hints coming from both
sides have emerged throughout the years. Experimentally, one can mention, for example, that
neutrino oscillations [13–15] are not included in the SM predictions. However, they could be
still explained with the degrees of freedom of the SM if one allows for dimension-five operators,
at the price of sacrificing the renormalizability of the theory [16]. As long as particle physics
goes, however, this is the only phenomenon that lies outside of the SM, although some small
deviations in various experiments hint at possible discrepancies. However, as of know they are
still not significant enough, statistically speaking [17–24] (also see Ref. [25] for a review). If we
include observations outside of the realm of particle physics, as we should, however, there is
still a lot the SM cannot explain: the nature and origin of Dark Matter (DM) [26,27] and Dark
Energy (DE) [28], as well the observed asymmetry between matter and anti-matter. Finally,
and perhaps most frustratingly, the SM fails to give an interpretation that goes beyond the
classical level to the fourth (known) force, gravity, whose best theoretical model, Einstein’s
General Relativity, still withstands any attempt to describe it quantum mechanically in a
satisfying way.
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The experimental challenges are, in a sense, the clearest ones we have to confront ourselves
with, as they stand on the solid legs of being the manifestation of Nature. On the other hand,
the theoretical ones are more subtle and more diverse in nature. This is due to the SM lacking
here, too, any indisputably weak point. One of its most striking feature, for example, is the
fact that it can be extrapolated up to infinitely high energies [29]. So, were it not for the
experimental questions raised above, we could be content with it forever. In a way, this is a
first timer for physics: knowingly or not, every theory the physicists have worked out in the past
has had to deal with some internal breakdown at some length or energy scale, be it the electric
potential being divergent at r → 0 or Fermi’s theory needing a Ultraviolet (UV) completion
at E ∼ 100 GeV. Without a definitive internal breakdown of this kind, investigation from
theoretical physicists has focused on more subtle aspects of the SM, whose status as problems
ranges from unsatisfactory feature to challenging issue. Most of these concerns revolve around
various realization of the question: why does this parameter have the value it has?

First, we cannot explain why the parameters of the Yukawa sector of the SM, namely the
quark and lepton masses and the parameters of the CKM matrix, are so widely spread in
value, spanning a range of roughly 106, an accident known as the Flavor Puzzle [30–32]. In
addition, although maybe less popular now than it was 10 years ago, the issue of the smallness
of the Higgs mass is still cause for fierce discussions at conferences and in journals alike [33–37].
Finally, there is the less controversial issue of why does CP appear to be conserved in the strong
interactions, since Nature does not seem to care particularly about this symmetry, given that
it is broken in the Yukawa sector [38–41].

Perhaps encompassing, and probably underlying all of these issues, there is the following
matter: it is true that the SM allows, upon having measured 19 parameters, to make an infinite
number of predictions. That kind of cost-benefit ratio would be enticing even for the most
careful wager. However, physicists are still not completely satisfied, as we would like a theory
where all these parameters, as well as the new ones that will be required when DM, DE, gravity,
neutrino masses, ecc. are included, are calculable, and ideally only descend from the dynamics
of the theory. The archetype of this behavior is Quantum Chromodynamics (QCD), where the
strong scale ΛQCD where perturbativity breaks down is set by the anomalous breaking of the
scale symmetry by quantum corrections and the subsequent dimensional transmutation.

What makes this task all the more harder is also the apparent circumstance that the SM
is a very carefully built system, and it is not a trivial task to modify it without disturbing
this delicate balance. The parameter values seem calibrated as to achieve this. In fact, one
could actually argue that all the problems stated above, the Flavor Puzzle, the Higgs hierarchy
problem and the Strong CP problem, could all be reformulated like this: it is a very non-trivial
task to build a model where the SM parameters are calculable that is not itself plagued with
inconsistencies or that will not at least exhibit the same issues the SM has. For example, the
stability of the Higgs potential [42–44] seems to be extremely sensitive to any modifications
coming from any UV sector [42, 45]. Similarly, and more relevant to what we will explore in
this thesis, adding to the SM any degree of freedom sensitive to flavor makes it very hard to
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avoid new sources of Flavor Changing Neutral Currents [46–48] and CP violation [49–54], both
greatly constrained by experiments.

It should be clear, at this point, what our starting point looks like. It is way less clear,
however, what the best way to proceed looks like. As we said, we wish to understand, from
where we are, what the next step on the axis of scales looks like. Unfortunately, like we
explained, the model we have now is so good that we cannot know where any evidence of this
next step, NP, will appear. It may well be possible that the confusion we are in is deemed to be
solved only at energies way outside the experimental reach humanity will gather even beyond
our lifetime.

It is time, then, to make a calculated choice, and to try and justify it. In this thesis,
we make use of the powerful instrument of Effective Field Theories (EFTs) [55–64] applied
to the Standard Model, and mainly concern ourselves with studying the properties of the
resulting object, namely the Standard Model Effective Field Theory (SMEFT) [65]. This
means, roughly speaking, taking the most general and consistent extension of the Standard
Model, while remaining almost completely agnostic about any knowledge of the UV completion.

As advertised, however justified, this is a choice. Some criticisms to it, and some attempts to
balance them, will be addressed in the body of this work. However, there is one that, for its quite
general and philosophic nature, we will like to address here, and so conclude this introduction.
In the views of Thomas Kuhn, as expressed in The Structure of Scientific Revolutions [66], it
could be argued that what we are doing is limiting ourselves to Normal Science and to working
within the current existing paradigm, while its shortcomings are starting to pile up and a
paradigm shift is called for. In insisting down this road, we may subject to the accusation of
relying too much on induction, and are only treading the path that has worked for physics in
the last almost 50 years. With the words of Russell [67]:

A horse which has been often driven along a certain road resists the attempt to
drive him in a different direction. Domestic animals expect food when they see the
person who usually feeds them. We know that all these rather crude expectations
of uniformity are liable to be misleading. The man who has fed the chicken every
day throughout its life at last wrings its neck instead, showing that more refined
views as to the uniformity of nature would have been useful to the chicken.

This is certainly a risk, and the argument is not one to be dismissed lightly. Rather than
an accusation, however, it should be interpreted as a call to be on the lookout and always
question our own work, without sweeping inconsistencies and shortcomings under the carpet,
and rather being ready to acknowledge them when necessary. The thesis is organized as follows:
in Chapter 2 we introduce the tools of Effective Field Theories, often relying on the example
of the Fermi theory as a benchmark to better expose our arguments. In particular, we spend
some time on the description of how a non-redundant EFT can be built, and how the tools
of the Hilbert Series can be of help in this process. In Chapter 3, we address how some
consistency requirements linked to the possibility of completing the theory in the UV result in
EFTs constraints. In particular, we will describe in detail what these constraints look like in
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some specific set of the SMEFT operators, when an assumption is made on its particular flavor
structure. In Chapter 4, we will turn to study the realization of a rather important discrete
symmetry, CP, in the SMEFT, highlighting the relative impact of its violation with respect
to the Standard Model alone. Finally, we provide some concluding discussion and remarks in
Chapter 5. The work of Chapters 3 and 4, in particular, is based on Ref. [68] and Ref. [69],
respectively.

Conventions

Throughout this work, we adopt the mostly minus signature (+,−,−,−) for the metric. All
internal indices are raised and lowered rather for real representations, and Einstein summation
convention is assumed, unless otherwise stated. The vacuum state in Fock space is labeled |0〉,
while expectation values for observables are written 〈O〉. Units are chosen such that c = ~ = 1,
except in Section 2.1.3, where units of ~ are explicitly reinstated. We follow Ref. [70] for the
conventions on phases and hypercharges normalization in the SM and the SMEFT, and Ref. [71]
for factors of 2π and i. When dealing with the SM and SMEFT lagrangian, we will omit L and
R chirality subscripts on the fields, and indicate with lowercase u, d and e the right-handed
up, down quark and electron respectively, and with uppercase Q and L the quark and lepton
doublets.



CHAPTER 2

Effective Field Theories

As we mentioned in the Introduction, Effective Field Theories, and more specifically the Stan-
dard Model Effective Field Theory and its properties, are going to be the main focus of this
thesis. This Chapter, then, is going to be devoted to reviewing the theoretical tools pertaining
these subjects, and to try and justify their use.

2.1 Effective Field Theories

At the basis of Effective Field Theories there is the idea that, to describe a physical phenomenon,
we do not need the details about physics at all scales, but only the degrees of freedom and the
laws of their interactions in the range of scales relevant for that process. This rather generic
concept is actually applied in every branch of science, and it is the reason why a biologist
can study cells and mitochondria without needing to know about the Yukawa couplings, or
an engineer build a house ignoring the Higgs mass. More relevantly to physics, we know
we can treat the problem of how charges distribute between two conducting spheres just by
using Maxwell Equations, without resorting to Quantum Electrodynamics (QED). The common
principle is that, once the correct mathematical framework and the appropriate degrees of
freedom are identified, there will be a set of parameters that needs to be measured, be it the
elastic coefficient of a metal pole to build a house or the vacuum permittivity to use Maxwell’s
Equations. In the full, microscopic theory, these parameters are functions of other, more
fundamental ones, and can be computed in terms of those. However, once the macroscopic
parameters we care about have been measured, we can do without the microscopic theory.

Effective Field Theories are the result of applying such a paradigm to Quantum Field Theory.
The recipe is simple, and can be summarized in the following steps:

1. Identify the correct degrees of freedom, translated into light fields with masses within the
energy ranges we are interested in.

18
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2. Identify the relevant symmetries.

3. Write down the lagrangian by adding all possible operators built with the fields at point 1
and compatible with the symmetries of point 2, with arbitrary coefficients.

4. Rescale the the coefficients of operators of dimension d > 4 by Λ4−d, so as to make
them dimensionless. The quantity Λ has the dimensions of a mass1, [Λ] = m, and it is
interpreted as the cutoff of the theory, where its predictivity breaks down.

5. Organize the operators by their dimension in increasing order.

This procedure outputs a lagrangian that we can schematically write as

LEFT = Ld≤4 +
∞∑
d>4

∑
i

ci
Λd−4

O(d)
i . (2.1.1)

Conventionally, the operators of dimension d ≤ 4 are grouped separately from the rest, in what
is referred to as the renormalizable part of the lagrangian. Indeed, taken alone, this part of
the lagrangian leads to a renormalizable theory, i.e. one where, at any fixed loop order, we can
absorb all infinities by shifting the coefficients of just the operators already present in Ld≤4.
On the other hand, to renormalize an operator in Ld>4, we would need to add at each step an
infinite tower of operators, affecting the whole EFT expansion. For this reason, LEFT is referred
to as a non-renormalizable lagrangian. We will briefly come back on this issue later.

When introducing EFTs, the first example that is brought forward is usually the one of
the Fermi theory of β-decay, both because of its conceptual cleanliness and of its historical
importance. We will do the same here, and use it to introduce the concepts we will need in the
rest of the thesis. In 1933 [72], Fermi was trying to write down a theory that could explain the
β-decay, where a neutron decays into a proton, emitting an electron and an (anti)neutrino ν̄e,
i.e.

n0 → p+ + e− + ν̄e (2.1.2)

At the time, neutrinos had been just proposed by Pauli, in 1930, to explain the missing energy
and spin in the process, although they would not be observed until 1956 [73]. To account
for this process, Fermi proposed a theory with a Hamiltonian containing a field for each of
the involved particles, interacting through a potential term containing all four fermionic fields.
Although deemed by Nature to be "too remote from reality to be of interest to the reader" [74],
the theory turns out to be a great approximation of the weak interactions at energies below
the masses of the W and Z bosons, i.e. E < 80 GeV. In its original formulation, adapted to
the language of Quantum Field Theory, the interaction term of the lagrangian looks like [71]:

LFermi = GF ψ̄pψnψ̄eψν+ h.c. , (2.1.3)

1Actually, it has the dimensions of a scale, which is a slightly different thing. More on this later.
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where

GF = 1.1663787(6)−5 GeV−2 ≈
(

1

292.9 GeV

)2

. (2.1.4)

The great thing about this EFT, and of EFTs in general, is that Eq. (2.1.3) contains,
conceptually, all we need. Here we can see how the recipe enumerated earlier is followed quite
faithfully: first we identified the field relevant to the process, i.e. the neutron, proton, electron
and (anti)neutrino fields. The relevant symmetries, here, are electric charge and lepton (family)
number U(1)Le , acting as

ψe, ψp → e−iθqψe, e
iθqψp

ψe, ψν → eiθLeψe, e
iθLeψν , (2.1.5)

as well as Lorentz symmetry, forcing the Dirac indices to be all contracted. Moreover, since the
four-fermions operator has dimension 6, we multiply it with the coefficient GF , with dimension
[GF ] = m−2. Looking at Eq. (2.1.3), one may be however a bit disappointed of its appearance
being quite different from Eq. (2.1.1), which we claim was our reference. Indeed, to be precise,
one should include the whole infinite tower of operators compatible with the symmetries in
Eq. (2.1.5), and the full lagrangian should look like2 [71]:

L = GF ψ̄ψψ̄ψ + a1G
2
F ψ̄ψ�ψ̄ψ + a2G

3
F ψ̄ /∂ψ�ψ̄ /∂ψ + . . . , (2.1.6)

(where we parametrized all dimensionful coefficients in terms of GF ). However, the higher order
terms will affect the (cross section of the) β-decay, i.e. the process we care about, with terms
proportional to (GFE

2)d−4, where E is some scale characterizing the energy involved in the
process. Since the decay obviously happens at the energy of neutron mass mn ≈ 1 GeV, then
for our process E � G

−1/2
F , and we can safely ignore the terms with d > 6 and be content with

Eq. (2.1.3). So, to be precise, one should add to the points 1-5 listed above another one:

6. Truncate the expansion to keep only the terms relevant to the process at hand.

This philosophy, in its simplicity, gives us in a sense the possibility to parametrize our ignorance,
and it will be the one we will try to follow in the rest of this thesis.

2.1.1 EFT breakdown

We already stressed multiple times that all theories we consider are going to be only valid
within some energy range, while they will need to be completed by a more fundamental theory
when the scale becomes large enough. We now have the tools to make the meaning of this
statement more precise with the language of EFTs, again relying on the example of the Fermi
theory outlined above. Conceptually, we can understand where and why our theory stops

2we will lose the lower index on the fermionic fields in the following
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working from slightly different perspectives. The first, perhaps most naive way of doing this is
by considering the following: we know that 4-point amplitudes are dimensionless objects. Thus,
like we saw for the β-decay, an operator of dimension d will contribute to such amplitudes, by
dimensional analysis, as

iMtree ∝
(
E

Λ

)d−4

, (2.1.7)

where E is some energy characterizing the process. If we truncate at, e.g., d = 6,

iMtree ∝
(
E

Λ

)2

. (2.1.8)

Since observable quantities expressing probabilities, like cross-sections and decay widths, are
proportional to |M|2, if we insist to trust this result up to large values of E, we end up with
probabilities larger than 1, i.e. a violation of unitarity. This argument is, however, a little
sloppy at best. Indeed, if we saw a mathematician taking the function,

f(x) =
1

1 + x
x > 0 (2.1.9)

which is bounded for x ∈ [0,+∞), expanding it around x→ 0+ as

1

1 + x
≈ 1− x+O

(
x2
)

(2.1.10)

and then complain because the right hand side diverges when x → ∞, we would certainly
have something to say about it. Here, like for the mathematician’s f(x), the issue is rather,
obviously, that the expansion we performed cannot be trusted anymore.

Actually, two related but different perturbative expansion breakdowns occur: the first is
strictly dependent on how we built the EFT lagrangian: point 2.1 of our recipe requires us
to truncate the series and only retain the operators deemed relevant. However, when E ∼ Λ,
the powers in Eq. (2.1.7) become all comparable with each other, and the truncation makes
no sense anymore. The second breakdown happens at the level of perturbation theory. Let us
focus on dimension 6 operators. Since their couplings are suppressed as Λ−2, a diagram built
with them and containing L loops will behave as

iML-loops ∝
(
E

Λ

)2L

. (2.1.11)

Thus, as soon as E ∼ Λ, all loops will become comparable to the tree level contribution and to
each other, and we see that it is also perturbation theory in the usual sense that breaks down.
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2.1.2 Matching

What the mathematics of the EFT expansion is telling us, here, is that at the cutoff the theory
has to break down. However, it could actually break down way earlier than that. If the energy
E is enough to produce a new particle, whose field is not within those we picked at point 1,
that means, by definition, that we are not using the correct tools to describe the phenomena
at hand anymore.

Let us explain what happens in this case relying, again, on the Fermi theory of interactions.
Suppose we start from a lagrangian containing the fermionic field interacting with a massive
vector boson Wµ

LUV = −1

4
FµνF

µν +
1

2
M2WµW

µ + ψ̄(i/∂ + g /W )ψ , (2.1.12)

where F µν = ∂µW ν−∂νW µ and g is some coupling. Then, we can compute the matrix element
for ψψ → ψψ as [71]:

iM =
p1

p2

p3

p4
p ∼ (ig)2v̄2γ

µu1

−1(gµν − pµpν

M2 )

s−M2
ū3γ

νv4 . (2.1.13)

Here, the Dirac equation guarantees that the piece ∝ pµpν in the propagator vanishes3, and at
energies s�M we can approximate the matrix element as

iM =
p1

p2

p3

p4

= −i g
2

M2
v̄2γ

µu1ū3γµv4 . (2.1.14)

This is the same matrix element we would get from a 4-Fermi lagrangian with a dimension-six
term of the form

L4-Fermi = GF ψ̄γ
µψψ̄γµψ (2.1.15)

if we set GF = g2

M2 . Visually, we can interpret this result as the W boson propagating over
distances of order M−1, so that it cannot be seen if we observe the process at a large distance,
and the interaction reduces to a point-like contact term, as in Eq. (2.1.14). The theory in
Eq. (2.1.12) is then referred to as the UV completion of the 4-Fermi theory. It should be said
that, in the real world, the fields actually responsible for the β-decays are the quarks inside the
nucleons, so that the corresponding 4-Fermi lagrangian should be built using their fields. There,
the UV completion is in fact the electroweak sector of the SM, where the W boson is one of the
gauge bosons of the SU(2)L × U(1)Y gauge group, which acquires a mass through the Higgs
mechanism, which induces the spontaneous symmetry breaking SU(2)L × U(1)Y → U(1)e.m.

3it can be seen by noticing that /p = /p1 + /p2 acts on v̄2 and on u1.
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The procedure we just outlined is an example of what goes under the name of matching.
We could have gone further in Taylor-expanding Eq. (2.1.13) in powers of s2

M2 , and we would
have needed more and more higher dimensional operators in the EFT to reproduce the matrix
element, with coefficients that could all be expressed in terms of monomials of g and M .

In this short example, we actually limited ourselves to the tree-level matching. A general-
ization to a universal recipe is immediate: compute a process involving fields contained both
in the UV theory and in the EFT, and fix the coefficients of the latter so that the two results
agree, up to some order in the expansion. This is also referred to as the on-shell method, to
distinguish it from another way of performing the matching, which happens directly at the level
of the path integral, and is thus dubbed off-shell [75,76]. We can also go beyond tree-level and
perform the matching at one (or more) loops. This is where the EFT approach shows some of
its greatest strengths, in combination with the tools of the renormalization group equation4.

2.1.3 Masses and scales

We stressed above that the scale where the EFT stops working because a new excitations enters
the game can be met way earlier than the scale where the EFT expansion breaks down. To
explain this, it is useful to understand the difference that lies here between masses and scales.
A useful trick, to this end, is to reintroduce in the action explicit factors of ~, while keeping
c = 1. For example, for a scalar field φ(x), ~ enters the equal time commutation relation
between φ(t, ~x) and its canonically conjugated momentum π(t, ~y) = ∂tφ(t, ~y) as

[φ(t, ~x), π(t, ~y)] = i~δ3(~x− ~y) , (2.1.16)

which is the QFT analogue of the Quantum Mechanics [x̂, p̂] = i~. We can then distinguish
between two different units, units of energy E and of length L, so that [~] = EL. Then, we
can use that the action S has [S] = [~], and that S =

∫
d4xL, together with the canonical

commutation relations for all the fields normalized as Eq. (2.1.16), to get the dimensionality of
all the relevant quantities:

[~] = EL [L] = EL−3 [φ] = [Aµ] = E1/2L−1/2 [ψ] = E1/2L−1

[∂] = L−1 [g] = [y] = E−1/2L−1/2 [λ] = E−1L−1 , (2.1.17)

where Aµ and ψ indicate generic spin 1 and fermionic fields, g a gauge coupling, y a Yukawa
coupling and λ a quartic coupling. To make the discussion more transparent, let us define units
of mass and coupling as [78] M̃ ≡ L−1 and C ≡ E−1/2L−1/2. Then, consider a generic operator
of dimension d

1

Λd−4
∂nDΦnBψnF , (2.1.18)

4For a nice review, see e.g. Ref. [77]
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where nD is the number of derivatives, nB the number of bosonic fields (Φ = φ,Aµ), and nF
the number of fermions, with nD + nB + 3

2
nF = d. In units of C and M̃ ,

[φ] = [Aµ] = M̃C−1 [ψ] = M̃3/2C−1 [L] = M̃4C−2 , (2.1.19)

whence

[Λ] =
M̃

C
n−2
d−4

, (2.1.20)

with n = nF + nB the total number of fields in the operator. As n > 2 and d > 4 for the
operators in the EFT, the exponent of C in Eq. (2.1.20) will always be positive and there will
always be some power of the couplings separating mass and scale. In other terms, masses and
scales are incommensurable. Reconnecting to the discussion we were leading above, we can
understand the two different physical meanings of the two quantities in that M̃ is associated
to the energy where new degrees of freedom appear, while Λ to the energy where the EFT
expansion and perturbation theory break down.

Let us go back to our example of the lagrangian in Eq.(2.1.12) of a massive vector bo-
son interacting with a fermion field and to its low-energy counterpart, the 4-Fermi theory in
Eq. (2.1.15). Looking at the latter, we could infer that the theory breaks down at energies of
the order of the cutoff scale E ∼ G

−1/2
F = M/g. However, we know that the theory needs to

be completed as soon as the W boson enters the game, i.e. for E ∼ M = gG
−1/2
F . If 5 g � 1

this would happen way earlier than the failure of the EFT perturbative expansion. This result
is quite general, and it is worth keeping in mind when dealing with the construction of EFTs.

2.1.4 Coset construction and chiral lagrangian

We now wish to make a short departure from the line of discussion followed up to this point
to introduce another fundamental tool in developing Effective Theories. Such is the so called
coset or CCWZ construction (from the name of their authors) [79,80]. Although there will not
be particular focus on this construction in the rest of the work, it is certainly useful to have in
mind a complete picture of the set of tools a theoretical physicist can count on when building
a theory, and we will often reference it later. In addition, its historical importance and the
theoretical cleanliness and conciseness of the arguments (the two original papers are 12 pages
in total), are themselves enough to make it worth discussing.

The CCWZ construction deals with the situation where some compact symmetry Lie group
G is spontaneously broken down to one of its subgroups H, allowing an effective description of
the relevant low energy modes, i.e. the Goldstone bosons. Let us label T̂ i the generators of the
subgroup H and Xα all the other generators of G. Since H is a subgroup, the T̂ i’s will form a

5in the real world GF =
√

2g2w/8m
2
W , where mW ≈ 80.4 GeV and gw ≈ 0.65, and the

√
2/8 factor is a

consequence of the particular structure of the EW sector.
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subalgebra, and the commutation relations look like:[
T̂ i, T̂ j

]
= iCijkT̂

k
[
T̂ i, Xα

]
= iCiαβX

β
[
Xα, Xβ

]
= iCαβγX

γ + iCαβiT̂
i . (2.1.21)

We can define the operator

Ω(x) = eiπα(x)Xα

, (2.1.22)

parametrized in terms of the fields πα(x) that are going to represent our Goldstone bosons.
Suppose the breaking happens through some order parameter v, and the theory finds itself in
some vacuum |v〉, with

T̂ i |v〉 = 0 Xα |v〉 6= 0 . (2.1.23)

If we pick constant values for the πα(x) → π̄α, ∂µπ̄α = 0, the action of Ω(π̄) takes us from a
vacuum state |v〉 to another vacuum |v′〉. Since G is a symmetry of the theory by assumption,
[Xα,H] = 0, so |v〉 and |v′〉 are degenerate, but inequivalent. In other words, Ω spans the
coset space manifold G/H. Then, we can imagine the operator Ω(x) as acting on |v〉 and the
Goldstone bosons parametrizing the excitations with respect to it in the direction of the broken
generators Xα.

Importantly, under the action of a generic g ∈ G, this object transforms as

gΩ(π(x)) = Ω(π′(x))h(π(x), g) h ∈ H . (2.1.24)

Eq. (2.1.24) can be interpreted as Ω(x) being the quantity that allows us to trade a transfor-
mation in G for one in H, although the latter depends on the former. From Ω, we can define
the Maurer-Cartan 1-form Ω−1∂µΩ(x), which belongs to the tangent bundle of the group, i.e.
to the Lie algebra. As such, it can be written as a combination of the generators

Ω−1∂µΩ(x) = iDµπαX
α + iAiµT̂

i (2.1.25)

Now, by direct computation, we can show that Dµπα transforms under the full group G

with some matrices that belong to a linear representation of H, while the Aiµ’s transform like
a connection

Xα(Dµπα)
G−→ Xα(Dµπα)′ = h(π, g)

(
XβDµπβ

)
h−1(π, g) (2.1.26)

T̂ iAiµ
G−→ T̂ iA′iµ = h(π, g)

(
T̂ jAj,µ

)
h−1(π, g) + i[∂µh(π, g)]h−1(π, g) (2.1.27)

The interpretation is then the following: the Goldstone bosons, and possibly other light fields
also present in the lagrangian, all live in the curved coset manifold, parametrized by the Gold-
stones themselves. The expansion in Eq. (2.1.25) provides us with the tools to deal with this
curved space: Dµπα can be seen as the covariant derivative of the πα’s, while we can use Aiµ
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to build a covariant derivative

Dµ ≡ ∂µ + iAiµT̂
i , (2.1.28)

that we can use to consistently treat any light field we could want to add to the theory. We
can at this point build the most general lagrangian L with these building blocks, and just be
sure to make it invariant under the linearly realized subgroup H. By virtue of Eqs. (2.1.26)
and (2.1.27), we can then rest assured that L will also be invariant under the full group G.

Surely, the most prominent example of an application of such construction is the system-
atization of the Chiral lagrangian of mesons. Consider the lagrangian of massless QCD limited
to two or three quarks6

LQCD = −1

4
F a
µνF

aµν +

Nf∑
i=1

iψ̄i /Dψi , (2.1.29)

where F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , /D = γµ(∂µ − igT aAaµ), Nf = 2, 3 and T a, a = 1, . . . , 8

are the generators of the color gauge group SU(Nc). Since there is no mass term, LQCD enjoys
a global flavor symmetry acting separately on the right- and left-handed components of the
Dirac fermions ψi,

G = U(Nf )L × U(Nf )R . (2.1.30)

At low energies, as it is well known, the theory undergoes spontaneous symmetry breaking by
means of a quark condensate acquiring non-zero expectation value

〈
ψ̄iψj

〉
∝ δij 6= 0 , (2.1.31)

where i, j are flavor indices. The full group G is then broken to its diagonal subgroup

G = U(Nf )L × U(Nf )R
〈ψ̄iψj〉6=0
−−−−−→ H = SU(Nf )V × U(1)A . (2.1.32)

The chiral U(1)A is broken by anomalies [81, 82], so we will not care about it in the following.
To follow the CCWZ recipe, then, Eq. (2.1.32) is all we need. Here, there are N2

f − 1 broken
generators, so we can parametrize the coset manifold with

Ω(x) ≡ exp

(
i
πa

Fπ
Xa

)
a = 1, . . . , N , (2.1.33)

where we have factored out the dimensionful quantity Fπ so that [πa] = m as expected for a
6While the up and down masses are O(MeV)� ΛQCD, so they can be taken to be massless to a very good

degree, the same approximation is less clean for the strange quark with ms = O(100 MeV).
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scalar field. We can extend this rescaling to all involved quantities as

Dµπ
a → 1

F 2
π

Dµπ
a Dµ →

1

Fπ
Dµ . (2.1.34)

Then, the Chiral lagrangian parametrizing the interactions of the mesons πa within themselves
can be written, at the lowest order, as

L(2)
χ =

1

2
Dµπ

aDµπa . (2.1.35)

Actually, this lagrangian is usually written in terms of Ω as [83]

L(2)
χ =

F 2
π

4
Tr
(
∂µΩ∂µΩ†

)
, (2.1.36)

which can be brought in the form of Eq. (2.1.35) using that Ω is unitary, Ω† = Ω−1, and

Tr
(
∂µΩ∂µΩ†

)
= Tr

(
(Ω−1∂µΩ)†(Ω−1∂µΩ)

)
(2.1.37)

and using Tr
[
XaXb

]
= 2δab, if Xa are the Pauli or Gell-Mann matrices.

The construction provided is by all means a specific recipe for the building of an Effective
Field Theory. Indeed, Eq. (2.1.35) can be supplemented with an infinite tower of operators of
the schematic form

O(d) =
c

Λd−4
Dµ1 . . .DµnDν1π

a1 . . . Dνmπ
am , (2.1.38)

with d = n + 2m and all the indices are contracted to form a Lorentz and SU(Nf )V singlet.
More remarkable, however, is the fact that the Dµπ

a’s can be themselves expanded in an infinite
series in the fields πa and their derivatives, with the appropriate suppression. For example, for
Nf = 2, we can expand the quadratic term in Eq.(2.1.35) as

L(2)
χ =

1

2
Dµ~π ·Dµ~π =

1

2
∂µ~π · ∂µ~π −

1

6F 2
π

(
~π× ∂µ~π

)
· (~π× ∂µ~π) +O

(
F−4
π

)
, (2.1.39)

where we adopted the vector notation ~π = {π1, π2, π3}. The notable feature is here that
symmetry fixes the coefficient of the second term, and of all higher order terms coming from
the expansion, so that they can all be expressed in terms of the dimensionful quantity Fπ. In
other words, we can think of the coset construction as of an improvement of the simplest EFT
construction, where all terms would have arbitrary coefficients, allowed by the knowledge of
the symmetry breaking pattern. We conclude by mentioning that the coset construction, as
we built it here, is fit to address the spontaneous breaking of internal symmetries. However,
it can be generalized to include the breaking of some Poincaré generators, in which case some
interesting behavior, e.g. the presence of massive Goldstone-like excitations in the spectrum,
is observed [84–88].
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2.1.5 Spurions

Another useful concept when building EFTs is that of spurions, which we will use quite ex-
tensively in the following and thus wish to introduce here [78]. Consider a theory invariant
under a global symmetry G but for one operator O(r) transforming in some representation r

of G. Let us call C the coefficient of this operator. Imagine, then, that instead of C being a
number it were the vacuum expectation value of some heavy scalar field we have integrated out,
transforming in the conjugate representation r̄ with respect to O(r), with indices contracted so
that CO(r) is a singlet under G and the full lagrangian is now completely G-invariant. Such a
C is called spurion.

Thinking of symmetry-breaking coefficients in this way has a number of advantages. The
first one, which we will only mention briefly, is that they can be used in the definition of
technical naturalness [89]. If we take the limit C → 0, the symmetry group G is fully restored,
so that any diagram that is sensitive to the breaking of G must have at least one insertion of
O(r) and so be accompanied by C. This is valid, in particular, for the quantum corrections that
C receives from loop diagrams. The usual lore is then that if C has a small value at tree level,
its quantum corrections will be small and it will stay small at loop level, too. Consider e.g. the
lagrangian of a complex scalar field φ with mass Mφ.

L =
∣∣∂µφ∣∣2 −M2

φ|φ|2 . (2.1.40)

In the limit Mφ → 0, the theory recovers a shift symmetry φ→ φ+a with constant a. Thus, it
is technically natural forMφ to be small. This would also be valid if we added to the lagrangian
in Eq. (2.1.40) interactions of the form ∂µφOµ, with Oµ any operator with an open vector index.
However, imagine we now add to the lagrangian in Eq. (2.1.40) a fermionic field ψ, with mass
Mψ, interacting with φ via a Yukawa-like term

L =
∣∣∂µφ∣∣2 + ψ̄(i/∂ −Mψ)ψ −M2

φ|φ|2 − yφψ̄ψ . (2.1.41)

Now, the scalar mass term will also receive corrections from the coupling y, which, too, breaks
the shift symmetry. This is basically what happens in the SM, where the Higgs mass term
receives corrections from the Yukawa as well as the Higgs quartic term, so it is not technically
natural for it to be as small as it turns out to be. This technical naturalness interpretation of
the Hierarchy problem, however, can be rather misleading. Indeed, one can argue that, being
the Higgs mass the only scale in the SM7, all other terms being forbidden by gauge symmetry,
all corrections it receives are, again, proportional to itself.

The problem arises, rather, when UV completing the SM. If the UV completion is intro-
duced at a scale ΛUV � v ∼ 246 GeV, where v is the Higgs vev, then the Higgs mass will
receive contributions proportional to this scale, too. Then, to obtain the observed value at

7At least in the electroweak sector. As we mentioned, QCD condensation produces a dimensionful quantity
ΛQCD, which plays however no role at the scales of concern here.
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our energies, some nontrivial fine-tuning has to happen in the UV8. This will be the case un-
less some mechanism intervenes to protect the Higgs mass itself, and a plethora of models
have been proposed exploring different instances of such possibility, some examples including
Little-Higgs [90, 91], Composite Higgs [92–95], Twin Higgs [96], extra dimensions [97–102] and
obviously Supersymmetry (see Ref. [103] for a review).

Spurions, however, can also be applied in a clever way to get information linking the UV
to the IR phase of a theory. The most successful example of this use is, again, linked to the
Chiral lagrangian of mesons [83,104,105]. The treatment presented in Section 2.1.4 is based on
the assumption that the quarks can be taken to be massless. In the real world, this is not the
case, so the problem arises of how to consistently account for this mass term and understand
its implications for the Chiral lagrangian. Consider the QCD lagrangian in Eq. (2.1.29) with
the addition of a mass term

LQCD = −1

4
F a
µνF

aµν +

Nf∑
i=1

ψ̄i
(
i /Dδij −Mijψj

)
, (2.1.42)

where Mij is hermitian and, upon a change of flavor basis, can always be taken to be diagonal.
We can rewrite the mass term as

−LM =

Nf∑
i=1

ψ̄iMijψj =

Nf∑
i=1

[
ψ̄R,iSijψL,j + ψ̄L,iS

†
ijψR,j

]
with Mij =

(
Sij 0

0 S†ij

)
(2.1.43)

to separate the two helicities. Clearly, Mij breaks the flavor symmetry U(Nf )L × U(Nf )R.
However, we can think of it as a spurion, i.e. we can promote it to a field M̃ij, whose vev is
Mij, and so that, under U(Nf )L × U(Nf )R

M̃ij → M̃ ′ =

(
S
′

0

0 S†
′

)
=

(
VRSV

†
L 0

0 VLS
†V †R

)
with VR,L ∈ U(Nf )R,L (2.1.44)

This transformation is exactly the one needed to counterbalance that of the fermions, so that
the mass term results invariant under the full group G. Suppose we want then to add this new
field to the Chiral lagrangian. Since global symmetries must be also realized in the IR theory
(although sometimes non-linearly, has we have seen), and the QCD lagrangian with the spurion
M̃ is invariant under U(Nf )L × U(Nf )R, we also have to add this spurion field to the Chiral
lagrangian in a way that respects this invariance. The first nontrivial singlet one can build is
then

LχM =
F 2
π

2

[
B Tr

(
M̃Ω(x)

)
+B∗Tr

(
M̃ †Ω(x)†

)]
. (2.1.45)

8For a clear treatment of this interpretation of the Hierarchy problem, see e.g. Refs. [37, 77]
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After setting M̃ to its vev, and imposing parity

π(x)
P−→ −π(x′) =⇒ Ω(x)

P−→ Ω†(x′) , (2.1.46)

we arrive at

LχM =
F 2
πB

2
Tr
[
M
(
Ω(x) + Ω†(x)

)]
. (2.1.47)

Here B is a dimensionful quantity that needs to be fixed by measurement9, and that can be
related to the meson masses Mπ by expanding Eq. (2.1.47) to second order in the field π. For
Nf = 2, for example, we have

M =

(
mu 0

0 md

)
, (2.1.48)

and

LχM =
1

2
F 2
πB(mu +md)−

1

2
B(mu +md)~π

2 +O
(
F−2
π

)
. (2.1.49)

We can relate pion masses M2
π ≡ B(mu +md) to the chiral condensate by imposing

〈
ψ̄iψj

〉
= −

〈
δ

δM̃ij

LQCD
〉

!
= −

〈
δ

δM̃ij

Lχ
〉

, (2.1.50)

where Lχ indicates the full Chiral lagrangian, and obtaining

δ

δM̃ij

Lχ =
1

2
FπB

(
Ω(x) + Ω†(x)

)
ij
. (2.1.51)

Using 〈Ω(x)ij〉 =
〈
Ω†(x)ij

〉
= δij, we finally get

〈
ψ̄iψj

〉
= −F 2

πB (2.1.52)

and

(mu +md)
〈
ψ̄iψj

〉
= −F 2

πM
2
π , (2.1.53)

i.e. the so called Gell-Mann–Oakes–Rènner relation [106]. More applications of spurions anal-
ysis can be found e.g. in Refs [107–109]. This discussion shows how the concept of spurion can
be a powerful tool both make clear physical predictions like Eq. (2.1.53) and for conceptual
prescriptions like the technical naturalness.

9We could have obviously written F 2
πB = F 3

π B̃ for some dimensionless B̃. However, we present LχM here
as it usually appears, see Ref. [105].
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2.1.6 Accidental symmetries

Another important concept that will be accompanying us is that of accidental symmetries.
These are symmetries which arise accidentally at a given order in the EFT expansion without
being imposed on the theory as a first principle. This happens because, at each fixed dimension,
there is only a finite number of operators we can build with a given set of fields and the required
gauge and global symmetries. It can occur, then, that we have built all the possible operators
compatible the imposed symmetries and we notice that they happen in addition to be invariant
under some other global symmetry. This concept is important because it also gives us hints
about when we expect the accidental symmetry to be broken. Imagine we build a EFT which
is accidentally symmetric under a group G (usually some U(1) factors) up to dimension d− 1,
so that at dimension d a bunch of operators

c�G,i
Λd−4

O�G,i (2.1.54)

finally break G. Then we know that G-violating observables will be suppressed at least by a
factor of (E/Λ)d−4, with E some energy scale characterizing the process at hand.

We stumble into this accident rather often in Quantum Field Theory. The most prominent
examples are probably the two accidental symmetries arising in the Standard Model. Indeed,
the renormalizable d ≤ 4 part of the SM lagrangian possesses conservation of baryon number
and lepton family number as accidental symmetries. The former is a U(1)B global symmetry
under which (anti-)quark have charges (−)1

3
, while leptons are uncharged, while the latter is

composed of three U(1)Li factors under which one of the three lepton families has charge 1,
while the other two and the quarks are inert. Both of these accidental symmetries are broken
when going further in the EFT expansion. Lepton family number, for example, is broken
already at dimension-five by the so called Weinberg operator [16]:

L(5) =
Cij
Λ

(
HL̄ci

)
(LjH) + h.c. . (2.1.55)

Provided the coefficient Cij has a generic structure, this operators breaks all three generators
of U(1)Li . After Electroweak Symmetry Breaking (EWSB), when the Higgs field is set to its
vev, this operator provides a Majorana mass for the left-handed neutrinos, and can reproduce
the observed neutrino oscillations [110–112]. As mentioned, we can use symmetry breaking
interactions to infer the magnitude of the suppression scale Λ. Since neutrino oscillations are a
lepton-number violating observable, we can use it to estimate the suppression scale Λ. Assuming
O(1) values for the Cij entries, we get Λ ∼ 1014 GeV. This is clearly an extremely large value,
and were it the general scale of suppression we had to deal with, it would clearly make the EFT
quite hard to use practically. However, due to the particular nature of neutrinos, it is plausible
that some mechanism intervenes to mitigate this prediction [110, 113, 114]. For example, one
can think that some new resonances appear at some energy E � 1014 GeV, but that whatever
model we need to describe the physics at that energy still has lepton family number as an
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accidental symmetry.
Baryon number, instead, is broken first at dimension-six. Experimentally, baryon number

violation would have the remarkable implication of allowing the proton to decay [115], via

p+ → π0e+ . (2.1.56)

The very strong bounds on the proton lifetime, then, τ > 1033 years [116], imply that baryon
number violating operators are suppressed by a scale Λ & 1015 GeV, again with the assumption
of O(1) coefficients. Here, similar mechanisms to the case of the Weinberg operator can inter-
vene to lighten this bound. Additional suppression can be gained in this case by remembering
that the proton is composed by up and down quarks. If there is some fundamental explana-
tion to the Yukawa couplings being so hierarchical, it is plausible that the same mechanism
that causes the suppression of the first generation Yukawa couplings also suppresses the proton
decay [112].

