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Abstract

We consider the class of four-dimensional N = 2 supergravities from type II

string compactifications with Abelian gaugings that admit N = 1 Minkowski vacua.

We calculate explicitly the Kähler potential, superpotential and D-terms of the

N = 1 low-energy effective theory for the STU and quantum STU models, i.e.

the models where the special quaternionic-Kähler field space of the hypermultiplets

is specified by a STU or quantum STU prepotential. For the STU model, the

special quaternionic-Kähler manifold SO(4,4)
SO(4)×SO(4) descends to the Kähler manifold

SO(4,2)
SO(4)×SO(2) . We also determine how the superpotential is restricted by requiring

supersymmetric vacua and find that in many cases where STU prepotentials are

involved, supersymmetric vacua are only possible if the superpotential vanishes

identically.
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1 Introduction

The Standard Model (SM) of particle physics is a gauge theory with a spontaneously

broken, non-abelian gauge group. It describes all forces of nature except gravity up to the

energies and precision of current experiments. The SM cannot be valid up to arbitrary

high energies, because gravity has to be taken into account at the Planck scale MP [1].

It is thus believed to be a low-energy effective description of a more fundamental theory.

The low mass of the Higgs boson of ∼ 125 GeV [2, 3] indicates that the SM is only valid

up to energies much smaller than MP, because it obtains quadratically divergent quantum

corrections which are only small enough with a cutoff far below MP [1]. This problem

is known as the hierarchy problem of the SM and can be solved by introducing a new

symmetry: supersymmetry.

Supersymmetry is the only way to extend the symmetry algebra of the S-matrix, the

Poincaré algebra, to a larger graded Lie algebra [4]. It also solves the hierarchy problem by

protecting the Higgs mass from large quantum corrections and minimal supersymmetric

extensions of the SM (MSSM) offer additional attractive features like gauge coupling

unification and possible candidates for dark matter [1].

One can incorporate gravity into a supersymmetric gauge theory by gauging the super-

Poincaré spacetime symmetry of the theory. The resulting theories are called supergravity

theories. Due to their coupling constant with negative mass dimension, most supergravity

theories are non-renormalizable.1 Today it is widely believed that a consistent quantum

theory of gravity should be a superstring theory, but in the low energy limit, superstring

theory reduces to supergravity, so there are still many applications for supergravity.

The generators of supersymmetry Q are anticommutating spinors that change the spin

of a state by 1/22

Q|Boson〉 = |Fermion〉 , Q|Fermion〉 = |Boson〉 . (1.1)

It is possible to introduce multiple supersymmetry generators. The number of generators

is denoted by N . N = 1 corresponds to a minimal amount of supersymmetry and

the case N > 1 is called extended supersymmetry. When comparing the amount of

supersymmetry between theories in different dimensions, one has to take into account

that different dimensions have different spinor representations. One has to compare the

number of real supercharges, which is N times the dimension of the spinor representation.

The reason why N = 2 → N = 1 supersymmetry breaking matters is the following.

On the one hand, most superstring theories live in 10 dimensions and have at least 16 (type

I and heterotic) or 32 (type II) supercharges [6]. On the other hand, it is phenomeno-

logically compelling to try and construct the SM out of a four-dimensional theory with

N = 1 supersymmetry, which corresponds to 4 supercharges. This is because theories

1The finiteness of N = 8 supergravity is currently under discussion.
2For an introduction to supersymmetry, see [5].

5



with more supersymmetry are not chiral. It is possible to perform the compactification

from 10D superstring theory to a 4D effective theory in such a way that some of the

original supersymmetries are broken, but there are cases where it is not possible to com-

pactify to 4 supercharges directly. For example, fluxless compactifications of type II string

theory on a Calabi-Yau threefold result in an effective 4D theory with 8 supercharges, i.e.

N = 2 supergravity [7]. Therefore, it is of interest whether a four-dimensional N = 2

supergravity can have Minkowski vacua with N = 1 supersymmetry.

There is a long-standing no-go theorem [8, 9] stating that N = 2 → N = 1 super-

symmetry breaking is not possible. It was later found in [10] that the no-go theorem did

not use the most general N = 2 Lagrangian. N = 2 supergravities can be constructed

from one gravitational multiplet with spin content (2, 3/2, 1) and any number of vector

multiplets (1, 1/2, 0) and hypermultiplets (1/2, 0). The scalar fields can be considered as

coordinates on a manifold, the so-called target or scalar manifold. The target manifold

of the vector multiplets must be a special-Kähler manifold, which is typically described

in terms of a holomorphic prepotential F . This description was also used for the no-go

theorem about partial supersymmetry breaking. As it turns out, there are cases where

such a prepotential does not exist. These cases allowed for examples of partially broken

N = 2 supergravities, some of which were presented in [11–13] by introducing magnetic

Fayet-Iliopoulos terms. It was observed in [14] that the requirement that no prepotential

exists can be replaced by the requirement that there must be both electric and magnetic

charges. In addition, two particular isometries k̂1 and k̂2 must be gauged. In [14], par-

tial supersymmetry breaking in the presence of prepotentials and magnetic charges was

treated systematically. The low energy effective N = 1 action of the theory was con-

structed in [15]. In the construction of the N = 1 theory, the scalar field space of the

hypermultiplets Mh descends to a submanifold M̂h of the quotient with respect to the

two gauged isometries

Mh → M̂h ⊂Mh/〈k̂1, k̂2〉 . (1.2)

This quotient construction was studied in more detail in [16].

In supergravities arising from type II string compactifications, Mh must be a special

quaternionic-Kähler manifold, which is described in terms of a second prepotential G.

The number of scalars that are stabilized by N = 2 → N = 1 supersymmetry breaking

depend on the prepotentials F and G. These numbers were determined for certain choices

of prepotentials in [16]. We continue this work, giving the N = 1 Kähler potentials,

superpotentials and D-terms for two of these examples, the STU and the quantum STU

models, in a Minkowski background. We find that for the STU model, M̂h is given by

Mh =
SO(4, 4)

SO(4)× SO(4)
→ M̂h =

SO(4, 2)

SO(4)× SO(2)
. (1.3)
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Another result is that STU and quantum STU prepotentials heavily restrict the super-

potential. If both F and G are (quantum) STU prepotentials, the superpotential must

vanish.

Furthermore, we check under which conditions supersymmetric vacua exist if the pre-

potentials are taken from these two examples or match the extreme cases where they

stabilize either all or no scalars of the corresponding sector. These extreme cases corre-

spond to a sufficiently generic and a purely quadratic prepotential. We find that there

cannot be non-trivial superpotentials with supersymmetric vacua for any combination

of the prepotentials mentioned in this paragraph, except when both prepotentials are

quadratic.

This thesis is organized as follows. Section 2 gives a short introduction to four-

dimensional gauged N = 2 supergravities. In section 3, we review the main results

from [14,15], restricted to the Minkowski case. Section 4 specializes these results further to

supergravities from type II string compactifications, which contain a special quaternionic-

Kähler manifold. We introduce our two choices for the prepotential G, the STU and the

quantum STU models, in section 5. Section 6 treats the question in which way scalars

are stabilized in the process of partial supersymmetry breaking. In sections 7 and 8, we

calculate the explicit expressions for the Kähler potential, superpotential and D-terms of

the N = 1 theory in the STU and quantum STU models. Section 9 determines under

which conditions the N = 1 theory has supersymmetric vacua. In appendix A, we give an

introduction to the symplectic invariance inherent to the vector multiplets. Appendices

B, C and D supplement section 3 by more detailed reviews of calculations from [14, 15].

Finally, we list some symmetries that are inherent to the Kähler potential of the STU

model in appendix E.

2 Supergravity

2.1 Ungauged N = 2 supergravity in four dimensions

Let us begin with a short recapitulation of four-dimensional N = 2 supergravity.3 We will

recall the spectrum and couplings of the theory and, as partial supersymmetry breaking

is mainly described in terms of the scalar fields, describe the scalar field space in detail.

The theory has the following field content.

• a gravitational multiplet

(gµν ,ΨµA, A
0
µ), µ, ν = 0, . . . , 3, A = 1, 2 . (2.1)

The gravitational multiplet contains the spacetime metric gµν , two gravitini ΨµA

and the graviphoton A0
µ.

3For a review, see e.g. [17].
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• nv vector multiplets

(Aiµ, λ
iA, ti), i = 1, . . . , nv . (2.2)

Each vector multiplet contains a vector Aµ, two gaugini λA and a complex scalar t.

• nh hypermultiplets

(ζα, q
u), α = 1, . . . , 2nh, u = 1, . . . , 4nh . (2.3)

A hypermultiplet contains two hyperini ζα and 4 real scalars qu.

For nv vector- and nh hypermultiplets, there are a total of 2nv + 4nh real scalar fields and

2(nv + nh) spin-1
2

fermions in the spectrum.

The bosonic matter Lagrangian of the ungauged theory contains Yang-Mills terms

with kinetic matrix NIJ for the vectors and two sigma models for the scalars

L = −iNIJ F I+
µν F

µν J+ + iN IJ F
I−
µν F

µν J− + gij̄(t, t̄) ∂µt
i∂µt̄j̄ + huv(q) ∂µq

u∂µqv . (2.4)

The matrices describing the sigma models are restricted by supersymmetry: gij̄(t, t̄) is

the metric of the 2nv-dimensional special-Kähler manifold Mv and huv(q) is the metric

of the 4nh-dimensional quaternionic-Kähler manifold Mh. The total scalar field space is

the direct product

M = Mv ×Mh . (2.5)

The metric of the special-Kähler manifold is given by

gij̄ = ∂i∂j̄Kv , with Kähler potential Kv = − ln i
(
XIF̄I − X̄IFI

)
. (2.6)

XI , I = 1, . . . , nv + 1 are homogeneous coordinates on Mv and XI(t), FI(t) are both

functions of the scalars of the vector multiplets ti. In the ungauged case, one can always

choose these coordinates such that the FI are the derivatives FI = ∂F/∂XI of a holomor-

phic prepotential F(X), which must be homogeneous of degree two. Also, the convenient

choice XI = (ti, 1) is always possible. The ti are called special coordinates in this context.

We will also need that on a Kähler manifold there exists a complex structure J and a

fundamental form K, which are related by

Kij̄ = gik̄J
k̄
j̄ . (2.7)

K is also called the Kähler two-form.

The F I±
µν that appear in the Lagrangian (2.4) are the self-dual and anti-self-dual parts

of the usual field strengths. They include the field strengths of the gauge bosons of the

vector multiplets and the graviphoton. Their kinetic matrix NIJ is a function of the ti
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given by

NIJ = F̄IJ + 2 i
ImFIKImFJLXKXL

ImFLKXKXL
, (2.8)

where FIJ = ∂IFJ .

A 4nh-dimensional quaternionic-Kähler manifold like Mh is a Riemannian manifold

with holonomy group contained in Sp(1)× Sp(nh). It has a set of three almost complex

structures Jx, x = 1, 2, 3 that satisfy the quaternionic algebra

JxJy = −δxy1 + εxyzJz . (2.9)

The metric huv is hermitian with respect to all three almost complex structures. Super-

symmetry requires the existence of a principal SU(2)-bundle SU over Mh [18]. Denoting

the connection on the bundle by ωx, the curvature form

Kx = dωx + 1
2
εxyzωy ∧ ωz , (2.10)

on SU is the analogue to the Kähler form of a Kähler manifold by virtue of the fact that

Kx = Kx
uvdq

u ∧ dqv = huw(Jx)wv dqu ∧ dqv . (2.11)

The global invariance group of the ungauged Lagrangian (2.4) is embedded into a

product of Sp(2nv,R) and the group of isometries on the hypermultiplet scalar manifold

Iso(Mh) [17]

Gglobal ⊆ Sp(2nv,R)× Iso(Mh) . (2.12)

The reason why the group of isometries on the vector multiplet target manifold is embed-

ded into Sp(2nv,R) is explained in appendix A.

2.2 Gauged N = 2 supergravity

It is characteristic for ungauged supergravities like discussed in the previous subsection,

that they exhibit exceptionally large global symmetry groups and Abelian gauge groups

[19]. The matter fields are not charged under the gauge group and there exists a maximally

supersymmetric Minkowski ground state in which all fields are massless.