In addition to being broken at d > 4, both baryon number and lepton family numbers
are anomalous symmetries, so that their violation can be also mediated non-perturbatively by
topological effects such as instantons [71]. Their combination B − L, where L is intended as
the diagonal subgroup of U(1)Li where all the three lepton families transform with the same
phase, is however anomaly-free, and can be in principle gauged [117–120]. This would mean
that this subgroup of the original symmetry would need to be imposed at each order in the
EFT expansion. Actually, a conjecture from quantum gravity states that any quantum theory
that wishes to include the description of gravity cannot have global symmetries [121–125]. If
taken seriously, this means that any global symmetry should be interpreted as an accidental
one, since it would have to be broken at least by gravitational effects, i.e. higher dimensional
operators suppressed by powers of MP .

2.1.7 Renormalizability

Let us also briefly comment on the applicability of renormalization to EFTs. We said that a
theory in 4 dimensions with only operators of dimension d ≤ 4 is said to be renormalizable,
while it is called non-renormalizable if operators of d > 4 are also included. This nomenclature
is due to the property of renormalizable theories of making an infinite number of predictions by
measuring a finite number of parameters at a given energy scale. More concretely, this means
that all UV divergences appearing in loop diagrams can be reabsorbed by shifting a finite
number of parameters in the lagrangian. Such a feature is related to the BPHZ theorem [126–
128], stating that all divergences can be removed by counterterms corresponding to superficially
divergent 1PI amplitudes. Renormalizable theories, then, are those with only a finite number of
such divergent 1PI amplitudes [129]. On the contrary, non-renormalizable theories produce an
infinite number of them, and will need an infinite number of counterterms to balance them [130].
A generic loop diagram in 4 dimension with nf external fermions, nb external bosons and with
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ni insertions of couplings with dimension ∆i will have a superficial degree of divergence [71]:

Dnf ,nb,ni = 4− 3

2
nf − nb −

∑
i

ni∆i . (2.1.57)

So, interactions with ∆i < 0, i.e. those multiplying operators of d > 4, correspond to an
infinite number of possible ni and thus of nf,b that make Dnf ,nb,ni > 0, implying an infinite
number of divergent 1PI amplitude. This is why couplings of negative dimension are called
non-renormalizable, while those of ∆i = 0 are called marginal, and super-renormalizable the
ones with ∆i > 0.

The property of renormalizability has been regarded for quite some time as a fundamental
one for a healthy theory. More recently, however, it has been understood in a more transparent
way that, as far as physical predictions are concerned, a non-renormalizable theory can be
just as useful as a renormalizable one [71]. As a matter of fact, despite requiring an infinite
number of derivatives, non-renormalizable theories can be used to make predictions. At tree
level, this descends from the lists of operators in the EFT becoming less and less important
with increasing dimension, so that for each observable we can retain the relevant subset in the
E/Λ expansion. However, they are also predictive at loop level. Non-renormalizable theories,
indeed, can be renormalized, but the only way to do it is by continually adding terms to the
lagrangian to provide counterterms to cancel divergences. Crucially, this is always possible
since divergences coming from loop diagram are always local, i.e. they will always multiply
polynomials in the external momenta. Thus, there always exists a local operator that can be
built to cancel them10.

Lastly, it is worth stressing that renormalizable theories allow to make infinite predictions
with a finite number of parameters only formally. In actuality, when one needs to concretely
perform computations, this may not be possible. For example, n-points amplitudes become
more and more complicated to compute with increasing n, and the same goes for the loop
order. More profoundly, there can be obstructions that fundamentally preclude the theory from
being predictive, such as it becoming strongly coupled. In conclusion, although renormalizable
theories have a number of theoretical and practical advantages, unless some strong reasoning
suggests otherwise, or if we are dealing with a would-be theory of everything, we should interpret
every renormalizable theory just as the leading order of an EFT expansion.

2.1.8 SMEFT

Let us finally get to the object whose properties will represent the main focus of this thesis, i.e.
the Standard Model Effective Field Theory (SMEFT) [65]. It stems from generalizing the SM
lagrangian to include higher dimensional operators, as required by the EFT prescription. To
avoid confusion in the following, we will refer to the renormalizable part of the SM lagrangian,

10See Ref. [71], Chapter 21 for a nice explanation.
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i.e. the set of SM operators with d ≤ 4, as SM4. To fix the notation, we show it here

LSM4 = −1

4
BµνB

µν − 1

4
W I
µνW

Iµν − 1

4
GaµνG

aµν + (DµH)†(DµH) +m2H†H − 1

2
λ(H†H)2+

+
∑

ψ=L,Q,e,u,d

iψ̄ /Dψ −
(
HL̄iYe,ijej +HQ̄iYd,ijdj + H̃Q̄iYu,ijuj + h.c.

)
, (2.1.58)

where H is the Higgs doublet, H̃ = iσ2H
∗, with σ2 the second Pauli matrix. Q and L are the

left-handed components of the quarks and leptons fields, while e, u and d are the right handed
ones. We will always omit helicity indices unless necessary. We mostly follow Ref. [70] for the
sign and i conventions, so for example the covariant derivative acting on the left-handed quark
field Q looks like

(DµQ)αj =
[
δαβδjk(∂µ + ig′YQBµ) + igδαβτ

I
jkW

I
µ + igsδjkT

A
αβG

A
µ

]
Qβk , (2.1.59)

with τ I = σI

2
the SU(2) generators, TA = λA

2
the SU(3)c generators, σI are the Pauli matrices

and λA the Gell-Mann matrices. Finally, YQ indicates the hypercharge.
Now, we wish to extend LSM4 by supplementing it with all possible higher dimensional

operators. At dimension-five, we already saw that the only possibility is represented by the
Weinberg operator, Eq. (2.1.55). With increasing dimension, the number grows quite fast, and
at dimension-six we already have to deal with 59 operators. A complete set for d = 6 has
been presented for the first time in Ref. [70], and we will in the following take this basis as
reference. Such basis is usually referred to as the Warsaw basis . It may be surprising that this
set was only first presented some 12 years ago. However, this circumstance is the consequence
of two contingencies: first of all, one does not need a complete basis for most practical purposes.
If we are studying an observable, say the electron EDM, we will only need a subset of these
operators [131,132], and a convenient basis for them can be picked case by case. Secondly, there
is a large number of redundancies relating operators within each other, be it by integration by
parts, Fierz identities or field redefinitions. We will discuss this issue in great detail in the next
Section. Although it is not technically wrong to pick a basis containing redundant operators,
they will produce flat directions in fits, since they will always appear in some combination.
Finally, notice that the number 59 we flashed above only refers to the SMEFT with only one
generation of quarks and leptons. Including all three of them actually pushes that number
up to an astounding 2499 [133], although most of them are just different entries of the same
flavorful objects.

It is then easy to understand why the classifications to some higher dimensions has only
been completed quite recently. At the time of writing, complete bases have been shown for the
SMEFT at dimension-seven [134], dimension-eight [135, 136], and nine [137, 138]. By looking
at their number at each dimension, one can notice a distinct feature [139]: operators of even
mass dimension are usually more than in the odd case. This is intuitively understood since
symmetry favors building blocks of even dimension, e.g. Lorenz indices contracted two by two,
or the Higgs field in the combination H†H, and so on.
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We already discussed the effect of the single operator present at dimension-five, the Weinberg
operator. Dimension-six terms, then, represent the next leading order in the E/Λ expansion,
and are thus expected to be the ones phenomenologically most relevant. Consistently with
this picture, we will dedicate most of our attention to the SMEFT at dimension-six. However,
dimension-eight operators could be disentangled from dimension-six ones thanks to them having
a specific impact on the angular dependence of the differential cross-section in some processes
[140,141], or could become relevant in processes where dimension-six ones do not interfere with
the leading order SM4 thanks to some selection rules [142,143], so that one could even think of
testing them [144]. Moreover, they are the first ones that can be subject to positivity bounds,
which we are going to discuss extensively in the following.

2.2 How to build an EFT and the Hilbert series

In Section 2.1 we outlined the recipe one should follow when building an Effective Field Theory
to describe some phenomena at hand. After fixing the fields and the gauge and global symme-
tries for the theory, point 3 requires us to write down all possible independent operators built
with the former and compatible with the latter. This is easier said than done. A number of
issues conspire to make this step quite nontrivial and subject to mistakes. First of all, there is
not a unique way to define these operators, as some of them are related to others. Moreover, the
number of possible combinations grows exponentially with the dimension, as we have seen in
some examples for the SMEFT. In this Section we will try to address these issues, and provide
the description of a tool that can help in this quest, the so called Hilbert Series.

2.2.1 Operator redundancies

Let us imagine we followed the recipe for the building of an EFT we outlined in Section 2.1
for some theory at some dimension, and we ended up with a bunch of operators defining our
lagrangian. By looking at them more carefully, however, we notice that some of them can
be arranged to form a total derivative, or that some other can be removed via suitable field
redefinitions. In short, we have reached a point where we may wonder where did our recipe
fail, what can we do to obtain a sensible EFT lagrangian and how to justify it.

As a first step, we need to give a more solid footing to the doubts emerged above. As it
frequently happens in physics, the problem here is the mismatch between what we do compu-
tations with and what we can actually observe, and the fact that the tools of our description
are not perfectly adherent to the quantities that we need to describe. In this case, the issue is
with the redundancies inherent to the lagrangian description. Let us make a step back: what
we can observe are scattering amplitudes, i.e. elements of the S-matrix 〈f |S|i〉. To get from
the lagrangian to these elements, we need to go through two steps. First, we need to compute
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time-ordered correlation functions, which can be done in the path integral formalism as

〈0|T{φ(x1) . . . φ(xn)}|0〉 =
1

Z[J ]

δ

δJ(x1)
. . .

δ

δJ(xn)
Z[J ]

∣∣∣∣
J=0

, (2.2.1)

where Z[J ] is the generating functional

Z[J ] =

∫
Dφ exp

{
i

∫
d4xL+ i

∫
d4x J(x)φ(x)

}
, (2.2.2)

where φ indicates a generic kind of field and possible indices have been omitted. Then, we have
to rely on the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula [145] to convert these
off-shell correlation functions to on-shell S-matrix elements

〈f |S|i〉 = Z−
n
2

φ

[
i

∫
d4x1 e

−ip1x1(�x1 +m2)

]
. . .

[
i

∫
d4xn e

+ipnxn(�xn +m2)

]
×

× 〈0|T{φ(x1)φ(x2)φ(x3) . . . φ(xn)}|0〉 , (2.2.3)

where the −i in the exponent applies to initial states, while the +i to final ones. Here
√
Zφ

is the wave-function renormalization factor, defined as the probability amplitude that the field
φ(x) produces the particle φ with momentum p when acting on the vacuum

√
Zφ = 〈pφ|φ|0〉 . (2.2.4)

It is then in these two passages that some information from the lagrangian may be lost, so that
two different lagrangians produce the same S-matrix elements. Let us indicate with 〈f |S|i〉L
a matrix element obtained with the lagrangian L. What we are after is then an equivalence
class, i.e. the set of lagrangians defined by

I = {lagrangians built following points 1-5 in Section 2.1} / ∼ , (2.2.5)

where

L1 ∼ L2 ⇐⇒ 〈f |S|i〉L1 = 〈f |S|i〉L2 ∀ |f〉 , |i〉 . (2.2.6)

We are used to this kind of reasoning e.g. from the theory of gauge fields, where gauge symmetry
manifests itself as a redundancy of the lagrangian. To account for this redundancy, we need
to treat the lagrangian with a gauge-fixing term. In the end, the physical results have to be
independent on the choice of this term, so that we actually work with the equivalence class of
the gauge-fixed lagrangians.

At this point, we need to identify the possible sources of redundancies relevant to our
construction, in order to define a quotient operation. These are of two kinds: integration by
parts (IBP) and field redefinitions. Under the latter category we also include equations of
motion (EOM) redundancies, as we will explain.
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Integration by parts Consider two operators O1 and O2 of dimension d and such that there
exists an operator Oµ3 of dimension d− 1 in the vector representation of the Lorenz group and
fulfilling

O1 = O2 + ∂µOµ3 . (2.2.7)

Then, when inserted in the action, this operator will give a contribution that looks like:

S ⊃
∫

d4xO1 =

∫
d4xO2 +

∫
d4x ∂µOµ3 . (2.2.8)

The term
∫

d4x ∂µOµ3 is the integral of a total derivative and thus can give no contribution at
any order in perturbation theory. Intuitively, this can be seen as the Feynman rule for ∂µOµ3
would feature a sum of the incoming momenta minus the outgoing ones, always adding up
to zero because of momentum conservation. Thus, if two lagrangians L1 and L2 only differ
because they contain O1 and O2 respectively, they will produce the same S-matrix elements
and belong to the same equivalence class.

Field redefinitions and EOMs Consider a perturbative field redefinition, i.e. a redefinition
of the form [146,147]

φ = F [φ′] = φ′ + λG[φ′] , (2.2.9)

where G[φ′] is local, i.e. a polynomial in φ′ and its derivatives, G[φ′] = O
(
φ′2
)
, and λ is some

small parameter. Actually, to keep the correct dimensions, we can think of λ as Λ−1 if φ is
bosonic, and as Λ−3/2 if fermionic. Then, the lagrangian becomes

L[φ] = L [F [φ′]] ≡ L′[φ′] . (2.2.10)

We can then compute the correlation function obtained with φ′ and L′:

Z ′[J ] =

∫
Dφ′ exp

{
i

∫
d4xL′[φ′] + i

∫
d4x J(x)φ′(x)

}
=

=

∫
Dφ exp

{
i

∫
d4xL′[φ] + i

∫
d4x J(x)φ(x)

}
, (2.2.11)

where we used that φ′ is an integration variable and relabled φ′ → φ. On the other hand, the
original generating functional Z[J ] becomes

Z[J ] =

∫
Dφ′ det

(
δF

δφ′

)
exp

{
i

∫
d4xL′[φ′] + i

∫
d4x J(x)F [φ′]

}
, (2.2.12)
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where det
(
δF
δφ′

)
is the Jacobian of the the transformation. With the usual trick, we can expo-

nentiate it by introducing ghost fields c̄, c:

det

(
δF [φ′(y)]

δφ′(x)

)
= det

(
δ(x− y) + λ

δG[φ′(y)]

δφ′(x)

)
=

∫
DcDc̄ exp

{
i

∫
c̄

(
1 + λ

δG[φ′]

δφ′

)
c

}
.

(2.2.13)

Since G[φ′] = O
(
φ′2
)
, the functional derivative will contain at least a term linear in φ, so that

λc̄ δG[φ′]
δφ′

c only contains ghost interactions with φ. As a consequence, the ghost propagator is
given only by the c̄c term, i.e. their propagator is the identity. Then, every loop containing
them will vanish in dimensional regularization (dim-reg) [148]. For this reason, in dim-reg,
the Jacobian of a transformation like Eq. (2.2.9) is equal to the identity and the ghosts can
be ignored [147]. The change in the source term, while relevant for off-shell quantities, has
no impact on the S-matrix. For its computation, it only matters that the fields we deal with
create the relevant particle from the vacuum, i.e. that

〈pφ|φ|0〉 6= 0 and 〈pφ|φ′|0〉 6= 0 . (2.2.14)

For a perturbative field redefinition like Eq. (2.2.9) this is the case. All operators respecting
Eq. (2.2.14), moreover, will produce two point functions, i.e. propagators, with poles at points
corresponding to the same mass, thus giving the same contribution to the S-matrix element in
the LSZ formula.

Using what we proved here, we can clarify what we mean by eliminating equations of motion
redundancies. In general, we wish to remove operators of the form O = ÕE[X], where E[X] is
the term proportional to EOM, i.e.

E[X] =


E[φ] = D2φ for scalars,

E[ψ] = /Dψ for fermions,

E[F ] = DµF a
µν for field strength tensors,

(2.2.15)

with a some group index if F a
µν corresponds to some non-abelian group, while Õ is a generic

combination of the fields in the lagrangian and their derivatives so that combined with E[X]

produces a singlet of the Lorentz, gauge and global symmetries. Operators of this kind can
always be removed via a perturbative field redefinition. Here, we only show an example, which
can be easily generalized. A complete proof can be found e.g. in Ref. [147]. Consider the
lagrangian [146]

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4 +

c1

Λ2
φ3∂2φ+

c2

Λ2
φ6 +O

(
1

Λ4

)
, (2.2.16)

from which we would like to remove the φ3∂2φ term. We can perform the perturbative redefi-
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nition

φ→ φ+
c1

Λ2
φ3 . (2.2.17)

Then, the kinetic term becomes

∂µφ∂
µφ→ ∂µφ∂

µφ+ ∂µ

( c1

Λ2
φ3
)
∂µφ+

1

Λ4
= (2.2.18)

= ∂µφ∂
µφ− c1

Λ2
φ3∂2φ+

1

Λ4
, (2.2.19)

up to a total derivative which we removed. The additional term exactly cancels the φ3∂2φ we
wanted to remove, and the new lagrangian becomes

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 −

[
1

4!
λ+

c1

Λ2
m2

]
φ4 +

[
c2

Λ2
− c1λ

3!Λ2

]
φ6 +O

(
1

Λ4

)
, (2.2.20)

Since the operators coefficients are arbitrary and only fixed by measurements, we can absorb the
additional terms by a redefinition of λ and c2. The two lagrangians in Eq. (2.2.16) and (2.2.20)
produce the same S-matrix, so they belong to the same equivalence class.

The two cases above represent the only two possibilities where operators can be removed
because of their redundancies. Thus, we come down to a rather straightforward addition to our
recipe

7. Remove operators that are equal to others up to total derivatives (IBP) and remove
operators proportional to equations of motion of the fields (EOM).

2.2.2 Invariant ring and the Hilbert series

For the time being, let us leave the issue of IBP and EOMs aside and focus first on the issue
of characterizing invariants of a given symmetry, be it the Lorentz group or any additional
gauge and global symmetries of the theory. This problem, in its more generic incarnation,
is the main focus of the so called Plethystic Program [149–153] (see also Refs. [154, 155] and
references therein, and Ref. [156] for other recent techniques to compute the Hilbert series).
This has been the attempt to apply tools which originate from the study of polynomial rings
to physics, and in particular where representation and group theory come into play. The most
remarkable success of this program has perhaps been the addition of the Hilbert Series and
its Plethystic Logarithm to the theoretical physicist’s toolbox. In seeing how these tools apply
to our problem, we will adopt the logic followed in Refs. [154, 155]. Concretely, given a set
of parameters ~x and a symmetry group G that acts on ~x as some representation, i.e ∀g ∈ G,
∃R(g) such that ~x→ R(g)~x, one can define invariants I(~x) as the quantities that obey

I(~x) = I(R(g)~x) . (2.2.21)
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As the sum and products of invariants still form an invariant, from an algebraic point of view
we say they form a ring. Within this ring, one can define different notions of dependence within
the invariants themselves. First of all, a set of invariants can be linearly dependent if one can
find a linear combination of them with non-zero coefficients which gives exactly zero. More
generally, one can define an invariant I ′ to be polynomially dependent on the set of invariants
{I1, I2, . . . , Im} if it can be expressed as a polynomial of them, i.e.

I ′ = P ′ (I1, I2, . . . , Im) . (2.2.22)

The polinomially independent invariants of the ring are called generators, and it can be shown
that, at least for all the groups relevant to physics, their number is finite [157, 158]. By con-
struction, no relation like Eq. (2.2.22) can exist between the generators. Nevertheless, there
could exist a polynomial P such that

P (I1, I2, . . . , Im) = 0 . (2.2.23)

Relations of this kind are called syzygies in the literature, and the invariants that obey a
syzygy are algebraically dependent. Taking all syzygies into account we can successively remove
invariants until we get to the set of algebraically independent ones. To recap, the chain of
implication in the three distinct definitions of independence we gave are

algebraic independence⇒ polynomial independence⇒ linear independence , (2.2.24)

while the reversed arrows are not true. In this setting, the Hilbert series is used as a helping
hand in finding what independent invariants, in all three senses, look like [159], although usually
some additional steps are needed to construct them explicitly. Even though their link to our
lagrangian problem is yet not clear, we will see the connection in a moment. First of all, we
need to distinguish yet another class of invariants, i.e. those which are linearly independent.
The Hilbert Series is defined as a generating function for the linearly-independent invariants:

H(q) =
∞∑
k=1

c
(k)
1 qk , (2.2.25)

where c(0)
1 = 1. c(k)

1 denotes precisely the number of linearly-independent invariants at dimension
k, and q is an arbitrary spurionic variable satisfying |q| < 1, and represents a placeholder for the
building blocks of the invariants. Let us make an example. Consider a theory with a coupling
m transforming under a U(1) symmetry as

m→ eiφmm . (2.2.26)
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Then the basic invariant is obviously I = mm∗, which has dimension 2, and all the invariants
of this theory will have the form In. Hilbert series will thus have the form

H(q) = 1 + q2 + q4 + · · · = 1

1− q2
, (2.2.27)

where q2 corresponds to I, q4 to I2, and so on. It can be shown that, in the general case of a
semi-simple Lie algebra, the Hilbert series has the form

H(q) =
N(q)

D(q)
. (2.2.28)

The numerator N(q) is a polynomial of degree dN with non-negative coefficients and with the
property of being palindromic, i.e

N(q) = 1 + c1q + c2q
2 + · · ·+ cdN−1q

dN−1 + qdN , (2.2.29)

with ci = cdN−i. The denominator takes the form

D(q) =

p∏
r=1

(1− qdr) , (2.2.30)

and is thus of degree dD =
∑

r dr. The number of factors is equal to the number of parameters,
i.e of physical observables, and coincides with the number of algebraically independent invari-
ants. Moreover, the denominator provides information on what the algebraically independent
invariants look like: a factor (1− qdr)l corresponds to l algebraically independent invariants of
degree dr.

To recap, so far we learned that:

• the Hilbert series will in general look like

H(q) =
1 + c1q + c2q

2 + · · ·+ cdN−1q
dN−1 + qdN∏p

r=1(1− qdr) with ci = cdN−i , (2.2.31)

• each factor (1− qdr)l in the denominator corresponds to l algebraically independent
invariants

• each factor in the Taylor expansion of Eq. (2.2.31) corresponds to linearly indepen-
dent invariants.

In the previous example of Eq. (2.2.27), only one factor is present, corresponding to a single
basic (and algebraically independent) invariant mm∗. Indeed, we start with a complex variable
m, and we can remove its phase using the U(1), bringing the observables down to 1. On the
other hand, each q2k term in the expansion corresponds to a linearly independent (mm∗)k. If
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we enlarged our toy-model to have two parameters, m1 and m2, transforming under the U(1)

symmetry as

m1 → eiφ1m1 m2 → eiφ2m2 , (2.2.32)

we can build an example of the so called multi-graded Hilbert series by assigning different
spurions to m1 and m2, say q1 and q2. The invariants in this case are built as all possible
products of all possible powers of I1,2 ≡ m1,2m

∗
1,2, which means that the multi-graded Hilbert

series is

h(q1, q2) = (1 + q2
1 + q4

1 + . . . )(1 + q2
2 + q4

2 + . . . ) =
1

(1− q2
1)(1− q2

2)
. (2.2.33)

The multi-graded Hilbert series can give more information about the structure of the invariants,
but does not have in general the properties for the numerator and denominator cited for its
ungraded version. The latter can here be easily obtained by setting q1 = q2 = q, i.e H(q) =

h(q, q). In the examples we showed until now, the numerator has always taken the trivial form
N(q) = 1, and the set of generators coincided with the algebraically independent invariants.
When this happens, the invariant ring is said to be free. However, this turns out not to be
always the case for more complicated groups and representations.

As one would expect, the computation we could perform straightforwardly by hand in the
simple cases above quickly becomes unfeasible when larger groups are involved. Thus a general
formula to compute the Hilbert series is called for. The solution is provided by the so called
Molien–Weyl formula, which is the focus of the next section.

2.2.3 The Molien–Weyl formula

The Molien–Weyl formula [160] allows to compute the Hilbert Series of a set of operators
starting from the character χ of the representations they belong to. Because of its central
importance in the following, a careful introduction of the character is in order. This is a rather
central feature of a group G, carrying important informations on the structure of the group
itself. In a representation r, the character is defined as the trace of a group element g in r,
i. e. χr ≡ Trr(g), g ∈ G [161]. In a connected Lie Group, any g can be conjugated into its
maximal torus, that is the maximal compact, connected, abelian subgroup of G, T = U(1)r,
with r = rank(G). This means that ∀g, ∃h s.t. h−1gh ∈ T . For example, the maximal torus of
SO(3) is just U(1) ∼= SO(2), which can be taken, for instance, to be the rotations around the
z-axis. This is just the familiar idea that any 3d-rotation can be performed by first rotating the
z-axis with a matrix h ∈ SO(3) to make it coincide with the axis of rotation, then performing
the rotation around z, and finally rotating the axis back with h−1. This property is expressed
in mathematical language by saying that the character is a class function. This means the
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following: we can first define an equivalence relation by conjugation via

g1, g2 ∈ G, g1 ∼ g2 iff ∃h ∈ G s.t. h−1g2h = g1 . (2.2.34)

Then, the value of χr is constant on a given conjugacy class, and, in particular, it is sufficient
to evaluate it on the maximal torus T . A generic matrix representing an element t ∈ T will
have the form

t =



cos(θ1) sin(θ1)

− sin(θ1) cos(θ1)
0 0

0
cos(θ2) sin(θ2)

− sin(θ2) cos(θ2)
0

0 0
. . .


, (2.2.35)

with as many block matrices as the rank r of the group G, and an additional 1 in the (n, n),
with n the dimension of the representation r, if n is odd. Further, we can always diagonalize
these matrices to

tD = diag
{
eiθ1 , e−iθ1 , . . . , eiθr , e−iθr

}
≡ diag

{
x1, x

−1
1 , . . . , xr, x

−1
r

}
, (2.2.36)

(again, with possibly a 1 eigenvalue at the end), where we defined xi ≡ eiθi . So the character
depends on the eigenvalues xi defining the position on the maximal torus.

All the machinery we can build is centered around three properties of the character. Given
two representations r1 and r2 of G, we have the following three properties

1. character orthogonality: ∫
[dµG (x)]χ∗r1(x)χr2

(x) = δr1r2 , (2.2.37)

where dµG is the Haar measure of the group [162], and we explicitly indicated that both
the character and the measure depend on the eigenvalues xi, here collectively labeled x,

2. character of a tensor product of representations: χr1⊗r2(x) = χr1(x)χr2(x),

3. character of a direct sum of representations: χr1⊕r2(x) = χr1(x) + χr2(x).

Consider a group G and an object M transforming in some representation r. We want to build
all possible invariants composed of a fixed number n of the objectM . What we do, then, is take
n tensor products of M with itself, i.e. products where all the indices are left free, decompose
this product into irreducible representations (irreps), and then pick the singlets from the result.
In other words

M →M ⊗M ⊗ · · · ⊗M︸ ︷︷ ︸
n-times

⇒ Symn (r) = c(n)
r1

r1 ⊕ · · · ⊕ c(n)
1 1 (2.2.38)
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where the last equality sketches the decomposition in irreps. Since we are always using the same
building block M , we actually need to take only the symmetric part of the tensor product, as
we indicated explicitly.

What we are after, ideally, would be a way to explicitly understand what are all the possible
ways of contracting the indices as to form a singlet. The next best thing, however, and what we
will manage to obtain, is a way to extract the number of singlets appearing in the decomposition,
c

(n)
1 . Given the character’s properties, we can use it to reproduce Eq. (2.2.38) as

M →M ⊗M ⊗ · · · ⊗M︸ ︷︷ ︸
n-times

⇒ χr → χSymn(r) = χ[
c
(n)
r1

r1⊕···⊕c(n)1 1
] = c(n)

r1
χr1 + . . . c

(n)
1 χ1 . (2.2.39)

We see that we need a way to compute not just the character of the product of representations,
but specifically that of the fully symmetric product. To this end, let us define a convenient
quantity, the Plethystic Exponential, as the generating functional of these objects

PE[q;x; r] =
∞∑
n=0

qnχSymn(r)(x) , (2.2.40)

so that

χSymn(r)(x) =
1

n!

dn

dqn
PE[q;x; r]

∣∣∣∣
q=0

. (2.2.41)

It turns out that PE[q;x; r] can be computed as

PE[q;x; r] =
1

det(1− qgr)
= exp

(
∞∑
m=1

qm

m
Tr(gmr )

)
= exp

(
∞∑
m=1

qm

m
χr(x

m)

)
, (2.2.42)

where gr is a matrix in the representation and the second equality follows from log(det(A)) =

tr(log(A)) ∀A ∈ Cl×l, ∀l. The third equality follows from the fact that Tr(gmr ) can be computed
after diagonalizing gr into tDr , so it amounts to just taking the trace of such diagonal matrix
with eigenvalues to the power m.

With this result, we can extract the number of singlets at each mass dimension by projecting
them out of the expansion in Eq. (2.2.39). To this end, we just need to use the orthogonality
property and take the scalar product of this expression with the character of a singlet, χ1 = 1,

c
(n)
1 =

∫
[dµG (x)]χ∗1(x) · χSymn(r)(x) =

1

n!

dn

dqn

∫
[dµG (x)]PE[q;x; r]

∣∣∣∣
q=0

. (2.2.43)

From the definition of Hilbert Series we gave in Eq.(2.2.25), we also have

c
(n)
1 =

1

n!

dn

dqn
H(q)

∣∣∣∣
q=0

. (2.2.44)
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By comparison, we arrive at the Molien–Weyl formula

H(q) =

∫
[dµG(x)]

1

det(1− qgr)
=

∫
[dµG(x)]PE[q;x; r] . (2.2.45)

∗ ∗ ∗

Now we can prove Eq. (2.2.42), that we showed above without proof. This part is not necessary
to understand the rest of the work, and the uninterested reader can safely skip to the next ∗ ∗ ∗.
Call gr the element of G acting on our building block M and belonging to the representation r

of G with dimension l, so that gr ∈ Cl×l. Let us label with vi, i = 1, . . . , l its eigenvectors, and
with xi the corresponding eigenvalues

grvi = xivi . (2.2.46)

For all the groups relevant for physics11, i.e. U(1), SU(n), SO(n), Spin(n), ecc., the vi’s are all
independent and can be taken as a basis of Cl. If we take n tensor products of M , they will be
acted upon by symmetric n-tensor products of gr. For n = 2, for example, this is gr ⊗Sym gr.
The eigenvectors of this product can be taken to be

vi ⊗Sym vj ≡
1

2
(vi ⊗ vj + vj ⊗ vi) , (2.2.47)

so that

(gr ⊗Sym gr) (vi ⊗Sym vj) = xixj (vi ⊗Sym vj) . (2.2.48)

Then, since the character can just be computed as sum of eigenvalues, we find it to be

χSym2(gr)(x) = Tr (gr ⊗Sym gr) =
l∑

i=1

l∑
j=1

xixj . (2.2.49)

We can rewrite this as

χSym2(gr)(x) =
∑

a1+a2+···+al=2

xa11 x
a2
2 . . . xall , (2.2.50)

i.e. as the sum of all possible monomials of degree 2 formed with the eigenvalues. This last
rewriting lets us easily generalize to n tensor products

χSymn(gr)(x) =
∑

a1+a2+···+al=n

xa11 x
a2
2 . . . xall . (2.2.51)

11more specifically, this holds for the so called reductive groups, i.e. those whose every representation is
completely reducible, see Ref. [158] for more details.
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Plugging this into Eq. (2.2.40), we get

PE[q;x; r] =
∞∑
n=0

∑
a1+a2+···+al=n

qnxa11 x
a2
2 . . . xall =

∑
a1,a2,...,al

(qx1)a1(qx2)a2 . . . (qxl)
al =

=
l∏

i=1

1

1− qxi =
1

det(1− qtDr (x))
, (2.2.52)

where tDr = diag(x1, . . . , xn). Since the determinant, too, is a class function,

1

det(1− qtDr (x))
=

1

det(1− qgr)
, (2.2.53)

since gr can be conjugated into tDr by assumption, and, finally

PE[q;x; r] =
1

det(1− qgr)
= exp

(
∞∑
m=1

qm

m
Tr(gmr )

)
= exp

(
∞∑
m=1

qm

m
χr(x

m)

)
. (2.2.54)

Example Let us make a simple example using SO(3), the group of rotations in three dimen-
sions, and its fundamental vector representation, r = 3. SO(3) has rank 1, meaning that its
maximal torus in this representation has the form cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 ,

which can be further diagonalized on the complex field to

tD3 = diag(eiθ, e−iθ, 1) . (2.2.55)

Let us call b = {v1, v2, v3} the basis in which the matrix is in the form (2.2.55), and x ≡ eiθ.
We can build a representation of Sym2(3) by defining its action on the basis of the symmetric
subspace spanned by:

b⊗Sym b =

{
v1 ⊗ v1, v2 ⊗ v2, v3 ⊗ v3,

v1 ⊗ v2 + v2 ⊗ v1

2
,

v1 ⊗ v3 + v3 ⊗ v1

2
,
v2 ⊗ v3 + v3 ⊗ v2

2

}
. (2.2.56)

On the subspace generated by the base in (2.2.56) (gD3 ⊗ gD3 ) is diagonal and takes the form:

diag(x2, x−2, 1, 1, x, x−1) , (2.2.57)

whose trace is

χSym2(3)(x) = x2 + x−2 + 2 + x+ x−1 (2.2.58)
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Another way to get the same result, which is closer to the usual notion of irreps decomposi-
tion, is the following. We still consider the product of two fundamental 3 representations. We
know that we can decompose this product as:

3⊗ 3 = 5⊕ 1︸ ︷︷ ︸
symm

⊕ 3︸︷︷︸
antisymm

.

If we want to compute the character of just the symmetric part of this tensor product we need
to sum the characters from the 5 and 1 of SO(3). The character of 5 can be obtained by
looking at what the torus matrix looks like in this representation. With the familiar language
of quantum mechanics, this is just a spin-2 rotation around the z-axis, eiθĴz . Its trace is just
the sum of all its possible eigenvalues

χ5(x) =
∑

all possible Jz

eiθJz =
2∑

Jz=−2

eiθJz = x2 + x+ 1 + x−1 + x−2 .

Obviously χ1 = 1, so we get again

χSym2(3)(x) = x2 + x+ 2 + x−1 + x−2 . (2.2.59)

This is the same as the trace from (2.2.58), and both are to be confronted with the expression
coming from (2.2.41). Expanding the exponential in the definition of the PE and retaining only
the term in q2:

PE [q;x; 3] ⊃ 1

2
(qTr

(
gD3 (x)

)
)2 +

q2

2
Tr
(
(gD3 (x))2

)
= q2(x2 + x+ 2 + x−1 + x−2) ,

as expected.

∗ ∗ ∗

We have now arrived at the so called Molien–Weyl formula, Eq. (2.2.45). If G is connected,
by using the conjugation invariance of the character, we can reduce the integration to an
integration over the maximal torus, which is just the direct product of r0 copies of the S1 unit
circle (see e.g. Ref. [163]). Thus, the integral is reduced to the computation of residues inside
these circles.

The generalization to a multi-graded Hilbert series is straightforward:

h(q1, . . . , qn) =

∫
[dµG(x)]

n∏
i=1

PE [qi;x; ; ri] . (2.2.60)

As we will se, an important role is also played by the inverse of the PE, quite fittingly called
plethystic logarithm (PL) and defined so that

f(x1, . . . , xn) = PE [g(x1, . . . , xn)]⇔ g(x1, . . . , xn) = PL [f(x1, . . . , xn)] . (2.2.61)
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It can be proved that

PL [f(x1, . . . , xn)] =
∞∑
k=1

µ(k)

k
ln
[
f(xk1, . . . , x

k
n)
]
. (2.2.62)

The introduction of the PL allows us to gather information on the notion of independence
we have so far left out, i.e. polynomial independence. Indeed, the PL of a Hilbert series is a
polynomial whose leading positive terms correspond to the basic invariants, i.e to the generators,
and whose leading negative terms correspond to the syzygies between them. Remarkably, when
the invariant ring is free, this polynomial has a finite number of terms. Some complications
arise when the groups and the representations that appear become increasingly non-trivial12

[150,155]. Finally, as it will be used later, it is useful to introduce the generating functional for
the fully antisymmetric product of n representations r. With a computation similar to the one
leading to the expression for the Plethystic Exponential, this is found to be

∞∑
n=0

(−q)nχ∧n(r)(x) = det(1− qgr) =
1

PE [q;x; r]
, (2.2.63)

with x indicating collectively the eigenvalues of gr.

2.2.4 IBP and EOMs

Up to this point, we have described a way to count singlets from a generic tensor product
of representations of some symmetry. However, as we explained in Section 2.2.1, we need to
address operator redundancies due to integration by parts and equations of motion. In this
section we focus on this final issue, and provide a way to compute the Hilbert Series that
counts non-redundant operators at each mass dimension. We call K the set of non-redundant
operators. To be precise, the set K is composed by a basis of non-redundant operators, since we
do not count linear combination of non-redundant operators as separate contributions, although
they cannot technically be eliminated via through IBP and EOMs.

To specify this set, we first focus on how to remove EOM redundancies from the character
description, and then turn our attention on fixing the IBP ambiguities. Both matters are
addressed in Ref. [139]. In particular, two ways to address the IBP issue are presented there.
Here, we will describe the one where the problem is addressed using the language of forms.

EOM It is clear that both the EOM and the IBP subtleties are related to representations of
the Lorentz group, as all other symmetries are simply added as tensor products to that one.
As the character of tensor products is the product of the characters, we can focus on an object
transforming trivially under any internal symmetry, solve the issue there, and then simply add

12In Ref. [164] the author argues that some of the assumptions in Ref. [155] are imprecise, as the finiteness
of the generating set of invariants is a consequence of the group being reductive, which is supposedly not the
case for U(n). However, as explained there and clarified by the same authors of Ref. [155] in Ref. [165], the
final result is nonetheless correct, as at least the ring of invariants of U(n) is isomorphic to that of GL(n,C),
which is itself reductive. See further discussions in Ref. [166].
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internal symmetries as additional character factors. Actually, we will limit ourselves to the case
of a scalar field. While generalizations to spins > 0 may not be always straightforward, this
case already contains most of the conceptual essence of the issue. For a treatment of fermions
and vector fields see Ref. [139], while gravitons are studied in Ref. [167]. First of all, since the
machinery we built only works for compact groups, we perform a Wick rotation on the time
dimension and, instead of working with the Lorentz group SO(3, 1), we focus on its compact
Euclidean counterpart SO(4). Among other things, we now do not need to worry about the
distinction between upper and lower indices.

Let us label our scalar field as φ. It transforms trivially under SO(4), so it has character
χ1 = 1. By acting on it with a derivative, we get ∂µφ, transforming in the vector representation
�, with its corresponding character χ�. Now if we want to build all possible operators with
these two objects we can pack them into a single vector Rφ = φ ⊕ ∂µφ, or, with a column
notation

Rφ =

(
φ

∂µφ

)
. (2.2.64)

Then, we can take all possible (symmetric) tensor products of n copies of Rφ, decompose them
into irreps of SO(4), and select the singlets. For example, for n = 2

Rφ ⊗Rφ = {φ2, φ∂µφ, ∂(µ1
φ∂µ2)φ} (2.2.65)

where we the round parentheses denote symmetrization of the µ1,2 indices. In our example in
Eq. (2.2.65), the singlets we can extract are clearly φ2 and ∂µφ∂µφ (we still have to remove
EOMs!). Obviously, we can add as many derivatives as we like to Rφ, which in general looks
like

Rφ =


φ

∂µφ

∂(µ1
∂µ2)φ
...

 , (2.2.66)

Using the character properties, we can then compute the character of Rφ as

χRφ(x) = 1 + χ�(x) + χSym2(�)(x) + . . . , (2.2.67)

where we used the character of the symmetric tensor product since derivatives commute. Since
we will want to keep track of the number of derivatives, we add a spurionic variable t counting
them, as

χRφ(x, t) = 1 + tχ�(x) + t2χSym2(�)(x) + . . . . (2.2.68)
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This is nothing but the definition of the Plethystic Exponential, Eq. (2.2.40), so

χRφ(x, t) = PE[t;x;�] = exp

(
∞∑
m=1

tm

m
χ�(xm)

)
. (2.2.69)

If we wish to subtract EOMs here, we just need to remove all possible occurrences of
∂2φ in Rφ. This is simply done by removing all possible traces from the symmetric products
∂µ1 . . . ∂µnφ, which we indicate as

∂{µ1 . . . ∂µn}φ , (2.2.70)

and we obtain as a building block

R̃φ =



φ

∂µφ

∂{µ1∂µ2}φ

∂{µ1∂µ2φ∂µ3}φ
...