Gauged supergravities are the ones where some of the isometries on the scalar manifold

are gauged. Gauging gives charges and possibly masses to matter fields, thus the vacuum

is further restricted and can have less than maximal or no supersymmetry. This is the

reason why gauged supergravity has to be considered for N = 2→ N = 1 supersymmetry

breaking.

The gauge group G0 must be embedded into the global invariance group Gglobal of the

Lagrangian. This embedding is governed by the embedding tensor, which describes the
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gauge group generators δΛ in terms of the generators of Gglobal, δλ

δΛ = Θ λ
Λ δλ . (2.13)

The embedding tensor formalism was developed in [20,21] and is capable of describing all

possible gaugings. We will gauge only subgroups of Iso(Mh) here. This results in Abelian

gaugings [22] and is implemented by introducing covariant derivatives for the qu

Dµq
u = ∂µq

u − A I
µ Θ λ

I k̂uλ +BµI ΘIλ k̂uλ . (2.14)

k̂λ(q) are Killing vectors on Mh, A I
µ are electric vectors and BµI their magnetic duals, and

(A I
µ , BµI) transforms under Sp(2nv,R). The Lagrangian retains its full symmetry as long

as the embedding tensor is treated as a spurionic object, i.e. it transforms according to its

indices. This means that the index Λ of the embedding tensor in (2.13) is a symplectic one

and Θ λ
I and ΘIλ, the electric and magnetic parts of the embedding tensor, are combined

into the symplectic object

Θ λ
Λ = (Θ λ

I ,−ΘIλ) . (2.15)

Analogously, the index λ of the embedding tensor transforms under the action of Iso(Mh).

A gauge can be chosen by fixing the embedding tensor to a constant and breaking the

symmetry that was sustained by the embedding tensor as long as it behaved spurionically.

In the Abelian case under consideration, the embedding tensor is only restricted by the

condition that electric and magnetic charges are mutually local [14], which reads

ΘI[λΘ
κ]
I = 0 . (2.16)

For partial supersymmetry breaking, both electric and magnetic charges are required, as

we will see in section 3.1. The embedding tensor approach provides a coherent formalism

to describe such general charge configurations and is therefore ideally suited to describe

partial supersymmetry breaking.

The reason why charged scalars from the hypermultiplets are considered is the follow-

ing. We will see in our discussion of partial supersymmetry breaking in section 3 that the

eigenvalues of the gravitino mass matrix SAB have to be non-degenerate, mΨ1 6= mΨ2 . To

this end, the SU(2) R-symmetry has to be broken by gauging scalars that are charged

under this symmetry. The vector multiplet scalars are SU(2) singlets. Only the scalars

of the hypermultiplets carry the R-charges of the supersymmetry generators Q and Q+.

With the covariant derivatives (2.14), the action is no longer invariant under local

supersymmetry. This is fixed by introducing the scalar potential V , which is given by [9,23]

V = −6SABS̄
AB +

1

2
gi̄W

iABW ̄
AB +NAα N

α
A . (2.17)
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SAB is the mass matrix of the two gravitini. W iAB and NAα are related to the mass

matrices of the spin-1/2 fermions. They are given by

SAB = 1
2
eK

v/2V ΛΘ λ
Λ P x

λ (σx) CA εCB ,

W iAB = ieK
v/2gi̄ (∇̄V̄

Λ)Θ λ
Λ P x

λ ε
AC(σx) BC , (2.18)

NAα = 2eK
v/2V̄ ΛΘ λ

Λ UAαuk̂uλ .

V Λ is a holomorphic symplectic vector defined by V Λ ≡ (XI ,FI). Its Kähler-covariant

derivative is ∇iV
Λ = ∂iV

Λ + (∂iKv)V Λ. εAB and εAB are the SU(2) metric and its

inverse and (σx)AB are the standard Pauli matrices. The triplet of Killing prepotentials

P x
λ associated to an isometry k̂uλ on Mh is defined by

− 2k̂uλK
x
uv = ∇vP

x
λ = ∂vP

x
λ + εxyzωyvP

z
λ . (2.19)

UAαu is the vielbein of Mh and can be used to express the metric as

huv = UAαu εABCαβUBβv , (2.20)

where Cαβ is the Sp(nh) invariant metric.

3 N = 2 to N = 1 supersymmetry breaking

3.1 Conditions from partial supersymmetry breaking

Partial supersymmetry breaking can be analyzed in terms of the scalar parts of the su-

persymmetry variations

δεΨµA = Dµε
∗
A − SABγµεB + . . . ,

δελ
iA = W iABεB + . . . , (3.1)

δεζα = NAα εA + . . . .

εA is the SU(2) doublet of spinors parametrising the N = 2 supersymmetry transforma-

tions. The ellipses indicate terms that vanish in a maximally symmetric ground state.

Dµε
∗
A vanishes in a Minkowski background. For supersymmetry to be spontaneously bro-

ken from N = 2 to N = 1, the supersymmetry variations (3.1) have to vanish for one

linear combination of the supersymmetry variation parameters, say εA1

WiAB ε
B
1 = 0 , NαA ε

A
1 = 0 and SAB ε

B
1 = 0 , (3.2)
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while the second generator εA2 has to break supersymmetry, i.e. the supersymmetry vari-

ations are nonzero

WiAB ε
B
2 6= 0 or NαA ε

A
2 6= 0 , and SAB ε

B
2 6= 0 . (3.3)

The three conditions in (3.2) and (3.3) (in the order of their appearance) are called the

gaugino, hyperino and gravitino conditions, according to the supersymmetry variations in

(3.1) they stem from. The gaugings satisfying (3.2) and (3.3) were classified in [14]. We

only give a short summary here and a more detailed recapitulation in appendix B. The

gaugino and gravitino conditions of (3.2) and (3.3) imply

(Θ λ
I −FIJΘJλ)P x

λσ
x
ABε

B
1 = 0 for all I , (3.4)

(Θ λ
I − F̄IJΘJλ)P x

λσ
x
ABε

B
1 6= 0 for some I . (3.5)

One immediately sees that (3.4) and (3.5) cannot be satisfied simultaneously, if there are

no magnetic charges, ΘJλ = 0. They also cannot be both satisfied if only one isometry

is gauged, because then (3.4) factorizes and the vanishing of either of the factors implies

the vanishing of the left side of (3.5). Furthermore, (3.4) and (3.5) can only be satisfied

for certain embedding tensors.

There is one condition left that must be enforced to make sure that the supersymmetry

generated by εA1 is unbroken, the hyperino condition in (3.2). A suitable set of Killing

prepotentials to satisfy this condition is

P 3
1,2 = 0 , (3.6)

P 1
1 = −P 2

2 , (3.7)

P 2
1 = P 1

2 . (3.8)

To solve (3.4) and (3.5), the embedding tensor must take the form

Θ 1
I = Re

(
FIJ CJ

)
, ΘI1 = ReCI ,

Θ 2
I = Im

(
FIJ CJ

)
, ΘI2 = ImCI ,

(3.9)

if (3.6-3.8) are assumed. CI is an arbitrary complex vector. For the embedding tensor

(3.9), the locality constraint (2.16) becomes a condition on the CI

C̄I(ImF)IJC
J = 0 . (3.10)

This can easily be arranged, because (ImF)IJ has signature (nv, 1) [24].

Since the embedding tensor (3.9) has to be constant, a number of scalars may be
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stabilized in the N = 1 theory by the condition

FIJCJ = const. . (3.11)

This means that only a submanifold M̂v of Mv descends to the N = 1 theory. The

condition (3.11) appears also in the hypermultiplet sector and will be discussed in that

context. This discussion is in section 6.1 and applies without changes to (3.11).

This concludes our review of the requirements posed on a gauged supergravity by

partial supersymmetry breaking. Both electric and magnetic charges and at least two

gauged isometries are necessary to achieve partial supersymmetry breaking in a symplectic

frame where a prepotential F exists. The gravitino and gaugino conditions only pose

conditions on the charges, i.e. the embedding tensor. The hyperino condition can be

solved by gauging isometries with Killing prepotentials satisfying (3.6-3.8). In this case,

the embedding tensor takes the form (3.9).

3.2 Integrating out

One characteristic difference between N = 2 and N = 1 supergravity is that N = 2

supergravity has two gravitini, while in N = 1 supergravity there is only one. Indeed, the

gravitino conditions in (3.2) and (3.3) imply that the eigenvalues of the gravitino mass

matrix SAB have to be non-degenerate, mΨ1 = 0 6= mΨ2 . Thus, a low-energy effective

theory valid up to the scale of partial supersymmetry breaking m3/2 ≡ mΨ2 can be

constructed by integrating out the heavy gravitino and all other particles of mass ≥ m3/2.

The unbroken N = 1 supersymmetry dictates that the heavy gravitino must be part

of a N = 1 massive spin-3/2 multiplet with spin content s = (3/2, 1, 1, 1/2). This implies

that there must be also two vectors and one spin-1/2 fermion of mass m3/2. These fields

have to be recruited from the massless N = 2 multiplets via a super-Higgs mechanism.

The massive vectors consist of two massless vectors that eat one scalar each to acquire a

longitudinal degree of freedom. The effect that integrating out the two massive vectors

has on the scalar field space is discussed in section 3.3.1. The fermions do not affect the

scalar field space and are not discussed further.

3.3 The N = 1 low-energy effective action

Integrating out the massive fields of O(m3/2) must lead to an effective N = 1 theory with

a Lagrangian of the standard form [5,25]

L̂ = − K
P̂ ˆ̄Q
DµM

P̂DµM̄
ˆ̄Q − 1

2
fÎĴ F

Î−
µν F

µν Ĵ− − 1
2
f̄ÎĴ F

Î+
µν F

Ĵ+
ρσ − V , (3.12)
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where V is the scalar potential

V = VF + VD = eK
(
K P̂ ˆ̄QDP̂WD ˆ̄Q

W̄ − 3|W|2
)

+ 1
2

(Re f)ÎĴD
ÎDĴ . (3.13)

P̂ and ˆ̄Q enumerate all scalars M P̂ in the theory, i.e. the ones originating from the N = 2

vector and hypermultiplet sectors. Î and Ĵ run only over the scalars from the vector

multiplets. The hats are meant to indicate N = 1 fields. F Î+
µν and F Î−

µν denote the self-

dual and anti-self-dual N = 1 gauge field strengths. fÎĴ is the holomorphic gauge kinetic

function and given in (D.18). K and K
P̂ ˆ̄Q

= ∂P̂ ∂̄ ˆ̄Q
K are the Kähler potential and Kähler

metric of the scalar field space, which is the direct product of two Kähler manifolds M̂h

and M̂v descending from Mh and Mv

MN=1 = M̂h × M̂v . (3.14)

While M̂v is determined by (3.11), we will discuss M̂h in the following subsection 3.3.1.

The N = 1 Kähler potential K is the sum of the Kähler potentials on M̂h and M̂v, K̂
and Kv

K = K̂ +Kv . (3.15)

W is the superpotential and DP̂W = ∂P̂W + (∂P̂K)W its Kähler-covariant derivative.

DÎ are the D-terms. These terms will be discussed in more detail in the subsections 3.3.2

and 3.3.3. We will see that the superpotential and the D-terms vanish, if only the two

isometries required for partial supersymmetry breaking are gauged. To get a nontriv-

ial scalar potential, additional isometries have to be gauged at a scale m̃ below m3/2.

Additional Killing vectors either preserve the full N = 2 supersymmetry or break super-

symmetry completely [14]. If they break supersymmetry, this breaking can be neglected

if m̃� m3/2 is assumed.

3.3.1 Quotient construction and Kähler potential

Integrating out the two heavy vector bosons of mass m3/2 amounts to taking the quotient

of Mh with respect to the two gauged isometries k̂1 and k̂2. This was shown in [15].

Appendix C contains a review of this derivation and this section contains a short summary.

When the two heavy gauge bosons are integrated out, the covariant derivatives in the

kinetic term of the qu in the Lagrangian (2.4) become partial derivatives, while the metric

is modified

huvDµq
uDµqv → ĥuv∂µq

u∂µqv . (3.16)

ĥuv is the metric on Mh/〈k̂1, k̂2〉, which is a Kähler manifold with metric, Kähler form

and complex structure given by projections of objects related to the quaternionic-Kähler

manifold Mh

ĥuv = π̃wu hwv , K̂uv = π̃wuK
3
wv , Ĵuv = π̃uwJ

3w
v . (3.17)
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The projector π̃uv is

π̃uv ≡ δuv −
2k̂uλk̂λv
m2

, (3.18)

with

m2 = 2k̂u1 k̂1u = 2k̂u2 k̂2u . (3.19)

This projector projects onto the directions orthogonal to k̂1 and k̂2 and the two gauged

isometries are annihilated by the metric and the Kähler two-form of M̂h.