. (2.2.71)

The representation r̃ of the traceless symmetric product satisfiesr̃⊕ rSym(m−2)� = rSymm� if m ≥ 2

r̃ = rSymm� if m = 0, 1 ,
(2.2.72)

since a generic trace transforms as a rSym(n−2)� representation. This translates, for the charac-
ters, in χr̃(x, t) = χrSymm�

(x, t)− χr
Sym(m−2)�

(x, t) if n ≥ 2

χr̃(x, t) = χrSymm�
(x, t) if m = 0, 1 .

(2.2.73)

The analogue of Eq. (2.2.68) then becomes

χR̃φ(x, t) = 1 + tχ�(x) +
∞∑
m=2

(
tmχrSymm�

(x)− tmχrSymm−2�
(x)
)

=

=
∞∑
m=0

tmχrSymm�
(x)− t2

∞∑
m=0

tmχrSymm�
(x) = (1− t2)PE[t;x;�] . (2.2.74)

So, if we use R̃φ and its character χR̃φ(x, t) as building blocks, any term we build will be free
of terms proportional to EOMs, as we wanted.

IBP To address the IBP redundancies, we need to introduce some of the jargon borrowed
from the theory of differential forms [168, 169]. Let us indicate with Op a p-form operator,
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defined in components as

Op ≡
1

p!
(Op)µ1...µp dxµ1 ∧ · · · ∧ dxµp , (2.2.75)

where ∧ is the antisymmetric wedge product. Then, IBP redundancies can be expressed as

Oa0 ∼ Ob0 iff ∃Oc1 such that Oa0 = Ob0 + ∂ · Oc1 , (2.2.76)

where ∂ is an operator that has to play the role of a divergence. To define it more properly, we
need to refer to the Hodge duals of Oa,b0 . In d dimensions, the Hodge dual of a p-form ωp is a
(d− p)-form ∗ωp defined as

ω̃d−p ≡ ∗ωp =
1

p!
(ωp)µ1...µp ∗ (dxµ1 ∧ · · · ∧ dxµp) =

=
1

p!(d− p)!(ωp)µ1...µpε
µ1...µp

µp+1...µd
dxµp+1 ∧ · · · ∧ dxµd . (2.2.77)

In particular, the Hodge dual of a 0-form is a d-form. The exterior derivative d of a form ωp is
a (p+ 1)-form defined in components as

dωp =
1

p!
(∂µωp)µ1...µp dxµ ∧ dxµ1 ∧ · · · ∧ dxµp . (2.2.78)

If a 0-form is defined as a divergence of some 1-form, then its Hodge dual, a d form, is exact,
i.e. it is the exterior derivative of a d− 1 form

∃Ob1 such that Oa0 = ∂ · Ob1 ⇐⇒ ∃Õb(d−1) such that Õad = dÕb(d−1) . (2.2.79)

This means that we can recast the equivalence in Eq. (2.2.76) as one between the two d-forms
dual to Oa,b0 :

Õad ∼ Õbd iff ∃Oc1 such that Õad = Õbd + dÕcd−1 , (2.2.80)

i.e. two operators are IBP-equivalent if their Hodge duals differ by an exact d-form. We can
write everything without passing through the Hodge dual picture if we can find a suitable
generalization of the divergence. To this end, let us define the codifferential δ ≡ ∗d∗. δ takes
a p form into a p − 1 form, and it reduces to the familiar divergence (up to some sign which
plays no role here) when applied to 1-forms, as desired. Analogously to the exterior derivative
d, the codifferential δ, too, obeys δ2 = 0. If δωk = 0, ωk is said to be co-closed. In addition,
given a k-form ωk, if there exists a (k + 1)-form βk+1, such that ωk = δβk+1, then ωk is said to
be co-exact. Trivially, every co-exact form is also co-closed, but not vice-versa.

Then, we can reformulate Eq. (2.2.80) in the original picture as

Oa0 ∼ Ob0 iff ∃Oc1 such that Oa0 = Ob0 + δOc1 , (2.2.81)
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Now the basis of operators K we are after clearly does not include co-exact forms, which
would be operators in the same equivalence class as the zero operator according to Eq. (2.2.81).
Thus, K must be a subset of the set of 0-forms that are not co-exact, a set which we can label
as K̃, K̃ ⊃ K.

Now, imagine there were two operators Oa0 ,Ob0 ∈ K̃ that are equivalent according to
Eq. (2.2.81), so that we can only pick one to put in K. Since we are only interested in a
basis of operators, we can always trade Oa0 and Ob0 for their combination Oa0 ±Ob0, which gen-
erate the same span and thus still work as a basis. However, now Oa0 −Ob0 ∼ 0, so it cannot be
in K̃, and we arrive at a contradiction. This implies K̃ = K. For the counting of operators in
K, this means

#(operators) = #(0-forms)−#(co-exact 0-forms) . (2.2.82)

Co-exact 0-form can only be generated by 1-forms that do not vanish when acted upon by δ,
i.e. from 1-forms that are not co-closed

#(co-exact 0-forms) = #(1-forms)−#(co-closed 1-forms) = (2.2.83)

= #(1-forms)−#(co-closed but not co-exact 1-forms)−#(co-exact 1-forms) .
(2.2.84)

If we iterate this logic up to d-forms, which is the maximum degree of a form in d-dimensions,
we arrive at

#(operators) =

{
d∑
p=0

(−1)p#(p-forms)

}
+

{
d∑
p=1

(−1)p+1#(co-closed but not co-exact p-form)

}
.

(2.2.85)

Following the notation of Ref. [139], we can then split the Hilbert Series into two pieces

H(q, t) = H0(q, t) + ∆H(q, t) , (2.2.86)

with

H0(q, t) =

{
d∑
p=0

(−1)p#(p-forms)

}
(2.2.87)

∆H(q, t) =

{
d∑
p=1

(−1)p+1#(co-closed but not co-exact p-form)

}
. (2.2.88)

where q is the spurion variable labeling the field and t is the one used to keep track of derivatives.
It can be shown that ∆H(q, t) only contains terms with mass-dimension ≤ d, which are usually
not very interesting for EFTs constructions. So we focus on H0(q, t).

The discussion lead above boils down to the fact that removing IBP redundancies requires
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that we modify the Molien-Weyl formula in Eq. (2.2.45) when dealing with the (Wick-rotated)
space-time SO(d). Instead of simply counting singlets, we have to count p-forms, weighted with
an appropriate sign. To do this, for fixed p, we need to use the orthogonality properties of the
character and compute the integral not with χ1 = 1, i.e. the character of the singlet, but with
the character of a p-form. Since the latter transforms as a fully antisymmetric product of �
representations of SO(d), its character is χ∧p(�). Then, for a field with in the representation r

of SO(d) the counting becomes

#(p-forms) =

∫ [
dµSO(d)(x)

]
χ∧p(�)(x) · PE[q;x; r] . (2.2.89)

Thus, to compute the full H0(q, t), we have to integrate the PE with the factor

d∑
p=0

tp(−1)pχ∧p(�)(x) =
1

PE[t;x;�]
. (2.2.90)

where we used Eq. (2.2.63). So, finally,

H0(q, t) =

∫ [
dµSO(d)(x)

] 1

PE[t;x;�]
PE[q;x; r] . (2.2.91)

Now, if we wanted to compute the Hilbert Series for a single scalar field we have all the tools
to remove both IBP and EOM redundancies, and the expression boils down to

H0(φ, t) =

∫ [
dµSO(d)(x)

] 1

PE[t;x;�]
· PE[φ;x;Rφ] =

=

∫ [
dµSO(d)(x)

] 1

PE[t;x;�]
exp

(
∞∑
m=1

φm

m
χR̃φ(xm, tm)

)
, (2.2.92)

where χR̃φ(x, t) is that of Eq. (2.2.74).

2.2.5 Examples and applications

In this section we will show some examples to demonstrate how the Hilbert series can be used
to assist in building EFT lagrangians.

Reals scalar field theory

To familiarize ourselves with the objects at play here, we can start by looking in detail at how
to compute the plethystic exponential corresponding to the fundamental representation of the
(compact) Lorentz group SO(d), PE[t;x;�]. Let us specialize to d = 4 dimensions. SO(4) has



CHAPTER 2. EFFECTIVE FIELD THEORIES 54

rank 2, so its maximal torus is SO(2)⊗ SO(2), which can be represented with a matrix

gSO(2)⊗SO(2) =


cos(θ1) sin(θ1) 0 0

− sin(θ1) cos(θ1) 0 0

0 0 cos(θ2) sin(θ2)

0 0 − sin(θ2) cos(θ2)

 . (2.2.93)

We can then define x1,2 ≡ eiθ1,2 , and diagonalize this matrix as

tDSO(2)⊗SO(2) = diag
{
x1, x

−1
1 , x2, x

−1
2

}
. (2.2.94)

We can then use the definition of the PE, Eq. (2.2.42), to write

PE[t;x;�] =
1

det
(
1− tgDL⊗R

) =
1

(1− tx1)(1− t/x1)(1− tx2)(1− t/x2)
. (2.2.95)

Another ingredient we need is the Haar measure of the SO(4) group. A formula due to Weyl
[162] states that, for class functions like the character, the Haar measure reduces to∫

[dµG (x)]→
∮ ∏

i

dxi
2πixi

∏
α∈rt+(G)

(1− xα) (2.2.96)

where the integration is performed over the variables xi that span the maximal torus, and
the product over α is performed over the positive roots. The notation α = (α1, . . . , αr), x =

(x1, . . . , xr), xα = xα1
1 . . . xαrr , with r ≡ rank(G), is used. SO(4) has two positive roots, (1,±1),

so we get ∫
[dµSO(4) (x)]→

∮
dx1 dx2

(2πix1)(2πix2)
(1− x1x2)(1− x1/x2) (2.2.97)

Now we have all the ingredients to plug into Eq. (2.2.92)

H0(φ, t) =

∮
dx1 dx2

(2πix1)(2πix2)
(1− x1x2)(1− x1/x2) [(1− tx1)(1− t/x1)(1− tx2)(1− t/x2)]×

× exp

(
∞∑
m=1

φm

m

1− t2m
(1− tmxm1 )(1− tm/xm1 )(1− tmxm2 )(1− tm/xm2 )

)
(2.2.98)

where we used Eq. (2.2.74) for the definition of χR̃φ(x, t). The integration on the torus can
be reduced to simply picking the residues of x1,2 around the poles contained in the integrand
for |x1,2| < 1. Unfortunately, extending our construction to the Lorentz group has the side
effect that expressions like Eq. (2.2.98) do not seem to have an expression that reduces it to
the closed form of Eq. (2.2.31). However, we can still trust its expansion to give us the number
of independent invariants at each dimension, which is of tremendous help in building an EFT.
Let us see what this procedure outputs here.

As we mentioned, we can trust H0(φ, t) for operators of dimension > 4, otherwise we also



CHAPTER 2. EFFECTIVE FIELD THEORIES 55

have to account for the contribution from ∆H(φ, t). For example, if we expand Eq. (2.2.98)
from dimension 5 to 8 we get

H0(φ, t)|5≤d≤8 = φ5 + φ6 + φ7 + φ8 + t4φ4 . (2.2.99)

We see that, up until mass dimension 8, there are no independent operators except the trivial
ones one can build as powers of φ. At dimension 8, the first non-trivial contraction of derivatives
is possible, as signaled by the monomial t4φ4 in the expression. It can be easily checked that
this factor corresponds to the operator

t4φ4 → ∂µφ∂µφ∂νφ∂νφ . (2.2.100)

SMEFT

If we wanted to extend the example of the previous section to treat the case where φ also
transforms as some representation r of an internal symmetry group G, we have to change two
things. First of all, the integration should now be performed both on the spacetime SO(4) and
on the internal group. Moreover, the character for φ should also include the factor coming from
the character for G, i.e.∫

[dµSO(4) (x)]→
∫

[dµSO(4) (x)][dµG (y)] and χR̃φ(x, t)→ χR̃φ(x, t)χr(y) (2.2.101)

where we indicated with y the eigenvalues of an element of G in the representation r. Working
out the details of fermionic fields as well as gauge bosons and gravitons requires a bit of
care [163,167]. Most notably, since the HS can only address objects transforming linearly under
the groups at hand, it turn out that it is convenient to use the self- and anti self-dual components
of the fields strengths to address gauge groups, instead of the gauge fields themselves. In the
end, the hard work is well repaid, and for example one can apply the Hilbert Series to the SM
gauge groups to obtain the counting of operators at dimension-6 in the SMEFT [139]:

HSMEFT
0 |d−6 =

= H3H† 3 + u†Q†HH† 2 + 2Q2Q† 2 +Q† 3L† +Q3L+ 2QQ†LL† + L2L† 2 + uQH2H†

+ 2uu†QQ† + uu†LL† + u2u† 2 + e†u†Q2 + e†L†H2H† + 2e†u†Q†L† + eLHH† 2 + euQ† 2

+ 2euQL+ ee†QQ† + ee†LL† + ee†uu† + e2e† 2 + d†Q†H2H† + 2d†u†Q† 2 + d†u†QL

+ d†e†u† 2 + d†eQ†L+ dQHH† 2 + 2duQ2 + duQ†L† + de†QL† + deu2 + 2dd†QQ† + dd†LL†

+ 2dd†uu† + dd†ee† + d2d† 2 + u†Q†H†GR + d†Q†HGR +HH†G2
R +G3

R + uQHGL

+ dQH†GL +HH†G2
L +G3

L + u†Q†H†WR + e†L†HWR + d†Q†HWR +HH†W 2
R +W 3

R

+uQHWL + eLH†WL + dQH†WL +HH†W 2
L +W 3

L + u†Q†H†BR + e†L†HBR

+ d†Q†HBR +HH†BRWR +HH†B2
R + uQHBL + eLH†BL + dQH†BL +HH†BLWL

+HH†B2
L + 2QQ†HH†t+ 2LL†HH†t+ uu†HH†t+ ee†HH†t+ d†uH2t+ du†H† 2t

+ dd†HH†t+ 2H2H† 2t2 , (2.2.102)
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where H stands for the Higgs field, u, d and e for the right-handed up and down quark and
electron field, Q and L for the left-handed quark and lepton fields, and GR,L, WR,L and BR,L

for the self-dual and anti self-dual components of the SU(3)c, SU(2)L and U(1)Y gauge field
strengths. Remarkably, this counting agrees with the classic result of Ref. [70].

Chiral lagrangian*

Ref. [163] provides the details on how to apply the Hilbert series to the coset construction we
explained in Section 2.1.4. Specifically, it turns out that we can obtain the HS by using as
building blocks the objects Dµπa and the covariant derivative Dµ defined in Eq. (2.1.25). To
ease the notation, let us define uµ,a ≡ Dµπa. In short, one finds that the appropriate character
to use for uµ,a is

χu(q, x, y) = [(1− q2)P (q;x)− 1]χH,u(y) (2.2.103)

where the first factor indicates the character under the Lorentz group, while χH,u(y) that of the
unbroken group H. We can then apply the construction to the Chiral Lagrangian. The results
for Nf = 2, 3 are displayed in Table 2.1 They can be compared e.g. with Table 7 of [171],

# of Dµ # of uµ # of parity conserving operators # of parity violating operators
Nf = 2 Nf = 3 Nf = 2 Nf = 3

p2 2 1 1 - -
p4 4 2 3 - -
p6 4 2 3 - -

5 - 1 1 4
6 3 8 - 3

p8 4 3 5 - 5
5 - 4 2 12
6 9 40 2 20
7 - 22 2 32
8 4 20 - 10

Table 2.1: number of operators broken down according to the number of covariant derivatives and of uµ,a for
the Nf = 2, 3 Chiral lagrangian.

which we reproduce in Table 2.2 for the parity conserving operators. While for Nf = 2 we have
complete agreement, for Nf = 3 we only match the lines with even number of uµ,a’s. Indeed,
the authors of [171] only consider in their construction operators built out of an even number
of uµ,a, since that is sufficient to get a parity even object. However, we can also consider so
called anomalous operators, formed with an odd number of uµ,a fields and one insertion of the
epsilon tensor εµνρσ. For example, we see that at O(p6) there exists one operator containing 5
uµ,a fields. This can be explicitly built and written as

∂αuµ,auν,buρ,cuσ,du
d
αε

µνρσεabc .

∗This subsection contains some original work of the author, although partly overlapping with [170].
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# of Dµ # of uµ Nf = 2 Nf = 3
p2 2 1 1
p4 4 2 3
p6 4 2 3

6 3 8
p8 4 3 5

6 9 31
8 4 20

Table 2.2: number of parity invariant operators broken down according to the number of covariant derivatives
and of uµ,a for the Nf = 2, 3 Chiral lagrangian, taken from [171].

U(3) flavor invariants

Another useful application is in the understanding of the flavor structure of the Standard Model.
We will treat this issue in greater detail in Chapter 4, but it is worth giving a taste of its power
here. The gauge sector of the SM4 enjoys a U(3)5 global symmetry that acts on the different
fermion fields by mixing flavor families with each other with unitary transformations. The
Yukawa sector of the SM4

LYukawa = Q̄YddH + Q̄YuuH̃ + L̄YeeH + h.c. , (2.2.104)

breaks this symmetry. Let us focus here specifically on the quark sector. The original U(3)3,
acting on the u, d and Q fields, takes us from one basis to another, and the Yu,d matrices
will have a different form in each of them, while the physics will be independent on these
transformations. Then, the usual procedure is to utilize the full U(3)3 to bring Yu,d in a form
that only contains physical parameters. The number of these objects turns out to be 10, i.e.
the three up- and three down-quark masses, three mixing angles of the CKM matrix, and 1
complex phase responsible for CP violation.

However, the HS provides a way to get this result bypassing the choice of a basis. First
of all, promote Yu,d to spurions of U(3)3 in such a way that the group formally leaves LYukawa

invariant, i.e. by choosing Yu,d ∈ 3Q⊗ 3̄u,d. Then, we now know that the physically meaningful
quantities contained in the spurions correspond to the algebraically independent invariants of
the ring built with Yu,d. Thus, it is sufficient to compute the HS for these two objects. The
output is [159]:

H(q) =
1 + q12

(1− q2)2(1− q4)3(1− q6)4(1− q8)
. (2.2.105)

This result has the nice shape of Eq. (2.2.31), and we can directly read off of its denominator
that the Yukawa matrices indeed contain 10 independent physical quantities.



CHAPTER 2. EFFECTIVE FIELD THEORIES 58

2.3 Discussion

We have devoted this Chapter to presenting the power of the EFT picture when applied to
physical problems. We have tried to delineate their domain of applicability, how they can
be fitted to the issue at hand and when one should expect them to fail and be superseded
by a more complete UV model. We argued that as long as one is not looking for the final
theory of Nature, they represent the way we should understand Quantum Field Theories, and
the Standard Model in particular. An extensive portion has been dedicated to the topic of the
Hilbert Series, and for a number of reasons: first of all, it is quite remarkable that a construction
that relies on quite deep mathematical concepts can find such a concrete application to physical
systems. Secondly, because it allows to bypass, to some extent, the hard work that used to
be needed to build an EFT lagrangian at a fixed dimension and then check that the obtained
operators form indeed a complete and non-redundant basis. Finally, because we believe that
it is a branch where a lot of understanding still has to be done. Specific instances have been
touched in the main body of the chapter, for example the fact that there seems to be no closed
form resembling Eq. (2.2.31) for the Hilbert series when we refine it to remove EOM and IBP
redundancies. In addition, there is still no clear understanding of the role of the Plethystic
Logarithm, whose interpretation as a counter for generators and syzygies becomes less and less
clear the more the groups we deal with get complicated or the number of distinct fields grows.
This latter problem will make a reappearance in Chapter 4.



CHAPTER 3

Positivity bounds on EFTs

In the previous Chapter we have explained how the Hilbert Series can be used to help identify
the independent non-redundant operators we can build given some field content and symmetries.
Once these operators are identified, we said that we can just then build the EFT by adding all
of them to the EFT lagrangian, multiplied by arbitrary coefficients, sometimes referred to as
Wilson coefficients. In this Chapter1, we will discuss how the arbitrariness of these coefficients
can actually be constrained on the basis of quite general assumptions. These constraints go
usually under the name of positivity bounds. After describing how they emerge, we turn to the
study of their application to the Standard Model EFT. Specifically, we will be interested in
their compatibility with Minimal Flavor Violation, an ansatz regarding the flavor structure of
higher dimensional SMEFT operators containing fermionic fields. The interest of such pursuit
lies in its attempt to try and reverse the usual logic that usually accompanies positivity bounds
in the literature. Indeed, instead of just carving out the allowed parameter space for the higher
dimensional operators (which we will nevertheless do), we will try to use the knowledge obtained
on the parameter space to gather information about renormalizable, dimension-4 parameters.

3.1 Positivity bounds

The positivity bounds are obtained by asking whether all possible EFTs we can write down
can be consistently completed in the UV. More specifically, they were derived in Ref. [172]2

by requiring that whatever the theory in the UV is, it should still respect causality of signal
propagation, i.e. the fact that no superluminal modes are allowed, as well as unitarity, intended
in the quantum mechanic sense of conservation of probabilities. As (micro)causality is strictly
related to the analyticity of the S-matrix, i.e. the nice behavior the amplitude displays as

1This Chapter is mostly a reproduction of the work contained in [68]
2Similar ideas had been applied earlier to the Chiral lagrangian, see Refs. [173–176]

59



CHAPTER 3. POSITIVITY BOUNDS ON EFTS 60

a function of the complexified Mandelstam variables [172, 177–185], this latter requirement is
assumed, too.

These features are quite weak requirements on a theory. Among others, they are satisfied by
any local QFT, and by perturbative string theory, where a definition of a S-matrix is possible.
Let us then see how positivity bounds can arise from them, and what they look like [172].

To this end, we will first illustrate the simple example of a single scalar field φ obeying a
shift symmetry φ → φ + c, with c a constant [172, 186]. Then, except for the kinetic term, all
renormalizable operators are forbidden, and the first term appears at O(Λ−4)

L =
1

2
∂µφ∂

µφ+
c

Λ4
(∂µφ∂

µφ)2 +O
(
Λ−6

)
. (3.1.1)

Then, we can consider the amplitude M(s, t) for a 2 → 2 scattering of the states |φ〉 excited
by φ as a function of the Mandelstam variables s = (p1 + p2)2 and t = (p1 + p3)2, where by
convention we take all momenta to be outgoing. From M(s, t), one can define the forward
amplitude A(s) as its t → 0 limit, with the constraint that the initial and final states be the
same. We will want to study the properties ofM(s, t), and specifically of its limit A(s), when
we analytically extend the variables s and t to the complex plane. In particular, we know that
A(s) is analytic everywhere in the plane except on the real s axis [184,187]. There, two different
types of discontinuities can appear: simple poles, corresponding to on-shell tree-level exchange
of massive intermediate states, and branch cuts, coming from logarithmic terms arising at loop
level from multiparticle on-shell production.

We can always expand an analytic function A(s) as A(s) =
∑∞

n=0 λns
n. Using Cauchy’s

formula, we can express the coefficients in the expansions via an integral along a closed circle
C around the origin

λn =
1

2πi

∮
C

ds

sn+1
A(s) . (3.1.2)

Here, we take C to be small enough as to encircle the origin without enclosing any discontinuities.
Their exact location is determined by the UV completion of the theory. For example, if a particle
Φ of mass m can be produced through a trilinear coupling gΦφ2, a pole in s = ±m2 will appear.
If, instead, the lagrangian contains a quartic coupling g′Φ2φ2, a branch cut will be present in
the real axis, starting from s = ±m2 and extending to infinity. Let us assume here for simplicity
that the discontinuities, whatever their nature, start at ±s̄ and extend to ±∞. In the case of
exchanged massless particles, which allow the discontinuities to extend down to the origin of
the complex plane, a IR mass regulator can be added. After doing the computation, we can
send this regulator to 0. One can check that these two operations commute [172] in EFTs that
do not include gravity, where some subtleties arise (see e.g. Refs. [188, 189]). Then, we can
deform C to another contour C ′ as in Fig. 3.1, i.e. by stretching it to infinity wherever it is
not obstructed by the presence of singularities. Since we meet no singularities in this process,
the integral in Eq. (3.1.2) is the same whether we evaluate it on C or C ′. A theorem due to
Froissart and refined by Martin [180,185] implies that, for large values of s, the amplitude A(s)
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is bounded from above by s2 log2(s), so that the integral at infinity vanishes for n ≥ 2. Thus,
the only non-vanishing contributions come from the integral around the discontinuities on the
real axis. For n = 2, in particular

λ2 =
1

2πi

∮
C

ds

s3
A(s) =

1

2πi

(∫ −s̄
−∞

+

∫ ∞
s̄

)
ds

s3
lim
ε→0

[A(s+ iε)−A(s− iε)] . (3.1.3)

Now, we can send s → −s for the integral in (−∞,−s̄], and use the 1 ↔ 3 symmetry of the
amplitude, which in our case implies A(s) = A(−s), to obtain

λ2 =
1

iπ

∫ ∞
s̄

ds

s3
lim
ε→0

[A(s+ iε)−A(s− iε)] =
2

π

∫ ∞
s̄

ds

s3
ImA(s) . (3.1.4)

Finally, if we assume that the theory respects unitarity in the whole domain spanned by s, i.e.
in the UV, too, we can use the optical theorem ImA(s) = sσ(s), with σ(s) the cross section,
to get

λ2 =
2

π

∫ ∞
s̄

ds

s2
σ(s) . (3.1.5)

However, we could still compute λ2 using C. As we can shrink the contour at will, we can make
it all fit in the region where s is small enough that the EFT is valid and the lagrangian in
Eq. (3.1.1) can be used. At first order in the coupling, we get

M(s, t) =
2c

Λ4
(s2 + t2 + u2) , (3.1.6)

where u = (p1 + p4)2 is the last Mandelstam variable, related to the other two by s+ t+u = 0,
in this massless case. Then

A(s) = lim
t→0
M(s, t) =

4cs2

Λ4
, (3.1.7)

and λ2 = 4c/Λ2. Since cross sections are always positive, we conclude

c > 0 . (3.1.8)

Eq. (3.1.8) is the first example of a positivity bound on an EFT coefficient.
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Figure 3.1: Visualization of the contours C and C′ in the complexified Mandelstam variable s used to compute
the sn coefficient of the forward amplitude A(s). The branch cut in the real axis are in general superpositions
of various poles and branch cuts appearing each time a new threshold is reached. Picture taken from Ref. [186].

Notice that, in our case, crossing symmetry implies that the amplitude is an even function of
s. If there were any odd component, it would have canceled out in the subtraction in Eq.(3.1.3).
This is the reason why positivity bounds cannot be obtained, at least following this approach,
on the coefficients of operators of dimension 6 + 4n, n ≥ 0, as opposed to those of dimension
8 + 4n, n ≥ 0 (see also Ref. [190] for a more detailed discussion on the implications of crossing
symmetry).

Positivity bounds have been used for a number of applications, from pion physics [173,174]
to Quantum Gravity [191] and to the derivation of the a-theorem [192], see also Ref. [193] and
references therein. Recently, efforts have been made to constrain the coefficients in the SMEFT
expansion [190, 194], particularly regarding vector boson scattering [186, 195, 196] (see also
Refs. [144, 197–206] for recent developments). In the next Sections, we will focus in particular
on the bounds that can be obtained on fermionic dimension-eight operators of the SMEFT,
and on their implications on the Minimal Flavor Violation flavor assumption.

3.2 Compatibility with Minimal Flavor Violation

In the work of Ref. [207], positivity bounds on the coefficients of dimension-8 operators com-
posed of 4 fermions and two derivatives appearing in the SMEFT have been derived, with a
number of interesting implications. For example, the authors show how the bounds are more
involved than the simplest example we presented in the previous Section, and can appear as
constraints on combinations of coefficients. Starting from this observation, it is possible to
prove e.g. that flavor-violating coefficients are bounded from above by combinations of flavor-
conserving ones. In general, they depend on the flavor structure of the dimension-eight operator
coefficient. Thus, it is natural to check whether they are compatible with one of the most popu-
lar structure that is usually assumed on flavorful coefficients, namely Minimal Flavor Violation
(MFV) [208, 209]. MFV is one of the simplest methods of constraining the flavor structure of
any higher dimensional operator of the SMEFT that contains fermions, in a way that does not
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clash with the stringent experimental bounds on flavor violation. It stems from the observation
that the gauge sector of the SM4 lagrangian enjoys a large U(3)5 global symmetry. Promoting
the Yukawa matrices Yu,d,e to spurions of this group, we can then formally extend this symmetry
to the Yukawa sector of the lagrangian. Then, MFV is the assumption that this symmetry is
formally conserved in the full SMEFT, with Yu,d,e the only spurions parametrizing its break-
ing. Thus, the flavor structure of any operator involving fermions is fixed by the dimension-4
Yukawas, up to some overall multiplicative factors. This applies in particular to four-fermions
dimension-8 operators, whose coefficients are constrained by positivity bounds of Ref. [207].
Consequently, assuming MFV, one can ask whether the positivity bounds yield constraints on
the parameters of the dimension-4 lagrangian. For instance, flavor-violating dimension-eight
couplings are proportional to entries of the CKM matrix in MFV, and positivity constraints
will involve both dimension-four and dimension-eight coefficients. As our initial goal, we will
then first check whether one can extract from the EFT consistency some bounds on the Yukawa
and CKM parameters of the SM, to be then compared with experimental values.

It is a known fact that, whatever the values of the SM parameters, there exist MFV-
compatible UV-completions of the SMEFT four-Fermi operators, an example being a heavy
vector coupled to fermions in a flavor-blind way [210, 211]. So surely the positivity bounds
cannot be powerful enough as to make some of the values of the SM parameters inconsistent.
Rather, their impact will be that of restricting the allowed region for the flavor-blind EFT
coefficients that are left unspecified by the MFV assumption. What we will find is that,
remarkably, only fermion masses will have such an impact, while the CKM matrix elements
completely disappear from the most stringent bounds at leading order, and are only to be
considered as having a subleading effect.

To go further, we consider the expectation that the allowed region for the EFT coefficients
should enable the flavor-blind MFV factors to be order one. Otherwise, MFV would be cornered
by the EFT consistency to unnatural realizations (or specific ones, like the aforementioned case
of a flavor-blind heavy vector), which would question its use in the first place. Consequently,
we study whether the assumption of order one EFT coefficients could yield interesting con-
straints on fermion masses and CKM elements, when implemented in the bounds involving
dimension-four and dimension-eight coefficients. We study this case analytically when all the
coefficients are degenerate and equal to one, and numerically when they vary independently
in a neighborhood of unity and find indeed a bound on the largest fermion mass. As it turns
out, however, these bounds are ineffective both phenomenologically speaking, as they are by far
satisfied by experimental values, and theoretically, as perturbativity breaks down before they
can be violated. Nevertheless, they present a good example of how, in some cases, restrictions
on higher dimensional operators can get reflected on renormalizable parameters.

3.2.1 Minimal Flavor Violation

First of all, let us define in a more detailed way the Minimal Flavor Violation setting. Any
operator built with fermions will contain flavor indices that have to be saturated by its coefficient
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to form a flavor singlet. For example, take

OHu = CHu,ij(H
†i
←→
DH)(uiγ

µuj) , (3.2.1)

which is present in the SMEFT at dimension six [212]. Its coefficient, here CHu,ij, is then also
a tensor in flavor space. If no additional assumption is made, all entries of this tensor should
be assumed to be of the same order of magnitude, and in particular should be roughly O(1).
However, such an anarchic structure is greatly constrained by observations via measurements
of mesons oscillations, electric dipole moments and lepton flavor violation [132, 213–218] with
lower bounds on the scale of New Physics (NP) of the order of O(103 TeV). Were this the
common suppression scale of the EFT, it would render its impact on observables irrelevant
for collider physics, as well as imply a strong fine tuning on the scalar mass of the Higgs.
On the other hand, we know that, already at dimension four, the flavorful parameters of the
Standard Model are far from being anarchic, spanning a range that scans almost 6 orders of
magnitude. Thus, different ansatzes have then emerged addressing the flavor structure of the
SMEFT [219, 220]. These approaches have the twofold advantage of allowing us to bring the
lower bounds on the NP scale down to the TeV region, and of reducing the number of relevant
free parameters added by the EFT expansion. They usually proceed by either relating the
SMEFT flavor structure to that of SM4 or deriving it from certain families of UV models.

The archetype of the first kind of approach is represented by the Minimal Flavor Violation
(MFV) ansatz [213,221]. As we have already seen in the previous chapter, if we do not consider
the Yukawa operators, the lagrangian of the Standard Model enjoys a U(3)5 global symmetry
acting on the quark and lepton flavor space. Its non-abelian subgroup can be split as:

SU(3)3
q = SU(3)Q ⊗ SU(3)u ⊗ SU(3)d

SU(3)2
l = SU(3)L ⊗ SU(3)e , (3.2.2)

which means that the flavor vector ψ ∈ {Q, u, d, L, e} transforms as a fundamental of SU(3)i.
Then the Yukawa sector of the lagrangian

LYukawa = Q̄YddH + Q̄YuuH̃ + L̄YeeH + h.c. , (3.2.3)

can be made formally invariant under this group if we promote the Yukawa matrices, Yu,d,e, to
spurion fields transforming as in Table 3.1.

SU(3)Q SU(3)u SU(3)d SU(3)L SU(3)e

Yu 3 3̄ 1 1 1

Yd 3 1 3̄ 1 1

Ye 1 1 1 3 3̄

Table 3.1: Transformation properties of the Yukawa matrices treated as spurions
under the MFV assumption.
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Minimal Flavor Violation is the requirement that any higher dimensional operator has to
be built out of Y matrices and Standard Model fields, and must be formally invariant under
the flavor group, taking into account the transformation properties in Table 3.1. Notice that
the spurions transform under the U(1) abelian factors of U(3)5, too. We do not treat those
explicitly, but they turn out to be useful, e.g., to get rid of terms like ∼

(
Yu
)m(

Y †u
)n (

Q̄Q
)p

with m 6= n (see Appendix 3.A for more details).
After building the lagrangian, we can set the spurion fields to their vacuum expectation

values, i.e the physical values for Yukawas. The latter are defined up to the freedom of changing
the fermion fields basis, i.e., they are defined up to U(3)3

q ⊗ U(3)2
l transformations. In the

following, we choose a basis where they read:

Yu = λu Yd = VCKMλd Ye = λe , (3.2.4)

where the λ’s are diagonal matrices containing the diagonal Yukawa couplings, e.g., λu =

diag(yu, yc, yt), and VCKM is the CKM matrix. We refer to this as to the up basis. Another
basis that we will occasionally mention is the following,

Yu = V †CKMλu Yd = λd Ye = λe , (3.2.5)

related to the previous one via a U(3)Q transformation, and which we label down basis. As we
will make clear in Section 3.3.1, our discussion cannot and does not depend on the particular
choice of basis.

The MFV framework is relevant and particularly convenient from a theoretical point of
view, since it drastically reduces the number of free parameters entering the lagrangian at each
mass-dimension [222]. In addition, by tying the amount of flavor violation to that already
present in the SM4, it is more easily compatible with observables, bringing the lower bounds
on the NP scale down to the TeV region [132].

Dimension 8 independent fermionic operators

As we already mentioned, we will focus our attention on SMEFT operators made of four
fermionic fields. However, the lowest order operators of this kind, those appearing at dimension-
six, are unaffected by positivity bounds, as they give no s2 contribution to the forward am-
plitude. Thus, as anticipated, we will aim our attention at dimension-eight operators formed
by 4 fermionic fields and two derivatives, i.e. the lowest order objects affected by the bounds.
Bounds for their coefficients have been obtained in Ref. [207], whence we will borrow part of the
terminology and conventions. In particular, operators formed with fields of one kind only, i.e.,
those of the schematic form O ∼ ∂2(ψ̄mΓψn)(ψ̄pΓψq), ψ ∈ {u, d,Q}, where Γ is some combina-
tion of Dirac and SM gauge matrices and we only made flavor indices explicit, will be dubbed
self-quartic. We will refer to those formed with two kinds of fields, O ∼ ∂2(ψ̄mΓψn)(χ̄pΓχq),
ψ, χ ∈ {u, d,Q} and ψ 6= χ, as cross-quartic (the way Lorentz indices are contracted is not
shown here). Moreover, we restrict for this discussion to the quark sector only. The ex-
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Type Content Operator Symmetry

se
lf-
qu

ar
ti
c

(4-u) O1[u] = cu,1mnpq∂µ(ūmγνun)∂µ(ūpγ
νuq)

O3[u] = cu,3mnpq∂µ(ūmT
aγνun)∂µ(ūpT

aγνuq)

c m
n
p
q

=
c p
q
m
n

c m
n
p
q

=
c∗ n
m
q
p

(4-Q)

O1[Q] = cQ,1mnpq∂µ(Q̄mγνQn)∂µ(Q̄pγ
νQq)

O2[Q] = cQ,2mnpq∂µ(Q̄mτ
IγνQn)∂µ(Q̄pτ

IγνQq)

O3[Q] = cQ,3mnpq∂µ(Q̄mT
aγνQn)∂µ(Q̄pT

aγνQq)

O4[Q] = cQ,4mnpq∂µ(Q̄mT
aτ IγνQn)∂µ(Q̄pT

aτ IγνQq)

(4-d) O1[d] = cd,1mnpq∂µ(d̄mγνdn)∂µ(d̄pγ
νdq)

O3[d] = cd,3mnpq∂µ(d̄mT
aγνdn)∂µ(d̄pT

aγνdq)

cr
os
s-
qu

ar
ti
c

(2-u)(2-Q) OK1[u,Q] = −auQ,1mnpq (ūmγµ∂νuq)
(
Q̄nγ

ν∂µQp

)

a
ψ
χ

m
n
p
q

=
a
χ
ψ
n
m
q
p

a
m
n
p
q

=
a
∗ qp
n
mOK3[u,Q] = −auQ,3mnpq (ūmT

aγµ∂νuq)
(
Q̄nT

aγν∂µQp

)
(2-d)(2-Q) OK1[d,Q] = −adQ,1mnpq

(
d̄mγµ∂νdq

) (
Q̄nγ

ν∂µQp

)
OK3[d,Q] = −adQ,3mnpq

(
d̄mT

aγµ∂νdq
) (
Q̄nT

aγν∂µQp

)
(2-d)(2-u) OK1[d, u] = −adu,1mnpq

(
d̄mγµ∂νdq

)
(ūnγ

ν∂µup)

OK3[d, u] = −adu,3mnpq

(
d̄mT

aγµ∂νdq
)

(ūnT
aγν∂µup)

Table 3.2: List of independent self-quartic and cross-quartic operators. T a are the SU(3)C QCD generators
and τ I = σI

2 are the SU(2)L EW generators.

tension of our methods to include leptons can then be readily found3. The list of indepen-
dent operators we are interested in, then, can be read off Table 3.2. Operators of the form
O = ∂µ(ψ̄mγνψn)∂µ(χ̄pγ

νχq), ψ 6= χ are also present, and are independent from the ones listed
in Table 3.2. However, since they do not contribute to the forward amplitude, there are no
bounds on their Wilson coefficients [207].

Therefore, restricting ourselves to the operators listed in Table 3.2, we can see that there are
2 + 4 + 2 = 8 independent self-quartic tensors cmnpq. As stated already in Ref. [207], imposing
the symmetry requirements cmnpq = cpqmn and cmnpq = c∗nmqp leaves 1

2
N2
f (N2

f + 1) independent
real entries in each tensor. Indeed, the first condition is a symmetry requirement on the complex
N2
f ×N2

f matrix cmnpq whose rows are indexed by (m,n) and columns by (p, q), so that it leaves
2× 1

2
N2
f (N2

f + 1) unconstrained real entries. The second condition further halves them. On the
other hand, there are 2+2+2 = 6 independent cross-quartic structure of operators. Each amnpq
tensor has only to obey the hermiticity condition amnpq = a∗qpnm, thus each of them contains
N4
f independent real entries. Since aψχmnpq = aχψnmqp, fixing one aψχmnpq tensor automatically fixes

the one with ψ ↔ χ. Overall, we will deal with 6 + 8 = 14 independent types of operators, and
2N2

f (5N2
f + 2) independent operators.