ĥuvk̂
v
1,2 = 0 , k̂u1,2K̂uv = 0 . (3.20)

M̂h is a quotient with respect to the gauged isometries Mh/〈k̂1, k̂2〉, or rather, since some

of the scalars are integrated out themselves, a submanifold thereof

M̂h ⊂Mh/〈k̂1, k̂2〉 . (3.21)

K̂ is the differential of the connection ω3, which appeared first in (2.10)

K̂ = dω3 . (3.22)

Furthermore, the Kähler potential K̂ of M̂h is defined by

K̂st̄ = i ∂s∂̄tK̂ . (3.23)

Since a Kähler two-form has no (2, 0) and (0, 2) parts, (3.22) reads in components

K̂st̄ = ∂sω̄
3
t̄ − ∂̄t̄ω3

s , (3.24)

where ω3
s and ω̄3

s̄ are the holomorphic and anti-holomorphic parts of ω3. By comparing

(3.23) and (3.24), one finds

ω3
s = − i

2
∂sK̂ , ω̄3

s̄ = i
2
∂̄s̄K̂ . (3.25)

3.3.2 The superpotential

The superpotential W appears in the N = 1 gravitino variations, so it can be obtained

by comparing the remaining supersymmetry variation of (3.1) for ε1 with the standard

N = 1 variations [5]

δεΨµ 1 = Dµε− S11γµε̄+ . . . = Dµε− 1
2
e

1
2
KN=1

Wγµε̄+ . . . . (3.26)
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In this way, the following superpotential is found [15]

W = 2e−
1
2
KN=1

S11 = e−K̂/2V ΛΘ λ
Λ P−λ , (3.27)

where P−λ ≡ P 1
λ − iP 2

λ . Since the superpotential appears in the N = 1 supersymme-

try variations, gaugings that lead to a non-vanishing superpotential break the remaining

supersymmetry. The gauged isometries k̂1 and k̂2 are constructed to preserve this super-

symmetry and thus do not contribute to the superpotential, i.e. the indices λ in (3.27)

only run over λ = 3, . . . , n. In order to retain a N = 1 supersymmetric theory, the

gaugings k̂λ, λ = 3, . . . , n are chosen to be at a scale m̃ much smaller than the partial

breaking scale m3/2.

3.3.3 D-terms

The D-terms appear in the N = 1 gaugino variations and were found similarly to the

superpotential, by comparing the N = 1 variations with the expressions for N = 2. Their

derivation is reviewed in appendix D and the result is [15]

DÎ = −ΠI
JΓJK(ImF)−1 KL

(
Θ λ
L − F̄LMΘMλ

)
P 3
λ . (3.28)

ΠI
J and ΓJK are defined in (D.11) and (D.14). They are projectors that act on the field

strengths to project out the heavy gauge bosons. As discussed in the previous section

for the superpotential, only supersymmetry breaking gaugings give contributions to the

D-terms and the λ in (3.28) only runs over λ = 3, . . . , n, as the other terms vanish.

4 Special quaternionic-Kähler manifolds

In the examples we want to study, Mh is further restricted to be a special quaternionic-

Kähler manifold. That means that it contains a (2nh − 2)-dimensional special-Kähler

manifold Msk that has, like Mv, complex coordinates za, a = 1, . . . , nh − 1 and homoge-

neous coordinates ZA = (za, 1), A = 1, . . . , nh, a prepotential G(Z) that is homogeneous

of degree two and a Kähler potential Kh

Kh = − ln i
(
ZAḠA − Z̄AGA

)
. (4.1)

Indices of G are derivatives GA = ∂AG and we define NAB ≡ ImGAB for later use. The

remaining scalars are the 2nh + 2 real fields φ, φ̃, ξA, ξ̃A.4 The construction of the metric

on Mh is called the c-map [26,27].

We will use the following parametrization of the quaternionic vielbein UAα of (2.20).

4In the context of type II string theory, φ corresponds to the dilaton, φ̃ to the axion and ξA, ξ̃A are
Ramond-Ramond scalars.
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It was found in [27] and reads

UAα = UAαu dqu = 1√
2

(
ū ē −v −E

v̄ Ē u e

)
, (4.2)

with the one-forms

u = i eK
h/2+φZA(dξ̃A −MABdξB) ,

v = 1
2
e2φ
[
de−2φ − i(dφ̃+ ξ̃AdξA − ξAdξ̃A)

]
,

E b = − i
2
eφ−K

h/2Π b
A N

−1AB(dξ̃B −MBCdξC) ,

e b = Π b
A dZA .

(4.3)

Π b
A = (−e b

a Z
a, e b

a ) is defined using the vielbein e b
a on Msk andMAB is defined in terms

of (ZA,GA) just as NIJ is in terms of (XI ,FI) in (2.8)

MAB = ḠAB + 2 i
NACNBDZ

CZD

NDCZCZD
. (4.4)

The metric on Mh is

h =
[
v ⊗ v̄ + u⊗ ū+ E ⊗ Ē + e⊗ ē

]
sym

. (4.5)

In the most explicit form, the term in the Lagrangian (2.4) containing the metric reads [28]

huv(q) ∂µq
u∂µqv = − (∂φ)2 − e4φ(∂φ̃+ ξ̃A∂ξ

A − ξA∂ξ̃A)2 + gab̄∂z
a∂z̄b̄

+ e2φImMAB(∂ξ̃ −M∂ξ)A(∂ξ̃ −M∂ξ)B ,
(4.6)

where gab̄ is the metric on Msk.

The coordinates (φ, φ̃, ξA, ξ̃A) define a G-bundle over Msk, where G is the semidirect

product of a (2nh +1)-dimensional Heisenberg group with R. This implies that the metric

of Mh has (2nh + 2) isometries generated by the Killing vectors

kφ = 1
2

∂

∂φ
− φ̃ ∂

∂φ̃
− 1

2
ξA

∂

∂ξA
− 1

2
ξ̃A

∂

∂ξ̃A
,

kφ̃ = − 2
∂

∂φ̃
,

kA =
∂

∂ξA
+ ξ̃A

∂

∂φ̃
,

k̃A =
∂

∂ξ̃A
− ξA ∂

∂φ̃
.

(4.7)

They act transitively on the G-fiber coordinates and the subset {kA, k̃A, kφ̃} spans a
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Heisenberg algebra which is graded with respect to kφ. The commutation relations are

[kφ, kφ̃] =kφ̃ , [kφ, kA] = 1
2
kA ,

[kφ, k̃
A] =1

2
k̃A , [kA, k̃

B] = −δBAkφ̃ ;
(4.8)

all other commutators vanish. The SU(2) connections ωx are given by

ω1 = i(ū− u) , ω2 = u+ ū ,

ω3 = i
2
(v − v̄)− i eK

h (
ZA(ImNABdZ̄B − Z̄ANABdZB

)
.

(4.9)

The Killing prepotentials P x
λ of a special quaternionic-Kähler manifold take the simple

form [29]

P x
λ = ωxuk

u
λ . (4.10)

4.1 Killing vectors satisfying the hyperino condition

We will now review the construction of two commuting Killing vectors k̂1, k̂2 that fulfill

the requirements for partial supersymmetry breaking in terms of the basis Killing vectors

(4.7). It was shown in section 3.1, that the gravitino and gaugino conditions in (3.2)

and (3.3) are fulfilled by choosing an appropriate embedding tensor, but the hyperino

conditions pose the additional constraints (3.6-3.8) on the gauged isometries.

The gauged isometries are enumerated with the index λ = 1, 2 and the ansatz for

expressing them in terms of the basis (4.7) is

k̂λ = r A
λ kA + sλBk̃

B + tλkφ̃ + lλkφ , (4.11)

with real parameters r A
λ , sλB, tλ, lλ. We use the commutation relations (4.8) to calculate

the commutator of the two Killing vectors

[k̂1, k̂2] =
(
r A

[2 s1]A − l[2t1]

)
kφ̃ −

1

2
l[2r

A
1] kA −

1

2
l[2s1]Bk̃

B , (4.12)

so a vanishing commutator requires

0 = r A
[2 s1]A − l[2t1] ,

0 = l[2r
A

1] ,

0 = l[2s1]B .

(4.13)

If we assume l2 6= 0, (4.13) implies that k̂1 and k̂2 are equal up to rescaling, k̂1 = l1
l2
k̂2. So

it is only possible to construct two linearly independent commuting Killing vectors for

lλ = 0 . (4.14)
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The commutation conditions (4.13) reduce to

0 = r A
[λ sρ]A , (4.15)

with λ, ρ = 1, 2. Equation (4.15) is analogous to the locality constraint (2.16) of the

embedding tensor, which emerges in the vector multiplet sector.

Using (4.3), (4.9), (4.10) and the fact that the Killing vectors only have components

in the fiber directions, the first condition on the Killing prepotentials (3.6) becomes

0 = i
2
(v − v̄)k̂1,2 = ξ̃Ar

A
1,2 − ξBs1,2B − t1,2 . (4.16)

Similarly, the conditions (3.7) and (3.8) read

i(ū− u)k̂1 = −(u+ ū)k̂2 ,

(u+ ū)k̂1 = i(ū− u)k̂2 .
(4.17)

These equations can be rearranged into

u(k̂1 + i k̂2) = ū(k̂1 − i k̂2) ,

u(k̂1 + i k̂2) = −ū(k̂1 − i k̂2) ,
(4.18)

or equivalently

0 = u(k̂1 + i k̂2) . (4.19)

We insert (4.3), (4.11) and (4.7) into (4.19) to obtain

0 = i eK
h/2+φZA

(
−GAB(r B

1 + i r B
2 ) + (s1A + i s2A)

)
, (4.20)

where we used the identity

ZAMAB = ZAGAB , (4.21)

that follows directly from the definition of MAB (4.4). The solutions of (4.20) can be

parametrized in terms of a complex vector DA

DA = r A
1 + i r A

2 ,

DAGAB = s1B + i s2B .
(4.22)

To summarize (4.16) and (4.22), the two Killing vectors required for partial supersymme-

try breaking are

k̂1 = ReDAkA + Re(DAGAB)k̃B + Re
(
DA(ξ̃A − GABξB)

)
kφ̃ ,

k̂2 = ImDAkA + Im(DAGAB)k̃B + Im
(
DA(ξ̃A − GABξB)

)
kφ̃ .

(4.23)
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The same expressions were derived in [14] starting from the hyperino condition from (3.2)

directly. Here, we took a shortcut by starting from a set of Killing prepotentials that is

known to fulfill this hyperino condition. Inserting (4.22) into the condition for commuting

Killing vectors (4.15) yields

0 = D̄ANABD
B . (4.24)

So the vector DA has to be null with respect to the matrix NAB, analogous to (3.10).

5 Example prepotentials for the hypermultiplets

In the remainder of this thesis, we will consider some examples of special quaternionic-

Kähler manifolds as scalar field spaces for the hypermultiplets. To this end, we specify

the prepotential G. We will consider some of the prepotentials given in [16] and use this

section to introduce them.

5.1 STU model

The first example suggested in [16] is the STU (here Z1Z2Z3) prepotential

G =
Z1Z2Z3

Z4
. (5.1)

(Z1, Z2, Z3, Z4 = 1) are holomorphic coordinates on the special-Kähler manifold [16,26]

Msk =

(
SU(1, 1)

U(1)

)3

, (5.2)

which is mapped by the c-map to the 16 dimensional symmetric space [16,26]

Mh =
SO0(4, 4)

SO(4)× SO(4)
, (5.3)

which contains Msk as base space and a fiber with real coordinates (φ, φ̃, ξA, ξ̃A), A =

1, . . . , 4 as introduced in section 4.