3This is true provided one does not include right-handed neutrinos in the discussion. Then, a generalization
of MFV accounting for the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixing matrix is needed [223].
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MFV ansatz for dimension 8 operators

We now wish to enforce the MFV assumption on the list of four-fermion dimension-8 operators.
This means that all EFT coefficients in Table 3.2 must be written in terms of Yukawa spurions
and flavor-blind EFT coefficients. Since our goal is to study possible bounds on the entries of
the Yukawa matrices, which are then to be compared with their phenomenological values, one
must in principle depart from the latter and treat the fermion masses and the entries of the
CKM matrix as generic. This means, in particular, that all possible hierarchies between them
should be allowed. Practically, however, we need a way to perform a proper power counting,
meaning an assumption on the magnitude of the entries is needed. Indeed, phenomenological
studies of MFV [208, 209] rely on the measured values of the fermion masses or of the CKM
elements to define a consistent expansion. Large Yukawas demand further care, but can also be
treated consistently [224, 225], as we will show. Here, we choose to follow the same approach,
meaning we stick to cases where there exists a Yukawa much larger than the others, so that
we can fix all remaining ones to zero at first order in a consistent MFV expansion. Clearly,
this means giving up on full generality and on the hope of constraining the smallest Yukawa
coupling. This assumption is obviously compatible with the actual, phenomenological values
of the Yukawas.

We will consider two simplified scenarios, with respectively 2 and 3 flavors. The largest
Yukawa, yc in the former case and yt in the latter, will be the only one we take as non-vanishing
at leading order. We keep them as free parameters in all the expressions below, with a caveat
for yt discussed at the end of this Section. In keeping only the first relevant order in this
expansion, we will see that, at least in the proper realizations of Nf = 2, 3, there is always a
choice of basis in flavor space such that the CKM matrix VCKM makes no appearance in the
computations, and no hope of putting any bound on its entries can be retained. This is due
to the fact that only the up-Yukawa matrix Yu will enter our expressions, while we can always
pick a basis where VCKM is placed exclusively in Yd. This basis is nothing but the up basis one
of Eq. (3.2.4), which in our approximations and when restricted to the quark sector, becomes,
for Nf = 3,

Yu = diag(0, 0, yt) , Yd = diag(0, 0, 0) . (3.2.6)

The expansion that we use depends on the size of the largest Yukawa. By assumption, we
neglect any term where Yd appears, but an expansion in the up-Yukawa matrix Yu demands
that the entries of the matrix are � 1, to ensure a consistent, non-divergent expansion. While
this works for Nf = 2 due to the smallness of the charm quark Yukawa, this does not hold for
the top, so that the expansion has to be resummed when Nf = 3. We start by discussing the
naive expansion, and explain at the end of this Section how to modify it to correctly account
for the top-Yukawa resummation.

Numerically, for Nf = 3, and since the Yukawa matrices will always appear in pairs, these
approximations amount to neglecting terms of order O

(
(yc/yt)

2) ∼ O((yb/yt)2) ∼ O(10−3) at
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most, when setting the Yukawas to their real values. Keeping this approximation also serves as
a measure of how much we can let yt vary without spoiling it. For example, if we want to be
precise up to at most O(10−2) corrections, we can let yt take values in [0.1, 4π). In addition,
focusing only on quarks is justified in the same way, at this level. Indeed, since (yτ/yt)

2 ∼ 10−4,
the only bilinears formed by leptons that would be added to this order are of the form L̄mΓLm

or ēmΓem, i.e. only diagonal ones. Thus, they only contribute trivially to the flavor tensor
structure, and bounds for the operators built with them can be retrieved, e.g., looking at the
ones built with d quark fields. All this is somehow weaker for Nf = 2. There, the biggest
contributions we neglected have an approximate size of (ys/yc)

2 ∼ (yµ/yc)
2 ∼ 10−2.

We can now start by asking what the MFV ansatz implies for operators containing 4 right-
handed up-type quarks, when we work at order O(Y 2

u Y
0
d ) in the expansion. There are two

possible operators containing 4 up-quark fields:

O1[u] = cu,1mnpq∂µ(ūmγνun)∂µ(ūpγ
νuq)

O3[u] = cu,3mnpq∂µ(ūmT
aγνun)∂µ(ūpT

aγνuq) ,

where only flavor indices are shown. To obtain the MFV expansion of the cu coefficients, it is
useful to define two objects4:

Xu ≡ YuY
†
u , (3.2.7)

X̃u ≡ Y †uYu . (3.2.8)

Let us study what happens for the physical case Nf = 3. Indeed, as invariance under U(2)

can be obtained by imposing additional constraints to the U(3) case, Nf = 2 can always be
enforced at a later moment. The product of quark bilinears ∼ ūmunūpuq is a (3̄⊗ 3)⊗ (3̄⊗ 3)

of SU(3)u, and can be decomposed as 11 ⊕ 12 ⊕ 81 ⊕ 82 ⊕ 27, since the 10 and the 10 vanish
thanks to the exchange symmetry. Then, at O(Y 0

u Y
0
d ), cu,imnpq = ρu,i1 δmnδpq +ρu,i3 δmqδpn. Because

of the SU(3)Q index carried by Yu, there is no invariant we can build with just one copy of
it. However, the contraction X̃u defined earlier is a singlet of SU(3)Q and contains a 1 ⊕ 8

of SU(3)u. Its trace can be reabsorbed through a redefinition of the ρu,i1 and ρu,i3 coefficients,
while its traceless part can be used to build two further structures,. Thus, at O(Y 2

u Y
0
d ), we get:

cu,imnpq = ρu,i1 (δmnδpq) + ρu,i2 (X̃u,mnδpq + δmnX̃u,pq) + ρu,i3 (δmqδpn)+

+ ρu,i4 (X̃u,mqδpn + δmqX̃u,pn) , (3.2.9)

where all of the ρ coefficients are unconstrained, and can be taken of O(1).
In Table 3.3, we generalize the construction just shown for an operator containing four right-

handed u-quark fields and list the shape that the MFV ansatz forces on the Wilson coefficients
respectively of the self-quartic and cross-quartic kinds of operators previously listed.

The EFT coefficients appearing in Table 3.3 are the objects on which we will soon apply
4Obviously, after the spurions freeze to their expectation values, Xu = X̃u in our choice of basis.
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Type Content Operator

se
lf-
qu

ar
ti
c

(4-u)
cu,imnpq = ρu,i1 (δmnδpq) + ρu,i2 (X̃u,mnδpq + δmnX̃u,pq) + ρu,i3 (δmqδpn) + ρu,i4 (X̃u,mqδpn + δmqX̃u,pn)i=1,3

(4-Q)
cQ,imnpq = ρQ,i1 (δmnδpq) + ρQ,i2 (Xu,mnδpq + δmnXu,pq) + ρQ,i3 (δmqδpn) + ρQ,i4 (Xu,mqδpn + δmqXu,np)i=1,2,3,4

(4-d)
cd,imnpq = ρd,i1 (δmnδpq) + ρd,i3 (δmqδpn)i=1,3

cr
os
s-
qu

ar
ti
c

(2-u)(2-Q)
auQ,imnpq = ρuQ,i1 (δmqδnp) + ρuQ,i2 (X̃u,mqδnp) + ρuQ,i3 (δmqXu,np) + ρuQ,i4 ((Yu)nq(Y

†
u )mp)i=1,3

(2-d)(2-Q)
adQ,imnpq = ρdQ,i1 (δmqδnp) + ρdQ,i2 (δmqXu,np)i=1,3

(2-d)(2-u)
adu,imnpq = ρdu,i1 (δmqδnp) + ρdu,i2 (δmqX̃u,np)i=1,3

Table 3.3: O(Y 2
u Y

0
d )-MVF expansion of the self-quartic and cross-quartic operators

positivity bounds. They can be seen to respect all the symmetry properties required by Ta-
ble 3.2. However, the number of independent coefficients is drastically reduced, as now the only
free parameters are flavor-blind overall coefficients, i.e., those we named ρiA, and their number
is independent on Nf . In particular, as already stated, the number of independent real coeffi-
cients in a unconstrained setting is 2N2

f (5N2
f + 2) (176 for Nf = 2 and 846 for Nf = 3), while

after imposing MFV we are left with 44 independent real coefficients ρiA at the O(Y 2
u Y

0
d ) in the

MFV expansion. This result is independent on the number of flavors as long as Nf ≥ 3, while
for Nf = 2, it turns that 6 coefficients are redundant. This can be readily seen as, for any Nf ,
the bilinear product fund⊗ fund of a fundamental and anti-fundamental representation, can
always be decomposed as fund ⊗ fund = 1 ⊕Adj, so the contractions we can use to achieve
MFV invariance are always the same. The exceptional nature ofNf = 2 is due to SU(2) being
pseudoreal, so that fund ∼ fund, as we will see.

Let us now pause to comment on the Nf = 3 case. We kept yt as a generic parameter in our
analysis, but eventually we will be interested in its phenomenological value, which is ∼ O(1).
Therefore, the truncation to O(Y 2

u Y
0
d ) we perform is not in principle justified for the physical

Nf = 3 case: higher-order terms such as

(
YuY

†
u

)n
ij
∼ y2n

t δ3iδ3j . (3.2.10)

should be properly resummed. Interestingly, the resummation does not bring new flavor viola-
tion beyond the one contained in the first non-trivial contraction YuY †u . This is more transparent
in the basis of (3.2.5), where

(
YuY

†
u

)n
ij
∼ y2n

t (V ∗CKM)3i (VCKM)3j . (3.2.11)

Heuristically, this means that the flavor violation structure can be obtained from our naive
expansion in Table 3.3, up to a redefinition of the parameters to account for the resummation.
In the end, it turns out that to account for this resummation one should just remove the explicit



CHAPTER 3. POSITIVITY BOUNDS ON EFTS 70

yt dependence by fixing yt = 1 and turn the EFT coefficients into O(1) arbitrary functions of
yt, ρx,ji → ρ(yt)

x,j
i . An explicit proof of such behavior is given in Appendix 3.A. When we freeze

the spurions to their background values, functions of yt become simple numbers, which means
that any explicit yt-dependence simply disappears from the expansion.

3.3 Analysis of the bounds

At this point, we have all the machinery we need to confront the bounds obtained in Ref. [207]
with the MFV hypothesis dictating the expansion of the various dimension-8 operators in powers
of the Yukawa, as listed in Table 3.3. First of all, the positivity constraints of Ref. [207] depend
not only on the Wilson coefficients cmnpq and amnpq, but also on some arbitrary external states,
dubbed α and β. These consist in generic complex vectors in the space of the internal quantum
numbers involved, here just flavor and gauge symmetries, and are normalized to one. Thus, we
first need to remove these vectors from the bounds, in order to obtain expressions that depend
on the operator coefficients only. Secondly, many of the inequalities contain linear combinations
of coefficients coming from distinct independent operators. To simplify the computations, we
define new coefficients via suitable linear transformations. Let us carry this latter simplification
first, and then proceed to show how we removed the dependencies on the α’s and β’s.

To begin, let us look at the case of operators containing 4 up fields. The bounds on them
are obtained [207] by scattering the following states:

|ψ1〉 = αmi |ūmi〉 , |ψ2〉 = βmi |umi〉 ,
|ψ3〉 = β∗mi |ūmi〉 , |ψ4〉 = α∗mi |umi〉 , (3.3.1)

where m and i are flavor and gauge indices respectively. The amplitude then reads:

A = 4s2

[(
cu,1mnpq −

1

6
cu,3mnpq

)
α∗miβniβ

∗
pjαqj +

1

2
cu,3mnpqα

∗
miβnjβ

∗
pjαqi

]
. (3.3.2)

In the following, we make the simplifying assumption that we can apply the factorization
αmi = αmai, for some vectors αm and ai carrying flavor and gauge indices respectively, and
similarly for βmi. This will allow us to marginalize over the gauge indices, with the caveat
that the resulting bounds may not be the strongest ones. Performing such marginalization, two
bounds are obtained:

αmα
∗
qβnβ

∗
p

(
cu,1mnpq +

1

3
cu,3mnpq

)
> 0 ,

αmα
∗
qβnβ

∗
pc
u,3
mnpq > 0 . (3.3.3)

As we said αn and βn parametrize arbitrary external states, since the bounds are obtained by
constraining the s2 coefficient of a 2 → 2 scattering of generic superpositions of flavor (and
gauge) eigenstates. As such, the inequalities in Eq. (3.3.3) have to be fulfilled for all values of
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αn and βn.
We perform a linear transformation on Eq. (3.3.3) by defining:

ξu,1k ≡ ρu,1k +
1

3
ρu,3k and ξu,3k ≡ ρu,3k for k = 1, 2, 3, 4 , (3.3.4)

so that, defining c(ξ)u,imnpq as in the first line of Table 3.3 but with ρ→ ξ, i.e.,

c(ξ)u,imnpq = ξu,i1 (δmnδpq) + ξu,i2 (X̃u,mnδpq + δmnX̃u,pq) + ξu,i3 (δmqδpn)

+ ξu,i4 (X̃u,mqδpn + δmqX̃u,np) i = 1, 3 ,

the bounds become simply

αmα
∗
qβnβ

∗
pc(ξ)

u,i
mnpq > 0 i = 1, 3 . (3.3.5)

Since all the bounds are expressed as inequalities on linear combinations of the flavor structure
tensors as in Eq. (3.3.3), it is always possible to perform a linear redefinition such as Eq. (3.3.4)
to bring them to a form analogous to Eq. (3.3.5). From now on, we will do this on all operators,
and show both bounds and flavor tensors as functions of ξ’s. Their explicit dependence on the
original ρ coefficients is shown in Appendix 3.E.

In conclusion, the bounds we have to study are all of the form:

αmα
∗
qβnβ

∗
pc(ξ)

X,i
mnpq > 0 , X = u,Q, d , (3.3.6)

αmα
∗
qβnβ

∗
pa(ξ)X,imnpq > 0 , X = uQ, dQ, du . (3.3.7)

As a first check, it is useful to prove that the bounds do not imply an empty region, and
that it is instead always possible to find some values of the ξ’s such that the constraints can
be satisfied for any α, β. For example, for the self-quartic operators, one can look at how the
flavor indices are summed and notice that, choosing ξi1 = ξi2 = 0, the bounds can be expressed
as

ξi3|α|2|β|2 + ξi4
(
αmAmqα

∗
q |β|2 + β∗pApnβn|α|2

)
> 0 , (3.3.8)

where A = X̃u, A = Xu and A = 0 for the (4-u), (4-Q) and (4-d) cases respectively. In the
former two cases, being the product of an invertible matrix and its hermitian conjugate, A is
(semi-)positive definite. Thus ξi1 = ξi2 = 0, ξi3 > 0 and ξi4 > 0 is, in this setting, an allowed
region in the parameter space, and fulfills the bounds ∀α, β. In the (4-d) case, A = 0, and
{ξi1 = 0, ξi3 > 0} is an always allowed region of the parameter space5. Similar conclusions can
be drawn for the cross-quartic operators. As a consequence, there exists at least one region
that is a solution of Eqs. (3.3.6) and (3.3.7), with the coefficients expressed as per Table 3.3.

5incidentally, if we integrated out at tree level a weakly coupled heavy vector boson with MFV-compatible
interactions with the quarks, this is what the matched coefficients would look like.
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The final goal, however, is to study the anatomy of the bounds when all the ρ coefficients
of the MVF expansions are of O(1), which is the natural realization of the MFV ansatz. By
fixing the coefficients, the bounds become functions of SM parameters alone. We then verify
whether they are strict enough as to impose constraints on the parameters of the dimension-4
lagrangian. In the two flavor case, that means yc, the charm-quark Yukawa coupling. Naively,
that also means yt when Nf = 3, however, as we discussed previously, yt should be absorbed in
the ρ (equivalently, in the ξ) coefficients. In that case, we can only check whether all the EFT
coefficients can be consistently O(1).

3.3.1 Flavor violation and CKM-(in)dependence of the positivity bounds

Before going any further, some clarifications are in order. All along the discussion we made,
it looks like there is no place for any flavor violation at all. Indeed, in our approximation, the
only matrix involved in building the flavor invariants is Yu, which we chose to be diagonal,
and the only physical parameter shaping the allowed region is yt, while there is no sign of the
CKM matrix. Obviously, our discussion cannot depend on the specific basis that we pick. In
this Section we show that this is the case and that the CKM matrix only enters the bounds
at subleading order with respect to our approximations. Suppose we had chosen, instead of
Eq. (3.2.4), the basis (3.2.5). Even then, we could have still diagonalized Yu, and consequently
Xu and X̃u, albeit at a later time. We could have done this by exploiting the redundancy
contained in the definition of expressions like Eq. (3.3.6) or (3.3.7). Indeed, we can apply the
singular value decomposition, valid for any square matrix, to express Yu as

Yu = UΣŨ † , (3.3.9)

where U and Ũ are unitary matrices and Σ is diagonal. Then:

Xu = YuY
†
u = UΣΣ∗U † (3.3.10)

X̃u = Y †uYu = ŨΣ∗ΣŨ † . (3.3.11)

(3.3.12)

Thus, Xu and X̃u are diagonalized by U and Ũ respectively. Then, in Eq. (3.3.6) or (3.3.7), we
could have rotated6 both α and β (and their hermitian conjugates) using U or Ũ . This does
not modify the space that α and β span, since unitary matrices conserve norms. Therefore we
can explore the α’s and β’s space with the diagonalized version of Xu and X̃u. In particular,

6More precisely, we can multiply by the identity 1Nf
= UU† so that

αmα
∗
qβnβ

∗
pc
u,i
mnpq =

= αm

(
Umm′U†m′m′′

)(
Uq′′q′U

†
q′q

)
α∗q
(
Un′′n′U†n′n

)
βnβ

∗
p

(
Upp′U

†
p′p′′

)
cm′′n′′p′′q′′ ≡

≡
(
α̃m′U†m′m′′

) (
Uq′′q′ α̃

∗
q′
) (
Un′′n′ β̃n′

)(
β̃∗p′U

†
p′p′′

)
cm′′n′′p′′q′′ .
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X̃u = λ2
u is diagonal to begin with, while we can rotate Xu → Σ∗Σ = λ2

u using U = V †CKM,
Ũ = 1Nf . These are the same matrices we got when we started with the basis in Eq. (3.2.4) in
the first place.

The freedom to absorb unitary matrices in the generic vectors α and β arises from specific
properties of the positivity bounds. First, those bounds are obtained in Ref. [207] in a high-
energy limit where all SM fermions are considered massless. In this limit, the mass terms
disappear and they do not single out anymore the preferred basis that diagonalizes them. In
addition, only dimension-8 operators are constrained by the bounds, so that the dimension-8
EFT coefficients are the only spurions that break the flavor symmetry and enter the bound.
Thus, the flavor symmetry can be used to absorb irrelevant parameters, here in the sense of not
entering the positivity bounds, among the ones that form the dimension-8 EFT coefficients. In
our case, the CKM matrix is precisely such an irrelevant parameter. Notice that this statement
derives from the use of the full flavor group. Consequently, it does not hold if we only scatter
a subset of the flavor states (said differently, if we imposed some conditions on α, β). Indeed,
the restriction of the flavor group to those states may not be sufficient to remove all the CKM
dependence from the bounds. We will see an example of this in Section 3.3.3, when a two-flavor
scenario is embedded in Nf = 3. There, by scattering the two first flavors only, we obtain a
subset of the Nf = 3 bounds which depends on the entries of the CKM matrix. Nevertheless,
the full Nf = 3 bounds are more stringent and do not depend on VCKM, as explained.

The next natural question that arises is then at which order in the expansion in powers of
Yukawa matrices does a CKM contribution appear, in a way that cannot be removed via unitary
rotations. From what we just saw, this has to happen when a combination containing both up-
and down-Yukawa matrices comes into play. If we define Xd,mn ≡ (YdY

†
d )mn, i.e., the analog

of Xu,mn for the down Yukawa matrix, we notice that it contains a 8 irrep of SU(3)Q as well.
Thus, if we expand a bit further, we can add for example to the second line of Table 3.3 a term
like ∼ ρ̃1(Xd,mnδpq +δmnXd,pq)+ ρ̃2(n↔ q). With this example we can see that the freedom left
by the redundancy in the definition of the external states is larger than the symmetry of the
lagrangian alone. Indeed, by exploiting the flavor U(3)3, we can diagonalize eitherXd orXu, but
not both. From the point of view of the bounds, the addition of only the aforementioned terms
corresponds to a shift Xu → Xu +Xd in the second line of Table 3.3. This combination, being
still hermitian, can also be diagonalized. However, its eigenvalues will now depend explicitly
on the entries of the CKM matrix, that will in such way enter the bounds at this level in the
expansion. Conversely, the fact that the VCKM entries are relevant only at such sub-leading
order means that the bounds are not particularly sensitive to their values, and even relatively
large modifications for them do not affect much the structure of the bounds.
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3.3.2 Disentangling the external states

As already stated7, positivity conditions like Eq. (3.3.5) have to be fulfilled for every value of α
and β, since they simply label arbitrary in-states. However, to obtain bounds that are purely
expression of the EFT coefficients, one has to disentangle the coefficients from the external
states. This Section is devoted to show how this can be done in the case under consideration.
We can start by removing the dependence of the bounds on either α or β. Suppose we fix β
and define C(β)mq ≡ cmnpqβnβ

∗
p . Notice that this matrix is hermitian, and thus diagonalizable8.

Then the positivity requirement (3.3.5) takes the form C(β)mqαmα
∗
q > 0, to be satisfied for any

unit Nf -vector α. This is equivalent to asking that the matrix C(β) is positive definite, i.e.,
that its real eigenvalues r(β)I , I = 1, . . . , Nf , are all positive. In other words, we can tradecmnpqβnβ∗pαmα∗q > 0

∀α, β with ‖α‖ = ‖β‖ = 1
⇐⇒

r(β)I > 0 I = 1, . . . , Nf

∀β with ‖β‖ = 1 .
(3.3.13)

The conditions on the r.h.s of Eq. (3.3.13) are necessary and sufficient. They are necessary
since, if we find a negative eigenvalue for some β = β̂, we can pick α = α̂ to be an eigenvector
associated to that eigenvalue and the quartic expression on the l.h.s of Eq. (3.3.13) evaluated at
α̂, β̂ would be negative. They are sufficient because, if there is some value of α, and β, say α̂, β̂,
in which the l.h.s of Eq. (3.3.13) is negative, or in other words C(β̂)mqα̂mα̂

∗
q < 0, then C(β̂) has

to have at least one negative eigenvalue. Indeed, one can decompose α̂ on the basis {vIm} of
eigenvectors of C(β̂), i.e., write α̂m = α̂Iv

I
m, and obtain C(β̂)mqα̂mα̂

∗
q =

∑
I r(β)I |α̂I |2

∥∥vI∥∥2
<

0, which can only happen if at least one of the r(β)I is negative.
Alternatively, we can phrase the conditions in the r.h.s of Eq. (3.3.13) by noticing that

expressions like Eq. (3.3.5) can be viewed as quadratic homogeneous polynomials in the complex
components of α, with zero linear term. Then, requiring that the polynomial is greater than zero
reduces to asking the multidimensional parabola to point upwards in any direction parametrized
by α. Were this not the case, we could find an eigendirection with negative hessian eigenvalue,
and following said direction we would end up in the negative region.

Since α and α∗ always appear in pairs, and so do β and β∗, we can remove a total phase
from each of them. Moreover, they are of fixed unit norm. Then, they contain 2Nf − 2 free
real parameters each, and the l.h.s of Eq. (3.3.13) depends on 4Nf − 4 parameters. We trade
it for the Nf conditions on the eigenvalues, each condition depending only on the 2Nf − 2 real
parameters contained in β. This rapidly turns out to be inconvenient for large values of Nf ,
but it works well for Nf = 2, 3. In particular, for Nf = 2, the two eigenvalues are positive if
and only if the trace and the determinant of C(β)mq are positive. Notice that the discrepancy
in the counting between the two requirements lies only in the number of free parameters we
have to marginalize over. In fact, having shown that the r.h.s. and the l.h.s. of Eq. (3.3.13)

7We focus here on the cmnpq, as a generalization to the amnpq is straightforward. For the sake of simplicity,
and since this analysis applies everywhere, we also drop in this Section any superscript on cmnpq.

8even if it were not, its antihermitian part would drop out of expressions like Eq. (3.3.5)
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are equivalent, they have to boil down to the same conditions on the cmnpq after all the α’s and
β’s are removed.

3.3.3 A benchmark case: (4-Q) operators

We start by studying the positivity bounds (3.3.6) for the (4-Q) operators, and work it out step
by step, the procedure for the other cases being very similar. Under the MFV assumption, the
coefficients of the self-quartic (4-Q) operators take the form:

c(ξ)Q,imnpq = ξQ,i1 (δmnδpq) + ξQ,i2 (Xu,mnδpq + δmnXu,pq) + ξQ,i3 (δmqδpn)+

+ ξQ,i4 (Xu,mqδpn + δmqXu,pn), i = 1, 2, 3, 4 .

In order to see what are the consequences imposed by Eq. (3.3.6) on the coefficients ξQ,iA , we
will first consider for simplicity a 2-flavor setting. This can be implemented in two slightly
different ways: first, we will describe a theory of two generations only (Section 3.3.3), and then
the restriction of a 3-flavor setting to the lightest two flavors (Section 3.3.3). Later, we proceed
to study Nf = 3.

Positivity bounds on true Nf = 2 ansatz

First of all, if we reduce the symmetry group to be SU(2), one can verify that (Xu,mqδpn +

δmqXu,pn) is not an independent structure, and its coefficient ρ4 can be reabsorbed through a
redefinition of the remaining three. This can be seen both by counting the allowed singlets
in the tensor product, or in a more direct way, as shown in Appendix 3.B. This way, we can
remove 4 ξQ,i4 coefficients. However, since they provide just an innocuous redundancy, we will
keep them at first and set them to zero at a later moment. Now, we need to parametrize the
generic complex unit vector β ∈ C2. A possible parametrization is:

β =

(
xeiθx

yeiθy

)
≡ eiθy

(
xeiθ̃x

y

)
with x2 + y2 = 1 , (3.3.14)

where all the parameters are real positive and θ̃x = θx − θy. As mentioned, we can remove the
total phase and set θy = 0. In the flavor basis (3.2.4), the up-Yukawa matrix is simply

Yu =

(
yu 0

0 yc

)
∼ yc

(
0 0

0 1

)
, (3.3.15)

yu, yc being the up and charm Yukawa respectively, and in the last step we specifically assumed
a mass hierarchy and kept only the leading term. Although we also set yc to zero in the Nf = 3

case, we keep it here since it corresponds to the largest coupling of this two-flavor theory.
Now, as anticipated, we can translate the positivity condition (3.3.6) as two conditions on the
eigenvalues of C(β)mq = cmnpqβnβ

∗
p , or, equivalently, on its determinant and trace.

The assumed mass hierarchy, yc � yu and the subsequent approximation yu → 0 ensure
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that the trace and the determinant of C(β) depend only on x and not on y nor on θ̃x. We find:

Tr[C(β)] = 2x2
(
ξQ,i2 + ξQ,i4

)
y2
c + ξQ,i4 y2

c + ξQ,i1 + 2ξQ,i3 (3.3.16)

det[C(β)] = x4
(
ξQ,i2 + ξQ,i4

)2

y4
c − x2y2

c

(
ξQ,i2 + ξQ,i4

)(
y2
c

(
ξQ,i2 − ξQ,i4

)
− 2ξQ,i3

)
+

+
(
ξQ,i4 y2

c + ξQ,i3

)(
ξQ,i1 + ξQ,i3

)
. (3.3.17)

The trace is a linear function of x2 which varies within the interval [0, 1]. Thus, it is positive
for any value of x in this interval if and only if its values at its boundaries are positive. The
determinant, on the other hand, is a quadratic polynomial in x2. One can verify that such
parabola is positive in [0, 1] if and only if9:

• it is positive at the boundaries, and

• one of the following conditions is met:

∆ < 0 or a < 0 or b(b+ 2a) > 0 ,

where a, b and c are defined by the parametrization det[C(β)] ≡ ax4 + bx2 + c.

Putting everything together, and after some simplifications, we get the full set of conditions:

(4-Q) (Nf=2):



ξQ,i4 y2
c + ξQ,i3 > 0

2y2
c

(
ξQ,i2 + ξQ,i4

)
+ ξQ,i1 + ξQ,i3 > 0

ξQ,i1 + ξQ,i3 > 0

y4
c (ξ

Q,i
4 − ξQ,i2 )

(
ξQ,i2 + 3ξQ,i4

)
+ 8ξQ,i3 ξQ,i4 y2

c + 4
(
ξQ,i3

)2

> 0 or(
−4y2

c

(
ξQ,i1 ξQ,i4 + ξQ,i2 ξQ,i3

)
+ y4

c

(
ξQ,i2 − ξQ,i4

)2

− 4ξQ,i1 ξQ,i3

)
< 0 .

(3.3.18)

The allowed region specified by these bounds is shown in Fig. 3.2 as a function of the unique
relevant parameter yc.

One can notice in particular that the natural MFV benchmark point ξ1,2,3 = 1 is compatible
with the positivity bound (3.3.6) if and only if y2

c < 2
(
1 +
√

2
)
. However, as mentioned already,

a consistent MFV expansion in Yu requires yc < 1. So for any consistent MVF expansion, the
positivity bounds are easily satisfied.

Nf = 2 revisited: projected Nf = 3 onto Nf = 2

Another approach one could follow to describe the Nf = 2 case is to take the full Nf = 3 setting
and to restrict all flavor indices to be {1, 2}. In our flavor basis (3.2.4), this turns out to be

9This is jusfied like this: assuming the determinant is positive in 0 and 1 we have the following options: if it
has negative discriminant, it is positive in the whole interval. Otherwise, if the discriminant is positive, and if the
parabola opens downwards, i.e., a < 0, it is also positive within the interval. If ∆ > 0 and a > 0, we then need
to make sure that the minimum falls outside [0, 1]. This is done by requiring x2min−xmin > 0 −→ b(b+2a) > 0.
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Bounds on (4-Q) operators coefficients for Nf = 2

Figure 3.2: Plot showing the allowed region (in color) obtained for the (4-Q) operators restricted to Nf = 2
with generic ξ values, as yc changes. Every region associated to a larger yc value is contained in the previous
ones: for instance, blue and dark orange regions are allowed for any yc roughly smaller than 4, but forbidden
for larger values of yc. The redundant ξ4 has been set to 0. In this case ξ3 > 0, and using that the bounds are
invariant under a full rescaling, we have set ξ3 = 1, and plot the remaining two independent coefficients. As
explained in the text, values of yc > 1 are unphysical and are only plotted for visual reasons. The black point
represents the natural MFV benchmark point ξ1,2,3 = 1. The red line contours the region corresponding to the

threshold value of yc =
√

2(1 +
√

2): for bigger values of yc, the natural benchmark point does not belong to
the allowed region any more. The region ξ1 < −1 is excluded for any value of yc. For the physical value

yc ≈ 10−2, almost all points (ξ1 ≥ −1, ξ2) are allowed.

trivial, and it leads to the same result as depicted in Fig. 3.2. However, in the present case, one
can modify the bounds using a U(3)3 transformation: although the full Nf = 3 bounds (to be
discussed in the next Section) are basis-independent, what we identify with the first two flavors
is a basis dependent statement, and so are the bounds derived using the restricted Nf = 2

approach of this Section. As an example, we rotate to the basis of Eq. (3.2.5), and only then
perform the projection. Consequently, the restricted version of Yu is now:

Xu,ij =
(
YuY

†
u

)
ij
∼ (VCKM)3i(V

∗
CKM)3j , i, j = 1, 2 ,

while X̃y = 0. Notice that this is different from the usual value of Xu,ij ∼ y2
t (VCKM)3i(V

∗
CKM)3j,

as we fixed yt = 1 to account for the yt-resummation, like we explained at the end of Sec-
tion 3.2.1. At this point, we are left with only a U(2)3 symmetry, part of which, U(2)Q for
the present (4-Q) case, can be used to diagonalize Xu,ij. This can always be done since Xu,ij

is still hermitian. Here we parametrize VCKM through the Wolfenstein parametrization up to
order O(λ5), where λ = sin(θc) ≈ 0.225 [226], θc being the Cabibbo angle:

VCKM ≈

 1− 1
2
λ2 − 1

8
λ4 λ Aλ3(ρ− iη)

−λ+ 1
2
A2λ5[1− 2(ρ+ iη)] 1− 1

2
λ2 − 1

8
λ4 (1 + 4A2) Aλ2

Aλ3[1− (1− 1
2
λ2)(ρ+ iη)] −Aλ2 + 1

2
Aλ4[1− 2(ρ+ iη)] 1− 1

2
A2λ4

 .
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Diagonalizing the 2×2 matrix Xu,ij, one can see that its only non-zero eigenvalue is:

σ ≡ A2λ4 , (3.3.19)

which again we require to be < 1 to ensure a consistent expansion of the unitary VCKM matrix.
One can then easily map the positivity bounds on the ξ1,2 parameter space using the results
of the previous Section by substituting y2

c by σ. Notice that the values of ξ1,2 compatible with
the positivity bounds now depend on σ, which itself depends explicitly on the CKM entries,
contrary to the general property presented in Section 3.3.1. Indeed, when going back to how the
bounds where found in the first place, we see that the setting studied in this Section corresponds
to a 2 → 2 scattering where the initial and final states are restricted to the first two flavors.
However, fixing them breaks the flavor symmetry down to U(2)3. The latter is then too small
to absorb all the CKM parameters, which consistently enter the bounds. This is different in
the full Nf = 3 case, as we now discuss.

Nf = 3

Now we wish to tackle the Nf = 3 setup. We can approximate Xu =
(
YuY

†
u

)
ij
∼ δ3iδ3j,

i, j = 1, 2, 3, again after fixing yt = 1. The only non-zero eigenvalue of this matrix is obviously
1. Barring a total irrelevant phase, we can parametrize the complex unit vector β ∈ C3 as

β =

xe
iθx

yeiθy

z

 , with x2 + y2 + z2 = 1 . (3.3.20)

As before, the positivity bounds (3.3.6) mapped onto the ξQ,i1,2,3,4 space will be obtained by
requiring that the eigenvalues of the matrix C(β) are all positive. For simplicity, let us first
compute these eigenvalues for the natural benchmark point with all ξ = 1. Again, because of
the mass hierarchy, yt � yc, yu, the characteristic polynomial depends only on z and not on
x, y, θx, θy. It factorizes nicely:

p(t) =−
(
t− z2 − 1

) [
t2 − 4t

(
z2 + 1

)
+ 4

(
1 + z2 + z4

)]
, (3.3.21)

so its first eigenvalue is simply t1(z) = z2 + 1 and it is always positive for z ∈ [−1, 1]. To avoid
unpleasant radicals, we can evaluate the sum and product of the remaining two eigenvalues.
This is equivalent to taking the trace and the determinant of C(β) and subtracting and factoring
out t1 respectively:

t2(z) + t3(z) = 4
(
z2 + 1

)
(3.3.22)

t2(z)t3(z) = 4
(
z4 + z2 + 1

)
, (3.3.23)

which both remain positive for any value of z ∈ [−1, 1]. We can then conclude that the
benchmark point ξQ,i1,2,3,4 = 1 is fully consistent with the positivity bounds (3.3.6).
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Bounds on (4-Q) operators coefficients for Nf = 3

Figure 3.3: Plot showing in yellow the allowed region obtained for the (4-Q) (or, equivalently, (4-u)) operators
with generic ξ values. Using the scaling invariance of the bounds and since ξ3 > 0, we have set ξ3 = 1, and
plot the remaining three independent coefficients. The red dot indicates the natural MFV benchmark point,

ξ1,2,3,4 = 1, that can be seen being inside the allowed region.

We can then extend our analysis to generic values of the ξ coefficients, as we did for Nf = 2.
The explicit computations are shown in Appendix 3.D, while we report here only the resulting
expression:

(4-Q) (Nf=3):



ξQ,i3 > 0

ξQ,i1 + ξQ,i3 > 0

ξQ,i3 + ξQ,i4 > 0

ξQ,i1 + 2ξQ,i2 + 2ξQ,i3 + 3ξQ,i4 > 0

ξQ,i1 + 2ξQ,i2 + ξQ,i3 + 2ξQ,i4 > 0(
(ξQ,i2 − ξQ,i4 )2 − 4ξQ,i3 ξQ,i2

)
< 4ξQ,i1

(
ξQ,i4 + ξQ,i3

)
or
(
ξQ,i4 − ξQ,i2 + 2ξQ,i3

)(
ξQ,i2 + 3ξQ,i4 + 2ξQ,i3

)
> 0 .

(3.3.24)

A visualization of such constraints is provided in Fig. 3.3.

3.3.4 (4-u), (4-d) self-quartic and cross-quartic operators

Here we continue the discussion for the remaining operators. We will see that, in most cases,
we have already done most of the work that was needed, and the bounds for the coefficients of
these operators can simply be obtained by taking appropriate limits of the ones in Eqs. (3.3.18)
and (3.3.24), or by carefully looking at the order in which the indices are summed. We start by
going through the remaining self-quartic operators, and then address the cross-quartic ones.

(4-u) operators As we have seen, the bounds we have found up to this point for the coeffi-
cients of the (4-Q) operators have turned out to depend exclusively on the eigenvalues of the
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matrix Xu. This is the case for the (4-u) operators, too, provided we exchange Xu → X̃u. How-
ever, the eigenvalues of these matrices coincide. Although this is clearly a basis-independent
statement, it can also just be seen in the basis in Eq. (3.2.5), where the two matrices coin-
cide. As a consequence, the resulting bounds are the same for the (4-u) operators as for the
(4-Q) ones, with the simple replacement ξQ,iA → ξu,iA in Eqs. (3.3.18) and (3.3.24). Similarly
to what we did for the (4-Q) case, we can, in the Nf = 2 case, exploit the redundancy of
(X̃u,mqδpn + δmqX̃u,pn) to remove two ξu,i4 coefficients.

An exception where the simple exchange ξQ,iA → ξu,iA does not work is the case studied in
Section 3.3.3. Indeed, in this setting the two matrices differ, and in particular X̃u,mq = 0. The
bounds are then retrieved in this case by sending yc → 0 in Eq. (3.3.18). This gives simply

(4-u) (Nf=2 revisited):

ξ
u,i
3 > 0,

ξu,i1 + ξu,i3 > 0 .
(3.3.25)

(4-d) operators As anticipated, the bounds for the (4-d) operators can be obtained by
applying a formal limit to the ones we have already. Indeed, we see that by sending10 X̃u → 0

or Xu → 0 in the first two lines of Table 3.3 respectively, we retrieve the tensor structure
associated to the (4-d) operators. Then, the Nf = 2 and Nf = 3 cases produce the same
bounds as the ones we already saw in Eq. (3.3.25), namely:

(4-d):

ξ
d,i
3 > 0,

ξd,i1 + ξd,i3 > 0 .
(3.3.26)

Fig. 3.4 shows a plot of the corresponding allowed region. Again, we can note that the natural
MFV benchmark point, ξd,i1,3 = 1, is compatible with the positivity constraints.

Cross-quartic operators All the bounds on the cross-quartic operators give in fact much
less information than the ones on the self-quartic ones, in our MFV setting. Indeed, looking
at the index disposition in amnpq for the (2-d)(2-Q) and (2-d)(2-u) operators, we see that the
objects in the l.h.s of Eq. (3.3.7) are essentially linear combinations of products of the norms
of α and β, meaning terms of the form αmAmqα

∗
qβnBnpβ

∗
p , where one between Amn and Bmn is

a δmn, while the other is either a δ, or Xu, or X̃u. Then, since all three of these matrices are
(semi-)positive definite, taking all ξ = 1 means that Eq. (3.3.7) turns into a sum of positive
terms and the bounds are trivially satisfied. The (2-u)(2-Q) case, however, has an additional
term αmα

∗
qβnβ

∗
p(Yu)nq(Y

†
u )mp. This is nothing but the modulus squared of βnYu,nqα∗q , which

is then also positive. Moreover, we can rest assured that, as long as we pick only positive
values for the ξ coefficients, the bounds will be fulfilled, so we can definitely find acceptable
O(1) values for them, independently on the renormalizable lagrangian parameters. This kills
any hope of bounding them through these operators. To get a full picture, one can here, too,

10This is just a trick to get to the result, so one does not need to worry about spoiling the Yukawa hierarchy
that led to the approximation at the beginning of Section 3.3.4.
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Bounds on (4-d) operators coefficients for Nf = 2

Figure 3.4: Plot showing in yellow the allowed parameter space for ξd,i1 and ξd,i3 , i = 1, 2. The black dot
indicates the natural MFV benchmark point, ξ1,3 = 1, that can be seen being inside the allowed region.

allow for generic ξ values, whose shape is dictated by the Yukawa couplings. Results as well as
specific plots are shown in Appendix 3.D.

In the end, we have proven that in the natural MFV benchmark point where all the flavor-
blind factors of the MFV expansion are chosen to be one, the positivity constraints of Ref. [207]
are all satisfied.

Moreover, since the constraints themselves are unchanged if multiplied by a positive factor,
what we have showed is actually that any configurations where the ξ coefficients are degen-
erate and positive are compatible with the positivity requirements. Because of this scaling
invariance, and of the particular shape of the constraints, when considering generic values for
the ξ coefficients, we can always rescale one of them to be 1 or −1, once per every type of
operators. Taking this into account, we see that, for physical values of the parameters, at least
in the Nf = 3 case, the parameter space spanned by the ξ coefficients is at least cut by a factor
of two. Since there are a total of 14 independent types of operators under consideration, the
overall allowed region is at least 214 times smaller than the one with no positivity restriction11.

3.4 Discussion and Conclusions

In Ref. [207], using arguments that rely on the analyticity and unitarity of the theory in the
UV, the authors obtained positivity constraints on the coefficients of dimension-8 operators with
4 fermions. Starting from that result, we showed that Minimal Flavor Violation, perhaps the
simplest way to generalize the Standard Model flavor structure to higher dimensional operators,

11This has obviously to be understood as the result of a limit, meaning that if the space of parameters is
restricted to a box of volume V, then the allowed region has a volume ∼ 2−14V, where V is eventually sent to
infinity.
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can be made consistent with those positivity constraints. To show this, we have first identified
the bounds on the (flavor-blind) parameters that control the MFV expansion of the EFT
coefficients. Such bounds are obtained after we disentangle the physical quantities from other
parameters describing initial and final states of the 2→ 2 scattering processes. We have shown
how this can be done in the specific case where the scattered states contain non-trivial flavor
structure. This allowed us to find bounds on the various coefficients that parametrize the
dimension-8 operators under the MFV assumption. In the space spanned by these coefficients,
the positivity constraints become in general non-linear. This is an example of a more general
feature: the linear nature of the positivity bounds exhibited in the simplest cases (e.g. that
of a single scalar of Section 3.1 or a single flavor of an uncharged Weyl fermion) is gradually
lost when the number of degrees of freedom describing the scattered initial and final states is
increased, for instance by considering non-trivial internal quantum numbers, thereby increasing
the number of dimension-8 operators to be studied.

We showed in addition how the natural benchmark point, where all the flavor-blind param-
eters that enter the MFV expansion of EFT operators are degenerate and equal to unity, has
proven to trivially satisfy the positivity constraints. This is true independently of the parame-
ters of the renormalizable SM lagrangian, i.e. the fermion masses and the entries of the CKM
matrix. More generally, every setting where the flavor-blind parameters are degenerate and
positive is seen to be compatible with the positivity conditions. Still, the positivity constraints
taken in their general form are such that they reduce the full parameter space by a factor of
sin 214.

Remarkably, MFV is not restraining enough to turn the positivity constraints on the
dimension-8 operators into restrictions on the physical input parameters of the SM defined
by the dimension-4 operators. An immediate consequence is that, for flavor models which are
less restricting than MFV, such as the so called U(2)5 model [222, 227], and which reduce to
MFV for some values of the parameters, there exist at least an allowed region of the parameter
space where the free coefficients are compatible with the bounds.

It would also be interesting to derive possibly tighter constraints following the approach
of Ref. [198] and considering the scattering of states that are no longer SM gauge eigenstates.
For instance, after suitable redefinitions accounting for the different operator basis used there,
the bounds used in our work can be mapped into the ones in Eqs. (7)–(10) of Ref. [198], while
Eqs. (11)–(12) are missing from our analysis12. However, in Ref. [198] only one flavor family
is taken into account, whereas, due to the non-linearity of the additional bounds obtained,
the Nf 6= 1 case cannot be straightforwardly tackled using, e.g., the approach we outlined in
Section 3.3. Therefore, we sticked for our analysis to the bounds of Ref. [207], and left the
study of the most general scatterings to future work.

12The precise signs of the bounds differ between Ref. [198] and Ref. [207], which is likely due to different
conventions. We chose conventions so that the signs are those given in Ref. [207]. The fact that some bounds
are missing in our analysis and in Ref. [207] is anyway independent of these sign conventions.



Appendix to Chapter 3

3.A Flavor-violation and large Yukawas

Our MFV expansion needs a little more justification, in particular concerning the resummation
of the top-Yukawa yt. Indeed, while Yd has eigenvalues � 1, and thus allows for the approxi-
mation we explained in Section 3.2.1, this is not true for Yu, whose biggest eigenvalue is yt ∼ 1.
Consequently there is in principle no clear expansion in powers of Yu as long as we keep all the
coefficients in the operator expansion of O(1). However, in Ref. [209], for example, it is stated
that any O(1) term in the (4-Q) case has to be of the form

(
YuY

†
u

)n. In the basis of Eq. (3.2.5),
this reads:

(
YuY

†
u

)n
ij
∼ y2n

t (V ∗CKM)3i(VCKM)3j , (3.A.1)

while the structure for the (4-u) case similarly reads
(
Y †uYu

)n
ij
∼ y2n

t δ3iδ3j. Consequently,
considering more Yukawa matrices does not change the flavor structure of the couplings, but
simply demands to resum the powers of yt. We dwell a bit on the details of this conclusion
below.

3.A.1 Group theory argument

The restriction to Eq. (3.A.1) can be justified like this: in SU(3), the invariant tensors are εabc,
εabc and δab . Suppose we want to build a contribution to the (4-Q) case using n powers of Yu
and m powers of Y †u . Then, since Q̄QQ̄Q is a singlet under SU(3)u, we need to contract all
of the SU(3)u indices of the various Yu and Y †u using ε’s or δ’s. If we contract the indices of
three Yu’s using an ε, then, for this product not to vanish, the SU(3)q indices of those matrices
need to be fully antisymmetrized as well. However, by doing so we form a singlet under
SU(3)Q ⊗ SU(3)u, which just contributes as a redefinition of the coefficient of one operator of
order (Yu)

n−3(Y †u )m. Similarly for Y †u . Then, we can only consistently use δab to contract the
SU(3)u indices to build non-trivial structures, meaning that the building block is actually YuY †u ,

83
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which is a 3̄⊗ 3 of SU(3)Q, and that we have to take n = m. To proceed, we want eventually
to contract the remaining indices with those from Q̄QQ̄Q. We want to prove that this, too,
can be done exclusively with δ’s. Indeed, suppose we wanted to employ εabc. Similarly to what
happened before, if we use it to contract three upstairs indices coming from three copies of
YuY

†
u , symmetry imposes that the downstairs indices are antisymmetrized, too, giving rise to

an uninteresting singlet. If we contract it with two upstairs indices from two YuY †u and one
from a Q, then the two downstairs indices form the two YuY †u need to be antisymmetrized with
an εabc. However the product of two epsilon is but a sum of products of deltas. Similarly, if we
contract εabc with the two fundamental indices of the two Q, then the antifundamental ones of
the two Q̄ need to be contracted with an εabc, again giving products of δ’s. In conclusion, a
series in

(
Y †uYu

)n includes all allowed contractions. Similar reasoning holds for the (4-u) case,
with the exchange of SU(3)Q and SU(3)u indices, and YuY †u → Y †uYu. For the (4-d) operators,
there are simply no possible non-trivial insertions of Yu. (2-d)(2-Q) and (2-d)(2-u) are similar
to the former cases, with the exception that there are now only one index in the fundamental
and one in the antifundamental of SU(3)Q in the structure coming from the spinors.

Finally, (2-Q)(2-u) requires a bit of attention. Again, contracting three Yu’s or three Y †u ’s
with an epsilon tensor eventually produces a SU(3)Q ⊗ SU(3)u singlet. However, the spinor
structure provides an index in the fundamental and one in the antifundamental for both SU(3)u

and SU(3)Q. So we can contract two Yu or two Y †u with one index coming from the spinors.
We cannot use an upstairs and a downstairs epsilon from the same group as that would reduce
to sum of products of deltas. To sum up, we can use two epsilon tensors, one for each group,
each with one index contracted to one coming from the spinor structure. Let us take the first
one to be a SU(3)u ε

abc. Its remaining two indices can only be contracted with two downstairs
SU(3)u indices from two Yu’s. Then, the SU(3)Q fundamental indices that these two matrices
carry have to be antisymmetrized. This has to be done with the only remaining possible epsilon
tensor, giving a structure as:

(ūu)ū1u1(Q̄Q)q̄1q1(Yu)q2ū2(Yu)q3ū3εū1ū2ū3εq1q2q3(Y
†
u )u1q̄1 . (3.A.2)

The other case, i.e., picking a SU(3)u εabc, gives the hermitian conjugate of (3.A.2). However,
this term is subleading, as it can be immediately seen by plugging the leading contribution
(Yu)qū ∼ ytδ3ūδ3q. Moreover, it is not U(1)u invariant. In conclusion, only δ factors can be used
to contract indices consistently. This forces the operators to be of the form already contained in
the (2-u)(2-Q) line of Table 3.3, times an arbitrary number of Y †uYu of YuY †u , suitably contracted
in. The latter can anyhow be reabsorbed in a redefinition of the overall ρ coefficients, as we
show in the next Section.

3.A.2 Non-linear realization

One can also phrase the argument in favor of the single flavor-violating structure in Eq. (3.A.1)
in a non-linear language. Indeed, when yt is O(1), the necessary resummation of the expansion
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in powers of yt means that the flavor group is non-linearly realized [224,225]. In the basis (3.2.5)
where the up-type Yukawa is diagonal, the EFT is an expansion around the vev

〈Yu〉 =

0 0 0

0 0 0

0 0 yt

 , (3.A.3)

breaking U(3)Q × U(3)u down to U(2)Q × U(2)u × U(1)3. Following Ref. [225], the building
blocks for the EFT are found as follows. We first identify the Goldstone modes,

Yu = eiρ̂Q

(
φu 0

0 yt

)
e−iρ̂u , with ρ̂i =

(
0 ρi

ρ†i θi

)
, (3.A.4)

with ρi a complex 2-vector and θQ = −θu ≡ θ, with θ a real field. The fields transform as

eiρ̂i → Vie
iρ̂iU †i (ρ̂i, Vi) ,

(
φu 0

0 yt

)
→ UQ(ρ̂Q, VQ)

(
φu 0

0 yt

)
U †u(ρ̂u, Vu) , (3.A.5)

where Ui are functions of Vi and of the Goldstones that belong to U(2)i × U(1)3:

Ui =

(
U2×2
i 0

0 eiφ3

)
. (3.A.6)

We can also dress the down-type Yukawa matrix as well as some of the quark fields to obtain
fields that transform as linear representations of U(2)Q × U(2)u × U(1)3 under the full flavor
group:

Ỹd ≡ e−iρ̂QYd , Q̃ ≡ e−iρ̂QQ , ũ ≡ e−iρ̂uu . (3.A.7)

The new fields can be split as follows:

Ỹd =

(
φd

φ′†d

)
, Q̃ =

(
Q̃(2)

t̃L

)
, ũ =

(
ũ(2)

t̃R

)
, (3.A.8)

where φd is a 2 × 3 matrix, φ′d a 3-vector, Q̃(2) a doublet of U(2)Q, t̃L a singlet, and similarly
for ũ. The components transform as

φd → U2×2
Q φdV

†
d , φ′d → e−iφ3Vdφ

′
d , Q̃(2) → U2×2

Q Q̃(2) , (3.A.9)

t̃L → eiφ3 t̃L , ũ(2) → U2×2
u ũ(2) , t̃R → eiφ3 t̃R . (3.A.10)

The fields above, together with dR, φu, yt and the invariance under U(2)Q × U(2)u × U(1)3 ×
U(3)d(×U(3)L × U(3)e), are the building blocks for the EFT. One should in principle also use



CHAPTER 3. POSITIVITY BOUNDS ON EFTS 86

the covariant derivatives obtained from the Maurer-Cartan form

e−iρ̂Q∂µe
iρ̂Q , (3.A.11)

but they are identically zero when we freeze the Yukawa spurions to their background values.
Summing up, the different fields and their representations are:

U(2)Q U(2)u U(1)3 U(3)d
Fermions

Q̃(2) 2 1 0 1
t̃L 1 1 +1 1
ũ(2) 1 2 0 1
t̃R 1 1 +1 1

d̃ 1 1 0 3
Spurions

φu 2 2̄ 0 1
yt 1 1 0 1
φd 2 1 0 3̄
φ′d 1 1 -1 3

The background values of the spurions are obtained from Yu = diag(yu, yc, yt), Yd =

VCKMdiag(yd, ys, yb). We see that all spurions but yt are small, so that there exists an ex-
pansion in terms of small Yukawas and CKM elements. Every EFT term constructed from
φu, φd, φ

′
d up to a given order is then completed by multiplying it by an arbitrary function of

yt. In particular, the approximation we have been discussing in this appendix is the one where
all ys but yt are zero. At this order, the only fermion bilinears that can enter the dimension-8
coefficients in Table 3.2 in a flavor-invariant way are

Q̃(2)γµQ̃(2) , t̃Lγ
µt̃L , ũ(2)γµũ(2) , t̃Rγ

µt̃R , d̃γµd̃ . (3.A.12)

When we freeze the spurions to their background values, the Goldstone fields ρ̂ are zero in
the basis where Yu is diagonal, one can simply remove the tildes in the expression above and
rename t̃L = Q3, t̃R = u3. In the basis where Yu = V †CKMdiag(yu, yc, yt) and Yd = diag(yd, ys, yb),
Eq. (3.A.12) becomes[

δij − (V ∗CKM)3i (VCKM)3j

]
Qiγ

µQj , (V ∗CKM)3i (VCKM)3j Qiγ
µQj ,

u(2)γµu(2) , u3γ
µu3 , dγµd .

(3.A.13)

This is consistent with Eq. (3.A.1): the two terms in the first line can be combined to reconstruct
δijQiγ

µQj and (V ∗CKM)3i (VCKM)3j Qiγ
µQj, which are the flavor structures that are obtained from(

YuY
†
u

)n. The u-quark terms in the second line can be combined to reconstruct δijuiγµuj and
δ3iδ3juiγ

µuj, which are the flavor structures that are obtained from
(
Y †uYu

)n. The d-quark
terms are flavor diagonal, as they should at order Y 0

d .
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3.B Redundancy of the ρ4 structure in Nf = 2

Here we provide a proof showing that, in SU(2), ūmunūpuq(X̃u,mqδpn + δmqX̃u,pn) is redundant
with respect to the other structures contained in the first line of Table 3.3, and the corresponding
coefficient, which we called ρ4, can be reabsorbed in the definitions of the remaining three. An
analogous discussion can be done for Q̄mQnQ̄pQq(Xu,mqδpn + δmqXu,pn) and the second line of
Table 3.3. First of all, define Mmn ≡ ūmun. SU(2) does not distinguish between fundamental
and antifundamental indices, and all summations need to be performed with εab, the only
invariant tensor. Then

MijMklεjkεlmεinX̃u,nm =

(
M{ij} +

1

2
Mabεabεij

)(
M{kl} +

1

2
Mcdεcdεkl

)
εjkεlmεinX̃u,nm =

= M{ij}M{kl}εjkεlmεinX̃u,nm +MabεabεnkεlmM{kl}X̃u,nm+

− 1

4
εabMabεcdMcdεnmX̃u,nm . (3.B.1)

The second piece can be absorbed by a shift in ρ1, while the third one with a shift on ρ2. The
first piece, instead, splits as:

M{ij}M{kl}εjkεlmεinX̃u,nm = M{ij}M{kl}εjkεlmεin

(
X̃u,{nm} +

1

2
εnmεefX̃u,ef

)
=

= M{ij}M{kl}X̃u,{nm}εjkεlmεin +
1

2
M{ij}M{kl}εjkεilεefX̃u,ef . (3.B.2)

Here, the second term is reabsorbed through a shift on ρ3, while the first one vanishes:

M{ij}M{kl}X̃u,{nm}εjkεlmεin
j↔k
= −M{ij}M{kl}X̃u,{nm}εkjεlmεin

(ij)↔(kl)
=

= −M{ij}M{kl}X̃u,{nm}εilεjmεkn
m↔n
=

= −M{ij}M{kl}X̃u,{nm}εilεjnεkm
i↔j
=

= −M{ij}M{kl}X̃u,{nm}εjlεinεkm
l↔k
=

= −M{ij}M{kl}X̃u,{nm}εjkεlmεin . (3.B.3)

In conclusion, the examined term provides no new structure and can be set to 0.

3.C Contribution of other SMEFT operators

One comment should also be made about the contributions of other SMEFT operators to the
positivity bounds. Indeed, in the usual version of the latter that we consider in this paper,
they are associated to the s2 coefficient of a 2→ 2 forward amplitude. By dimensional analysis
only, one sees that such a s2 growth can be obtained from a dimension-8 four-fermions contact
term, as we considered in the main text, but also from the product of two coefficients, both of
dimension-6, or one of dimension-5 and the other of dimension-7, or one of dimension-8 and at
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least one of dimension-4.
Let us discuss first the case of dimension-6 operators. We mentioned already that dimension-

6 four-fermions operators do not enter the positivity bounds, due to their softer UV behaviour
when compared to dimension-8 operators. Nevertheless, there are operators at dimension-6
which, when combined together, contribute at tree level to the four-fermions amplitudes with
a UV behaviour similar to that of dimension-8 four-fermions operators. A simple example
is the following: consider the dimension-6 operator that couples the photon to the up-type
right-handed quark current,

L ⊃ c

Λ2
∂µJνF

µν , (3.C.1)

where Jµ = umγµum. This coupling generates a four-fermion amplitude whose s-channel com-
ponent is depicted below and reads

A = i
c2

Λ4
v2γνu1P

2

(
ηνσ

P 2
− (1− ξ)P

νP σ

(P 2)2

)
P 2u3γσv4

≈ i
c2

Λ4
P 2v2γµu1u3γ

µv4 ,

(3.C.2)

where ui, vi are (anti)particle polarizations and we used the fact that the particles are effectively
massless at high energies, so that /pu(p), /pv(p) ≈ 0. We would have obtained the same result
with the four fermion interaction c2

Λ4∂µJν∂
µJν , which is of the kind subject to positivity bounds.

Thus, c2 should be added to the combination of dimension-8 coefficients that are constrained
to be positive, modifying the bound. However, Eq. (3.C.1) is a redundant operator that can
consistently be ignored in the first place. Indeed, enforcing the photon equation of motion
derived from Eq. (3.C.1),

∂µFµν −
c

Λ2
�Jν = 0 , (3.C.3)

we find that c
Λ2∂µJνF

µν = c2

Λ4∂µJν∂
µJν , consistently with our previous analysis. Thus, we can

set c = 0 at no cost. Using the Warsaw basis for the dimension-6 SMEFT [212], and considering
the high-energy phase where all particles are massless and the electroweak symmetry unbroken,
it is straightforward to check that there are no dimension-6 contributions to the four-fermion
positivity bounds at tree level. This differs from the case of 2 → 2 gauge bosons scattering,
where non-redundant trilinear couplings enter the bounds at tree-level and strenghthen the
bounds on dimension-8 operators [195,196,199].

Similarly, contributions that could spoil our bounds come from combinations of dimension-
5 and dimension-7, or of dimension-4 and dimension-8 terms. Since in the SMEFT the only
dimension-5 term is the Weinberg operator HHLiLj, which does not contain quarks, the for-
mer possibility is irrelevant. Instead, combining one dimension-4 and one dimension-8 operator
could give rise to a diagram with the same shape as the one in Eq. (3.C.2) or an analogous one
with an intermediate Higgs boson. The former could arise from combining a gauge interaction
and a dimension-8 operator of the schematic form O ∼ ∂3Xψ̄ψ, with X any of the SM field
strengths, and the latter from combining a Yukawa interaction and an operator O ∼ ∂4Hψ̄ψ.
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However, in both cases the dimension-8 operator is proportional to some equations of mo-
tion [228, 229], and can thus be reabsorbed by redefining the coefficients of lower-dimensional
operators, as just shown for the dimension-6 ones. Such conclusions can be actually verified
in a number of ways, including Hilbert series techniques and on-shell methods. In conclusion,
it is useful to have in mind that specifying the basis of operators is necessary when writing
positivity bounds.

3.D Bounds for generic ξ values

3.D.1 Self-quartic

We report here the bounds we obtain when we allow for generic values of the ρ coefficients
in the cmnqp and amnpq tensors. The procedure is exactly the same as in the (4-Q) case with
Nf = 2, which was shown in Section 3.3.3. We keep explicit factors of y2

t to make it easier to
identify the contributions of contracted Yukawa matrices, but we remind that they should be
put to 1 for consistency of the expansion.

Let us see for example how the (4-Q) case changes. Again, we impose the first eigenvalue
of the matrix C(β), as well as the sum and product of the remaining two, to be positive:

t1(z) = ξQ,i3 + ξQ,i3 y2
t z

2 (3.D.1)

t2(z) + t3(z) = ξQ,i1 + 2ξQ,i3 + ξQ,i4 y2
t + 2y2

t z
2(ξQ,i2 + ξQ,i4 ) (3.D.2)

t2(z)t3(z) = (ξQ,i1 + ξQ,i3 )(ξQ,i3 + ξQ,i4 y2
t )

+ z2y2
t (ξ

Q,i
2 + ξQ,i4 )(y2

t (ξ
Q,i
4 − ξQ,i2 ) + 2ξQ,i3 )

+ z4y4
t (ξ

Q,i
2 + ξQ,i4 )2 . (3.D.3)

The first two are linear objects in z2, which varies within the interval [0, 1]. Thus, they are
positive ∀z if and only if their value at the boundaries of the interval is also positive. However,
the third expression is a quadratic polynomial in z2, which we can parametrize as az4 + bx2 + c.
Then, as already seen, we require this polynomial to be positive at the boundaries and to satisfy
∆ < 0 or a < 0 or b(b + 2a) > 0. Putting everything together, and after some simplifications,
we get the full set of conditions:

(4-Q):



ξQ,i3 > 0

ξQ,i1 + ξQ,i3 > 0

ξQ,i3 + ξQ,i4 y2
t > 0

ξQ,i1 + 2ξQ,i2 y2
t + 2ξQ,i3 + 3ξQ,i4 y2

t > 0

ξQ,i1 + 2ξQ,i2 y2
t + ξQ,i3 + 2ξQ,i4 y2

t > 0

y2
t

(
y2
t (ξ

Q,i
2 − ξQ,i4 )2 − 4ξQ,i3 ξQ,i2

)
< 4ξQ,i1

(
ξQ,i4 y2

t + ξQ,i3

)
or

(
y2
t (ξ

Q,i
4 − ξQ,i2 ) + 2ξQ,i3

)(
y2
t (ξ

Q,i
2 + 3ξQ,i4 ) + 2ξQ,i3

)
> 0 .

(3.D.4)
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Bounds on (2-u)(2-Q) operators coefficients for Nf = 3

Figure 3.D.1: Plots showing in yellow the allowed region obtained for the (2-u)(2-Q) operators, with generic ξ
values. Here ξ1 > 0, so we have rescaled it to 1, and we show the allowed region for the remaining three. yt is
set to 1. The red dot indicates the naturak MFV benchmark point, ξ1,2,3,4 = 1, which can be seen being inside

the allowed region.

Again, since within our basis choice Xu and X̃u are the same, identical results apply to the ξu,ik ,
k = 1, 2, 3, 4.

3.D.2 Cross-quartic operators

In the case of cross-quartic operators, the C(β) matrix turns out to have two equal eigenvalues,
and the conditions are simply:

(2-u)(2-Q):



ξuQ,i1 > 0

ξuQ,i1 + ξuQ,i2 y2
t > 0

ξuQ,i1 + ξuQ,i3 y2
t > 0

ξuQ,i1 + (ξuQ,i2 + ξuQ,i3 + ξuQ,i4 )y2
t > 0 .

(3.D.5)

A plot of the results is reported in Fig. 3.D.1. Here we also report the bounds for the (2-d)(2-
Q) and the (2-d)(2-u) operators, which can both be computed directly or obtained from the
previous ones with appropriate limits. Again, since Xu and X̃u coincide, so do the bounds:

(2-d)(2-Q):

ξ
dQ,i
1 > 0,

ξdQ,i1 + ξdQ,i2 y2
t > 0 ,

(3.D.6)
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(2-d)(2-u):

ξ
du,i
1 > 0,

ξdu,i1 + ξdu,i2 y2
t > 0 .

(3.D.7)

3.E ρ dependence of ξ coefficients

We report here the relations defined between the ξ and ρ coefficients for every operator under
consideration.

Self-quartic For the operators built out of (4-Q) fields, the coefficients look like:

cQ,imnpq = ρQ,i1 (δmnδpq) + ρQ,i2 (Mmnδpq + δmnMpq) + ρQ,i3 (δmqδpn)+

+ ρQ,i4 (Mmqδpn + δmqMpn) . (3.E.1)

The conditions coming from Eq. (12) of Ref. [207] are:
αmα

∗
qβnβ

∗
p

(
cQ,1mnpq + 1

4
cQ,2mnpq + 1

3
cQ,3mnpq + 1

12
cQ,4mnpq

)
> 0

αmα
∗
qβnβ

∗
p

(
cQ,2mnpq + 1

3
cQ,4mnpq

)
> 0

αmα
∗
qβnβ

∗
p

(
cQ,3mnpq + 1

4
cQ,4mnpq

)
> 0αmα

∗
qβnβ

∗
pc
Q,4
mnpq > 0 .

(3.E.2)

Then, we can define the linearly transformed coefficients ξ(ρ):

ξQ,1k ≡ ρQ,1k + 1
4
ρQ,2k + 1

3
ρQ,3k + 1

12
ρQ,4k

ξQ,2k ≡ ρQ,2k + 1
3
ρQ,4k

ξQ,3k ≡ ρQ,3k + 1
4
ρQ,4k

ξQ,4k ≡ ρQ,4k

k = 1, 2, 3, 4 , (3.E.3)

to turn the bounds into

αmα
∗
qβnβ

∗
pc(ξ)

Q,i
mnpq > 0 i = 1, 2, 3, 4 , (3.E.4)

i.e., in the form of Eq. (3.3.6). For the (4-d) operators, the bounds are the same as in the (4-u)
case:

αmα
∗
qβnβ

∗
p

(
cd,1mnpq +

1

3
cd,3mnpq

)
> 0 ,

αmα
∗
qβnβ

∗
pc
u,3
mnpq > 0 . (3.E.5)

Thus, with a redefinition identical to (3.3.4), we recast them into the desired form in Eq. (3.3.6).
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Cross-quartic The bounds on the (2-u)(2-Q) operators are:

αmα
∗
qβnβ

∗
p

(
auQ,1mnpq +

1± 3

12
auQ,3mnpq

)
> 0 . (3.E.6)

Upon defining: ξ
uQ,1
k ≡ ρuQ,1k + 1

3
ρuQ,3k

ξuQ,3k ≡ ρuQ,1k − 1
6
ρuQ,3k

k = 1, 2, 3, 4 , (3.E.7)

they are recast as in Eq. (3.3.7). The shape of the bounds on the remaining cross quartic
operators is the same, therefore identical redefinitionsξ

dQ,1
k ≡ ρdQ,1k + 1

3
ρdQ,3k

ξdQ,3k ≡ ρdQ,1k − 1
6
ρdQ,3k

k = 1, 2 , (3.E.8)

ξ
du,1
k ≡ ρdu,1k + 1

3
ρdu,3k

ξdu,3k ≡ ρdu,1k − 1
6
ρdu,3k

k = 1, 2 , (3.E.9)

are needed to recast the bounds in the form of Eq. (3.3.7).



CHAPTER 4

CP violation in the SMEFT

In Chapter 3, we studied some properties of the SMEFT at dimension-eight, showing how not
all the parameter space spanned by the EFT coefficients is allowed if we want to complete
our theory in the UV while still respecting locality and causality. As we have explained in
Chapter 2 when introducing the basics of EFTs, the higher the dimension of an operator, the
smaller its contribution to observables turns out to be, at least naively. Indeed, although it has
been argued that the impact of dimension-eight operators can be disentangled in observations
in some specific cases [140, 142–144], we still expect dimension-five and six operators to have
more phenomenological relevance. In this Chapter1, we focus on dimension-six operators of
the SMEFT, and characterize the breaking of CP symmetry they may carry. We will explain
why CP violation is such an important feature of the Standard Model, and especially why
precise measurements of its magnitude can potentially hide hints of NP. We argue that SMEFT
represents the best framework to study such hints, and bring forward the idea that the most
fitting way of parametrizing CP violation in this context is one that clearly reflects the invariance
of physical quantities under the choice of basis.

4.1 A first brief look into CP violation

We mentioned already how much the Standard Model is the result of a delicate equilibrium, and
how this fragility makes it a non-trivial task to build UV models solving some issues without
introducing disruptions somewhere else. On the other hand, this fragility can be exploited
experimentally, as even a slight deviation from this delicate structure can be a hint pointing to
New Physics. This point is maybe best highlighted through an example. The most prominent
one is probably represented by the search for Flavor Changing Neutral Currents (FCNC). As
the name suggests, these are interactions where a quark changes its flavor without altering its

1This Chapter is mostly a reproduction of the work contained in [69]
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electric charge. In the Standard Model alone, these interactions are forbidden at tree-level,
as there is no vertex allowing for them, and are extremely suppressed at loop-level thanks
to the so called GIM mechanism [4]. As a consequence, for example, the branching ratios of
some meson decays are extremely suppressed with respect to some other ones (see for example
Ref. [46] for a review). This behavior, however, is very specific of the SM, and an example
of the delicate equilibrium characterizing it. Indeed, this feature is quite easily disrupted in
numerous extensions of the SM, like Two Higgs Doublet Models [48] or SUSY-inspired ones [47].
Then, it is not a surprise that the search for such FCNC is a goal obstinately pursued by
experiments [230–234]. Another outstanding example is CP violation (CPV). When building
the SM lagrangian, CP is not imposed as a symmetry. Let us then look at the Yukawa couplings
for the quarks:

LSM4 ⊃ −H̃Q̄iYu,ijuj −HQ̄iYd,ijdj + h.c. . (4.1.1)

A priori, Yu,d are arbitrary complex matrices. However, we have seen that the rest of the SM4

lagrangian enjoys a U(3)5 flavor symmetry, acting on Q, u and d as

Q→ UqQ u→ Uuu d→ Udd , (4.1.2)

where the Ui are 3×3 unitary matrices. Then, we have also seen how under this transformation

Yu → U †QYuUu Yd → U †QYdUd . (4.1.3)

It can be checked that, under CP

LSM4

CP→ LSM4 iff Yd = Y ∗d and Yu = Y ∗u . (4.1.4)

More precisely, because of the symmetry in Eq. (4.1.2), this means that CP is conserved in the
SM4 if there exist at least a transformation like the one of Eq. (4.1.3) that makes the Yukawa
matrices real. Indeed, making use of Eq. (4.1.3), we can get very close to such a feature, and
remove all complex phases in Yu,d but a single one, δCKM.

Thus, as it turns out, CP is indeed broken in the quark sector, albeit by a single object.
Remarkably, this feature is specific of the presence of 3 distinct generations of quarks. Indeed,
where we dealing with 2 × 2 Yukawa matrices, the U(2)i transformations would have been
enough to remove all phases from them, and a basis where they are all real would exist [235].
A main consequence of this feature is, then, that any process where CP-violation from the
SM can be observed needs the simultaneous presence of all three quark generations. In terms
of Feynman diagrams, this means that all three Yukawa couplings must appear, together with
appropriate powers of the CKM matrix. Since those couplings are quite small, being all� 1 but
the top-quark one, it follows that processes sensitive to CP-violation are extremely suppressed.
This property is obviously reflected on observables. Prominent probes of CP violations are
found, most notably, in the Electric Dipole Moments (EDMs) of quarks and leptons [236]. For
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example, it has been shown that, considering the SM alone, the EDM of the electron receives
its first non-zero contribution at four-loops level [237], and in general all SM fermions EDMs
are extremely suppressed [132, 236]. This is, again, a feature very specific to the SM, and
various UV models introduce additional sources of CPV (see e.g. Refs. [235, 236]). It is no
surprise, then, that experimental searches focus so much on the precise measurement of CP-
violating quantities, such as the electron [238], muon [239], tau [240] and neutron [241] EDMs,
as well as on CP-violating coupling of the Higgs boson to electroweak gauge bosons [242–244]
and to the top quark [245–247]. Consistently with the approach of this work, it is certainly
worth understanding how deviations from the SM pattern of CPV can appear in the framework
of EFTs, which guarantees a certain degree of model-independence. Previous attempts in
evaluating the impact of dimension-6 CPV couplings on observables, mostly on EDMs, can be
found in Refs. [131,248–256].

While such works focus on the contribution from specific flavors, often only accounting for
the dominant top quark contributions to the observables, we here wish to carry out a systematic
study that takes into account the fact that CPV possesses a flavor-independent meaning. To
this end, first of all, we need to be more careful in the definition of CPV in the SM4 alone.
As we have seen, the presence of a single phase in the CKM matrix is the result of exhausting
all the transformations contained in the flavor group to bring the Yukawa matrix in a specific
form. However, since CP-violation is a physical quantity, it cannot depend on the choice of
flavor basis. As it turns out, there is indeed a single, flavor-invariant quantity that characterizes
CPV in SM4,

J4 ≡ Im Tr
[
YuY

†
u , YdY

†
d

]3

= 3 Im Det
[
YuY

†
u , YdY

†
d

]
. (4.1.5)

The quantity J4 goes under the name of Jarlskog invariant [257–259], and vanishes iff CP is
conserved. The structure of J4 is such that it is not modified by unitary reshuffling of the
quark fields, which means that it corresponds to a physical quantity. In addition, its expression
shows that CPV in the SM4 is not a feature of Yu or Yd alone, but a feature of the whole model
which can only be assessed with the knowledge of both matrices (and in particular, of the fact
whether they can be simultaneously diagonalized). This “collective” property of CPV, namely
the fact that it depends on several lagrangian parameters at once, is a key property of the SM4,
as well as of its extensions. This also holds for strong CPV, whose order parameter is given
by θQCD− arg det (YuYd), and resides simultaneously within the θ-term of QCD and within the
quark Yukawa matrices (see Appendix 4.F for more details).

As we mentioned, while J4 is the only order parameter of CPV in the fermionic sector of
the SM4, additional ones need to be specified whenever the SM4 is extended, see e.g. Ref. [154,
156, 260–263] for multi-Higgs doublet models, Ref. [264–266] for the case of supersymmetric
extensions of the SM4, Ref. [259, 267–269] for the case of additional generations of matter,
Ref. [155,159,270–276] for the inclusion of neutrino masses, Ref. [277] for vector-like extensions,
Ref. [278] for CP-violating ALP EFTs or Ref. [279] for models of spontaneous CP breaking.
In this Chapter, we assume that there are no new light degrees of freedom (d.o.f.) below, or
close to, the weak scale, but we remain agnostic about the presence of heavy states. In that
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case, the SM4 should be understood as the low-energy approximation of some fundamental UV
dynamics and we can extend it into an effective field theory (EFT). Under the assumption that
a decoupling limit can be consistently taken, the adequate description is then the SMEFT.
In particular, if we look at the expansion of its lagrangian in terms of operators of growing
dimension,

L = LSM4 +
∑
i

Ci
Λdi−4

Oi , (4.1.6)

we notice that the coefficients Ci are generically complex and introduce a large number of
new sources of CPV in SMEFT (see the counting in Ref. [133] at dimension di ≤ 6). In
the rest of the Chapter, we will be in particular interested in CPV associated to flavorful
Wilson coefficients, whose analysis requires the careful extraction of basis-independent physical
parameters, which account for the collective properties of CPV. Therefore, the new CPV phases
should be captured by CP-odd flavor-invariants, similar to J4. We focus here on the CPV phases
found in the fermionic sector, since the bosonic sources of CPV in the dimension-six SMEFT
are trivially flavor-invariant2. Moreover, we focus on the limit of vanishing neutrino masses
throughout the rest of the Chapter.

The requirement of looking for invariant quantities needs to be more precisely justified. For
instance, it is common to associate a complex top-quark Yukawa coupling with a new source
of CPV, without referring to invariants. However a complex top Yukawa only signals CPV if
one works in a given flavor basis where the top is a mass eigenstate of real mass. One may
wonder how to describe CPV in SMEFT, without any specific reference to the IR physics, such
as the masses or the electroweak vacuum. This picture is for instance justified if one cares
about new sources of CPV which arise from the matching to a given UV model, which should
be analyzed at an energy scale above the electroweak vacuum expectation value (vev) and
should not depend on the details of the IR dynamics, such as specific flavor bases motivated
by low energy considerations. Flavor-invariants are well-suited to answer such questions, as
they allow one to capture physical and collective properties of the model, to parametrize CP-
odd observables in a basis-independent way, and also to make the matching with UV models
and their properties easier, by decorrelating the parametrization of CPV quantities from flavor
bases connected to the IR properties of SM4 particles.

Let us use the aforementioned example of the top-quark complex Yukawa coupling to offer a
preview of the flavor-invariants considered in this paper. As said above, a top-Higgs lagrangian
with a complex Yukawa coupling

− L ⊃ mtt̄t+
mt

v
t̄(κt + iκ̃tγ5)th = mtt̄LtR +

mt

v
t̄L(κt + iκ̃t)tRh+ h.c. , (4.1.7)

2For the 6 CP-odd bosonic operators appearing in the basis in Ref. [70], indeed, the condition for CP
conservation is simply for their coefficient to vanish.
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violates CP. It can originate in SMEFT from the dimension-four and six Yukawa couplings,3

− L ⊃ ytQ̄LtRH̃ +
CtH
Λ2

Q̄LtRH̃|H|2 + h.c. . (4.1.8)

The above expression generalizes to three generations of matter in SMEFT upon replacing
QL, tR, yt, CtH → QL,i, tR,j, Yu,ij, CuH,ij. Focusing on the diagonal entries of CuH in a basis
where Yu is diagonal and real (with non-degenerate entries, as is experimentally relevant),
their three imaginary parts Im CuH,ii violate CP. They can be captured by three independent
flavor-invariants, whose expressions read

Lk=1,2,3 = ImTr
(
Xk−1
u CuHY

†
u

)
(4.1.9)

where Xu = YuY
†
u as in Chapter 3. In the basis where Yu = diag yu,i is diagonal and real, one

has Lk=1,2,3 = y2k−1
u,i Im CuH,ii, with an implicit sum over i. Therefore, at fixed, non-vanishing

and non-degenerate yu,i, the set of three Lk=1,2,3 maps to that of three CuH,ii=1,2,3 in a bijective
fashion, hence those three invariants capture the three new sources of CPV associated to up
quark complex Yukawa couplings, as in Eq. (4.1.7). In the generic case however, CuH has off-
diagonal entries even in the basis where Yu is diagonal, all of which can be complex, such that
one needs nine flavor-invariants to capture the nine new sources of CPV in CuH . Although
there is no unique choice, one possible set of invariants reads

Lk=1,...,9 =


ImTr

(
CuHY

†
u

)
ImTr

(
XuXdCuHY

†
u

)
ImTr

(
X2
dX

2
uCuHY

†
u

)
ImTr

(
XuCuHY

†
u

)
ImTr

(
XdXuCuHY

†
u

)
ImTr

(
XuX

2
dX

2
uCuHY

†
u

)
ImTr

(
XdCuHY

†
u

)
ImTr

(
X2
uX

2
dCuHY

†
u

)
ImTr

(
XdX

2
uX

2
dCuHY

†
u

)


(4.1.10)
where again Xd = YdY

†
d as in Chapter 3.4

Naively, the number of new flavor-invariants should match that of the new sources of CPV.
However, observables in SMEFT are truncated at a given order in inverse powers of Λ, according
to the SMEFT power counting, and it happens that not all sources of CPV contribute to
physical observables at this given order as a result of non-interference. In this Chapter, we
illustrate this fact by discussing CPV observables truncated at the leading 1/Λ2 order, to
which several of the new sources of CPV at dimension-six cannot contribute.5 We therefore

3At order 1/Λ2 (and for one generation only) the correspondence between the different coefficients reads
[254,280]

mt =
ytv√

2

(
1 +

1

2

Re CtHv2

ytΛ2

)
, κt + iκ̃t = 1 +

Re CtH
yt

v2

Λ2
+ i

Im CtH
yt

v2

Λ2

provided we start in a basis where yt is already real.
4The careful reader may note that the former L3 in Eq. (4.1.9) does not appear anymore in Eq. (4.1.10).

We have removed L3 because it is not independent of the first two L’s when two up-type quark masses are
degenerate. This does not happen for any of the invariants in Eq. (4.1.10), which are therefore preferred (see
the following sections for a systematic treatment).