The Hessian of the STU prepotential (5.1) will be used on multiple occasions, so we

state it here

GAB|Z4=1 =


0 Z3 Z2 −Z2Z3

Z3 0 Z1 −Z1Z3

Z2 Z1 0 −Z1Z2

−Z2Z3 −Z1Z3 −Z1Z2 2Z1Z2Z3

 . (5.4)
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5.2 Quantum STU model

The quantum STU model is defined by the prepotential

G =
Z1Z2Z3

Z4
+
α

3

(Z2)3

Z4
, α ∈ R . (5.5)

Its Hessian contains an additional term compared to the expression from the unperturbed

STU model GAB(α = 0) given in (5.4)

GAB|Z4=1 = GAB(α = 0) + α


0 0 0 0

0 2Z2 0 −(Z2)2

0 0 0 0

0 −(Z2)2 0 2
3
(Z2)3

 . (5.6)

6 Fixed scalars in the N = 1 theory

In this section, we review the explicit construction of M̂h, which is the part of the N = 1

scalar field space descending from Mh when the heavy gravitino multiplet is integrated

out.

For k̂1 and k̂2 to be Killing vectors, all prefactors in (4.23) have to be constant, i.e.

DA = const. , (6.1)

DAGAB = const. , (6.2)

DA(ξ̃A − GABξB) = const. . (6.3)

The first condition (6.1) is trivially satisfied, but (6.2) may fix base coordinates and is

discussed in section 6.1. The third condition (6.3) fixes two of the real coordinates on

the fiber. Another two real fiber coordinates must be fixed by the quotient construction

introduced in section 3.3.1. A way to satisfy both (6.3) and the quotient construction is

discussed in section 6.2.

6.1 Base coordinates

We will discuss in this section how (6.2) and the choice of the prepotential G determine

the fixing of scalars on the base manifold Msk. The condition (6.2) does not imply that

all fields appearing in GAB are fixed, but rather that variations of these fields have to

leave DAGAB invariant. This can be expressed by expanding (6.2) around any base point

Z0 for small variations δZ ≡ Z − Z0

GABDB = GABDB|Z=Z0 + GABCDB|Z=Z0δZ
C . (6.4)
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This implies that (6.2) is equivalent to [15]

GABCDBδZC = 0 . (6.5)

It was pointed out in [16] that (6.5) freezes rk(GABCDB) of the nh − 1 complex coordi-

nates on Msk. The homogeneity of the prepotential implies GABCZC = 0, so Z is a null

eigenvector of the nh × nh matrix GABCDB, which therefore cannot have full rank

rk(GABCDB) ≤ nh − 1 . (6.6)

We will denote the number of complex coordinates on Msk remaining free in the N = 1

theory by n̂h

n̂h ≡ nh − 1− rk(GABCDB) . (6.7)

Table 6.1 shows these numbers for some prepotentials. They are commented on in the

following subsections.

G rk(GABCDB) n̂h

generic nh − 1 0
quadratic 0 nh − 1
(quantum) STU 2 1

Table 6.1: Number of base coordinates descending to M̂h for some prepotentials

Note that the only equations that enter into this discussion are (6.2), (4.24) and (4.1).

That implies that this whole section 6.1 also applies to the construction of the scalar field

space descending from the vector multiplet sector, M̂v, because it is determined by the

analogous equations (3.11), (3.10) and (2.6). We introduce n̂v ≡ dimCM̂v for later use.

To use table 6.1 for the vector multiplets, one has to substitute

G → F , DB → CJ , nh − 1→ nv , n̂h → n̂v . (6.8)

6.1.1 Generic prepotential

With generic prepotential, we mean a prepotential which is not specified in detail, but

which is generic enough for (6.2) to fix all nh − 1 fields za.

6.1.2 Quadratic prepotential

If G is a quadratic function, its second derivatives GAB are constant and (6.2) is trivially

satisfied without fixing any fields.
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6.1.3 STU model

The condition on the base coordinates (6.2) reads for a STU prepotential (5.1) [16]

(D4Z2 −D2)(D4Z3 −D3) = const. , (6.9)

(D4Z1 −D1)(D4Z3 −D3) = const. , (6.10)

(D4Z1 −D1)(D4Z2 −D2) = const. , (6.11)

2D4Z1Z2Z3 −D1Z2Z3 −D2Z1Z3 −D3Z1Z2 = const. . (6.12)

If two of the three brackets appearing in (6.9-6.11) are set to zero, all four conditions are

satisfied and the coordinate appearing in the third bracket remains free, i.e. n̂h = 1. We

will make this choice throughout this thesis, because the other case n̂h = 0 is covered by

the considerations about generic prepotentials. If Z3 is chosen to be the remaining free

coordinate, the conditions are

Z1 =
D1

D4
, Z2 =

D2

D4
, Z3 arbitrary . (6.13)

For simplicity, we set

D4 = 1 , (6.14)

which is allowed, because DA are homogeneous coordinates. Rescaling D has no effect on

any of the considerations, if other variables are also rescaled accordingly, for example the

right hand sides of (6.1-6.3).

The condition that DA has to be null with respect to NAB (4.24), reads with (6.13),

(6.14) and the imaginary part of (5.4) inserted

0 =2
[

Re(D2D̄3) ImD1 + Re(D3D̄1) ImD2 + Re(D1D̄2) ImZ3

− ReD1 Im(D2Z3)− ReD2 Im(Z3D1)− ReD3 Im(D1D2) + Im(D1D2Z3)
]
.

(6.15)

One can use the elementary identities

Re(D1D̄2) ImZ3 − ReD1 Im(D2Z3)− ReD2 Im(Z3D1) = − Im(D1D2Z3) , (6.16)

Re(D2D̄3) ImD1 + Re(D3D̄1) ImD2 − ReD3 Im(D1D2) = 2 ImD1 ImD2 ImD3 , (6.17)

to show that (6.15) can be simplified to read

0 = 4 ImD1 ImD2 ImD3 . (6.18)

This calculation also produces the explicit result for e−K
h
, which is according to (4.1)

e−K
h

= i
(
ZAḠA − Z̄AGA

)
= 2ZANABZ̄

B . (6.19)
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By comparing (6.19) and (4.24) (and using (6.13) and (6.14)), we see that e−K
h

can be

obtained by taking the right hand side of (6.18), replacing D3 with Z3 and multiplying

by two

e−K
h

= 8 ImD1 ImD2 ImZ3 . (6.20)

The domain of the coordinates ZA is restricted due to e−K
h
> 0, so (6.20) dictates

0 6= ImD1 , 0 6= ImD2 , 0 6= ImZ3 . (6.21)

This means that (6.18) becomes

0 = ImD3 . (6.22)

Let us summarize all conditions on the base coordinates (6.13), (6.14), (6.21) and (6.22)

Z1 = D1 ∈ C \ R , Z2 = D2 ∈ C \ R , Z4 = D4 = 1 ,

Z3 ∈ C \ R , D3 ∈ R .
(6.23)

6.1.4 Quantum STU model

For the prepotential (5.5), condition (6.2) reads [16]

(D4Z2 −D2)(D4Z3 −D3) = const. , (6.24)

(D4Z1 −D1)(D4Z3 −D3) + α(D4Z2 −D2)2 = const. , (6.25)

(D4Z1 −D1)(D4Z2 −D2) = const. , (6.26)

2D4Z1Z2Z3 −D1Z2Z3 −D2Z1Z3 −D3Z1Z2 + α(Z2)2(2
3
D4Z2 −D2) = const. . (6.27)

Here (6.25) dictates that Z2 must be fixed. One can arrange for one of the other coordi-

nates to remain free in the same way as in the unperturbed STU model. For Z3 to be

free, (6.13) must again be imposed. We are still allowed to set D4 = 1 as in (6.14).

Let us now determine the domain of the DA and ZA. When we insert (6.13), (6.14)

and the imaginary part of (5.6) into (4.24), we obtain the result from the unperturbed

model (6.18) plus the contribution proportional to α

α

[
D̄2 Im

(
2D2

)
D2 +

(
D̄2 +D2

)
Im
(
−(D2)2

)
+

2

3
Im
(
(D2)3

)]
=

4

3
α
(
ImD2

)3
. (6.28)

So the quantum STU version of (4.24) is

0 = 4 ImD2

[
ImD1 ImD3 +

1

3
α
(
ImD2

)2
]
. (6.29)

e−K
h

can be obtained in the same way as in the STU model (6.20), namely by replacing
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D3 by Z3 in the right hand side of (6.29) and multiplying by two.

e−K
h

= 8 ImD2

[
ImD1 ImZ3 +

1

3
α
(
ImD2

)2
]
. (6.30)

ImD2 has to be non-zero to keep (6.30) finite

0 6= ImD2 . (6.31)

This implies that the bracket in (6.29) must be zero

0 6= ImD1 , ImD3 = −α(ImD2)2

3 ImD1
. (6.32)

Furthermore, the bracket in (6.30) must be non-zero

ImZ3 6= −α(ImD2)2

3 ImD1
. (6.33)

We summarize the conditions (6.13), (6.14), (6.31), (6.32) and (6.33)

Z1 = D1 ∈ C \ R , Z2 = D2 ∈ C \ R , Z4 = D4 = 1 ,

Z3 + i
α(ImD2)2

3 ImD1
∈ C \ R , D3 + i

α(ImD2)2

3 ImD1
∈ R .

(6.34)

This is the same result as in the STU model (6.23), except that the domains of Z3 and

D3 are shifted by an imaginary constant.

6.2 Fiber coordinates

Four real fiber coordinates are fixed by first restricting to the submanifold defined by (6.3)

and then applying the quotient construction of section 3.3.1. We start by introducing

complex fiber coordinates. There is a set of coordinates (za, w0, wA) that was shown

in [15] to be holomorphic on Mh with respect to one of its almost complex structures, J3.

w0 and wA are given by

w0 = e−2φ + i(φ̃+ ξA(ξ̃A − GABξB)) ,

wA = − i(ξ̃A − GABξB) .
(6.35)

The inverse transformation is

φ = −1

2
ln
(
Rew0 + RewAN

−1AB RewB
)
, (6.36)

ξ̃A = −Re(GAB(NBC)−1w̄C) , (6.37)

ξA = −Re((NAB)−1w̄B) . (6.38)
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(6.3) reads in complex coordinates

DAwA = C̃ , (6.39)

with a newly defined complex constant C̃. This condition can be used to fix one complex

coordinate on the fiber.

The explicit construction of the quotient M̂h was most elaborately described in [16]

and goes as follows. Before taking the quotient by the action generated by the Killing

vector fields k̂1 and k̂2, they are combined into one holomorphic vector field

k̂ ≡ k̂1 − ik̂2 = D̄A

(
∂

∂ξA
+ ḠAB

∂

∂ξ̃B
−
(
ξ̃A − ḠABξB

) ∂

∂φ̃

)
, (6.40)

where (4.23) and (4.7) were inserted. One can use (6.35) to show that the action of k̂ on

w0 and wA is

k̂w0 = −4D̄A RewA , (6.41)

k̂wA = −2NABD̄
B . (6.42)

The quotient is taken by identifying points that lie on the same integral curves of k̂

(w0, wA) ∼
(

1 + λk̂
)

(w0, wA) = (w0 − 4λD̄A RewA, wA − 2λNABD̄
B) , (6.43)

with λ ∈ C. It was shown in [14] that ZANABD̄
B 6= 0. That guarantees that each

equivalence class [w0, wA] contains for each D̃ ∈ C exactly one representative fulfilling

ZAwA = D̃ , (6.44)

i.e. the quotient is isomorphic to the submanifold obtained by fixing another coordinate

on the fiber using (6.44). In total, 2 of the nh +1 complex fiber coordinates are fixed in the

N = 1 theory. Including the n̂h remaining base coordinates, M̂h has complex dimension

n̂h + nh − 1.

(6.39) and (6.44) are solved by switching to the coordinates (x0, xa), a = 1, .., î, .., ĵ, .., nh

(̂i and ĵ are omitted) by means of

w0 7→ x0 ,

wa 7→ xa ,

wi 7→ α
(

(ZjDa − ZaDj)xa − ZjC̃ +DjD̃
)
,

wj 7→ −α
(

(ZiDa − ZaDi)xa − ZiC̃ +DiD̃
)
,

(6.45)
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where α is defined as

α ≡ 1

DjZi −DiZj
. (6.46)

This is a generalization of a solution used in [16]. Since the complex structure Ĵ on

M̂h is a projection of J3 (3.17) and the new coordinates (za, x0, xa) are a subset of the

holomorphic coordinates on Mh, (za, x0, xa) are holomorphic with respect to Ĵ .