5Such CP-odd observables are at most linear in the dimension-six SMEFT coefficients, and correspond to
the interference between the SM4 and the leading SMEFT contributions to a given amplitude. A more thorough
characterization of the observables we consider can be found in Section 4.3.1.
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carefully differentiate between the power counting for observables, which we truncate at order
1/Λ2, and that of SMEFT operators, which we only include up to dimension-six, i.e. also up
to order 1/Λ2. As we will explain, not all associated SMEFT coefficients can interfere with
the SM4 contribution to a given observable, and therefore they cannot all contribute at leading
1/Λ2 order to observables. We dub those which can primary coefficients, while we refer to the
others as secondary coefficients. We perform the counting of the number of (both CP-even
and CP-odd) SMEFT primary coefficients. Among those, the CP-odd fermionic ones, whose
number is 699, are captured by flavor-invariants linear with respect to the dimension-six SMEFT
coefficients, and an explicit and complete set of such flavor invariants is built. Consequently, we
present a necessary and sufficient set of flavor-invariants, such that CP is conserved at O(1/Λ2)

iff they vanish, together with J4, the strong-CP phase, and the 6 CP-violating dimension-6
bosonic operators, so that they form a set of 699(+1 + 1 + 6) order parameters of CPV.

4.2 The collective nature of CP breaking in the SM(EFT)

In order to motivate why we define CP-odd invariants, it is useful to review first one important
and interesting aspect of CP breaking in SMEFT: it is collective. Indeed, it relies on the
simultaneous presence of several complex parameters in the lagrangian, which cannot all be
made simultaneously real, even using the freedom to redefine fields (or equivalently, to define
appropriately the CP transformation). In this section we review CP violation in SM4, in order
to establish our conventions and present several of the claims related to CP violation which
will be repeatedly encountered in this Chapter.

4.2.1 CP-violation and complex parameters

The usual lore is that complex parameters in the lagrangian violate CP. At the level of the
fermionic lagrangian, this claim leaves implicit crucial subtleties related to field redefinitions.
The correct statement is instead that the lagrangian is CP-symmetric iff one can redefine the
fields so as to make all couplings real.6 In the SM4, this explains why only one phase out of
the six naively contained in the CKM matrix is physical and breaks CP. For instance, were the
CKM matrix equal to the following unitary matrix

VCKM =


72−21i

325
4
13

−12i
13

−12
13

576+168i
1625

49−168i
1625

−96−28i
325

−57
65

−24i
65

 , (4.2.1)

6This is strictly speaking only true for models with continuous internal symmetries. When discrete symme-
tries are present, there exists the possibility that the couplings are pseudo-real, namely related to their complex
conjugates via flavor transformations. Then one would get a CP-symmetric lagrangian iff there exists a flavor
transformation which sends all couplings to their complex conjugates at once. See Ref. [281] for an example, or
the section 4.3 of Ref. [282] for more details and references. In this text, we focus on the bulk of the SM(EFT)
parameter space where any discrete symmetry is embedded into a continuous one (this is for instance automatic
for non-degenerate spectra, see Section 4.4.2 and Appendix 4.A).
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it would not violate CP, although it is explicitly complex. Indeed, one can write
72−21i

325
4
13

−12i
13

−12
13

576+168i
1625

49−168i
1625

−96−28i
325

−57
65

−24i
65

 =


3−4i

5
0 0

0 4−3i
5

0

0 0 3−4i
5




3
13

4
13

12
13

−12
13

24
65

7
65

− 4
13
−57

65
24
65




4+3i
5

0 0

0 3+4i
5

0

0 0 4−3i
5

 ,

(4.2.2)
and absorb all the factorized diagonal phases into the fermion fields, in order to obtain a real
orthogonal CKM matrix. Such a manipulation cannot be done for the following matrix,

VCKM =


2172−5004i

8125
−1784+432i

8125
−2427+5196i

8125

−3747+3996i
8125

3324+912i
8125

4772−1164i
8125

−308+144i
1105

−4389+2052i
5525

1848+864i
5525

 . (4.2.3)

However, whether it yields a CPV SM4 depends on the fermion spectrum. Indeed, were two
quark masses equal, the kinetic lagrangian would have a U(2) flavor symmetry, allowing for
more general fermion field redefinitions. For instance, if mu = mc, we can redefine the first two
flavors of up-type quarks in order to absorb the 2× 2 unitary matrix which appears at the top
left of the first factor on the right-hand-side of the following equality:

2172−5004i
8125

−1784+432i
8125

−2427+5196i
8125

−3747+3996i
8125

3324+912i
8125

4772−1164i
8125

−308+144i
1105

−4389+2052i
5525

1848+864i
5525

 =


−176+468i

625
−9−12i

25
0

351−132i
625

16+12i
25

0

0 0 77+36i
85




3
13

4
13

12
13

−12
13

24
65

7
65

− 4
13
−57

65
24
65

 ,

(4.2.4)
obtaining again a real orthogonal CKM matrix.

As is clear from these numerical examples, and as we will repeatedly illustrate, it is more
convenient to phrase the condition for CP-violation in a way which does not require scanning
over all possible field redefinitions. If the theory preserves CP, the following CP transformation
of the (non-degenerate) fermionic mass eigenstates ψ (together with those of bosonic fields [235])
leaves the lagrangian invariant in some field basis

(CP)ψ(t, ~x)(CP)−1 = γ0Cψ
T

(t,−~x) , (4.2.5)

where C is the (antisymmetric) charge conjugation matrix such that γµC = −C(γµ)T . As we
anticipated, this implies that the lagrangian couplings are real (in this field basis). For instance,
if we assume that there exists the following coupling in the theory,

L ⊃ c1212

(
ψ1γ

µψ2

) (
ψ1γµψ2

)
+ h.c. , (4.2.6)

we learn from the invariance under the CP transformation in Eq. (4.2.5) that c1212 is real. How-
ever, the opposite statement is that the theory violates CP iff the transformation in Eq. (4.2.5)
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is never a symmetry, whatever the field basis chosen. This is not equivalent to saying that c1212

is complex in some basis, but that whatever the basis chosen, there exists at least one lagrangian
parameter which is genuinely complex7 (which usually depends on the basis). Therefore, the
condition for CPV which we look for takes the following schematic form

CPV ⇐⇒ Im (something independent of the field basis) 6= 0. (4.2.7)

Such a basis-independent object precisely defines a CP-odd flavor invariant. Within the frame-
work of SMEFT, we can define flavor invariants order-by-order in the power counting. At
leading order, the condition for CPV reads:

CPV at O(1/Λ2) ⇐⇒ Im (something of O(1/Λ2) independent of the field basis) 6= 0 .

4.2.2 Flavor transformations and flavor bases

As we just discussed, a meaningful statement about CP violation in the SM(EFT) must account
for the possibility of field redefinitions. In addition, the SM(EFT) lagrangian is naturally
written in the unbroken electroweak phase, which does not differentiate between the three
fermionic generations. Therefore, it should be possible to characterize CP violation without
referring to any specific flavor labeling, in particular without identifying which combinations
correspond to the mass eigenstates.

As we reviewed when discussing MFV in Section 3.2, when the lagrangian is written in terms
of the gauge multiplets relevant in the unbroken phase, the kinetic lagrangian in the fermion
sector (including the gauge couplings) is invariant under a U(3)5 = U(3)QL×U(3)uR×U(3)dR×
U(3)LL × U(3)eR flavor group, where each factor acts on the flavor indices of the associated
fermion field. This group is the largest under which all SMEFT coefficients can be assigned a
spurious transformation so as to leave the full SM(EFT) lagrangian unchanged.

Similarly to our conclusion in the previous section, the lagrangian is CP-symmetric iff one
can redefine the fields so as to make all couplings real. When redefining the fermion fields by
means of a U(3)5 flavor transformation, the precise values of all flavored couplings in SMEFT are
mixed up, and the real and imaginary parts get scrambled. Consequently, any order parameter
of CP breaking cannot correspond to the imaginary part of a given coefficient, but instead
should map to the imaginary part of a flavor-invariant combination of coefficients.

In order to build such invariants, it is useful to notice that the flavored SMEFT couplings
transform under the flavor group as spurions with transformation properties which depend on
the operator they couple to. For the Yukawa couplings at dimension-four, the transformations
were already presented in Chapter 3, and we list them again in Table 1. Each (anti)fundamental
representation has a charge (−)1 under the associated abelian group in the decomposition
U(3)X = SU(3)X×U(1)X , where X = Q, u, d, L, e.8 Performing field redefinitions which belong

7For pseudo-real couplings, the statement is rather that all complex couplings cannot be turned simultane-
ously into their conjugates via the same change of basis.

8Out of the 5 U(1) factors only the gauged U(1)Y and the combinations U(1)B−L are conserved at the
quantum level, while the other are broken by anomalies.
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to the flavor group, this set of spurious charges allows one to easily compute the couplings in
the redefined theory, and to easily identify objects which are independent of such redefinitions.

SU(3)Q SU(3)u SU(3)d SU(3)L SU(3)e
Yu 3 3̄ 1 1 1

Yd 3 1 3̄ 1 1

Ye 1 1 1 3 3̄

Table 1: flavor transformation properties of the Yukawa matrices treated as spurions

Using flavor transformations, one can reach flavor bases where the Yukawa matrices have a
specific form, and which we will sometimes use to explicitly evaluate invariants. Two possibilities
are those shown in Eqs. (3.2.4) and (3.2.4), namely the up basis

Yu = diag(yu, yc, yt) , Yd = VCKM · diag(yd, ys, yb) , Ye = diag(ye, yµ, yτ ) , (4.2.8)

where all y’s are real and positive and VCKM is the Cabibbo–Kobayashi–Maskawa (CKM) ma-
trix, and the down basis, where

Yu = V †CKM · diag(yu, yc, yt) , Yd = diag(yd, ys, yb) , Ye = diag(ye, yµ, yτ ) . (4.2.9)

Fixing this shape for the Yukawa couplings exhausts all flavor transformations but some diago-
nal ones.9 If, in addition, a phase choice is made on the CKMmatrix (for instance imposing that
all its phases are given in terms of a single one as in usual parameterizations), no flavor freedom
remains but the conserved baryon and lepton number symmetries U(1)B × U(1)L. When we
make such a choice below, we use the following parametrization of the CKM matrix [283],

VCKM =

 c12c13 c13s12 s13e
−iδCKM

−c23s12 − c12s13s23e
iδCKM c12c23 − s12s13s23e

iδCKM c13s23

s12s23 − c12c23s13e
iδCKM −c12s23 − c23s12s13e

iδCKM c13c23

 , (4.2.10)

where cX , sX = cos(θX), sin(θX).

4.2.3 The collective nature of CP breaking in the SM4

We now review in some detail the (well known) collective nature of CP breaking in the SM4,
which is useful for our purpose.

The fact that CP breaking is collective in the SM4 can be understood from the fact that CP
is preserved with up to two fermionic generations [284,285], so that one needs the simultaneous
presence of three generations to be sensitive to CP violation. A question is then: what is the
order parameter of CP-breaking in the SM4?

9Their precise form depends on the basis. In the down basis, they are of the form diag(eiα
1
X , eiα

2
X , eiα

3
X ),

such that αiQ = αid, α
i
L = αie (RH up-quark phases are unconstrained).
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In order to answer this question unambiguously, one needs to mod out the impact of flavor
transformations. Besides the use of invariants, a way to exhaust all flavor transformations is to
work in a well-defined flavor basis, for instance in the up or down basis defined earlier. Using
the remaining phase rotations allowed in such bases removes all complex parameters but one,
which fully specifies the flavor basis. The only leftover complex quantity can be written in a
way which is independent of the phase rotations [257–259,267,286,287],

J = Im
(
VCKM,usVCKM,cbV

∗
CKM,ubV

∗
CKM,cs

)
= s12c12s13c

2
13s23c23 sin(δCKM) , (4.2.11)

where the last equality uses Eq. (4.2.10). It is straightforward to check that J = 0 for the
matrix in Eq. (4.2.1).

As we saw in Section 4.2.1, when two masses (of same-type quarks) are degenerate, there
is a larger degeneracy within the up or down bases, and one can further remove the leftover
complex parameter from the SM4 lagrangian. Therefore, the genuine order parameter of CP
breaking in the SM, J4, is proportional to10

J4 ∝ (m2
t −m2

c)(m
2
t −m2

u)(m
2
c −m2

u)(m
2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d)J . (4.2.12)

One can show that there are no additional factors to J4 [257].
We have constructed J4 in a specific flavor basis, but it is useful to have expressions valid in

all bases. In that respect, instead of looking for complex quantities invariant under mere phase
rotations, one would rather consider invariants under the full flavor group. As we anticipated
in the introduction, J4, which goes under the name of Jarlskog invariant, then corresponds
to [257]

J4 ≡ Im Tr
[
YuY

†
u , YdY

†
d

]3

= 3 Im Det
[
YuY

†
u , YdY

†
d

]
. (4.2.13)

Defined as above, J4 is independent of the choice of flavor basis, as can be checked from the
transformations in Table 1. Evaluating Eq. (4.2.13) for instance in the up or down basis, the
connection with Eq. (4.2.12) is made obvious,

J4 = 6(y2
t − y2

c )(y
2
t − y2

u)(y
2
c − y2

u)(y
2
b − y2

s)(y
2
b − y2

d)(y
2
s − y2

d)J . (4.2.14)

It can be shown that the statement that CP is broken in the SM4 is equivalent to saying that J4

does not vanish [257], therefore it corresponds to the genuine order parameter for CP breaking
in the SM4.

10This expression depends on differences of squared masses and not, e.g., on mt − mu. This is due to
the fact that only the modulus of a fermion mass is physical: any quark mass can be made complex by an
appropriate rephasing of the associated RH field without changing other SM4 couplings, hence we must consider
the rephasing-invariant quantity mψm

∗
ψ = |mψ|2 for any fermion ψ, which reduces to the mass squared in field

bases where the mass is real.
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4.2.4 The collective nature of CP breaking beyond the SM4

The search for flavor-invariant order parameters for CP breaking beyond the SM4 is subject to
very similar discussions. As an example, let us consider the SM4 with a single generation of
fermions, extended by a dimension-six Yukawa coupling for the up-type quark:

L = LSM4 +
CuH
Λ2
|H|2QLuRH̃ + h.c. (4.2.15)

It is well known that such a coupling can generate a two-loop contribution to the electron EDM,
a CPV observable, which reads at O(1/Λ2) [131,288,289]

de
e

= − 1

48π2

vmemu

m2
h

Im(CuH)

Λ2
F1

(
m2
u

m2
h

, 0

)
, (4.2.16)

where for conciseness we only kept the dominant contribution due to photons in the loop, where
mh and v are the Higgs mass and vev, respectively, and where

F1 (a, 0) =

∫ 1

0

dx
ln
(

a
x(x−1)

)
a− x(x− 1)

. (4.2.17)

The result in Eq. (4.2.16) may suggest that Im(CuH) acts as an order parameter of CP breaking
in this theory.11 However, this imaginary part could be rotated away by a chiral transformation
of the up quark field (for instance by redefining uR → e−i arg(CuH)uR), so one could wonder if
there remains an observable electron EDM. The resolution to this puzzle is due to the implicit
assumption that the computation is performed in a basis where the up quark has a real mass.
In a generic flavor basis, the mass is complex,

L ⊃ −muuLuR −m∗uuRuL +
v2CuH√

2Λ2
uLuRh+

v2C∗uH√
2Λ2

uRuLh , (4.2.18)

where we wrote the lagrangian in the broken phase, and a careful evaluation of the two-loop
diagram (i.e. using propagators featuring complex fermion matrices) yields

de
e

= − 1

48π2

vme

m2
h

Im(m∗uCuH)

Λ2
F1

(
|mu|2
m2
h

, 0

)
, (4.2.19)

which matches Eq. (4.2.16) when mu is real, as it should. This expression allows us to identify
a more satisfactory order parameter of CP-breaking, Im(m∗uCuH), which does not depend on

11As we mentioned in the first part of the Chapter, in the SM4 the various contributions to the electron
EDM are all proportional to J , consistently with the collective nature of CP breaking. Short-distance quark-
level perturbative contributions arise at four-loop order and allow one to identify the whole structure of J4
(see Ref. [290] for a parametric expression and Ref. [291] for a recent appraisal identifying an additional m2

b

factor), but the dominant source comes from long-distance hadronic contributions sensitive to CPV four-fermion
operators [292]. In addition, such hadronic contributions often dominate CPV observables, e.g. in the case of
paramagnetic systems (see Ref. [293] for the identification of a new contribution which increases the previous
result by 5 order of magnitude).
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the phase convention for the up quark. Similarly to what was discussed for the SM4 previously,
what matters here for CP breaking is not that the Yukawa coupling has an imaginary part,
but that there is an irreducible imaginary part due to the simultaneous presence of both the
coupling to the Higgs of the up quark and its non-zero mass. This provides also a qualitative
argument for why the result in Eq. (4.2.16) had to be explicitly proportional to mu.

The take-away message of this section is that real or imaginary parts of coefficients are only
meaningful with respect to CP breaking when the flavor basis is completely determined. In a
general basis, what matters are the imaginary parts of invariant combinations of coefficients.12

CP-odd invariants in SMEFT, especially with three flavors, are the subject of this Chapter.

4.3 Characterizing CP violation at dimension six

In this section, we discuss the number of primary parameters in SMEFT, as well as the
parametrization of those which are CP-odd.

4.3.1 Primary parameters in the SMEFT

First, we count the number of flavorful primary SMEFT parameters. We remind that they are
defined to be the dimension-six SMEFT parameters which generate BSM amplitudes which can
interfere with SM4 amplitudes (other parameters being called secondary). Indeed, observables
computed in SMEFT are subject to a power expansion, with respect to which we focus on the
leading BSM order, i.e. we include contributions to observables up to order 1/Λ2. For instance,
in cross-section computations, we only consider the SM4 amplitude squared and the interference
with the leading BSM amplitude. Schematically, we can express a generic amplitude as

A = A(4) +A(6) + . . . (4.3.1)

where A(4) is the leading order amplitude built with renormalizable operators, A(6) is the next-
to-leading order one, accompanied by a 1/Λ2 suppression, and the dots indicate higher order
terms that we ignore. Then, observables such as cross sections, which are proportional to the
amplitude squared, will receive contributions by

|A|2 = |A(4)|2 + 2Re
(
A(4)A(6)∗)+ . . . (4.3.2)

12Examples of this also exist in the SM4. The quantity ε, which encodes indirect CP violation in kaon decays,
is sometimes written [117]

ε ≈ eiπ/4√
2

Im(M12)

∆m
, (4.2.20)

where M12 is associated to K0 ↔ K0 mixing and ∆m is the mass difference between kaon mass eigenstates.
This formula actually assumes that λu ≡ VudV

∗
us is real. The expression which is valid independently of the

phase conventions reads [235]

ε ≈ eiπ/4√
2

Im(M12λ
2
u)

∆m |λu|2
. (4.2.21)
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Our goal in this section is then to determine the primary parameter space that characterizes
the first two terms in Eq. (4.3.2).

This counting does not lead to a mere repetition of that of Ref. [133], which counts primary
and secondary parameters indifferently and whose results are reviewed in the first double column
of Table 2, due to the fact that several of the dimension-six parameters are charged under
lepton numbers, unlike SM4 parameters. Given that physical observables cannot be charged,
such parameters can only interfere with themselves (or other charged BSM parameters) to form
a neutral object, and are therefore secondary according to our classification.

More precisely, the free fermionic lagrangian in the broken phase of the SMEFT and in the
mass basis has abelian flavor symmetries U(1)ui,di,Li , acting on each mass eigenstate indepen-
dently. By definition, those do not affect the spectrum of asymptotic states and therefore do not
affect physical predictions. They simply correspond to irreducible flavor ambiguities in a basis
where mass matrices are diagonal and real, which must be fixed by further specifications (for
instance, phase prescriptions in the CKM matrix). A consequence is that any observable must
be expressed in terms of quantities which are invariant under these U(1) phase rotations,13 and
therefore, any coefficient which is not invariant on its own must enter observables multiplied
by another U(1)-charged coefficient in order to form a neutral object. This story is known
to readers familiar with the notion of rephasing-invariants of the CKM matrix [294]: VCKM,ij

being charged under U(1)dj − U(1)ui , physical predictions can only depend on the moduli and
quartets,14 ∣∣VCKM,ij

∣∣2 , VCKM,ijVCKM,klV
∗
CKM,ilV

∗
CKM,kj . (4.3.3)

For the SMEFT at leading order, that implies that U(1)-charged dimension-six coefficients must
multiply U(1)-charged dimension-four coefficients. In the quark sector, the CKM matrix is the
only such object, and there does not exist any in the lepton sector, since U(1)Li is a symmetry
of the SM4 lagrangian for each i (remember that we work in the limit of vanishing neutrino
masses). Therefore, all “off-diagonal” lepton coefficients in the first double column of Table 2,
i.e. those which are charged under U(1)Li −U(1)Lj , correspond to secondary parameters. This
requirement reduces the number of parameters to the ones in the second double column of
Table 2.

A similar reasoning explains why adequate entries of the CKM matrix must multiply
dimension-six coefficients charged under U(1)ui and/or U(1)di . Those coefficients must therefore
contribute to observables with an additional suppression due to the smallness of the off-diagonal
CKM entries. For instance, CuB,13 (expressed in the up basis) can only enter observables as

V ∗CKM,11VCKM,31CuB,13 or V ∗CKM,12VCKM,32CuB,13 , (4.3.4)

where the unitarity of the CKM matrix allows us to not consider V ∗CKM,13VCKM,33CuB,13. Due
13This is a slightly different statement than the one that CP violation should be characterized in a flavor-

invariant way. Although they are restricted by flavor-invariant statements, amplitudes squared with flavored
external states are not flavor-invariant, but they are always invariant under phase rotations.

14Notice that sextets and monomial with more entries of the CKM matrix can be expressed in terms of
moduli and quartets using the unitarity of VCKM.
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inv. under U(1)Li − U(1)Lj

Type of op. # of ops # real # im. # real # im.
bi
lin

ea
rs Yukawa 3 27 27 21 21

Dipoles 8 72 72 60 60
current-current 8 51 30 42 21

all bilinears 19 150 129 123 102

4-
Fe

rm
i

LLLL 5 171 126 99 54
RRRR 7 255 195 186 126
LLRR 8 360 288 246 174
LRRL 1 81 81 27 27
LRLR 4 324 324 216 216

all 4-Fermi 25 1191 1014 774 597

all 1341 1143 897 699

Table 2: Number of flavorful real and imaginary parameters in SMEFT at dimension-six (see Tables 4.C.1
and 4.C.2 for the explicit forms of the operators). The first double column counts the number of physical

parameters, the second one (highlighted in gray) counts those which are also primary (see the text).

to the gauge anomalies of the abelian symmetries U(1)ui,di,Li , the θ-angles of the different gauge
factors of the SM are also charged parameters, which can interfere (non-perturbatively) with
appropriate SMEFT coefficients (see Appendix 4.F for a discussion of θQCD). Nevertheless,
U(1)Li − U(1)Lj is anomaly-free in the SM, therefore the statements made previously about
SMEFT coefficients in the lepton sector also hold non-perturbatively.

In this discussion, we ignored the specific cases of observables in the neutrino sector since we
work in the limit of vanishing neutrino masses. Examples of observables which we allow include
electric dipole moments (EDMs) [131, 254, 289, 295] or the CPV parameters εK and ε′ in kaon
physics [296–298]. We also assume that the leading BSM contribution indeed corresponds to the
interference at O(1/Λ2), and not to a dimension-six contribution squared (or the interference
between the SM4 and a dimension-eight coefficient, etc) due to some accidental suppression
of the O(1/Λ2) term. Below, we will also study the SM4 parameter space as a whole (i.e.,
beyond values relevant for phenomenology), which includes points where several entries of the
CKM matrix become unphysical and can be redefined away, turning additional dimension-
six coefficients in the quark sector into secondary ones. This would for instance happen if
all down-type quarks were massless: barring observables which are ill-defined when md → 0

within our leading order observables, we find a further reduction of the relevant dimension-six
coefficients (see Table 4.A.2 in Appendix 4.A.2). Ref. [299] performs a similar counting of
primary parameters (focusing on the kinematic situation where all fermions masses, but the
top and bottom quark, are neglected).
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4.3.2 CP conservation at leading order and minimal sets of CP-odd

invariants

We now turn to the characterization of CP violation in SMEFT at leading order using flavor-
invariants. Specifically, in the spirit of the discussion which leads to the introduction of J4, we
ask

Which flavor invariants vanish iff CP is conserved at leading order in SMEFT? We
call such a set of CP-odd invariants of minimal cardinality a minimal set.

The notion of minimal cardinality implies that there are no redundancies: the vanishing of each
invariant in a minimal set provides an independent condition. The number of invariants in a
minimal set must be larger or equal than the number of new primary sources of CPV15. In the
case of the SMEFT at O(1/Λ2), we find the non-trivial result that the two numbers agree for
all operators (see below).

Before going further, let us discuss one subtlety associated to our definition of a minimal
set of CP-odd flavor-invariants, which has to do with the parameter space considered. In the
way our definition is stated, it suggests that one aims at characterizing CP-conserving points
for all possible choices of parameters, i.e. quark masses as well as mixing angles and the CKM
phase δCKM. However, one could also try to characterize CP-conserving points within a given
parameter subspace, for instance for values of the quark masses which are non-vanishing. This
is the choice we make in the main body of this Chapter: we build flavor invariants which vanish
iff CP is conserved at leading order in SMEFT under the assumption that quark masses are
non-vanishing. Our methods also allow one to identify minimal sets of flavor-invariants when
one considers vanishing quark masses, but since the expression of the required invariants is
more intricate than for the simpler case of non-vanishing quark masses, we leave the resolution
of this question to Appendix 4.A. One could finally restrict to characterizing CP-conservation
for a smaller set of parameters, e.g. fixing the values of the quark masses or taking them non-
degenerate. Our sets of invariants work in such restricted cases, but there usually exist simpler
ones (which do not correspond to minimal sets on larger sets of parameters). We will encounter
explicit examples in the next section.

Due to the SMEFT power counting, the conservation of CP at zeroth order first demands
that J4 = 0, so that the J4 is part of any minimal set. Then, in order to build the rest of the
minimal set, we look for invariants which are linear with respect to the SMEFT dimension-six
coefficients, consistently with the goal of characterizing CPV in observables up to the first
non-leading order, i.e. up to the O(1/Λ2) interference term in the R.H.S. of Eq. (4.3.2). This
linearity is also valuable to check that we indeed have a necessary and sufficient condition for CP
conservation, as it does not suffer from subtleties associated to non-linear invariants, found e.g.
in neutrino physics [273]. Indeed, the question of whether vanishing invariants really implies

15It may need to be larger: as we detail below, we count an invariant as independent if there exists at least
one point in parameter space (in terms of fermion masses or CKM entries) where it cannot be expressed in
terms of other invariants of the set.
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vanishing CP phases is trivially answered here. We found that there does exist a minimal set
of invariants linear with respect to the SMEFT dimension-six coefficients. This set is presented
in subsequent sections, and represents the main result.

The linearity implies that the minimal sets are decomposed in minimal sets of invariants
Ia(C(6)), defined for each SMEFT dimension-six operator O(6) and its associated matrix-valued
coefficient C(6) independently, and where the index a labels the new primary sources of CPV
present in C(6). Therefore, we can define the notion of minimal set at the level of each SMEFT
operator independently. The invariants have the following form:

Ia(C(6)) = Im
(
flavor-invariant linear in C(6)

)
= TRai

(
ReC(6)

)
i
+ T Iai

(
ImC(6)

)
i
≡ Tai

−→
C

(6)
i ,

(4.3.5)
where the last equality describes the result of evaluating the invariant in a given flavor basis.
Here we define

−→
C

(6)
i ≡

((
ReC(6)

)
1
,
(
ReC(6)

)
2
, ...,

(
ImC(6)

)
1
, ...
)

(4.3.6)

as the vector in flavor space composed by the vectors Re/ImC(6), not necessarily of same length.
The matrix Tai will be referred to as the transfer matrix, and it is defined to take the block
form

T =

(
TR T I

)
. (4.3.7)

By linearity, TRai is the imaginary part of a linear combination of products of entries of dimension-
four Yukawas (which are the only flavored objects at dimension-four), while T Iai is the real part
of a similar combination, albeit in general different in its specific shape. Those matrices TR

and T I depend explicitly on the operator O(6) considered. A very convenient feature of such
invariants is that they automatically project out any secondary coefficient, which cannot be
arranged into invariants in a linear fashion by definition.

Showing that the set of invariants is minimal can be phrased as a condition on the matrices
TR/I :

A set of flavor invariants is a minimal set iff the rank of the transfer matrix T equals
the number of new primary sources of CPV in C(6) when J4 = 0 and never does for
all sets with strictly smaller cardinality.

Note that the last part of this characterization is automatic when the number of invariants,
the number of primary sources of CPV and the rank are all equal. We use this condition below
to check that the sets of invariants we present below are indeed minimal. We stress that the
meaning of “when J4 = 0” encompasses a large subset of the whole parameter space spanned
by the masses and the mixing angles, as seen from the expression in Eq. (4.2.12): it is achieved
when θij = 0 or π/2, or when mu,i = mu,j or md,i = md,j, for any pair i, j. In addition, setting
J4 = 0 via one of these choices still leaves a large freedom for the remaining parameters. For
instance, one may have θij = 0 and mu,k = mu,l for some i, j, k, l = 1, ..., 3. A set of flavor
invariants is a minimal set only if the rank of its transfer matrix corresponds to the number
of new sources of CPV within the whole parameter space where J4 = 0 (up to the restriction
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of non-vanishing quark masses which we adopt in the main text of this paper and relax in
Appendix 4.A). We will come back to this point in Section 4.4.

The transfer matrix T acts on the flavor-space vector made out of real and imaginary entries
of C(6) (the precise order in the labeling as well as the order between real and imaginary part is
unimportant). Note that the rank does not change under the action of flavor transformations
(which reshuffle real and imaginary parts, as well as the entries of TR/I).

4.4 Minimal set of CP-odd invariants

In this section, we present the minimal set of leading order CP-odd invariants in SMEFT at
dimension-six, under the aforementioned assumption that all fermion masses are non-vanishing,
which has an impact on how many sources of CPV are expected and which invariants correctly
capture them. We treat the cases of vanishing masses in Appendix 4.A.

4.4.1 Examples

Let us present some parts of our minimal set of invariants for SMEFT at dimension-six. As we
explained previously, the linearity with respect to the Wilson coefficients of the dimension-six
CP-odd observables allows one to treat the different SMEFT operators independently. The
study of all SMEFT operators proceeds along identical lines, and the full set of invariants is
presented in Appendices 4.D and 4.E.

We begin by considering SMEFT operators which are bilinear in fermion fields and her-
mitian, and therefore have the simplest non-trivial flavor structure. Invariants under unitary
groups with bi-fundamental representations must feature the invariant tensor δab , therefore they
correspond to linear combinations of traces of products of matrices, arranged so that indices of
a given fundamental representation and its conjugate are contracted in the trace, as seen for
instance in Eqs. (4.1.9)-(4.1.10). In addition, there are relations between powers of 3 × 3 ma-
trices, and/or between their traces, derived from the Cayley–Hamilton theorem, which reduce
the candidate invariants to a finite set. We explicitly present such properties in Appendix 4.B.
The relevant single-trace invariants linear with respect to a SMEFT coefficient C, for a fermion
bilinear operator, take the universal form16

Labcd(C̃) ≡ ImTr
(
Xa
uX

b
dX

c
uX

d
d C̃
)
, with a, b, c, d = 0, 1, 2 and a 6= c, b 6= d , (4.4.1)

where C̃ = C,CY †f=u,d,e or YfCY
†
f , depending on the chiral structure of the operator under

study (see below for explicit formulae). We first choose C = CHu for definiteness, and we find
that the following property holds:

L = LSM4 +
CHu,ij

Λ2

(
iH†
←→
D µH

)
ui,Rγ

µuj,R

16As we will see, those structures are also the only ones needed for 4-Fermi operators.
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preserves CP at O(1/Λ2) iff

J4 = L1100

(
YuCHuY

†
u

)
= L2200

(
YuCHuY

†
u

)
= L1122

(
YuCHuY

†
u

)
= 0 (4.4.2)

Indeed, J4 = 0 is necessary so that the leading order SM4 contribution to any CP-odd observable
vanishes. Once enforced, this makes the SM4 lagrangian CP-symmetric, and there remains
generically three new primary sources of CPV in CHu. Indeed, CHu is a (3 × 3) hermitian
matrix (which transforms as a 3 ⊗ 3̄ representation of U(3)u). Therefore, the minimal set for
CHu should at least contain three invariants. As we explained in Section 4.3.2, in order to show
that the three invariants in Eq. (4.4.2) capture the three necessary conditions, it is sufficient to
compute the transfer matrix T such that,

L1100

L2200

L1122

 =
(
TR T I

)


ReCHu,11

ReCHu,12

...

ImCHu,12

ImCHu,13

ImCHu,23


, (4.4.3)

and show that it has rank 3. Parametrically, and in some basis, the generic case corresponds
to taking δCKM → 0 in Eq. (4.2.10) while holding all mixing angles different from 0, π/2 and all
quark masses non-denegerate, which is what we assume in the current section (we treat more
general cases below). Then, TR = 03×6 and the determinant of T I is found to be non-vanishing.
Therefore, L1100 = L2200 = L1122 = 0 implies that ImCHu,ij = 0 in the basis of Eq. (4.2.10)
(or any other basis where the Yukawa matrices are real), i.e. CP is conserved. Conversely, the
conservation of CP, or equivalently ImCHu,ij = 0, implies that all L’s vanish since TR = 0. This
proves the equivalence announced above.

One may be surprised by the fact that some simple invariants, in the sense that they feature
low powers of the Yukawa matrices, are not part of the set in Eq. (4.4.2). For instance, for
CHu, the set formed by

L1100

(
YuCHuY

†
u

)
, L1200

(
YuCHuY

†
u

)
, L2100

(
YuCHuY

†
u

)
(4.4.4)

would pass the test performed in this section, namely the associated transfer matrix would
generically have rank 3. Such invariants have been studied beyond SMEFT, and exist generally
for any set of three hermitian matrices in the same adjoint representation, as explained in
Ref. [265]. However, they would not be a valid choice of invariants, since they would not
correspond to sufficient conditions whatever the values of the fermion masses and the CKM
matrix. For instance, mt = mc is another way to get J4 = 0 other than that discussed above. In
this situation, there remain three conditions necessary for CP to be conserved (see Section 4.4.2
for details). Therefore, imposing that a given minimal set vanishes should be equivalent to three
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independent conditions also when mt = mc. However (when mt = mc) we find that

(m2
u +m2

c)L1100 = L2100 , (4.4.5)

where the mass-dependent factor can be expressed in terms of invariant quantities,

m2
u +m2

c =
18 detXu − 3 (TrXu)

3
+ 7 TrXu TrX2

u

6 TrX2
u − 2 (TrXu)

2 . (4.4.6)

Therefore, imposing that the set in Eq. (4.4.4) vanishes only amounts to two conditions. Instead,
one can check that the vanishing of the set in Eq. (4.4.2) yields three independent conditions17,
even when mt = mc. We expand on what happens however the limit J4 → 0 is taken in
Section 4.4.2, and show that the set in Eq. (4.4.2) above yields a satisfactory minimal set in all
cases (as long as all quark masses are non-vanishing).

Similar reasoning applies to all SMEFT operators. Let us present the results in two more
cases with slightly more complicated flavor structures, the non-hermitian bilinear operator OuH
and the hermitian symmetric 4-Fermi operator Ouu. The Wilson coefficient CuH contains nine
new primary sources of CPV, since it is an arbitrary (3× 3) complex matrix (which transforms
as a (3, 3̄) representation of U(3)Q × U(3)u). Cuu contains eighteen new CPV parameters
(Cuu,ijkl is “hermitian”, i.e. C∗uu,ijkl = Cuu,jilk, symmetric, Cuu,ijkl = Cuu,klij, and it transforms
in the (3⊗ 3̄)2 of U(3)u).

For OuH , we find that

L = LSM4 +
CuH,ij

Λ2 Qi,LH̃uj,R|H|2 + h.c.

preserves CP at O(1/Λ2) iff

J4 = L0000

(
CuHY

†
u

)
= L1000

(
CuHY

†
u

)
= L0100

(
CuHY

†
u

)
= L1100

(
CuHY

†
u

)
= L0110

(
CuHY

†
u

)
= L2200

(
CuHY

†
u

)
= L0220

(
CuHY

†
u

)
= L1220

(
CuHY

†
u

)
= L0122

(
CuHY

†
u

)
= 0 .

(4.4.7)

We now turn to Ouu. For 4-Fermi operators, we generically define

TrA
(
M (1),M (2), C

)
≡M

(1)
ji M

(2)
lk Cijkl , TrB

(
M (1),M (2), C

)
≡M

(1)
li M

(2)
jk Cijkl , (4.4.8)

and
Aabcdefgh(C) =ImTrA

(
Xa
uX

b
dX

c
uX

d
d , X

e
uX

f
dX

g
uX

h
d , C

)
,

Babcd
efgh(C) =ImTrB

(
Xa
uX

b
dX

c
uX

d
d , X

e
uX

f
dX

g
uX

h
d , C

)
.

(4.4.9)

We further define
Cũũuu,ijkl ≡

∑
m,n

Yu,imY
†
u,njCuu,mnkl , (4.4.10)

17The interplay between degenerate cases and flavor-invariants has also been studied in Ref. [274] for massive
Majorana neutrinos.
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and similarly for Cũuuũ, Cuũũu, Cuuũũ, Cũũũũ, and for the down quark versions. We then find
that

L = LSM4 +
Cuu,ijkl

Λ2 ui,Rγ
µuj,R uk,Rγµul,R

preserves CP at O(1/Λ2) iff

J4 = A0000
1100 (Cuuũũ) = A1000

1100 (Cũũũũ) = A0100
1100 (Cũũũũ)

= A0000
2200 (Cuuũũ) = A1100

1100 (Cũũũũ) = A0200
1100 (Cũũũũ)

= A0100
2200 (Cũũũũ) = A0000

1122 (Cuuũũ) = A1100
2200 (Cũũũũ)

= A1000
1122 (Cũũũũ) = A0100

1122 (Cũũũũ) = A1100
0122 (Cũũũũ)

= A1200
2200 (Cũũũũ) = B0000

1100 (Cuũũu) = B0100
1100 (Cũũũũ)

= B0200
2100 (Cũũũũ) = A1200

1122 (Cũũũũ) = B1000
1200 (Cũũũũ) = 0 .

(4.4.11)

The proofs of these equivalences follow from the same logic as for CHu: compute T I and check
that it has maximal rank, which means that the origin in invariant space is uniquely mapped to
the origin in imaginary-coefficient space. Therefore, the vanishing of the invariants is equivalent
to the conservation of CP (at leading order).

Finally, let us consider the leptonic case. As we argued in Section 4.3.1, the fact that the SM4

lagrangian is symmetric under the lepton numbers U(1)Li makes several SMEFT dimension-six
coefficients in the lepton sector secondary. For the specific example of CeH , this means that all
off-diagonal entries are secondary, since they are charged under U(1)Li − U(1)Lj for suitable
i, j. Therefore, although all imaginary parts of the nine entries of CeH violate CP when the full
SMEFT expansion is considered, the only ones which can contribute to CP-odd observables at
O(1/Λ2) are the diagonal ones. The same reasoning applies to CHe, which therefore does not
violate CP at O(1/Λ2). Consequently, a minimal set for CeH contains three invariants, and is
empty for CHe. Indeed, we find that (defining Xe ≡ YeY

†
e )

L = LSM4 +
CHe,ij

Λ2

(
iH†
←→
D µH

)
ei,Rγ

µej,R +
(
CeH,ij

Λ2 Li,LHej,R|H|2 + h.c.
)

preserves CP at O(1/Λ2) iff

J4 = ImTr
(
CeHY

†
e

)
= ImTr

(
XeCeHY

†
e

)
= ImTr

(
X2
eCeHY

†
e

)
= 0 . (4.4.12)

Let us end this preview by saying that the above invariant sets are not unique: there
are different sets of invariants which would equally well capture the necessary and sufficient
conditions for CP-conservations at order 1/Λ2. Our construction of the above sets requires that
the invariants have the lowest possible degree with respect to Yukawa matrices, and that they
be as large as possible when the observed values of the fermion masses and CKM entries are
plugged in.
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4.4.2 Expected ranks when J4 = 0

We now discuss the rank of the transfer matrices, related to the validity of the minimal sets
presented above, in non-generic cases, namely when some fermion masses are degenerate and/or
when there are texture zeros in the CKM matrix (which happens when some mixing angles take
special values).

To apply consistently the definition of minimal sets from Section 4.3.2, we need to carefully
determine how many new primary sources of CPV there are when J4 = 0, or equivalently what
is the expected rank of the transfer matrix T , irrespective of how we take J4 → 0. In our
generic situation of the previous section, J4 → 0 meant δCKM → 0 in Eq. (4.2.10) while holding
all mixing angles different from 0, π/2 and the quark masses non-degenerate. This ensures that
there are no texture zeros in the CKM matrix, so that the number of CP-breaking quantities
were identified with the number of imaginary parts (in the quark sector). However, that is
not the only situation captured by the ambiguous “J4 = 0” condition, as we anticipated in
Section 4.3.2. Indeed, mass degeneracies and/or texture zeros in the CKM matrix may lead to
a conserved flavor symmetry of the SM4 lagrangian larger than U(1)B, which has an impact on
the number of CP-odd quantities at order 1/Λ2.

The reason is identical to that discussed in Section 4.3.1: observables should be invariant un-
der any symmetry of the spectrum of asymptotic states. Consequently, at order 1/Λ2, SMEFT
coefficients must combine with SM4 parameters to form invariant objects, and in particular,
when the SM4 lagrangian has a flavor symmetry (which is therefore part of the symmetry group
of the spectrum), only SMEFT coefficients invariant under this flavor symmetry can generate
amplitudes which interfere with SM4 ones.

In the generic case of a CP-preserving SM4 lagrangian (i.e. taking δCKM → 0 in Eq. (4.2.10)
with generic values of mixing angles and quark masses, or said differently for a real CKM
matrix without texture zeros), there is no flavor symmetry beyond the baryon and lepton
numbers U(1)B × U(1)Li . Therefore, any additional B- and Li-preserving SMEFT coupling in
the lagrangian is primary, and its imaginary part is a primary source of CPV. We leave to
Appendix 4.A the systematic discussion of all flavor symmetries of the SM4 and their relation
to mass degeneracies and/or texture zeros in the CKM matrix, but, for the sake of illustration,
we discuss here two specific cases.

In the first one, the CKM matrix is non-generic and has texture zeros:

VCKM =

 ∗ 0 ∗
0 ∗ 0

∗ 0 ∗

 . (4.4.13)

This texture can be achieved from Eq. (4.2.10) by taking s23 = s12 = 0 (in particular, J4 = 0

for such a texture). The flavor symmetry of the dimension-four action is now enlarged to
U(1)2, corresponding to two independent abelian transformations of (Q1, Q3, u1, u3, d1, d3) and



CHAPTER 4. CP VIOLATION IN THE SMEFT 114

(Q2, u2, d2) respectively (in the up or down basis), acting as follows:

ui,R → eiξqiui,R , (4.4.14)

with ξq1 = ξq3 , and similarly for other quarks.
The second example is that of a degenerate fermion spectrum. We take for definiteness

mt = mc (which again implies J4 = 0). With this degeneracy, the symmetry of the mass terms
becomes non-abelian, while the phase in the CKM matrix, as well as one mixing angle, is no
longer physical. Indeed, we can perform a flavor transformation (here in the up basis),

QL →

1 0 0

0 c23 s23

0 −s23 c23

QL , uR →

1 0 0

0 c23 s23

0 −s23 c23

uR , (4.4.15)

such that

VCKM →

 c13 0 s13

0 1 0

−s13 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

 . (4.4.16)

Therefore, the values of θ23 and δCKM have no physical impact. For generic values of θ12 and
θ13, the CKM matrix in Eq. (4.4.16) has no texture zeros, and the flavor symmetry of the SM4

lagrangian in the quark sector still corresponds to the baryon number.
All possible cases are treated similarly, and the full discussion is presented in Appendix 4.A.

The summary of this analysis (assuming no vanishing mass, see Appendix 4.A for the more
general case) is presented in Table 3 where, for each non-generic case of interest, we present
the flavor symmetry group. The discussion in the lepton sector is similar, but features at least
a U(1)3 flavor freedom in the SM4, since the PMNS matrix is taken here to be the identity.
When two or three charged lepton masses are degenerate, this U(1)3 increases to U(2)× U(1)

and U(3), respectively.
This discussion allows us to work out the number of new primary sources of CPV at order

O(1/Λ2), in each (non-)generic case for the CKMmatrix. Let us focus again on the two previous
examples, which generalize easily to all other cases.

When the baryon or lepton numbers are the only flavor symmetries at dimension-four (in
the up or down basis), all imaginary parts of the Wilson coefficients at dimension-six in the
quark sector (and in the lepton sector, all imaginary parts which are not charged under the
lepton numbers) can interfere with the SM4. Instead, when the flavor symmetry increases to
U(1)2, several SMEFT coefficients become secondary. For instance, CHu transforms, in the up
or down basis, as

CHu,ij → ei(ξqj−ξqi)CHu,ij , (4.4.17)

where ξq1 = ξq3 and arbitrary ξq2 for the texture of Eq. (4.4.13), and similarly for other textures.
Therefore, for the texture of Eq. (4.4.13), only CHu,13 is primary and CHu only provides one
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Parameter values Flavor symmetries of
the SM4 lagrangian

mu 6= mc 6= mt

md 6= ms 6= mb

Generic VCKM U(1)B

|VCKM,i0j0| = 1 , VCKM,ij0 = VCKM,i0j = 0

i 6= i0, j 6= j0

U(1)2

|VCKM,i1j1| = |VCKM,i2j2| = |VCKM,i3j3 | = 1 for
i1 6= i2 6= i3

j1 6= j2 6= j3

VCKM,ij = 0 elsewhere

U(1)3

mu 6= mc = mt

md 6= ms 6= mb

Generic VCKM (see Eq. (4.4.16)) U(1)B

|VCKM,i0j0| = 1 , VCKM,ij0 = VCKM,i0j = 0

i 6= i0, j 6= j0

U(1)2

|VCKM,i1j1| = |VCKM,i2j2| = |VCKM,i3j3 | = 1 for
i1 6= i2 6= i3

j1 6= j2 6= j3

VCKM,ij = 0 elsewhere

U(1)3

mu 6= mc 6= mt

md = ms 6= mb

Same as the previous case with VCKM ↔ V †CKM

mu 6= mc = mt

md = ms 6= mb

Generic VCKM U(1)2

|VCKM,11| = |VCKM,22| = |VCKM,33| = 1

VCKM,ij = 0 elsewhere
U(1)3

|VCKM,13| = |VCKM,22| = |VCKM,31| = 1

VCKM,ij = 0 elsewhere
U(2)× U(1)

mu = mc = mt

md 6= ms 6= mb U(1)3

md = ms 6= mb U(2)× U(1)

md = ms = mb U(3)

md = ms = mb

mu 6= mc 6= mt U(1)3

mu 6= mc = mt U(2)× U(1)

mu = mc = mt U(3)

Table 3: Flavor symmetry of the SM4 lagrangian as a function of special values for quark masses (assumed to
be non-vanishing, see Appendix 4.A for the general case) and entries of the CKM matrix. Conditions on the
right are understood to be imposed on top of those on their left. Here only some of the possible combinations
of mass degeneracies are treated. The other mass degeneracies lead to the same flavor symmetries provided
the corresponding non-generic VCKM are multiplied by appropriate matrices exchanging flavor labels (see

footnote 19).

primary source of CPV, Im CHu,13.18 Thus, in this case, a single invariant in the minimal set
for CHu is sufficient.

This exercise can be performed for all non-generic cases for the CKM matrix and for all
Wilson coefficients. This results in a set of conditions for CP conservation at leading order,
whose number is in one-to-one correspondence to the number of independent CP-odd invariants
in a minimal set. As we just saw, those numbers depend on the flavor symmetry of the SM4

lagrangian, and are given for all SMEFT operators in Table 4.
We can now come back to the statement that the set of invariants in Eq. (4.4.4) is not

a satisfying one for CHu. As seen in Table 4, all its off-diagonal entries are primary when
mt = mc, and all their imaginary parts violate CP (in an appropriate basis), hence we need

18One can construct non-linear invariant quantities from CHu,12/23, an example being CHu,12C∗Hu,23. At
leading order, however, CHu,12/23 cannot contribute linearly to observables.
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Bilinears 4-Fermi

Flavour symmetries

of the quark sector of the SM

CeH

CeW

CeB

CuH

CuG

CuW

CuB

CdH

CdG

CdW

CdB

CHud

C1,3
HL

CHe

C1,3
HQ

CHu

CHd

CLL

Cee
CLe

C1,3
QQ

Cuu

Cdd

C1,3
LQ

CQe

CLu

Ceu

CLd

Ced

C1,8
ud

C1,8
Qu

C1,8
Qd

CLedQ

C1,3
LeQu

C1,8
QuQd

U(1)B 3 9 0 3 0 3 18 9 36 27 81

U(1)2 3 5 0 1 0 3 5 3 12 15 33

U(1)3 3 3 0 0 0 3 0 0 3 9 15

U(2)× U(1) 3 2 0 0 0 3 0 0 1 6 7

U(3) 3 1 0 0 0 3 0 0 0 3 2

Two degenerate electron-type leptons ×2
3 ×1 ×1 ×2

3 ×1 ×2
3 ×1 ×2

3 ×1

All electron-type leptons degenerate ×1
3 ×1 ×1 ×1

3 ×1 ×1
3 ×1 ×1

3 ×1

Table 4: Numbers of new primary sources of CPV contained in each dimension-six SMEFT coefficient, for
each of the possible flavor groups of the quark sector of the SM4 at dimension-4 (restricting to situations

where fermion masses are non-vanishing). The last two rows indicate which multiplicative coefficient should be
applied to all numbers of the same column for special values of the electron-type lepton masses.

three independent invariants to capture the conditions for CP conservation.
Let us stress again at this point that the fact that we found a set of invariants of minimal

size (i.e. three invariants for the case of CHu) which captures the necessary and sufficient
conditions for CP conservation in all non-generic cases listed in Table 3 is a non-trivial result.
Nevertheless, it turns out that it can be done for all SMEFT coefficients at dimension-six, as
we explicitly showed.

4.5 Conclusions and future directions

In this Chapter, we have investigated the collective properties of SMEFT at dimension-six.
Their first implication which we have discussed is that only a subset of lagrangian parameters
(dubbed primary parameters) can contribute linearly to observables upon interfering with the
dimension-four SM4 amplitude. This is due to the existence of flavor transformations which
leave the SM spectrum and thus any observable invariant, thereby demanding that covariant
lagrangian parameters combine to form invariant objects. This applies for instance to field-
rephasings associated to mass-eigenstates, implying that lagrangian coefficients must combine
into rephasing-invariant objects. Associated to the SMEFT power counting, this implies that
several coefficients related to dimension-six SMEFT operators cannot contribute to observables
at order 1/Λ2, since they are charged under individual lepton numbers unlike all SM4 parameters
(in the limit of zero neutrino mass). We therefore refined the usual counting of dimension-six
SMEFT parameters so as to include this effect, which resulted in the counting of primary
parameters in Table 2.
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Then, we focused on collective effects related to new sources of CP violation in the dimension-
six SMEFT, both of which are captured thanks to CP-odd flavor-invariants. To respect the
SMEFT power counting, we restricted to invariants linear in dimension-six coefficients, and we
presented minimal sets of invariants which map in a one-to-one basis to all new primary sources
of CPV. We proved this by showing that the points in parameter space where CP is conserved
(at leading BSM order) are exactly the points where our new invariants vanish. This holds for
all parts of the SM4 parameter space, including degenerate cases. A complete list of CP-odd
linear invariants can be found in Appendices 4.D and 4.E. We remind the reader that this list
is not unique.

There are several directions along which this construction can be extended. For example,
one can numerically evaluate the invariants, which encode collective effects and the suppression
they induce, using the observed values of the SM4 parameters. This illustrates how accidentally
small the absolute strength of each new source of CPV is, or if there are hierarchies among them,
etc. This in turn explains (part of) the suppression in CPV observables [132, 300–302]. One
can also similarly probe the effects of specific UV hypotheses on the SMEFT coefficients, such
as textures derived from flavor symmetries. A given UV model may have its own CP-odd flavor
invariants, and these can be matched onto our IR invariants, inducing possible correlations
among the IR invariants. In other directions, it would be interesting to consider other operator
bases than the Warsaw basis we used here, and to check which expressions our invariants map
to, given that the overall number of independent sources of CPV must be conserved. One
could also extend our construction beyond O(1/Λ2), e.g. to capture squared dimension-six or
interfering dimension-eight SMEFT contributions. Finally, one could consider the RG evolution
of invariants [155]. We believe that flavor invariants, at dimension-six and beyond, are essential
tools for illuminating the rich CP structure of SMEFT.



Appendix to Chapter 4

4.A Flavor symmetries of the SM4

In this appendix, we present the details behind Table 3, and identify the possible flavor sym-
metries of the SM4 lagrangian in terms of textures in the CKM matrix. We remind that the
flavor symmetries act on the quark fields as follows:

uR → UuuR , (4.A.1)

where Uu ∈ U(3)u, and similarly for all other fermionic fields d,Q, L, e. Which matrices U lead
to genuine symmetries of the SM4 lagrangian depends on the values of the masses and of the
entries of the CKM matrix. In all cases of non-trivial flavor symmetries, we find that J4 = 0, so
that there exists at least one combination of CP and flavor symmetries which yield a symmetry
of the SM4 lagrangian in any basis.

In what follows, we work for definiteness in the up basis of Eq. (4.2.8).

4.A.1 Non-vanishing quark masses

The condition for the flavor invariance of Yu and Yd reads

Yu = U †QYuUu , Yd = U †QYdUd . (4.A.2)

For non-vanishing quark masses, the Yukawa matrices are full rank and one can use Eq. (4.A.2)
to solve for Uu,d as a function of UQ and the Yukawa matrices:

Uu = Y −1
u UQYu , Ud = Y −1

d UQYd . (4.A.3)

118
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Therefore, only one matrix determines the two others, and the flavor symmetry group is at
most U(3). Imposing that U †uUu = U †dUd = 1 implies (in the up basis) that[

UQ,mum
†
u

]
=
[
V †CKMUQVCKM,mdm

†
d

]
= 0 , (4.A.4)

where mu/d ≡ diag(mu/di). In the up basis, quark masses are positive and real, therefore[
UQ,mu

]
=
[
V †CKMUQVCKM,md

]
= 0 (4.A.5)

and (using the explicit expression of the Yukawa matrices in the up basis)

Uu = UQ , Ud = V †CKMUQVCKM . (4.A.6)

The commutation relations in Eq. (4.A.5) are additional constraints to fulfil which depend on
the spectrum, as we now explore.

Non-degenerate quark masses

If all up-type quarks are non-degenerate, the first condition in Eq. (4.A.5) implies that UQ =

diag
(
eiξi
)
and the second that UQ = VCKMdiag

(
eiξ̃i
)
V †CKM, therefore

VCKM,ij = ei(ξi−ξ̃j)VCKM,ij .

Consequently, all ξ’s are equal and equal to the ξ̃’s (i.e. the flavor symmetry is given by the
baryon number U(1)B) unless the CKM matrix has some vanishing entries. For instance, one
finds a U(1)2 flavor symmetry when the CKM matrix has the following texture:

VCKM =

∗ 0 0

0 ∗ ∗
0 ∗ ∗

 , (4.A.7)

corresponding to the constraints ξ2 = ξ3 = ξ̃2 = ξ̃3, for arbitrary ξ1 = ξ̃1. More gener-
ally, a U(1)2 flavor symmetry is obtained for any texture such that, given two integers (i0, j0),
|VCKM,i0j0| = 1 and VCKM,ij = 0 for i = i0 or j = j0. By comparing with the explicit parametriza-
tion in Eq. (4.2.10), one finds that a mixing angle has to be equal to 0 or π/2 in all those cases,
hence J4 = 0 and there exists a basis where all SM4 couplings are real.

A flavor symmetry U(1)3 is obtained for all textures of VCKM such that there is a single
number of unit modulus in each row and column, such as e.g. VCKM = 1 or

VCKM =

∗ 0 0

0 0 ∗
0 ∗ 0

 . (4.A.8)
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Degenerate quark masses

In cases with quark mass degeneracies, J4 = 0 automatically and there exists a basis where all
SM4 couplings are real.

mt = mc Let us start with the case of two degenerate quarks of the same type, which we take
to be mt = mc for definiteness, all other masses being non-degenerate.19 The first relation in
Eq. (4.A.5) implies that

UQ =

(
eiξ1 0

0 U
(2)
u

)
with U (2)

u ∈ U(2) , (4.A.9)

while the second implies that UQ = VCKMe
iξ̃iV †CKM, therefore

VCKM =

(
eiξ1 0

0 U
(2)
u

)
· VCKM · diag

(
e−iξ̃i

)
. (4.A.10)

Upon solving this equation, one finds that, similarly to the case of non-degenerate masses, one
can only obtain the flavor groups U(1)B, U(1)2, and U(1)3. Flavor symmetries beyond baryon
numbers are obtained for the textures discussed above, but the generic case for the CKM matrix
when mt = mc is given in Eq. (4.4.16) and does not have a specific texture.

mt = mc and ms = md Let us now turn to the case where mt = mc and ms = md, all other
masses being non-degenerate. The relations in Eq. (4.A.5) imply that

UQ =

(
eiξ1 0

0 U
(2)
u

)
= VCKM ·

(
U

(2)
d 0

0 eiξ̃3

)
· V †CKM with U (2)

u , U
(2)
d ∈ U(2) , (4.A.11)

19The equivalent case where down quark masses are degenerate is treated identically after the exchange
VCKM ↔ V †CKM. We also consider the specific case mt = mc (and ms = md in the case of down quarks later
on), since the formulae are simpler given our parametrization of VCKM. Nevertheless, the discussion (and the
parametrization) can be adapted to any other quark mass degeneracy. In particular, the remarkable textures
V

(ji)
CKM leading to a given flavor symmetry when muj

= mui
, i < j are related to those when mt = mc by

V (ji)
CKM = Ri2Rj3V

(tc)
CKM ,

where Rab is the matrix which exchanges rows (or columns) a and b. Similarly, textures obtained when mdj =
mdi , i < j are related to those when ms = md by

V (ji)
CKM = V (sd)

CKMRi1Rj2 .

For instance, the texture which leads to a flavor symmetry U(2) × U(1) (see below) for muj = mui , i < j and
mdl = mdk , k < l is

VCKM = Ri2Rj3 ·

0 0 ∗
0 ∗ 0
∗ 0 0

 ·Rk1Rl2 .
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hence

VCKM =

(
eiξ1 0

0 U
(2)
u

)
· VCKM ·

(
U

(2)
d
† 0

0 e−iξ̃3

)
. (4.A.12)

Starting from the CKM matrix in Eq. (4.4.16), which is generic when mt = mc, we can further
rotate θ12 away by performing

dR →

c12 −s12 0

s12 c12 0

0 0 1

 dR . (4.A.13)

Recall that we work in the up basis, where VCKM appears in Yd and can be affected by right-
handed down-quark flavor transformations which commute with the down-quark mass matrices.
We then obtain

VCKM →

 c13 0 s13

0 1 0

−s13 0 c13

 , i.e. with a texture

∗ 0 ∗
0 ∗ 0

∗ 0 ∗

 . (4.A.14)

Therefore, the generic CKM matrix for the present case has a texture which allows for a flavor
symmetry at least as large as U(1)2. Possible larger flavor symmetries are U(1)3 or U(2)×U(1),
obtained for the following respective textures,20

∗ 0 0

0 ∗ 0

0 0 ∗

 and

0 0 ∗
0 ∗ 0

∗ 0 0

 . (4.A.15)

mu = mc = mt When the degeneracy is maximal, the CKM matrix can be fully absorbed by
a redefinition of the RH up-quarks:

uR → VCKMuR , VCKM → 1 . (4.A.16)

The flavor symmetry is therefore at least as large as U(1)3. With such a CKM matrix, one
gets that UQ = Uu = Ud and the flavor group is determined by the relations in Eq. (4.A.5):

20Let us present some details regarding the second case to illustrate the derivation. With such a texture, one
can phase-rotate the fields so as to get

VCKM =

0 0 1
0 1 0
1 0 0

 ,

and one finds from Eq. (4.A.12) that

1 =

(
OU

(2)
u OU

(2)
d
† 0

0 ei(ξ1−ξ̃3)

)
,

with O ≡
(

0 1
1 0

)
. Therefore, one obtains U (2)

d = OU (2)
u O, ξ̃3 = ξ1 and no further constraint, hence the group

is U(2)× U(1).
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the flavor symmetry group is U(1)3, U(2)× U(1), or U(3), respectively when no, two, or three
down-quark masses are degenerate.

4.A.2 Vanishing masses at dimension-four

When some masses vanish at dimension-four, the flavor symmetry can contain axial phases.
This case complicates the power-counting, since dimension-six Yukawa couplings now yield the
leading contribution to the masses, but it can be treated as suggested in Section 4.3.1 for the
case of neutrino masses or vanishing Yd.

Whenever a quark mass goes to zero, the flavor symmetry is enlarged since the LH and
RH components now describe independent particles. A flavor symmetry U(1)B would then
be ugraded to U(1)B × U(1)uR,1 when mu → 0, all other parameters being kept fixed. For
non-degenerate quark masses, the flavor symmetry is always abelian, and taking one mass to
zero simply adds a RH U(1) factor to the flavor symmetry, as discussed just above. On the
other hand, when two or three masses are degenerate, taking them to zero together adds a
RH factor U(2) or U(3) to the flavor symmetry (even if it was abelian for non-zero masses
due to some structure in the CKM matrix which distinguishes the different flavors of LH
quarks). We list in Table 4.A.1 the relevant cases, and present in Table 4.A.2 the associated
numbers of new primary sources of CPV21. Those new sources of CPV can still be captured

If in addition to the values in Table 3: Add to the flavor group the factor:
mu = 0 U(1)uR
mu = md = 0 U(1)uR × U(1)dR
mu = mc = 0 U(2)uR
mu = mc = md = 0 U(2)uR × U(1)dR
mu = mc = md = ms = 0 U(2)uR × U(2)dR
mu = mc = mt = 0 U(3)uR
mu = mc = mt = md = 0 U(3)uR × U(1)dR
mu = mc = mt = md = ms = 0 U(3)uR × U(2)dR
mu = mc = mt = md = ms = mb = 0 U(3)uR × U(3)dR

Table 4.A.1: Additional factor to the flavor symmetry of the SM4 lagrangian when quark masses vanish.

by flavor invariants, however there are subtleties to take into account when masses vanish.
Namely, the sets of invariants we present in the main text and in Appendices 4.D and 4.E have
transfer matrices that do not maintain maximal rank in the limit of vanishing masses. Let us

21The counting is performed as in Section 4.4.2, i.e. one counts how many complex linear invariants (under
the SM4 flavor symmetry) there are. Let us give some examples. In the case of a symmetry U(1)3 × U(3)uR

and focussing on CHu, one finds that the only linear invariant reads δijCHu,ij (summed over i, j). However,
CHu being hermitian, this combination is real in all bases and does not violate CP. In the case of a symmetry
U(1)2×U(1)uR

, the U(1)2 factor indicates that, in some appropriate flavor basis, the SM4 lagrangian possesses
two independent quark number symmetries (one of which is the usual baryon number), singling out a quark
flavor. Assuming without loss of generality that this flavor is the third one and focussing on CQuQd, linear U(1)2-
invariants read CQuQd,ijkl, CQuQd,33ij , CQuQd,3ji3, CQuQd,i33j , CQuQd,ij33, CQuQd,3333 (where i, j, k, l = 1, 2),
which are 33 complex coefficients. Then, one needs to know whether the massless quark is the one which is
singled out by the quark number, i.e. uR,3 (otherwise, without loss of generality we take the massless quark to
be the first flavor). If so one must discard CQuQd,33ij , CQuQd,i33j (reducing the 33 coefficients to 25), if not one
must instead discard CQuQd,i1kl, CQuQd,31i3, CQuQd,i133 (reducing to 21 coefficients).
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Bilinears 4-Fermi

Flavour symmetries

of the quark sector of the SM

CeH

CeW

CeB

CuH

CuG

CuW

CuB

CdH

CdG

CdW

CdB

CHud

C1,3
HL

CHe

C1,3
HQ

CHu

CHd

CLL

Cee
CLe

C1,3
QQ

Cuu

Cdd

C1,3
LQ

CQe

CLu

Ceu

CLd

Ced

C1,8
ud

C1,8
Qu

C1,8
Qd

CLedQ

C1,3
LeQu

C1,8
QuQd

U(1)B 3 9 0 3 0 3 18 9 36 27 81

U(1)B × U(1)uR 3 64, 94, 6 0 3,1,3 0 3 18,5,18 92, 32, 92 182, 36 27,18 54

U(1)B × U(1)uR × U(1)dR 3 68, 4 0 3,12 0 3 18,62 92, 34 8, 182 182 36

U(1)B × U(2)uR 3 34, 94, 3 0 3,0,3 0 3 18,0,18 92, 02, 92 62, 36 27,9 27

U(1)B × U(2)uR × U(1)dR 3 34, 64, 2 0 3,0,1 0 3 18,0,6 92, 02, 32 2, 6, 18 18,9 18

U(1)2 3 5 0 1 0 3 5 3 12 15 33

U(1)2 × U(1)uR 3 (3 or 4)4, 54,3 or 4 0 1,0 or 1,1 0 3 5,0 or 5,5 32,(0 or 3)2,32 (5 or 8)2,12 15,9 or 12 21 or 24

U(1)2 × U(1)uR × U(1)dR 3 (3 or 4)8,2 or 4 0 1,(0 or 1)2 0 3 5,(0 or 5)2 32,(0 or 3)4 1 or 3 or 8,(5 or 8)2 9 or 12 12 or 13 or 16

U(1)2 × U(2)uR 3 (1 or 2)4,5,1 or 2 0 1,0,1 0 3 5,0,5 32, 02, 32 22,12 15,3 or 6 12

U(1)2 × U(2)uR × U(1)dR 3 (1 or 2)4,(3 or 4)4,0 or 1 or 2 0 1,0,0 or 1 0 3 5,0,0 or 5 32, 02,(0 or 3)2 0 or 2,2,5 or 8 9 or 12,3 8

U(1)2 × U(2)uR × U(2)dR 3 (1 or 2)8,0 or 1 0 1,02 0 3 5,02 32, 04 0,22 3 or 6 4

U(1)3 3 3 0 0 0 3 0 0 3 9 15

U(1)3 × U(1)uR 3 24, 34, 2 0 0 0 3 0 0 12, 3 9,6 10

U(1)3 × U(1)uR × U(1)dR 3 28,1 or 2 0 0 0 3 0 0 0 or 1,12 6 7 or 8

U(1)3 × U(2)uR 3 14, 34, 1 0 0 0 3 0 0 02, 3 9,3 5

U(1)3 × U(2)uR × U(1)dR 3 14, 24,0 or 1 0 0 0 3 0 0 02, 1 6,3 3 or 4

U(1)3 × U(2)uR × U(2)dR 3 18,0 or 1 0 0 0 3 0 0 0 3 2

U(1)3 × U(3)uR 3 04, 34, 0 0 0 0 3 0 0 02, 3 9,0 0

U(1)3 × U(3)uR × U(1)dR 3 04, 24, 0 0 0 0 3 0 0 02, 1 6,0 0

U(2)× U(1) 3 2 0 0 0 3 0 0 1 6 7

U(2)× U(1)× U(1)uR 3 14, 24,1 0 0 0 3 0 0 02,1 6,3 4

U(2)× U(1)× U(1)uR × U(1)dR 3 1 0 0 0 3 0 0 0 3 1 or 2

U(2)× U(1)× U(2)uR 3 14, 24,1 0 0 0 3 0 0 02,1 6,3 3

U(2)× U(1)× U(2)uR × U(1)dR 3 18, 0 0 0 0 3 0 0 0 3 2

U(2)× U(1)× U(2)uR × U(2)dR 3 1 0 0 0 3 0 0 0 3 1

U(2)× U(1)× U(3)uR 3 04, 24, 0 0 0 0 3 0 0 02, 1 6,0 0

U(2)× U(1)× U(3)uR × U(1)dR 3 04, 14, 0 0 0 0 3 0 0 0 3,0 0

U(2)× U(1)× U(3)uR × U(2)dR 3 04, 14, 0 0 0 0 3 0 0 0 3,0 0

U(3) 3 1 0 0 0 3 0 0 0 3 2

U(3)× U(3)uR 3 04, 14, 0 0 0 0 3 0 0 0 3,0 0

U(3)× U(3)uR × U(3)dR 3 0 0 0 0 3 0 0 0 0 0

Two degenerate electron-type leptons ×2
3 ×1 ×1 ×2

3 ×1 ×2
3 ×1 ×2

3 ×1

All electron-type leptons degenerate ×1
3 ×1 ×1 ×1

3 ×1 ×1
3 ×1 ×1

3 ×1

One vanishing electron-type mass ×2
3 ×1 ×1 ×1

3 ×1 ×1 ×1 ×2
3 ×1

Two vanishing electron-type masses ×1
3 ×1 ×1 0 ×1 ×2

3 ×1 ×1
3 ×1

All electron-type masses vanishing 0 ×1 ×1 0 ×1 ×1
3 ×1 0 ×1

Table 4.A.2: Numbers of new primary sources of CPV contained in each dimension-six SMEFT coefficient.
When a single number appears, it applies to all operators at the top of the concerned column. When several

numbers are needed, they appear as a list, where the integer power refers to the multiplicity of a given
number. An entry “i or j” means that the answer depends on the details of the flavor charges. The last five

rows indicate which multiplicative coefficient should be applied to all numbers of the same column for
remarkable values of the electron-type lepton masses. The situation where md = 0, relevant for approximations
in high-energy observables, generically corresponds to the line U(1)3 × U(3)uR

, after a suitable replacement
u↔ d (note that there is a single OLeqQ operator in the Warsaw basis, while there are two O1,3

LeQu operators).

illustrate what we mean by this with an example. From Table 4.A.2, one learns that the three
phases in C(1,3)

HQ remain primary when mu = mc = 0. However, the invariants presented in the

associated set in Table 4.D.1 are of the form ImTr
(
XuMC

(1,3)
HQ

)
for some matrix M built out

of the Yukawas. Working in the up basis with a vanishing CKM phase, and focusing on the
contribution proportional to C(1,3)

HQ,12, we find

ImTr
(
XuMC

(1,3)
HQ

)
⊃ Im

(
C

(1,3)
HQ,12

)(
m

2
uM21 −m2

cM12

)
(4.A.17)
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which vanishes when mu = mc = 0. Therefore, the set of invariants we consider does not
allow us to capture the three phases in C(1,3)

HQ in such limits. Another example is that of CuH .
When Yd = 0, one finds only two invariants in the associated set in Table 4.D.1, whereas three
sources of CPV remain as shown in Table 4.A.2. One could therefore conclude that one of the
invariants in the set should be replaced by the missing

ImTr
(
X2
uCuHY

†
u

)
. (4.A.18)

However, this choice would not allow us to retain a sufficient rank for the set, as one finds

ImTr
(
X2
uCuHY

†
u

)
= (m2

u +m2
t )ImTr

(
XuCuHY

†
u

)
−m2

um
2
t ImTr

(
CuHY

†
u

)
(4.A.19)

when mu = mc (one can use formulae like Eq. (4.4.6) to express the mass factors in terms
of invariants), whereas all nine sources of CPV in CuH remain primary and independent in
this case, as per Tables 3 and 4. Therefore, it may seem that one needs strictly more than
nine invariants to capture the nine CPV phases in CuH , and more generally that the necessary
and sufficient conditions presented in Section 4.4.1 are not sufficient anymore when masses can
vanish. However, this is a consequence of our assumption that invariants should correspond
to traces of a monomial of degree one in SMEFT coefficients, and arbitrary degree in Yukawa
matrices. Instead, one could enlarge the set of invariants and include traces of sums over
monomials of various degrees. For instance, defining instead Xu ≡ 1 + YuY

†
u , and similarly for

other fermions, without changing the expression of the invariants, is sufficient to ensure that
the vanishing of our sets is a necessary and sufficient condition for the conservation of CP at
leading order.

4.B Generalities about invariants

4.B.1 Properties of 3× 3 matrices

Here we discuss some properties of generic 3×3 matrices, which we use throughout the Chapter
and will refer to later on. We will follow mostly Ref. [159]. The starting point is the Cayley–
Hamilton theorem, which allows one to rewrite the n-th power of a n× n matrix A in terms of
the powers < n, and that for n = 3 takes the form

A3 = A2 Tr(A)− 1

2
A
[
Tr(A)2 − Tr

(
A2
)]

+
1

6

[
Tr(A)3 − 3 Tr

(
A2
)

Tr(A) + 2 Tr
(
A3
)]

13×3 .

(4.B.1)

Multiplying by A and taking the trace results in

Tr
(
A4
)

=
1

6
Tr(A)4 − Tr

(
A2
)

Tr(A)2 +
4

3
Tr
(
A3
)

Tr(A) +
1

2
Tr
(
A2
)2
. (4.B.2)
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Shifting A → A + B + C in Eq. (4.B.2), with B and C some other generic 3 matrices, and
taking the terms of order A2BC, one obtains

0 = Tr(A)2 Tr(B) Tr(C)− Tr(BC) Tr(A)2 − 2 Tr(AB) Tr(A) Tr(C)+

− 2 Tr(AC) Tr(A) Tr(B) + 2 Tr(ABC) Tr(A) + 2 Tr(ACB) Tr(A)+

− Tr
(
A2
)

Tr(B) Tr(C) + 2 Tr(AB) Tr(AC) + Tr
(
A2
)

Tr(BC)+

+ 2 Tr(C) Tr
(
A2B

)
+ 2 Tr(B) Tr

(
A2C

)
− 2 Tr

(
A2BC

)
− 2 Tr

(
A2CB

)
− 2 Tr(ABAC) .

(4.B.3)

This property is useful for our purpose of building sets of invariants, as it implies that we only
need to draw from a finite set. Let us focus on invariants relevant for this paper, such as those
related to bi-fermion SMEFT operators, which are single-trace and linear with respect to the
associated Wilson coefficient. To build such invariants, flavor-invariance imposes that we only
use Xu, Xd and C, where C is the Wilson coefficient under study (up to a specific multiplication
by a Yukawa matrix for operators of LR chiral structure). In principle, any invariant of the
form

Tr
(
Xa1
u X

b1
d X

a2
u X

b2
d . . . C

)
(4.B.4)

is allowed. However, the formulae above imply that traces with third or higher powers of Xq

can be redefined away as they are redundant, and that the same happens for traces with more
than one occurrence of Xq or of X2

q . These conditions reduce the possible single-trace invariants
to a finite set (see Appendix 4.B.3 for explicit examples).

Finally, we mention that the Cayley–Hamilton theorem also allows us to write the determi-
nant of a 3× 3 matrix as

Det(A) =
1

6

(
Tr(A)3 − 3 Tr(A) Tr

(
A2
)

+ 2 Tr
(
A3
))

. (4.B.5)

4.B.2 Different types of invariants

In Ref. [265], the author presents a discussion of CP-violating invariants in supersymmetric
models, in order to find basis independent conditions for CP conservation, as done here. In
that context, three types of invariants built using three 3×3 matrices A, B, and C are proposed,
namely

JAB ≡ ImTr
(
[A,B]3

)
, KABC(p, q, r) ≡ ImTr ([Ap, Bq]Cr) ,

LC(p) ≡ ImTr (Cp − h.c.) , (4.B.6)

where A and B are hermitian and C generic. These are dubbed J−, K− and L−invariants,
respectively. In this Chapter we adopted a similar notation, but we only employed L-invariants
for our set. However, we can show that this choice is general, as the remaining two types can
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be written in terms of the last one.22 To prove this, let us start from JAB. First of all, using
Eq. (4.B.5), it can be shown to be equivalent to a Jarlskog-like invariant, i.e.

Im Det ([A,B]) =
1

6
Im
(
Tr ([A,B])3 − 3 Tr ([A,B]) Tr

(
[A,B]2

)
+ 2 Tr

(
[A,B]3

))
+

=
1

3
ImTr

(
[A,B]3

)
, (4.B.7)

as the trace of a commutator vanishes. This also proves Eq. (4.1.5). Then, by expanding [A,B]3

and using the cyclic property of the trace we can show

ImTr
(
[A,B]3

)
= 3ImTr

(
A2B2AB −BAB2A2

)
= LA2B2AB . (4.B.8)

Next, we prove that any K-invariant can also be expressed in terms of the L ones. It is enough
to show a proof for KABC(1, 1, 1), as the other cases can be obtained by redefining A, B or C.
Let us split C in its hermitian and anti-hermitian parts, i.e.

Ch ≡
C + C†

2
Ca ≡

C − C†
2

. (4.B.9)

and

KABC(1, 1, 1) = ImTr ([A,B]C) = ImTr ([A,B]Ch) + ImTr ([A,B]Ca) . (4.B.10)

Now

ImTr ([A,B]Ch) =ImTr (ABCh −BACh) =

=
1

2i
[Tr (ABCh)− Tr (ABCh)

∗ − Tr (BACh) + Tr (BACh)
∗] =

=
1

2i
[Tr (ABCh)− Tr (ChBA)− Tr (BACh) + Tr (ChAB)] =

=
1

i
[Tr (ABCh)− Tr (ChBA)] = 2LABCh = 2LABC . (4.B.11)

With similar steps, one can see that the piece proportional to Ca vanishes, so that

KABC(1, 1, 1) = 2LABC . (4.B.12)

4.B.3 Finding polynomial relations between invariants

In the main body of this Chapter, the logic we have followed to build invariants stemmed
from knowing that the relative Wilson coefficient C(6), in a given basis, has a certain number of
phases. Then we found as many independent invariants as possible, in order to obtain a transfer
matrix whose rank matched the new sources of CPV in C(6) when J4 = 0. Now, however, we
could be tempted to pursue a different line of reasoning and find the relevant invariants by

22also notice that JAB would not suit our scopes as it is not linear in any of the two matrices in the argument.
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applying to our case the power of the Hilbert series and its Plethystic logarithm, developed in
Section 2.2. Let us restrict to the case of quark bilinear operators. Their Wilson coefficients
are generic 3× 3 complex matrices that we can multiply by an appropriate number of Y (†)

u,d to
turn them into a 3 ⊗ 3̄ representation of SU(3)Q. We refer to this combination as C(6) here.
Then, we can identify the building blocks of our invariants as

C(6), (C(6))†, Xu,d ∈ 3⊗ 3̄ . (4.B.13)

and we can build the multi-graded Hilbert series

h(c, c†, xu, xd) =

∫
[dµ]SU(3)

∏
i={c,c†,xu,xd}

PE(~z; c) , (4.B.14)

with obvious associations between a spurion and the corresponding building block. The result-
ing expression is quite long and not particularly illuminating, so we will refrain from presenting
it here. However, we can look at its ungraded version

H(q) = h(q, q, q, q) =
N(q)

D(q)
, (4.B.15)

with

N(q) = + q34 + 14q31 + 31q30 + 56q29 + 165q28 + 354q27 + 660q26 + 1256q25 + 2097q24+

+ 3184q23 + 4720q22 + 6404q21 + 7992q20 + 9536q19 + 10510q18 + 10744q17+

+ 10510q16 + 9536q15 + 7992q14 + 6404q13 + 4720q12 + 3184q11 + 2097q10+

+ 1256q9 + 660q8 + 354q7 + 165q6 + 56q5 + 31q4 + 14q3 + 1 , (4.B.16)

and

D(q) = (1− q)4(1− q2)10(1− q3)10(1− q4)4 . (4.B.17)

We can see that the numerator has the correct palindromic structure we expected, and more
importantly the denominators contain 28 factors, correctly matching the 10 observables from
the Standard Model and the 18 new (9 real + 9 imaginary) observables contained in C(6).
This is already quite remarkable. However, to this point we have neither an idea of how the
algebraically independent invariants look like, nor a way to extract the ones that are linear in
C(6), which is the subset we are really interested in. To gain some more insight, let us look at
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the Plethystic logarithm of the multi-graded Hilbert series:

PL
[
h(c, c†, xu, xd)

]
=(xu + xd) + (x2

u + xdxu + x2
d) + (x3

u + x2
uxd + xux

2
d + x3

d) + x2
ux

2
d+

+ x3
ux

3
d − x6

ux
6
d+

+
(
c+ c†

) [
1 + xu + xd + (x2

u + x2
d + 2xuxd) + (2x2

uxd + 2xux
2
d)+

+(x3
uxd + 2x2

ux
2
d + x3

dxu) + (x3
ux

2
d + x2

ux
3
d)
]

+

+O
(
c2, (c†)2, (c+ c†)x3

ux
4
d, (c+ c†)x4

ux
3
d

)
. (4.B.18)

Since we are interested in invariants that are linear in C(6), we stopped the expansion atO
(
c, c†

)
.