6.2.1 STU and quantum STU models

Two fiber coordinates are fixed by means of (6.45). With the identities (6.23) or (6.34), Z

and D only differ in their third component, so the denominator in (6.46) is only non-zero

if either i or j is 3. We set i = 3 and can now again use that Z and D are equal in their

other components

Zj = Dj , Za = Da . (6.47)

Now the mappings of wi and wj in (6.45) become

w3 =
−C̃ + D̃

Z3 −D3
, wj = −(Z3 −D3)Daxa − Z3C̃ +D3D̃

Dj(Z3 −D3)
. (6.48)

Since D̃ is an arbitrary constant, we are allowed to set D̃ = C̃ to obtain simple expressions

that are independent of base coordinates

w3 = 0, wj =
C̃ −Daxa

Dj
. (6.49)

The most convenient choice is j = 4 and we will use that in the following sections

(w0, w1, w2) = (x0, x1, x2), w3 = 0, w4 = C̃ −D1x1 −D2x2 . (6.50)

To obtain results for a different set of fiber coordinates, one can take any expression from

the remainder of this thesis and use the last equation in (6.50) to perform a holomorphic

coordinate transformation and eliminate x1 or x2 instead of w4

x1 →
C̃ −D2x2 − w4

D1
or x2 →

C̃ −D1x1 − w4

D2
. (6.51)

7 The N = 1 Kähler potential

The Kähler potential of M̂h was found in [15] by integrating

dK̂ = ∂sK̂dys + ∂̄sK̂dȳs

= 2 iω3
sdy

s − 2 i ω̄3
sdȳ

s ,
(7.1)
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where (3.25) was used and ys, s = 1, . . . , 2nh − 1 are holomorphic coordinates on the

quotient Mh/〈k̂1, k̂2〉. They are chosen in such a way that they coincide with the existing

coordinates za on the base

ys = zs, s ≤ nh − 1 . (7.2)

Specifying the holomorphic fiber coordinates ys, s = nh, . . . , 2nh−1 is not necessary here.

To find the holomorphic and antiholomorphic parts of ω3 that appear in (7.1), it is crucial

that v is holomorphic. This can be seen by comparing the metric (4.5) and the Kähler

form as given in [15]

K̂ = i(v ∧ v̄ + u ∧ ū+ E ∧ Ē − e ∧ ē) , (7.3)

using (2.11) and (3.17). Knowing that v is holomorphic, ω3 from (4.9) can now be written

as the sum of its holomorphic and anti-holomorphic parts

ω3 = ω3
sdy

s + ω̄3
sdȳ

s

= i
2
(vs − ∂sKh)dys − i

2
(v̄s − ∂̄sKh)dȳs .

(7.4)

Inserting ω3
s and ω̄3

s from (7.4) into (7.1), one gets

dK̂ = −(vs − ∂sKh)dys − (v̄s − ∂̄sKh)dȳs

= −v − v̄ + dKh .
(7.5)

Integrating this yields the result from [15]

K̂ = 2φ+Kh . (7.6)

To obtain a form more suitable for further calculations, we exponentiate (7.6) and use

(6.36) to express it in terms of complex fiber coordinates

e−K̂ = e−K
h (

Rew0 + RewAN
−1AB RewB

)
. (7.7)

7.1 STU model

In order to calculate the N = 1 Kähler potential (7.7) for the STU model, we first invert

NAB, which is the imaginary part of (5.4), with the help of Mathematica

(NAB)−1|Z4=1 = − 1

2 ImZ1 ImZ2 ImZ3


|Z1|2 Re(Z1Z2) Re(Z1Z3) Re(Z1)

Re(Z1Z2) |Z2|2 Re(Z2Z3) Re(Z2)

Re(Z1Z3) Re(Z2Z3) |Z3|2 Re(Z3)

Re(Z1) Re(Z2) Re(Z3) 1

 .

(7.8)
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We insert (7.8) and (6.20) into (7.7), already using Z1 = D1 and Z2 = D2

e−K̂ = 8 ImD1 ImD2 ImZ3 Rew0 − 4

(
(RewA)2|ZA|2 +

∑
A 6=B

RewA Re(ZAZB) RewB

)
.

(7.9)

The next step is to insert the full conditions fixing base (6.23) and fiber (6.50) coordinates

into (7.9) to obtain

e−K̂ = 8 ImD1 ImD2 ImZ3 Rex0 − 4

(
(Rexa)

2|Da|2 +
∑
a6=b

Rexa Re(DaDb) Rexb

)
− 4

(
(Re(C̃ −Daxa))

2 + 2 Re(C̃ −Daxa) ReDb Rexb

)
(7.10)

= 8 ImD1 ImD2 ImZ3 Rex0 − 4| ImD1x̄1 − ImD2x2 − iRe C̃|2 .

The last equality in (7.10) is an elementary but slightly lengthy conversion, which was

checked with Mathematica.

After the field redefinitions

−iZ3 → Z3 ,

2 ImD1 ImD2x0 → x0 ,

2 ImD1x1 + iRe C̃ → x1 ,

−2 ImD2x2 − iRe C̃ → x2 ,

(7.11)

(7.10) becomes

e−K̂ = (Z3 + Z̄3)(x0 + x̄0)− (x1 + x̄2)(x̄1 + x2) . (7.12)

This Kähler manifold has dimension 8 and was identified in [30] as

M̂h =
SO(4, 2)

SO(4)× SO(2)
. (7.13)

We saw in this section that the N = 1 Kähler potential of the STU model can be

brought into the simple form (7.12). This Kähler potential has a number of symmetries,

which are listed in appendix E.

7.2 Quantum STU model

The Kähler potential for the quantum STU model is calculated analogously to the STU

model. The inverse of the imaginary part of (5.6) was determined with Mathematica. It
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is

(NAB)−1(α) = g(Z)h(Z)
(

6(ImZ1 ImZ3)2(NAB)−1(α = 0)

+ α ImZ2
{

Re(ZAZ̄B) + 2 ReZA ReZB − 2δAB(ImZA)2 (7.14)

− (δA1 δ
B
3 + δA3 δ

B
1 )(6 ImZ1 ImZ3 + 2α(ImZ2)2)

})
,

with

g(Z) ≡
(
6 ImZ1 ImZ3 + 2α(ImZ2)2

)−1
, (7.15)

h(Z) ≡
(
ImZ1 ImZ3 − α(ImZ2)2

)−1
. (7.16)

(NAB)−1(α = 0) is the expression from the unperturbed STU model (7.8). When the

coordinate fixing conditions (6.34) and (6.50) and the matrix (7.14) are inserted into

(7.7), the third line of (7.14) does not contribute. It appears only multiplied with Rew3,

which is set to zero. The first line of (7.14) is proportional to (NAB)−1(α = 0) and

contributes in the same way as in the unperturbed STU model. We see by comparing

(7.7) and (7.10) that

RewAN
−1AB(α = 0) RewB =

−4| ImD1x̄1 − ImD2x2 − iRe C̃|2

e−Kh(α = 0)
, (7.17)

with e−K
h
(α = 0) given in (6.20). The contribution of the second line of (7.14) is propor-

tional to

RewA
(
Re(ZAZ̄B) + 2 ReZA ReZB − 2δAB(ImZA)2

)
RewB

= 3(ReZA RewA)2 + (ImZA RewA)2 − 2(ImZA)2(RewA)2

= 3(Re C̃ + ImDa Imxa)
2 − (ImD1 Rex1 − ImD2 Rex2)2 ,

(7.18)

where (6.34) and (6.50) were inserted in the last equality. Finally, we introduce the

notation

g(Z3) ≡ g(Z1 = D1, Z2 = D2, Z3) , h(Z3) ≡ h(Z1 = D1, Z2 = D2, Z3) . (7.19)

and note that e−K
h

(6.30) can be expressed in terms of g(Z3)

e−K
h

=
4

3
ImD2g(Z3)−1 . (7.20)
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The Kähler potential is now obtained by inserting (7.14), (7.17), (7.18) and (7.20) into

(7.7)

e−K̂ =
4

3
ImD2g(Z3)−1 Rex0

− 4h(Z3)

(
ImD1 ImZ3| ImD1x̄1 − ImD2x2 − iRe C̃|2 (7.21)

− α

3
(ImD2)2

(
3(Re C̃ + ImDa Imxa)

2 − (ImD1 Rex1 − ImD2 Rex2)2
))

.

C̃ in (7.21) can again be redefined away by the same field redefinition of x1 and x2 as in

(7.11)

2 ImD1x1 + iRe C̃ → x1 ,

−2 ImD2x2 − iRe C̃ → x2 ,
(7.22)

resulting in

e−K̂ = g(Z3)−1

[
4

3
ImD2 Rex0 − 1

6
h(Z3)(x1 + x̄2)(x̄1 + x2)

]
− α

3
(ImD2)2h(Z3)

[
(x1 + x̄2)− (x̄1 + x2)

]2

.

(7.23)

To obtain an equation that is more comparable to (7.12), we first shift Z3 in such a way

that its domain (6.34) matches the one that would be applicable in the unperturbed STU

model (6.23)

Z3 → Z3 − i
α(ImD2)2

3 ImD1
. (7.24)

Now the remaining field redefinitions from (7.11) can be applied

−iZ3 → Z3 ,

2 ImD1 ImD2x0 → x0 .
(7.25)

The effect on g(Z3) and h(Z3) is

g(Z3) →
(
6 ImD1 ReZ3

)−1
,

h(Z3) →
(

ImD1 ReZ3 − α4

3
(ImD2)2

)−1

.
(7.26)

With these field redefinitions, the Kähler potential finally takes the form of (7.12) plus a

perturbative term

e−K̂ = (Z3 + Z̄3)(x0 + x̄0)− (x1 + x̄2)(x̄1 + x2) +
α
[
(x1 + x̄2) + (x̄1 + x2)

]2

4α− 3 ImD1

2(ImD2)2

(
Z3 + Z̄3

) . (7.27)
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In the limit of large α, (7.27) can be approximated as

e−K̂|α→∞ = (Z3 + Z̄3)(x0 + x̄0) +
1

4

[
(x1 + x̄2)− (x̄1 + x2)

]2

. (7.28)

The result (7.27) shares some of the symmetries with the Kähler potential of the unper-

turbed STU model. This is discussed in appendix E.

8 The N = 1 scalar potential

To get a non-zero scalar potential, let us now consider the case where n > 2 linearly in-

dependent isometries are gauged. The gauge bosons are recruited among the graviphoton

and the vectors of the vector multiplets, and the number of available gauge bosons limits

the number of possible gaugings

n ≤ nv + 1 . (8.1)

The commuting Killing vectors are parametrized as in (4.11), but now there are n

of them, λ = 1, . . . , n. k̂1 and k̂2 are the two Killing vectors (4.23) that ensure partial

supersymmetry breaking, while additional gaugings are assumed to have negligible effect

on supersymmetry breaking, as discussed in section 3.3. kA, k̃
B, kφ̃ form a (2nh + 1)-

dimensional Heisenberg algebra, which has maximal Abelian dimension (nh +1) [31], thus

the requested n commuting Killing vectors exist if and only if

n ≤ nh + 1 . (8.2)

The conditions for commuting Killing vectors are (4.14) and (4.15). The condition

(4.15) implies that subsequent gaugings are more and more restricted. The requirement

that k̂3 must commute with k̂1 and k̂2 fixes two of the 2nh parameters r A
3 , s3B. If we keep

adding gaugings one by one, the ith gauging must be chosen such that it commutes with

k̂1 up to k̂i−1 and is thus restricted by (i− 1) conditions.

The commutation condition (4.15) with λ ≥ 3 and ρ = 1, 2 can be brought into a more

useful form by inserting (4.22)

(sλB − r A
λ GAB)DB = 0 . (8.3)

Similarly, the embedding tensor constraint (2.16) with λ ≥ 3 and κ = 1, 2 reads

CI(Θ λ
I −FIJΘJ λ) = 0 , (8.4)

when the explicit Θ 1
Λ and Θ 2

Λ from (3.9) are inserted.

With coordinates and a basis of Killing vectors on Mh at hand, the superpotential

and D-terms can be calculated more explicitly. This is what we will do in the following
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subsections. The only parts of the superpotential (3.27) and the D-terms (3.28) that

depend on the fields of the hypermultiplets are the Killing prepotentials e−K̂/2P −
λ and

P 3
λ , so we will concentrate on calculating those. The rest depends only on the fields of

the vector multiplets and is not affected by inserting a specific G.

8.1 The superpotential

We begin with calculating the Killing prepotential P −
λ , which appears in the superpo-

tential (3.27)

P −
λ = (ω1

u − iω2
u)k̂

u
λ = −2iuu

(
r A
λ kuA + sλAk̃

Au + tλk
u
φ̃

)
, (8.5)

where we use (4.10) in the first and (4.9), (4.11) and (4.14) in the second equality. We

insert (4.7), (4.3) and (4.21) into (8.5) to arrive at

P −
λ = 2eK̂/2(sλB − r A

λ GAB)ZB . (8.6)

The resulting superpotential (3.27) is

W = 2XI(Θ λ
I −FIJΘJ λ)(sλB − r A

λ GAB)ZB . (8.7)

Since the constraints on the Killing vector coefficients (8.3) and the embedding tensor

(8.4) are analogous formulae, the superpotential (8.7) is symmetric under the exchange

of (F , XI) and (G, ZA). In symplectic form, (8.7) reads

W = 2V ΛΘ λ
Λ sλΣU

Σ, (8.8)

with the symplectic vectors sλΣ ≡ (sλA,−r A
λ ) and UΣ ≡ (ZA,GA). If we define the

constant matrix ΘΛΣ ≡ Θ λ
Λ sλΣ and insert it into (8.8), we get the superpotential in the

same form as given in [15]. The lesson we take away from rederiving the result in the form

(8.8) is that the rank of ΘΛΣ is at most n−2. This can be seen as follows. We recall from

section 3.3, that the first two gauged isometries do not contribute to the superpotential,

which implies λ = 3, . . . , n in (8.8). Thus ΘΛΣ is the product of (n−2)-column matrix and

a (n− 2)-row matrix and its rank is bounded by n− 2. The rank of ΘΛΣ is important for

considerations regarding the vacuum of the N = 1 theory, because it limits the number

of constraints that are posed by formulae involving ΘΛΣ.

8.1.1 STU and quantum STU models

The Killing prepotential P −
λ (8.6) can be simplified using (8.3) and (6.23) or (6.34)

e−K̂/2P −
λ = 2(sλB − r A

λ GAB)(ZB −DB) = 2BSTU
λ (Z3 −D3) , (8.9)
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where we defined the constants

BSTU
λ = sλ3 − r A

λ GA3 . (8.10)

BSTU
λ are constants, because GA3 does not depend on Z3

GA3 = ∂A
Z1Z2

Z4

∣∣∣∣
Z1=D1,Z2=D2,Z4=1

= const. . (8.11)

The superpotential is then

W = 2V ΛΘ λ
Λ BSTU

λ (Z3 −D3) . (8.12)

Interestingly, the only term containing a hypermultiplet field (Z3−D3) factors out. This

term can never vanish, because the domains of Z3 and D3 are disjunct, according to

(6.23) or (6.34). We will see in section 9.1 that this implies a vanishing superpotential, if

a (quantum) STU prepotential G is combined with certain other prepotentials F .

8.2 The D-terms

P 3
λ is calculated along the same lines as P −

λ was in section 8.1

P 3
λ = ω3

uk̂
u
λ = e2φ

(
r A
λ ξ̃A − sλAξA − tλ

)
. (8.13)

We can use (6.37-6.38) and (7.6) to switch to holomorphic coordinates

P 3
λ = eK̂−K

h

Re
(
(sλB − r A

λ GAB)(NBC)−1w̄C − tλ
)
. (8.14)

When this Killing prepotential is inserted, the D-terms (3.28) read

DÎ = −eK̂−K
h

ΠI
JΓJK(ImF)−1 KL

(
Θ λ
L − F̄LMΘMλ

)
· Re

(
(sλB − r A

λ GAB)(NBC)−1w̄C − tλ
)
. (8.15)

8.2.1 STU model

P 3
λ (8.14) can only be made more explicit by inserting N−1

ABw̄B. In order to calculate this,

we first write down (7.8) in components

N−1
BA = −4eK

h (
δBA|ZA|2 + (1− δBA) Re(ZBZA)

)
= −4eK

h (
ReZB ReZA + δBA(ImZA)2 − (1− δBA) ImZB ImZA

)
.

(8.16)
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As a first step, we use (8.16) and insert Z4 = 1 and (6.50) to calculate

N−1
BAw̄A = −4eK

h

ReZB( ¯̃C − D̄ax̄a) +N−1
Ba x̄a . (8.17)

Then we insert (8.16) also for the remaining N−1
Ba

N−1
BAw̄A = −4eK

h
(

ReZB ¯̃C − ReZB(ReDa − i ImDa)x̄a

)
+N−1

Ba x̄a

= −4eK
h
(

ReZB ¯̃C +
{

i ReZB ImDa − ImZB ImDa + 2δBa(ImDa)2
}
x̄a

)
.

(8.18)

Using (8.3) again, DÎ is given by (3.28) with Killing prepotential (8.14)

P 3
λ = − 4eK̂Re

{
BSTU
λ (Z3 −D3)(i ImDax̄a)

+(sλB − r A
λ GAB)

(
ReZB ¯̃C + 2

[
δB1(ImD1)2x̄1 + δB2(ImD2)2x̄2

])}
− eK̂−K

h

tλ .

(8.19)

8.2.2 Quantum STU model

To calculate N−1
BAw̄A for the quantum STU model, we first multiply the expression from

the second line of (7.14) with w̄A and insert (6.50)

(
Re(ZBZ̄A) + 2 ReZB ReZA − 2δBA(ImZA)2

)
w̄A

= 3 ReZB( ¯̃C − D̄ax̄a) +
{

3 ReZB ReDa + ImZB ImDa − 2δBa(ImDa)2
}
x̄a (8.20)

= 3 ReZB ¯̃C +
{

3 i ReZB ImDa + ImZB ImDa − 2δBa(ImDa)2
}
x̄a .

We can now use (8.20) and the full N−1
BA (7.14) to obtain

N−1
BAw̄A = g(Z3)h(Z3)

[
6(ImZ1 ImZ3)2(N−1

BAw̄A)(α = 0) (8.21)

+ α ImZ2
(

3 ReZB ¯̃C +
{

3 i ReZB ImDa + ImZB ImDa − 2δBa(ImDa)2
}
x̄a

) ]
.

(N−1
BAw̄A)(α = 0) is the result from the unperturbed STU model (8.18). All the terms in

the second line of (8.21) already appear in (8.18), and when (N−1
BAw̄A)(α = 0) is inserted

into (8.21), the terms combine to cancel either g(Z3) or h(Z3)

N−1
BAw̄A = −3g(Z3)

ImD2
ReZB

(
¯̃C + i ImDax̄a

)
+

h(Z3)

2 ImD2

(
ImZB ImDa − 2δBa(ImDa)2

)
x̄a .

(8.22)

The corresponding P 3
λ can be calculated by inserting (8.22) into (8.14).
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9 Supersymmetric vacua of the N = 1 theory

In this section, we check if the scalar potential (3.13) admits supersymmetric vacua. This

is the case, if we can set 〈DP̂W〉 = 0 and 〈DÎ〉 = 0 [5].

9.1 Minima of VF

Throughout this thesis, we have assumed a Minkowski space, which implies 〈W〉 = 0. We

begin by showing as a consistency check that 〈DP̂W〉 = 0 also requires 〈W〉 = 0. The VF

part of the scalar potential is minimized for

〈DP̂W〉 = 〈(∂P̂ + ∂P̂K)W〉 = 0 , (9.1)

with K = K̂ + Kv. Since W (3.27) and Kv (2.6) are independent of w0 and wA, the

partial derivatives with respect to fiber coordinates vanish and the corresponding covariant

derivatives are

DwW = (∂wK̂)W . (9.2)

The derivative of the Kähler potential given by (7.7) with respect to w0 is non-zero

∂w0K̂ = − 1

Rew0 + RewA(NAB)−1 RewB
= −eK̂−K

h 6= 0 , (9.3)

so 〈Dw0W〉 = 0 implies 〈W〉 = 0.

Let us now turn to the covariant derivatives with respect to the base coordinates X Î

and ZÂ. The indices Î and Â run over the N = 1 fields descending from the vector and

hypermultiplets respectively. That means Â takes n̂h values and Î takes n̂v values. For a

(quantum) STU prepotential G, Â = 3. A quadratic G does not fix any base coordinates

and Â = 1, . . . , nh − 1, while a generic G fixes all fields and there are no Â indices.

The two factors XI(Θ λ
I − FIJΘJ λ) and (sλB − r A

λ GAB)ZB that together form the

superpotential (8.7) are both linear in the fields X Î or ZÂ, for all prepotentials ap-

pearing in table 6.1. For (quantum) STU prepotentials, this is explained by (8.9), for

quadratic prepotentials GAB or FIJ is constant and generic prepotentials fix all fields so

that XI(Θ λ
I −FIJΘJ λ) or (sλB − r A

λ GAB)ZB is constant altogether.

To make this more concrete, we introduce complex constants Aλ and Bλ for the parts

that are constant

XI(Θ λ
I −FIJΘJ λ) ≡


(X3 − C3)AλSTU , F (quantum) STU ,

XIAλquad,I , F quadratic ,

Aλgen , F generic ,

(9.4)
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(sλB − r A
λ GAB)ZB ≡


BSTU
λ (Z3 −D3) , G (quantum) STU ,

Bquad
λB ZB , G quadratic ,

Bgen
λ , G generic .

(9.5)

Combinations of STU , quantum STU and generic prepotentials imply a zero superpo-

tential, because in these cases the superpotential consists only of a constant factor AλBλ

and for (quantum) STU prepotentials factors (X3 − C3) or (Z3 −D3) that are non-zero

due to (6.23) or (6.34). Here 〈W〉 = 0 implies AλBλ = 0 and thus W = 0. In these cases

the superpotential must be set to zero by choosing an appropriate embedding tensor and

gauged Killing vectors.

If STU , quantum STU and generic prepotentials are combined with a quadratic pre-

potential, say F quadratic and G generic or (quantum) STU , the situation is similar.

With the superpotential vanishing in the vacuum, the covariant derivatives are just par-

tial derivatives, which implies either for G generic

0 = 〈∂XIW〉 = 〈2Aλquad,IB
gen〉 , (9.6)

or for G (quantum) STU

0 = 〈∂XIW〉 = 〈2Aλquad,IB
STU(Z3 −D3)〉 . (9.7)

(Z3−D3) is non-zero in the (quantum) STU case, so Aλquad,IB
STU/gen must be set to zero

in either case, which implies that the superpotential vanishes identically. More generally

speaking, a STU , quantum STU or generic prepotential G allows only for non-trivial

superpotentials, if the other prepotential F is such that XI(Θ λ
I − FIJΘJ λ) is not just

linear in the fields XI .

The last remaining case is that both prepotentials are quadratic. We impose 9.1 and

use 〈W〉 = 0

0 = 〈∂XIW〉 = 〈2Aλquad,IB
quad
λA ZA〉 , (9.8)

0 = 〈∂ZAW〉 = 〈2XIAλquad,IB
quad
λA 〉 . (9.9)

Aλquad,IB
quad
λA is the product of a (nv + 1)× (n− 2) and a (n− 2)×nh matrix, so its rank is

at most min(nv + 1, nh, n− 2). The reason why λ takes only n− 2 values is because the

first two gauged isometries do not contribute to the superpotential. We know from (8.3)

and (8.4) that both Aλquad,I and Bquad
λA have a non-trivial null eigenvector

CIAλquad,I = 0 , Bquad
λA DA = 0 , (9.10)
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which restricts the possible rank of Aλquad,IB
quad
λA further

rk(Aλquad,IB
quad
λA ) ≤ min(nv, nh − 1, n− 2) . (9.11)

The conditions (9.8) and (9.9) fix rk(Aλquad,IB
quad
λA ) of the fields ZA and XI respectively. If

rk(Aλquad,IB
quad
λA ) = nh−1, then D is the only non-trivial null eigenvector of the matrix and

(9.8) fixes Z to be proportional to D. This solution however does not lie in the domain

of the ZA, because it creates a contradiction between (4.24) and 2ZANABZ̄
B = e−K

h
> 0.