The O
(
c0(c†)0

)
terms in this expansion correspond to the invariants that can be obtained from

the quark sector of the Standard Model. This case has been treated in Ref. [159], and the
resulting algebraically independent invariants are

I1,0 = Tr(Xu) I0,1 = Tr(Xd)

I2,0 = Tr (X2
u) I1,1 = Tr(XuXd)

I0,2 = Tr (X2
d) I3,0 = Tr (X3

u)

I2,1 = Tr (X2
uXd) I1,2 = Tr (XuX

2
d)

I0,3 = Tr (X3
d) I2,2 = Tr (X2

uX
2
d) ,

(4.B.19)

Notice their number is 10, correctly matching the 6 masses + 3 angles + 1 phase of the Standard
Model. The generating set, i.e. the set of invariants which cannot be expressed as polynomials
of other ones, contains one additional invariant,

I
(−)
3,3 = Tr

(
X2
uX

2
dXuXd

)
− Tr

(
X2
dX

2
uXdXu

)
, (4.B.20)

corresponding to the x3
ux

3
d term in Eq. (4.B.18) and which is nothing but J4. In the language

adopted here, this invariant does not contain any additional observable, and is just needed to
capture the sign of the SM4 phase δ. The negative term −x6

ux
6
d at the end signals that there is

a syzygy at degree 12, which in this case corresponds to the fact that
(
I

(−)
3,3

)2

can be expressed
in terms of the remaining 10 invariants, as expected.

The part linear in c and c† of Eq. (4.B.18) points us at the basic invariants linear in C(6).
We see that in this case the set of basic invariants is composed by 34 element, 17 each for
C(6) and (C(6))†, which is larger than the basic set. Indeed, the latter is expected to have 18
elements, corresponding to the 9 new complex observables contained in C(6). To try and build
the invariants in the generating set, we will make use of the relations showed in Section 4.B.1.
Given a generic matrix C(6) ∈ 3⊗ 3̄ of SU(3)Q, we want to contract it with as many Xu,d’s as
needed to form all the possible independent invariants. Using Eq.(4.B.1) on Xu,d, we can show
that all invariants written using Xn

u,d, with n ≥ 3, are redundant, and we only need X2
u,d and

Xu,d as building blocks. Moreover, using Eq. (4.B.3), one can eliminate any invariant where
a matrix is repeated. Taking into account these simplifications, one can see that the set of
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possible invariants is finite, and is formed by these 29 objects:

Tr(C(6)) Tr(XuC
(6)) Tr(XdC

(6))

Tr
(
X2
uC

(6)
)

Tr
(
X2
dC

(6)
)

Tr
(
XuXdC

(6)
)

Tr
(
XuX

2
dC

(6)
)

Tr
(
XdXuC

(6)
)

Tr
(
X2
dXuC

(6)
)

Tr
(
XdX

2
uC

(6)
)

Tr
(
X2
uXdC

(6)
)

Tr
(
X2
uX

2
dC

(6)
)

Tr
(
X2
dX

2
uC

(6)
)

Tr
(
XuXdX

2
uC

(6)
)

Tr
(
XdXuX

2
dC

(6)
)

Tr
(
X2
uXdXuC

(6)
)

Tr
(
X2
dXuXdC

(6)
)

Tr
(
XuX

2
dX

2
uC

(6)
)

Tr
(
X2
uX

2
dXuC

(6)
)

Tr
(
XdX

2
uX

2
dC

(6)
)

Tr
(
X2
dX

2
uXdC

(6)
)

Tr
(
XuXdX

2
uX

2
dC

(6)
)

Tr
(
XuX

2
dX

2
uXdC

(6)
)

Tr
(
XdXuX

2
dX

2
uC

(6)
)

Tr
(
XdX

2
uX

2
dXuC

(6)
)

Tr
(
X2
uXdXuX

2
dC

(6)
)

Tr
(
X2
uX

2
dXuXdC

(6)
)

Tr
(
X2
dXuXdX

2
uC

(6)
)

Tr
(
X2
dX

2
uXdXuC

(6)
)
,

(4.B.21)

and the same for C(6) → (C(6))†. Now, since the generating set only includes 17 elements,
this means that 12 invariants of Eq. (4.B.21) can be expressed as polynomials of the remaining
ones and can thus be eliminated. To do this, we employ a numerical algorithm adapted from
Appendix C of Ref. [155] (see also Ref. [154]). The logic is as follows: by assigning a dummy
dimension to the building blocks, i.e. [Xu,d] = 1 and

[
C(6)

]
= 1, we can assign a dimension to all

the invariants listed above. Then, we fix some given dimension n. Picking one of the invariants
in Eq. (4.B.21), one can then take its product with as many traces from Eq. (4.B.19) as needed
to form a monomialMi of dimension n. Repeating this for all instances of Eq. (4.B.21), we find
the set {Mi} of all the possible monomials that are dimension n and linear in C6. For example,
at dimension n = 2 one can obtain the monomials

{Mi} =
{
Tr
(
C(6)

)
I1,0,Tr

(
C(6)

)
I0,1,Tr

(
XuC

(6)
)
,Tr

(
XdC

(6)
)}

. (4.B.22)

Then we set a linear combination of these monomials to zero, i.e.∑
i

aiMi = 0 , (4.B.23)

where the ai’s are integer coefficients. We then plug random integer values for the entries of
the matrices Xu,d and C6. This produces a linear equation for the ai’s. Repeating this last
step as many times as there are Mi’s, one builds a linear system for the ai’s with zero constant
term. The number of independent directions of the null space of the corresponding matrix
matches the number of possible relations between the Mi’s. The first nontrivial result is found
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at dimension 5, where we get the two relations

Tr
(
XdXuX

2
dC

(6)
)

+ Tr
(
X2
dXuXdC

(6)
)

+ I0,1

(
Tr
(
X2
dXuC

(6)
)

+ Tr
(
XuX

2
dC

(6)
))

+

+ (−I0,1I1,0 − I1,1)Tr
(
X2
dC

(6)
)
− I2

0,1(Tr
(
XdXuC

(6)
)

+ Tr
(
XuXdC

(6)
)

+

+
1

3

(
2I3

0,1 − 3I0,2I0,1 + I0,3

)
Tr
(
XuC

(6)
)

+
(
I2

0,1I1,0 − I1,2

)
Tr
(
XdC

(6)
)

+

+ Tr(C(6))

(
−2

3
I3

0,1I1,0 + I2
0,1I1,1 + I0,2I0,1I1,0 − I0,1I1,2 −

1

3
I0,3I1,0

)
= 0 , (4.B.24)

and the same with Xu ↔ Xd, which we can use to remove Tr
(
XdXuX

2
dC

(6)
)
and

Tr
(
XuXdX

2
uC

(6)
)
from the set. At dimension 6 we obtain two more relations, and 8 more are

obtained at dimension 7. With these 12 expressions, we can reduce the set to

Tr
(
C(6)

)
Tr
(
XuC

(6)
)

Tr
(
XdC

(6)
)

Tr
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X2
uC

(6)
)

Tr
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dC
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)

Tr
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)

Tr
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Tr
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Tr
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dC
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Tr
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Tr
(
XuXdX
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)

Tr
(
XdXuX
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dC

(6)
)

Tr
(
XuX

2
dX

2
uC

(6)
)

Tr
(
XdX

2
uX

2
dC

(6)
)
.

(4.B.25)

The same can be repeated for (C(6))†. The objects in Eq. (4.B.25) are, quite remarkably, exactly
in correspondence with the relative terms in Eq. (4.B.18).

However, we now wish to find the additional relations that help us express the 8 too many
(complex) invariants we have in Eq (4.B.25) in terms of the 9 we know are sufficient to express
all the physical observables, i.e the algebraically independent ones. If we expand a bit further
in Eq. (4.B.18), we see that the next two terms are degree 8 and are negative, −(c+ c†)x4

ux
3
d−

(c+c†)x3
ux

4
d. They should then correspond to the number of syzygies at dimension 8. To obtain

them explicitly, we just run again the described algorithm at dimension 8, obtaining indeed two
syzygies of the expected degree. They include 107 terms out of the possible 808 one can build at
this dimension, and allow us to remove Tr

(
XuX

2
dX

2
uC

(6)
)
and Tr

(
XdX

2
uX

2
dC

(6)
)
. Running this

argument at degree 9, however, we run into a mismatch. Indeed, even though the next term in
Eq. (4.B.18) would call for 4 syzygies, we only find 1, symmetric under the exchange Xu ↔ Xd.
This is probably due to the complications that arise when the groups and representations one
has to deal with start becoming less and less trivial, as in our case, and that forbid us from
reading the syzygies from the negative terms directly. For a deeper discussion of this topic, see
in particular Ref. [150, 155] and references therein. One thing to notice, in addition, is that
requiring the building blocks to be linear in (C(6)), although justified from a physical point
of view, breaks the ring structure of the invariant ring, as obviously the set we consider is no
longer closed under multiplications.

In any case, even without the Plethystic logarithm as a guide, we can just run our algorithm
at increasingly higher dimensions, until no more relations are found. Indeed, upon going up to
dimension n = 13, one manages to reduce the set down to 9 independent invariants, which we
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can pick to be

Tr(C(6)) Tr
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Tr
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)

Tr
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)

Tr
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)

Tr
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Tr
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XdX
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)

Tr
(
XuX

2
dX

2
uC

(6)
)
,

(4.B.26)

and that, upon taking their imaginary parts, match the minimal set for a non-hermitian fermion
bilinear operator in Table 4.D.1.

4.C List of dimension-6 fermionic operators and parameter

counting with generic Nf

In Tables 4.C.1 and 4.C.2 we reproduce the subset of operators from Ref. [70] we are interested
in in this work, namely dimension-6 operators in SMEFT containing fermions, split between
bilinear and 4-Fermi operators. For each of the considered operators we list the number of real
and imaginary entries and compare them with the number of (primary) real and imaginary
parameters that can appear in observables at order 1/Λ2, as explained in the main text.

In Table 4.C.3 the counting of independent primary parameters is generalized to an arbitrary
number of flavors N .

4.D Complete minimal set of invariants for 2-Fermi oper-

ators

We list in Table 4.D.1 a valid choice of minimal sets of CP-odd flavor invariants for all dimension-
six Wilson coefficients associated to operators that are bilinear in fermion fields. It can be shown
that they provide independent conditions matching the numbers presented in Table 4, in the
generic and non-generic cases listed in Table 3.

4.E Complete minimal set of 4-Fermi invariants

We list in Tables 4.E.1, 4.E.2, and 4.E.3 a valid choice of minimal sets of CP-odd flavor invariants
for all dimension-six Wilson coefficients associated to operators quartic in fermion fields. It can
be shown that they provide independent conditions matching the numbers presented in Table 4,
in the generic and non-generic cases listed in Table 3.

4.F Invariants featuring θQCD

In the main text of the paper, we focused on quantities which matter for perturbative compu-
tations in SMEFT. However, this left out an important contribution to CPV in the SM, the



CHAPTER 4. CP VIOLATION IN THE SMEFT 132

Bilinears

Label Operator # real entries # imaginary
entries

# primary
real entries

# primary
imaginary entries

M
od

ifi
ed

Y
uk

aw
as QeH (H†H)(L̄iejH) + h.c. 9 9 3 3

QuH (H†H)(Q̄iujH̃) + h.c. 9 9 9 9

QdH (H†H)(Q̄idjH) + h.c. 9 9 9 9

D
ip
ol
e

QeW (L̄iσ
µνej)τ

IHW I
µν + h.c. 9 9 3 3

QeB (L̄iσ
µνej)HBµν + h.c. 9 9 3 3

QuG (Q̄iσ
µνTAuj)H̃ GA

µν + h.c. 9 9 9 9

QuW (Q̄iσ
µνuj)τ

IH̃ W I
µν + h.c. 9 9 9 9

QuB (Q̄iσ
µνuj)H̃ Bµν + h.c. 9 9 9 9

QdG (Q̄iσ
µνTAdj)H GA

µν + h.c. 9 9 9 9

QdW (Q̄iσ
µνdj)τ

IH W I
µν + h.c. 9 9 9 9

QdB (Q̄iσ
µνdj)H Bµν + h.c. 9 9 9 9

C
ur
re
nt
-

cu
rr
en
t

Q
(1)
HL (H†i

←→
D µH)(L̄iγ

µLj) 6 3 3 0

Q
(3)
HL (H†i

←→
D I

µH)(L̄iτ
IγµLj) 6 3 3 0

QHe (H†i
←→
D µH)(ēiγ

µej) 6 3 3 0

Q
(1)
HQ (H†i

←→
D µH)(Q̄iγ

µQj) 6 3 6 3

Q
(3)
HQ (H†i

←→
D I

µH)(Q̄iτ
IγµQj) 6 3 6 3

QHu (H†i
←→
D µH)(ūiγ

µuj) 6 3 6 3

QHd (H†i
←→
D µH)(d̄iγ

µdj) 6 3 6 3

QHud i(H̃†DµH)(ūiγ
µdj) + h.c. 9 9 9 9

Table 4.C.1: The list of dimension-6 fermionic bilinear operators of SMEFT, as given in Ref. [70], together
with the number of real and imaginary entries they each contain, as well as the number of primary parameters
(highlighted in gray, see the text for more details). When +h.c. is specified, the hermitian conjugate of the
operator must be included, too. We indicate with i, j, k, l the flavor indices and with a, b indices in the

fundamental of SU(2)L. TA, A = 1, . . . , 8 are the generators of the gauge SU(3)c, while τ I = σI

2 , I = 1, 2, 3
are the generators of SU(2)L, with σI the Pauli matrices.
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4-Fermi

Label Operator # real entries # imaginary
entries

# primary
real entries

# primary
imaginary entries

LL
LL

QLL (L̄iγµLj)(L̄kγ
µLl) 27 18 9 0

Q
(1)
QQ (Q̄iγµQj)(Q̄kγ

µQl) 27 18 27 18

Q
(3)
QQ (Q̄iγµτ

IQj)(Q̄kγ
µτ IQl) 27 18 27 18

Q
(1)
LQ (L̄iγµLj)(Q̄kγ

µQl) 45 36 18 9

Q
(3)
LQ (L̄iγµτ

ILj)(Q̄kγ
µτ IQl) 45 36 18 9

R
R
R
R

Qee (ēiγµej)(ēkγ
µel) 21 15 6 0

Quu (ūiγµuj)(ūkγ
µul) 27 18 27 18

Qdd (d̄iγµdj)(d̄kγ
µdl) 27 18 27 18

Qeu (ēiγµej)(ūkγ
µul) 45 36 18 9

Qed (ēiγµej)(d̄kγ
µdl) 45 36 18 9

Q
(1)
ud (ūiγµuj)(d̄kγ

µdl) 45 36 45 36

Q
(8)
ud (ūiγµT

Auj)(d̄kγ
µTAdl) 45 36 45 36

LL
R
R

QLe (L̄iγµLj)(ēkγ
µel) 45 36 12 3

QLu (L̄iγµLj)(ūkγ
µul) 45 36 18 9

QLd (L̄iγµLj)(d̄kγ
µdl) 45 36 18 9

QQe (Q̄iγµQj)(ēkγ
µel) 45 36 18 9

Q
(1)
Qu (Q̄iγµQj)(ūkγ

µul) 45 36 45 36

Q
(8)
Qu (Q̄iγµT

AQj)(ūkγ
µTAul) 45 36 45 36

Q
(1)
Qd (Q̄iγµQj)(d̄kγ

µdl) 45 36 45 36

Q
(8)
Qd (Q̄iγµT

AQj)(d̄kγ
µTAdl) 45 36 45 36

LR
R
L

QLedQ (L̄ai ej)(d̄kQla) + h.c. 81 81 27 27

LR
LR

Q
(1)
QuQd (Q̄a

i uj)εab(Q̄
b
kdl) + h.c. 81 81 81 81

Q
(8)
QuQd (Q̄a

i T
Auj)εab(Q̄

b
kT

Adl) + h.c. 81 81 81 81

Q
(1)
LeQu (L̄ai ej)εab(Q̄

b
kul) + h.c. 81 81 27 27

Q
(3)
LeQu (L̄ai σµνej)εab(Q̄

k
sσ

µνut) + h.c. 81 81 27 27

Table 4.C.2: The list of dimension-6 4-Fermi operators of SMEFT, as given in Ref. [70], together with the
number of real and imaginary entries they each contain, as well as the number of primary parameters

(highlighted in gray, see the text for more details). When +h.c. is specified, the hermitian conjugate of the
operator must be included, too. We indicate with i, j, k, l the flavor indices and with a, b indices in the

fundamental of SU(2)L. TA, A = 1, . . . , 8 are the generators of the gauge SU(3)c, while τ I = σI

2 , I = 1, 2, 3
are the generators of SU(2)L, with σI the Pauli matrices.
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Type of op.
#
ops # real # im.

bi
lin

ea
rs

Yuk. 3

# of entries at O
(
1/Λ2

)
3N2 3N2

# of primary parameters entering observables at O
(
1/Λ2

)
2N2 +N 2N2 +N

Dipole
.

8
8N2 8N2

6N2 + 2N 6N2 + 2N

curr-curr 8
1
2N(9N + 7) 1

2N(9N − 7)

N(3N + 5) N(3N − 2)

all bilinears 19
1
2N(31N + 7) 1

2N(31N − 7)

N(11N + 8) N(11N + 1)

4-
Fe

rm
i

LLLL 5
1
4N

2
(
7N2 + 13

)
7
4N

2
(
N2 − 1

)
1
2N

2
(
N2 + 2N + 7

)
1
2N

2
(
N2 + 2N − 3

)
RRRR 7

1
8N
(
21N3 + 2N2 + 31N + 2

)
1
8N(21N + 2)(N2 − 1)

1
2N
(
3N3 + 2N2 + 8N + 1

)
1
2N

2
(
3N2 + 2N − 5

)
LLRR 8

4 N2
(
N2 + 1

)
4N2

(
N2 − 1

)
1
2N
(
4N3 + 3N2 + 9N + 2

)
1
2N
(
4N3 + 3N2 − 6N − 1

)
LRRL 1

N4 N4

N3 N3

LRLR 4
4N4 4N4

2N3(N + 1) 2N3(N + 1)

all 4-Fermi 25
1
8N
(
107N3 + 2N2 + 89N + 2

)
1
8N
(
107N3 + 2N2 − 67N − 2

)
1
2N
(
12N3 + 13N2 + 24N + 3

)
1
2N
(
12N3 + 13N2 − 14N − 1

)
all 44

1
8N
(
107N3 + 2N2 + 213N + 30

)
1
8N
(
107N3 + 2N2 + 57N − 30

)
1
2N
(
12N3 + 13N2 + 46N + 19

)
1
2N
(
12N3 + 13N2 + 8N + 1

)
Table 4.C.3: Number of flavorful real and imaginary parameters in SMEFT at dimension-six with N flavors.
For each type of operator, the first line (in white) counts the number of physical parameters, while the second

one (highlighted in gray) counts those which are also primary.

θ-parameter of QCD, associated to the following topological term,

LQCD ⊃ −θQCD
g2
s

16π2
Tr
(
GG̃
)
. (4.F.1)

θQCD has the following flavor charges (and no lepton-type charge),

SU(3)QL U(1)QL SU(3)uR U(1)uR SU(3)dR U(1)dR

eiθQCD 1 6 1 -3 1 -3
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Wilson coefficient Number of phases Minimal set

Ce ≡


CeH

CeW

CeB

3
{
L0

(
CeY

†
e

)
L1

(
CeY

†
e

)
L2

(
CeY

†
e

) }

Cu ≡


CuH

CuG

CuW

CuB

9


L0000

(
CuY

†
u

)
L1000

(
CuY

†
u

)
L0100

(
CuY

†
u

)
L1100

(
CuY

†
u

)
L0110

(
CuY

†
u

)
L2200

(
CuY

†
u

)
L0220

(
CuY

†
u

)
L1220

(
CuY

†
u

)
L0122

(
CuY

†
u

)


Cd ≡


CdH

CdG

CdW

CdB

Same with CuY †u → CdY
†
d

CHud Same with CuY †u → YuCHudY
†
d

C
(1,3)
HL , CHe 0 ∅

C
(1,3)
HQ

3

{
L1100

(
C

(1,3)
HQ

)
L2200

(
C

(1,3)
HQ

)
L1122

(
C

(1,3)
HQ

) }
CHu Same with C(1,3)

HQ → YuCHuY
†
u

CHd Same with C(1,3)
HQ → YdCHdY

†
d

Table 4.D.1: Minimal sets of CP-odd flavor invariants for all SMEFT dimension-six Wilson coefficients
associated to operators bilinear in fermion fields. We recall that Xu ≡ YuY †u , and similarly for down quarks or

electrons. We also recall the definition in Eq. (4.4.1). We also defined for the leptons
La(C̃) ≡ ImTr

(
Xa
e C̃
)
, with a = 1, 2 .

These charges allow us to build the usual flavor-invariant, physical θ̄-angle, defined as follows,

e−iθQCD detYu detYd = |det (YuYd)|e−i[θQCD−arg det(YuYd)] = |det (YuYd)|e−iθ̄ . (4.F.2)

As θQCD provides a dimension-four flavor-charged quantity, one can wonder whether its pres-
ence makes new SMEFT coefficients primary, which would mean that new invariants featuring
explicitly θQCD should be included in the minimal sets. The answer is however negative: the
secondary sources of CPV from the dimension-six Wilson coefficients are all charged under
unbroken vector-like flavor symmetries of the dimension-four lagrangian, under which θQCD is
neutral. Indeed, as the anomalous angle of a vector-like gauge theory, it only shifts under chiral
transformations.

Nevertheless, some SMEFT coefficients can be arranged with θQCD to form flavor-invariants
(albeit redundant in terms of primary parameter counting at dimension-six), which may yield
a more natural description of some non-perturbative contributions of the strong interactions
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Wilson coefficient Number of phases Minimal set

CLL, Cee 0 ∅

CLe 3
{
B0

0 (CLLẽẽ) B1
0 (CLLẽẽ) B2

0 (CLLẽẽ)
}

CQe

9


A1100

0 (CQQee) A1100
1 (CQQee) A1100

2 (CQQee)

A2200
0 (CQQee) A2200

1 (CQQee) A2200
2 (CQQee)

A1122
0 (CQQee) A1122

1 (CQQee) A1122
2 (CQQee)


Ced

Same with CQQee → Ceed̃d̃ (exchanging upper
with lower indices and with Ye ↔ Y †e )

Ceu
Same with CQQee → Ceeũũ (exchanging upper
with lower indices and with Ye ↔ Y †e )

C
(1,3)
LQ


A0

1100

(
C

(1,3)
LQ

)
A1

1100

(
C

(1,3)
LQ

)
A2

1100

(
C

(1,3)
LQ

)
A0

2200

(
C

(1,3)
LQ

)
A1

2200

(
C

(1,3)
LQ

)
A2

2200

(
C

(1,3)
LQ

)
A0

1122

(
C

(1,3)
LQ

)
A1

1122

(
C

(1,3)
LQ

)
A2

1122

(
C

(1,3)
LQ

)


CLd Same with C(1,3)
LQ → CLLd̃d̃

CLu Same with C(1,3)
LQ → CLLũũ

C
(1,3)
LeQu

27



A0
0000 (CLẽQũ) A1

0000 (CLẽQũ) A2
0000 (CLẽQũ)

A0
1000 (CLẽQũ) A1

1000 (CLẽQũ) A2
1000 (CLẽQũ)

A0
0100 (CLẽQũ) A1

0100 (CLẽQũ) A2
0100 (CLẽQũ)

A0
1100 (CLẽQũ) A1

1100 (CLẽQũ) A2
1100 (CLẽQũ)

A0
0110 (CLẽQũ) A1

0110 (CLẽQũ) A2
0110 (CLẽQũ)

A0
2200 (CLẽQũ) A1

2200 (CLẽQũ) A2
2200 (CLẽQũ)

A0
0220 (CLẽQũ) A1

0220 (CLẽQũ) A2
0220 (CLẽQũ)

A0
1220 (CLẽQũ) A1

1220 (CLẽQũ) A2
1220 (CLẽQũ)

A0
0122 (CLẽQũ) A1

0122 (CLẽQũ) A2
0122 (CLẽQũ)


CLedQ Same with CLẽQũ → CLẽd̃Q and Aabcde → Aaedcb

Table 4.E.1: Minimal sets of CP-odd flavor invariants for all the SMEFT dimension-six Wilson coefficients
associated to operators quartic in fermion fields (continued in Tables 4.E.2, 4.E.3). We recall that Xu ≡ YuY †u ,
and similarly for down quarks or electrons. We use the generalized traces introduced in Eq. (4.4.8), as well as
the compact notations in Eqs. (4.4.9)-(4.4.10). We also defined for the leptons Aab (C) ≡ TrA

(
Xa
e , X

b
e , C

)
,

Bab (C) ≡ TrB
(
Xa
e , X

b
e , C

)
with a, b = 1, 2 , Afbcde(C) ≡ TrA

(
Xf
e , X

b
uX

c
dX

d
uX

e
d , C

)
,

Aabcdf (C) ≡ TrA
(
Xa
uX

b
dX

c
uX

d
d ,
(
Y †e Ye

)
f , C

)
and Bfbcde(C) ≡ TrB

(
Xf
e , X

b
uX

c
dX

d
uX

e
d , C

)
to CP-odd observables.23 Those invariants would not have the single trace structure which we
used to build our sets of invariants, since δnm is U(3)5-invariant, while θQCD is charged under
some abelian parts of the flavor group. Therefore, it will rather offset the abelian charges of

23In the perturbative phase of QCD, the magnitude of such invariants is expected to be suppressed by an
additional non-perturbative factor e−8π

2/g2s . For low-energy observables, such as the EDMs of the neutron [303]
and of the electron [304,305], no further suppression would be needed.
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Wilson coefficient Number of phases Minimal set

C
(1,3)
QQ 18



A0000
1100 (CQQQQ) A1000

1100 (CQQQQ) A0100
1100 (CQQQQ)

A0000
2200 (CQQQQ) A1100

1100 (CQQQQ) A1000
2200 (CQQQQ)

A0100
2200 (CQQQQ) A0000

1122 (CQQQQ) A1100
2200 (CQQQQ)

A1200
2100 (CQQQQ) A1000

1122 (CQQQQ) A0100
1122 (CQQQQ)

A1100
1122 (CQQQQ) A2200

2200 (CQQQQ) B0000
1100 (CQQQQ)

B0000
2200 (CQQQQ) B0000

1122 (CQQQQ) A2200
1122 (CQQQQ)



Cuu 18



A0000
1100 (Cuuũũ) A1000

1100 (Cũũũũ) A0100
1100 (Cũũũũ)

A0000
2200 (Cuuũũ) A1100

1100 (Cũũũũ) A0200
1100 (Cũũũũ)

A0100
2200 (Cũũũũ) A0000

1122 (Cuuũũ) A1100
2200 (Cũũũũ)

A1000
1122 (Cũũũũ) A0100

1122 (Cũũũũ) A1100
0122 (Cũũũũ)

A1200
2200 (Cũũũũ) B0000

1100 (Cuũũu) B0100
1100 (Cũũũũ)

B0200
2100 (Cũũũũ) A1200

1122 (Cũũũũ) B1000
1200 (Cũũũũ)



Cdd 18



A0000
1100 (Cddd̃d̃) A1000

1100 (Cd̃d̃d̃d̃) A0000
2200 (Cddd̃d̃)

A1100
2000 (Cd̃d̃d̃d̃) A0100

1100 (Cd̃d̃d̃d̃) A1100
1100 (Cd̃d̃d̃d̃)

A1000
2200 (Cd̃d̃d̃d̃) A0000

1122 (Cddd̃d̃) A1100
2200 (Cd̃d̃d̃d̃)

A1000
1122 (Cd̃d̃d̃d̃) A1100

1220 (Cd̃d̃d̃d̃) A1200
2110 (Cd̃d̃d̃d̃)

A2100
0122 (Cd̃d̃d̃d̃) A2200

1220 (Cd̃d̃d̃d̃) B0000
1100 (Cdd̃d̃d)

B0100
2100 (Cd̃d̃d̃d̃) B1000

1100 (Cd̃d̃d̃d̃) B1200
2000 (Cd̃d̃d̃d̃)



C
(1,8)
Qu 36



A1100
0000 (CQQuu) A0000

1100 (CQQũũ) A1000
1100 (CQQũũ)

A1100
0100 (CQQũũ) A1100

1100 (CQQũũ) A1100
0110 (CQQũũ)

A1200
1000 (CQQũũ) A2200

0000 (CQQuu) A1100
2200 (CQQũũ)

A1100
0220 (CQQũũ) A2200

0110 (CQQũũ) A1100
1122 (CQQũũ)

A1200
1220 (CQQũũ) A2200

1122 (CQQũũ) B0000
0100 (CQQũũ)

B0000
1000 (CQQũũ) B0000

0110 (CQQũũ) B0000
0220 (CQQũũ)

B0000
1100 (CQQũũ) B0000

0221 (CQQũũ) B0100
1000 (CQQũũ)

B0100
1100 (CQQũũ) B0100

2200 (CQQũũ) B0100
2110 (CQQũũ)

B0200
2000 (CQQũũ) B0200

2100 (CQQũũ) B0200
2110 (CQQũũ)

B1000
0110 (CQQũũ) B1000

0220 (CQQũũ) B1000
0221 (CQQũũ)

B1100
1100 (CQQũũ) B1100

2200 (CQQũũ) B1200
2100 (CQQũũ)

B1200
2210 (CQQũũ) B2100

1200 (CQQũũ) B0110
0221 (CQQũũ)



C
(1,8)
Qd 36



A1100
0000 (CQQdd) A0000

1100 (CQQd̃d̃) A1000
1100 (CQQd̃d̃)

A1100
1000 (CQQd̃d̃) A2200

0000 (CQQdd) A0100
1100 (CQQd̃d̃)

A0000
2200 (CQQd̃d̃) A1100

1100 (CQQd̃d̃) A1100
2100 (CQQd̃d̃)

A1122
0000 (CQQdd) A0000

1122 (CQQd̃d̃) A1100
2200 (CQQd̃d̃)

A1100
0220 (CQQd̃d̃) A1000

1122 (CQQd̃d̃) A1100
1122 (CQQd̃d̃)

A2100
0122 (CQQd̃d̃) B0000

0100 (CQQd̃d̃) B0000
1000 (CQQd̃d̃)

B0000
0110 (CQQd̃d̃) B0000

0220 (CQQd̃d̃) B0000
1100 (CQQd̃d̃)

B0000
0221 (CQQd̃d̃) B0000

2200 (CQQd̃d̃) B0000
2210 (CQQd̃d̃)

B0100
1000 (CQQd̃d̃) B0100

0120 (CQQd̃d̃) B0100
1100 (CQQd̃d̃)

B0100
2210 (CQQd̃d̃) B1000

0110 (CQQd̃d̃) B1000
0220 (CQQd̃d̃)

B1000
0221 (CQQd̃d̃) B1000

1200 (CQQd̃d̃) B1100
2200 (CQQd̃d̃)

B1100
2210 (CQQd̃d̃) B1200

2100 (CQQd̃d̃) B2100
2211 (CQQd̃d̃)


Table 4.E.2: Continuation of Table 4.E.1

determinant-like SU(3)5-invariants. For instance, for the operator CQuQd, we can form

Im
(
e−iθQCDεABCεabcεDEF εdefYu,AaYu,BbCQuQd,CcDdYd,EeYd,Ff

)
=

=
∣∣
up basis4ybysytycImCQuQd,1111 + ... .



CHAPTER 4. CP VIOLATION IN THE SMEFT 138

Wilson coefficient Number of phases Minimal set

C
(1,8)
ud 36



A1100
0000 (Cũũdd) A0000

1100 (Cuud̃d̃) A1000
1100 (Cũũd̃d̃)

A1100
1000 (Cũũd̃d̃) A2200

0000 (Cũũdd) A0100
1100 (Cũũd̃d̃)

A0000
2200 (Cuud̃d̃) A1100

1100 (Cũũd̃d̃) A1100
0110 (Cũũd̃d̃)

A1000
2200 (Cũũd̃d̃) A1100

2100 (Cũũd̃d̃) A1122
0000 (Cũũdd)

A0100
2200 (Cũũd̃d̃) A0000

1122 (Cuud̃d̃) A1100
2200 (Cũũd̃d̃)

A1000
1122 (Cũũd̃d̃) A0100

1122 (Cũũd̃d̃) A1100
1122 (Cũũd̃d̃)

B0000
0100 (Cũũd̃d̃) B0000

1000 (Cũũd̃d̃) B0000
0110 (Cũũd̃d̃)

B0000
1100 (Cũũd̃d̃) B0000

0221 (Cũũd̃d̃) B0000
2200 (Cũũd̃d̃)

B0100
1000 (Cũũd̃d̃) B0100

0110 (Cũũd̃d̃) B0100
2110 (Cũũd̃d̃)

B0200
2000 (Cũũd̃d̃) B0200

2110 (Cũũd̃d̃) B1000
0110 (Cũũd̃d̃)

B1000
0221 (Cũũd̃d̃) B1000

1200 (Cũũd̃d̃) B1100
2200 (Cũũd̃d̃)

B1100
2211 (Cũũd̃d̃) B1200

2100 (Cũũd̃d̃) B2100
1200 (Cũũd̃d̃)



C
(1,8)
QuQd 81



A0000
0000 (CQũQd̃) A0000

1000 (CQũQd̃) A1000
0000 (CQũQd̃)

A1000
1000 (CQũQd̃) A0000

0100 (CQũQd̃) A0100
0000 (CQũQd̃)

A0000
1100 (CQũQd̃) A0000

0110 (CQũQd̃) A0100
1000 (CQũQd̃)

A1000
0100 (CQũQd̃) A1100

0000 (CQũQd̃) A0110
0000 (CQũQd̃)

A1000
1100 (CQũQd̃) A1000

0110 (CQũQd̃) A1100
1000 (CQũQd̃)

A0100
0100 (CQũQd̃) A0100

1100 (CQũQd̃) A0100
0110 (CQũQd̃)

A0110
0100 (CQũQd̃) A0000

2200 (CQũQd̃) A0000
0220 (CQũQd̃)

A0200
2000 (CQũQd̃) A1100

1100 (CQũQd̃) A1100
0110 (CQũQd̃)

A2000
0200 (CQũQd̃) A2100

0100 (CQũQd̃) A0110
1100 (CQũQd̃)

A0110
0110 (CQũQd̃) A0210

1000 (CQũQd̃) A0000
1220 (CQũQd̃)

A1200
2000 (CQũQd̃) A0000

0122 (CQũQd̃) A0100
1220 (CQũQd̃)

A1000
0122 (CQũQd̃) A1100

2200 (CQũQd̃) A1100
0220 (CQũQd̃)

A1200
2100 (CQũQd̃) A2100

1200 (CQũQd̃) A2100
0210 (CQũQd̃)

A2200
0110 (CQũQd̃) A0110

2200 (CQũQd̃) A0110
0220 (CQũQd̃)

A0112
2000 (CQũQd̃) A1100

1220 (CQũQd̃) A2100
0112 (CQũQd̃)

A1200
1220 (CQũQd̃) A2200

2200 (CQũQd̃) A0110
1122 (CQũQd̃)

A0122
2100 (CQũQd̃) A0220

0220 (CQũQd̃) B0000
0000 (CQũQd̃)

B0000
0100 (CQũQd̃) B0000

1000 (CQũQd̃) B0000
1100 (CQũQd̃)

B0000
2200 (CQũQd̃) B0000

0110 (CQũQd̃) B0000
0122 (CQũQd̃)

B0000
0220 (CQũQd̃) B0100

0000 (CQũQd̃) B0100
1000 (CQũQd̃)

B0100
1100 (CQũQd̃) B0100

2100 (CQũQd̃) B0100
0120 (CQũQd̃)

B0100
1220 (CQũQd̃) B0200

1120 (CQũQd̃) B1000
0000 (CQũQd̃)

B1000
0100 (CQũQd̃) B1000

1200 (CQũQd̃) B1000
0110 (CQũQd̃)

B1000
0122 (CQũQd̃) B1000

0210 (CQũQd̃) B1100
0000 (CQũQd̃)

B1100
1100 (CQũQd̃) B1100

2200 (CQũQd̃) B1100
0110 (CQũQd̃)

B1100
0220 (CQũQd̃) B1100

1122 (CQũQd̃) B1200
2100 (CQũQd̃)

B2100
0122 (CQũQd̃) B2200

0000 (CQũQd̃) A2200
1122 (CQũQd̃)


Table 4.E.3: Continuation of Tables 4.E.1 and 4.E.2
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Conclusion

Because it’s there

English mountaineer George Mallory
when asked why he wanted

to climb Mount Everest [306]

What physicists have learned in the centuries-old history of the discipline is that dealing
with the understanding of Nature implies the awareness that Nature may not have any specific
interest in being studied and understood. The last 10 years have made this observation partic-
ularly apparent, as the lack of new clear experimental signatures at colliders have brought the
physics community to rethink a lot of its beliefs, and to try and challenge what was taken for
granted. A useful guide, as always, is represented by our collective past experience, and the
possibility to take a step back and gain some larger perspective. Indeed, if we have managed
to gather so much knowledge about the physical world, it is only because of a long path of
trial and error, made possible by employing each time different angles to approach the same
problems, until one of the perspectives would turn out to be the right key to break the code.
It is easy, when looking back, to fall in the trap of flattening this process of natural selection
and only single out the approaches that turned out to be the most suitable ones. Such narrow
perspective is wrong twice. First, because it does not make justice to the struggle our discipline
had to undergo to make each step in the direction of progress, and secondly, because we risk
falling in the misconception that the apparent stalemate we find ourselves in at the moment is
an exception in the history of physics, when it is rather much closer to being the rule. Endowed
with this realization, we should resolve to approach the issue from various angles with an open
mind.

In this sense, the paradigm of Effective Field Theories offers, to a Particle Physicist, a
compelling vantage point of observation. Clearly, while on one hand its rather model indepen-
dent nature represents an indisputable advantage, the proliferation of free coefficients may be
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disheartening to the curious scientist attempting to approach the subject for the first time. Be-
cause of this very reason, it is crucial, on the theoretical side, to try and characterize to the best
of our capabilities the distinct features of this framework, as to extract as much information as
possible from them. This is the vision we tried to imbue this work with, and the philosophy
that stands behind it.

First of all, we dedicated Chapters 1 and 2 to the description of the tools of EFTs, specifically
to the characterization of how an Effective Theory is put together and what it is composed of,
what its connections to specific UV completions look like, and how we can use it to make
predictions. Particular attention has been given to reviewing how to build the so called Hilbert
Series, which turns out to be a rather handy instrument for the unambiguous construction of
specific EFTs.

Then, we illustrated in Chapter 3 how assumptions of locality and causality of the UV theory
imply that some of the EFT coefficients are forced to lie within a subset of the full parameter
space. While these constraints exhibit a rather straightforward nature in the simplest cases,
their structure becomes gradually more complicated as the number of degrees of freedom is
increased. A clear example is represented by the rich flavor structure of the SMEFT, that
implies quite convoluted bounds on its dimension-eight coefficients. We studied the interplay
between such flavor structure and the bounds when a specific assumption, Minimal Flavor
Violation, is made on the coefficients of operators containing four fermionic fields. Moreover,
we played with the possibility that this relationship could be exploited to, in a sense, turn the
bounds around and gain knowledge on the dimension-4, renormalizable coefficients.

In Chapter 4 we turned our focus on the impact of the EFT approach on the breaking of
the CP symmetry. As we reviewed, CP is broken in a very peculiar manner in the SM, in a
way that can be captured by a single quantity, the Jarlskog invariant, which does not depend
on the specific basis we pick for the quark generations. This picture needs to be complemented
when enlarging the SM to its EFT counterpart, and we addressed this issue at the level of
dimension-six operators, as those are the ones we expect to have the most relevant impact on
observables. We showed how the breaking of CP symmetry is here, too, most suitably described
through flavor-reparametrization invariant quantities. This method, combined with the correct
use of EFT power-counting, allowed us to identify a large fraction of the CP-violating quantities
appearing at dimension-six as subleading. This is a clear exemplification of what we mean by
exploiting the properties of EFTs to squeeze as much information about them as possible.

More work in the directions explored here is definitely needed. For what concerns the most
punctual issues, we saw how the connection between the Hilbert Series and the Flavor invariants
fell just short of providing us with a well rounded characterization of the physical quantities
we were interested in. This is certainly a hint that the technique need to be further refined to
be more flexible and adaptable to a wider range of problems. Moreover, although we showed
an example of the interplay between positivity bounds and symmetry, it seems clear that this
is just the start of a quest to fully understand their deep relationship and the role played here
e.g. by spurions and symmetry breaking. In a broader perspective, we feel that there is still a
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lot of room for the strengthening of our theoretical tools, and that a deeper understanding of
the EFT construction and its peculiar structures is crucial to build the correct framework to
accommodate any hint of New Physics that Nature decides to give us.
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