The same argument would hold for rk(Aλquad,IB
quad
λA ) = nv, but that is not possible due

to (8.1) and (9.11). Thus, a non-trivial superpotential is only allowed for two quadratic

prepotentials if

rk(Aλquad,IB
quad
λA ) < nh − 1 . (9.12)

In this case the vacuum retains nh− 1 + nv − 2rk(Aλquad,IB
quad
λA ) complex moduli from the

XI and ZA.

Let us summarize the results of this section. When considering STU , quantum STU ,

generic or purely quadratic prepotentials, the only case admitting a non-trivial super-

potential with supersymmetric vacua is when G and F are both quadratic and (9.12)

holds.

9.2 Minima of VD

Next we try to set the D-terms (8.15) to zero 〈DÎ〉 = 0, which is another requirement for

a supersymmetric ground state.

First of all, the projectors ΠI
J and ΓJK in (8.15) cause DÎ to be orthogonal to the

vectors X̄J Im(F)JI and C̄(P ) J Im(F)JI due to (D.12) and (D.14)

X̄J Im(F)JIDI = 0 , C̄(P ) J Im(F)JIDI = 0 . (9.13)

This implies that at most nv − 1 of the nv + 1 D-terms can be independent. The nv − 1

complex conditions 〈DÎ〉 = 0 can be satisfied by solving the smaller set of n − 2 real

conditions 〈P 3
λ 〉 = 0, where P 3

λ (8.14) is just one of the factors occurring in DÎ . This is

always a smaller number of conditions due to (8.1). Let us now try to solve these n − 2

real conditions. The term (ImF)−1 KL
(
Θ λ
L − F̄LMΘMλ

)
in (8.15) depends only on the

fields via FIJ . It was argued in the previous subsection that FIJ is constant for quadratic

and generic prepotentials and depends only on X3 for (quantum) STU prepotentials.

Analogously, (sλB− r A
λ GAB)(NBC)−1 depends only on GAB, which in turn depends on Z3

for (quantum) STU prepotentials and is constant otherwise. So there are at most four

real base coordinates available to solve n− 2 equations. On the other hand, P 3
λ contains

the fiber coordinates wA = wA(xa) which depend on the nh − 2 complex fields xa. These

constitute 2(nh − 2) real unknowns to solve n− 2 equations. Because of (8.2), there are

38



always enough unknowns to solve the equations, if nh ≥ 3. After solving 〈P 3
λ 〉 = 0 by

fixing fiber coordinates xa, there are at least 2nh − n − 2 real moduli from the xa left.

The two degrees of freedom of x0 remain untouched.

10 Conclusion

By calculating the N = 1 Kähler potential for the STU model (7.12), we showed that

the quotient and submanifold construction that corresponds to integrating out the heavy

gravitino multiplet can be performed in such a way that the special quaternionic-Kähler

manifold SO(4,4)
SO(4)×SO(4)

descends to the Kähler manifold SO(4,2)
SO(4)×SO(2)

. The deformed N = 1

Kähler potential that emerges from the quantum STU prepotential (5.5) was also deter-

mined (7.27).

For both the perturbed and unperturbed STU prepotentials, two of the three fields

S, T , U are stabilized in the N = 1 theory. The superpotential has a very simple

dependency on the remaining field, a non-zero factor depending on the field factors out. As

a consequence, the superpotential must vanish if both prepotentials are (quantum) STU or

generic. Also, a combination of a (quantum) STU or generic prepotential with a quadratic

prepotential is only compatible with a supersymmetric vacuum, if the superpotential

vanishes identically. An example with non-trivial superpotential and supersymmetric

vacua is the model where both prepotentials F and G are quadratic and the number of

gauged isometries does not exceed the number of hypermultiplets.

Acknowledgments

Sincere thanks are given to Prof. Jan Louis for making this master thesis possible and

for the committed and friendly mentoring. I would also like to thank Paul Smyth and

Hagen Triendl for helpful conversations and Prof. Vicente Cortés for agreeing to act as

my second supervisor.

A Symplectic invariance

Since symplectic objects appear throughout this thesis, we introduce the symplectic in-

variance that is inherent to the vector multiplets. This discussion follows the review [17].

The dual magnetic field strengths are defined as

Gµν±
I = ± i

2

∂L
∂F I±

µν

. (A.1)
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Spacetime indices are suppressed from now on. One can read off from Lagrangian (2.4)

G+
I = NIJ F J+ , G−I = N IJ F

J− . (A.2)

The field equations and Bianchi identities of the vectors that are associated with the

Lagrangian are

∂µ ImF I±
µν = 0 ,

∂µ ImGI±
µν = 0 .

(A.3)

These equations are not affected by the rotation(
F+

G+

)′
=

(
A B

C D

)(
F+

G+

)
,

(
F−

G−

)′
=

(
A B

C D

)(
F−

G−

)
, (A.4)

with

(
A B

C D

)
≡ Λ ∈ GL(2nv,R). The transformations are further restricted by the fact

that the definition of G±′ (A.1) must still lead to a symmetric kinetic matrix N . Inserting

the primed quantities into the first equation of (A.2) gives

N ′ = (C +DN ) (A+BN )−1 (A.5)

Requiring N ′ = N ′T results in

(C +DN ) (A+BN )−1 = (A+BN )−1T (C +DN )T , (A.6)

or equivalently

(A+BN )T (C +DN ) = (C +DN )T (A+BN ) . (A.7)

The requirements on Λ can be extracted from (A.7) in powers of N .

ATC = CTA ,

NBTDN = NDTBN , (A.8)

(ATD − CTB)N = N (DTA−BTC) .

The last equation implies that (ATD − CTB) is proportional to the identity matrix. If

rescalings are neglected, (A.8) can be brought into the familiar form of conditions for

symplectic matrices

ATC − CTA = 0 ,

BTD −DTB = 0 , (A.9)

ATD − CTB = 1 .
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This means Λ is an element of the symplectic group Sp(2nv,R). The symplectic symmetry

extends to the scalars of the vector multiplets due to (A.5) and the fact that N is a

function of these scalars (2.8). In order to find a true symmetry of the Lagrangian, the

symplectic duality transformations on the field strengths have to be accompanied by a

suitable transformation of the scalars that provides for the correct transformation (A.5)

of N . This leads ultimately to the requirement that the group of isometries on Mv that

leave the Lagrangian invariant must be embedded into Sp(2nv,R) [17]. As a result, the

global invariance group of the ungauged Lagrangian (2.4) is embedded into a product of

Sp(2nv,R) and the group of isometries on the hypermultiplet scalar manifold Iso(Mh)

Gglobal ⊆ Sp(2nv,R)× Iso(Mh) . (A.10)

B Supersymmetry breaking conditions

This appendix follows a more general calculation from [14]. Here, a shortened derivation

that is only applicable in a Minkowski background is provided. It will be shown that in

the scenario at hand, where a prepotential F exists, partial supersymmetry breaking is

only possible in the presence of magnetic charges and restricts the embedding tensor.

(2.18) is inserted into the first equation of (3.2) to get

WiAB ε
B
1 = − i eK

v/2(∇iX
IΘ λ

I −∇iFIΘIλ)P x
λ ε
AC(σx)∗BC εB1

= i eK
v/2(∂iX

IΘ λ
I − ∂iFIΘIλ)P x

λ (σx) CA εCBε
B
1 + 2 iKv

i SABε
B
1

= i eK
v/2(Θ λ

i −FiIΘIλ)P x
λ (σx) CA εCBε

B
1 = 0 ,

(B.1)

where the vanishing gravitino variation of (3.2) and the following identity were used

εAC(σx)∗ BC = −(σx) CA εCB . (B.2)

With (B.1), the vanishing gravitino variation of (3.2) implies

eK
v/2(∂0X

IΘ λ
I − ∂0FIΘIλ)P x

λ (σx) CA εCBε
B
1 = 0 , (B.3)

Combining (B.1) and (B.3) yields

(Θ λ
I −FIJΘJλ)P x

λσ
x
ABε

B
1 = 0 for all I , (B.4)

Taking the complex conjugate of the broken gravitino variation of (3.3) and inserting

(εA2 )∗ = εABε
B
1 , (B.5)
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yields

(SABε
B
2 )∗ = 1

2
eK

v/2V̄ ΛΘ λ
Λ P x

λ (σx)∗ CA εCBεBDε
D
1 6= 0 . (B.6)

Now (B.2) can be used again to show that (B.6) implies

(Θ λ
I − F̄IJΘJλ)P x

λσ
x
ABε

B
1 6= 0 for some I . (B.7)

One immediately sees that (B.4) and (B.7) cannot be satisfied simultaneously, if there are

no magnetic charges, ΘJλ = 0. They also cannot be both satisfied if only one isometry

is gauged, because then (B.4) factorizes and the vanishing of either of the factors implies

the vanishing of the left side of (B.7). Furthermore, (B.4) and (B.7) can only be satisfied

for certain embedding tensors.

The next step that was done in [15] was to choose a SU(2) frame to simplify the

analysis, namely P 3
1,2 = 0. For εA1 = (ε11, 0), (B.4) and (B.7) then become

P−1 (Θ 1
I −FIJΘJ1) + P−2 (Θ 2

I −FIJΘJ2) = 0 for all I , (B.8a)

P−1 (Θ 1
I − F̄IJΘJ1) + P−2 (Θ 2

I − F̄IJΘJ2) 6= 0 for some I , (B.8b)

where

P±λ ≡ P 1
λ ± iP 2

λ . (B.9)

(B.8) is solved by

Θ 1
I = − Im(P+

2 FIJCJ) , ΘI1 = − Im(P+
2 C

I) ,

Θ 2
I = Im(P+

1 FIJCJ) , ΘI2 = Im(P+
1 C

I) ,
(B.10)

for an arbitrary complex vector CI .

There is one condition left that must be enforced to make sure that the supersymmetry

generated by εA1 is really unbroken, the hyperino condition in (3.2)

0 = NαAε
A
1 = N2

αε21ε
1
1 . (B.11)

Inserting N2
α from (2.18) results in

k̂u U2
αu = 0 , (B.12)

where

k̂u = V Λ
(
Θ 1

Λ k̂u1 + Θ 2
Λ k̂u2

)
. (B.13)

At this point a change of basis is performed. k̂u1,2 denote the real and imaginary parts of

(B.13) from now on. This does not affect the form of Lagrangian, if the embedding tensor
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is changed accordingly. One can contract (B.12) with UBαv and use the formula [17,23]

UAαuUBαv = − i
2
Kx
uvσ

xAB − 1
2
huvε

AB , (B.14)

to obtain

k̂u
(
J1 v

u − i J2 v
u

)
= 0 , k̂uJ3 v

u = i k̂v . (B.15)

The relation between the almost complex structures (2.9) can be used to show that these

two conditions are equivalent on a quaternionic-Kähler manifold. The second equation

in (B.15) just means that k̂u is holomorphic with respect to J3. Written in real and

imaginary parts of k̂u it reads

J3 v
u k̂

u
1 = −k̂v2 , J3 v

u k̂
u
2 = k̂v1 . (B.16)

Contracting the first equation of (B.15) with the metric and reading off real and imaginary

parts, one obtains

k̂u1K
1
uv = −k̂u2K2

uv , k̂u1K
2
uv = k̂u2K

1
uv . (B.17)

Having in mind the definition of the Killing prepotentials (2.19), (B.17) can be arranged

by choosing prepotentials

P 1
1 = −P 2

2 , P 2
1 = P 1

2 . (B.18)

This, together with the aforementioned

P 3
1 = P 3

2 = 0 , (B.19)

is a sufficient condition to fulfill the hyperino constraint. With (B.18) and after a redefi-

nition of the CI , the embedding tensor (B.10) becomes

Θ 1
I = Re

(
FIJ CJ

)
, ΘI1 = ReCI ,

Θ 2
I = Im

(
FIJ CJ

)
, ΘI2 = ImCI .

(B.20)

One can conclude that (B.18-B.20) are sufficient conditions for partial supersymmetry

breaking.

C Kähler potential

This appendix reviews the discussion of the quotient construction of [15]. It is shown

that integrating out the two heavy gauge bosons corresponds to taking the quotient

Mh/〈k̂1, k̂2〉. The resulting target space is a Kähler manifold, consistent with N = 1

supersymmetry, and the Kähler potential is determined.
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The Lagrangian (2.4) with covariant derivatives (2.14) has the gauge boson mass terms

huvDµq
uDµqv = . . .+ huv

(
A I
µ Θ λ

I −BµI ΘIλ
)
k̂uλ
(
AµI Θ ρ

I −B
µ
I ΘIρ

)
k̂vρ . (C.1)

The two heavy gauge bosons can be identified as

Aλµ ≡ AΛ
µΘλ

Λ = AIµΘλ
I −BµIΘ

Iλ , (C.2)

and the following mass matrix can be shown to be diagonal using (B.16) and J3 v
uJ

3 w
v =

−δwu
m2
λρ = 2k̂uλhuvk̂

v
ρ = m2 δλρ , (C.3)

where

m2 = 2k̂u1 k̂1u = 2k̂u2 k̂2u . (C.4)

In the limit p� m3/2, the kinetic terms of the massive gauge bosons can be neglected in

order to obtain the algebraic field equations

∂L
∂Aλµ

= −2k̂vλhuvDµq
u = −2k̂vλhuv∂µq

u +m2
λρA

ρ
µ = 0 , λ, ρ = 1, 2 , (C.5)

which are used to eliminate the gauge fields. The gauge fields only appear in the covariant

derivatives (2.14) and can be eliminated using (C.5)

Dµq
u = π̃uv∂µq

v , with the projector π̃uv ≡ δuv −
2k̂uλk̂λv
m2

, (C.6)

The Lagrangian now reads

L̂ = ĥuv∂µq
u∂µqv , (C.7)

with

ĥuv = π̃wu hwrπ̃
r
v = π̃wu hwv . (C.8)

The last equality can be easily verified using (C.4). The two gauged isometries are anni-

hilated by the metric

ĥuvk̂
v
1,2 = 0 , (C.9)

so they are orthogonal to the N = 1 field space. This implies that the resulting manifold

is the quotient with respect to the gauged isometries.

The Kähler two-form K̂uv on the quotient was calculated in a similar way, by imposing

an auxiliary two-dimensional σ-model with metric K3
uv and performing analogous steps.

For this purpose, the following auxiliary Lagrangian is used

LK3 = K3
uvDαq

uDβq
vεαβ , α, β = 1, 2 . (C.10)
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The mass matrix is now

m2
λρ = 2k̂uλK

3
uvk̂

v
ρ = m2 ελρ , (C.11)

with m2 still being the one from (C.4). This time, the field equation in the low-energy

limit is

∂LK3

∂Aλα
= −2k̂uλK

3
uvDβq

vεαβ = −2k̂uλK
3
uv∂βq

vεαβ +m2
λρA

ρ
βε
αβ = 0 , λ, ρ = 1, 2 . (C.12)

One can show using (C.11) that the this field equation leads again to the same covariant

derivative (C.6). One obtains the N = 1 Lagrangian

L̂K3 = K̂3
uvDαq

uDβq
vεαβ , (C.13)

with

K̂uv = π̃wuK
3
wrπ̃

r
v = K3

uv −
2k̂λuελσk̂σv

m2
= π̃wuK

3
wv . (C.14)

The next step is to show that the K̂ is the differential of the connection ω3

K̂ = dω3 . (C.15)

To this end, it is used that for two commuting isometries k̂1 and k̂2 [17]

2k̂u1 k̂
v
2K

x
uv + εxyzP y

1 P
z
2 = 0 , (C.16)

so that the squared mass m2 in (C.11) is

m2 = 2k̂u1K
3
uvk̂

v
2 = P 1

1P
2
2 − P 1

2P
2
1 . (C.17)

Contracting (B.16) with the metric and using the definition of the prepotentials (2.19)

yields

k̂2v = k̂u1 K
3
uv = − 1

2

(
ω2
vP

1
1 − ω1

vP
2
1

)
,

k̂1v = − k̂u2 K3
uv = − 1

2

(
ω1
vP

2
2 − ω2

vP
1
2

)
.

(C.18)

When (C.17) and (C.18) are inserted into (C.14), the result is

K̂uv = K3
uv +

1

2
(ω2

uω
1
v − ω1

uω
2
v) = ∂uω

3
v − ∂vω3

u , (C.19)

where (2.10) was used in the second step. So K̂ = dω3 is a closed fundamental two-form.

The almost complex structure on the quotient is defined by the equivalent to (2.7)

Kuv = huwJ
w
v . It is

Ĵuv = π̃uwJ
3w
v , (C.20)

the projected complex structure J3.
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All that is left to do now to show that Mh/〈k̂1, k̂2〉 is a Kähler manifold is to show

that it is a complex manifold, i.e. that the Nijenhuis-tensor vanishes, which is indeed the

case [15].

D D-terms

The N = 1 D-terms were derived in [15]. This appendix follows this derivation. The

D-terms were found similarly to the superpotential in section 3.3.2. They appear in the

N = 1 gaugino variations. In this case, it is necessary to identify the N = 1 gaugino

among the available gauginos first. To this end, the followingN = 2 gaugino variation [17]

is considered

δελ
iA = γµ∂µt

iεA − G̃i−
µνγ

µνεABεB +W iABεB + . . . . (D.1)

Here G̃i−
µν are the ‘dressed’ anti-self-dual field strengths [17]

G̃i−
µν = −e

Kv

2 gij̄∇j̄X̄
IImNIJF J−

µν + . . . . (D.2)

The ellipses denote higher-order fermionic contributions. Inserting the preserved super-

symmetry variation ε1 = (ε, 0), ε2 = 0, (D.1) becomes

δελ
i1 = γµ∂µt

iε̄+W i11ε + . . . , (D.3)

δελ
i2 = − G̃i−

µνγ
µνε+W i21ε + . . . . (D.4)

The standard N = 1 variations are [5, 25]

δελ
Î = F Î−

µν γ
µνε+ iDÎε + . . . , (D.5)

So λi2 are candidates, but before the D-terms can be read off, one first has to know how

the ‘dressed’ magnetic field strengths G̃i−
µν compare to the N = 1 field strengths F Î−

µν .

First, an expression for the N = 1 field strengths is introduced. Integrating out the

heavy gauge bosons (C.2) corresponds to fixing them to constants, ∂µA
1,2
ν = 0, which

implies for the field strengths

Θλ
I F

I±
µν −ΘλIG ±Iµν = 0 , λ = 1, 2 . (D.6)

This is easily checked by inserting the familiar definition of the Abelian (anti-)self-dual
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field strengths

Θλ
I F

I± −ΘλIG ±I

=
1

2

(
Θλ
I∂[µA

I
ν] −ΘλI∂[µBν]I

)
± i

4
εµνρσ

(
Θλ
I∂[ρA

I
σ] −ΘλI∂[ρBσ]I

)
=

1

2
∂[µA

λ
ν] ±

i

4
εµνρσ∂[ρA

λ
σ] = 0 .

(D.7)

Inserting complex combinations of the embedding tensor solution (3.9) into (D.6) and

using (A.2), one obtains

CI(FIJ − N̄IJ)F J− = 0 , (D.8)

C̄I(F̄IJ − N̄IJ)F J− = 0 . (D.9)

When (2.8) is inserted and after omitting a non-zero factor, (D.8) becomes

X̄I Im (FIJ)F J− = 0 . (D.10)

To get a field strength satisfying (D.10), one defines the projector

ΠI
J ≡ δIJ − 2eK

v

XIX̄K Im(F)KJ . (D.11)

The projected field strength ΠI
JF

J− satisfies (D.10) automatically, because

X̄I Im (FIJ) ΠJ
K = 0 . (D.12)

Analogously, (D.9) yields

C̄(P ) I Im(F)IJF
J− = 0 , (D.13)

with C(P ) I ≡ ΠI
JC

J . The term in (D.13) which is proportional to X̄I Im (FIJ)F J−

vanishes because of (D.10), but the projection on CI is necessary to make sure that ΠI
J

commutes with the projector induced by (D.13)

ΓIJ ≡ δIJ −
C(P ) IC̄(P )K Im(F)KJ
C(P )M Im(F)MN C̄(P )N

. (D.14)

Indeed, one can check that thanks to the definition of C(P ) I

ΠI
KΓKJ = ΠI

J + ΓIJ − δIJ = ΓIKΠK
J . (D.15)

One can also easily check that ΓIJ and ΠI
J are both idempotent

ΠI
KΠK

J = ΠI
J , ΓIKΓKJ = ΓIJ . (D.16)
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The light field strengths are now the projected ones

F Î− ≡ F I−
∣∣∣
N=1

= ΠI
JΓJKF

K− . (D.17)

When the N = 1 field strengths are inserted into the term iN IJ F
I−
µν F

µν J− of the La-

grangian (2.4), the second term in the definition of N IJ (2.8) drops out due to (D.10) and

we are left with the gauge coupling for the Lagrangian (3.12) [15]

fIJ = iN̄IJ
∣∣∣
N=1

= iFIJ . (D.18)

Let us now come back to the D-terms. The term −G̃i−
µν in (D.4) is mapped onto the

one with F Î−
µν = ΠI

JΓJKF
K− in (D.5) if the following relation holds

δελ
Î = −2e

Kv

2 ΠK
J ΓJI∇iX

Iδελ
i2 . (D.19)

This can be shown by using (D.2) and the relation [17]

∇iX
Igi̄∇̄X̄

J = −1
2
e−K

v

(ImN )−1 IJ −XIX̄J , (D.20)

to calculate

2e
Kv

2 ΠK
J ΓJI∇iX

IG̃i−
µν

= − 2eK
v

ΠK
J ΓJI∇iX

Igij̄∇j̄X̄
LImNLMFM−

µν (D.21)

= ΠK
J ΓJIF

J−
µν + 2eK

v

ΠK
J ΓJIX

IX̄LImNLMFM−
µν .

The last term in the last line vanishes, because ΠI
JX

J = 0. One can now use (D.19) to

compare (D.5) and (D.4) and read of the D-terms

DÎ =2ie
Kv

2 ΠI
JΓJK∇iX

KW i21

=− 2eK
v

ΠI
JΓJK∇iX

Kgij̄∇j̄X̄
L
(
Θ λ
L − F̄LMΘMλ

)
P 3
λ

(D.22)

where the definition of W i21 (2.18) was put to use. Inserting (D.20) again and using

(D.18) finally results in

DÎ = −ΠI
JΓJK(ImF)−1 KL

(
Θ λ
L − F̄LMΘMλ

)
P 3
λ . (D.23)

E Symmetries of the STU model Kähler potentials

We use this appendix to give some symmetries of the Kähler potentials (7.12) and (7.27).

Kähler potentials that are related by a Kähler transformation K̂ → K̂ + F + F̄ with F

holomorphic describe the same Kähler manifold. Some of the presented symmetries come
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with such a Kähler transformation F . Complex parameters are denoted by α and real

ones by a, b, c, d.

The N = 1 Kähler potentials of the STU (7.12) and the quantum STU (7.27) models

both depend only on ReZ3, Rex0 and (x1 + x̄2), so they are invariant under shifts of

(x1 − x̄2) and of the imaginary parts of Z3 and x0

Z3 → Z3 + i a ,

x0 → x0 + i b ,

x1 → x1 + α ,

x2 → x2 − ᾱ , F = 0 .

(E.1)

We state some more symmetries of the STU Kähler potential (7.12) that were dis-

covered in [30]. Since the Kähler potential is invariant under exchange of Z3 and x0, the

same symmetries with these coordinates exchanged also apply

Z3 → Z3 ,

x0 → x0 + a2Z3 + a(x1 + x2) ,

x1 → x1 + aZ3 ,

x2 → x2 + aZ3 , F = 0 ,

(E.2)

Z3 → −x0

−Z3x0 + x1x2

,

x0 → −Z3

−Z3x0 + x1x2

,

x1 →
x1

−Z3x0 + x1x2

,

x2 →
x2

−Z3x0 + x1x2

, F = ln(Z3x0 − x1x2) ,

(E.3)

Z3 → aZ3 − ib
icZ3 + d

,

x0 → x0 − ic x1x2

icZ3 + d
,

x1 →
x1

icZ3 + d
,

x2 →
x2

icZ3 + d
, F = ln(icZ3 + d) ,

(E.4)

with ad− bc = 1.
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