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Summary

In this master thesis N = 1 supersymmetric actions involving the massless and massive 3-

form gauge field in four spacetime dimensions are constructed and analyzed in a systematic

way. The issue of boundary terms and boundary conditions for the massless 3-form

is discussed, including a supersymmetric formulation. Special emphasis is put on non-

renormalizable sigma model actions and the Poincaré dualization of these actions. The

resulting scalar target space geometries are Kähler where the respective field variables and

superspace couplings are related by a Legendre transformation. The transition between

the on-shell action and dual action is analyzed on the component level and shown to

constitute a local field redefinition in the massless case.

Zusammenfassung

Diese Masterarbeit behandelt die Konstruktion von N = 1 supersymmetrischen Wirkun-

gen des masselosen und massiven 3-Form-Eichfelds in vier Raumzeit-Dimensionen auf

systematische Weise. Die Bedeutung von Randtermen und Randbedingungen für die

masselose 3-Form wird diskutiert und in die supersymmetrische Formulierung übertragen.

Insbesondere werden nicht-renormierbare sigma-Modelle und deren Poincaré-Dualisierung

untersucht. Die dabei gefundenen Skalarfeld-Geometrien in Wirkung und dualer Wirkung

sind Kähler, wobei die auftretenden Feldvariablen und Superraum-Kopplungen durch eine

Legendre-Transformation zusammenhängen. Der Übergang zwischen on-shell-Wirkung

und dualer Wirkung wird auf der Ebene der Komponentenfelder analysiert. Im mas-

selosen Fall stellt dieser eine lokale Feldredefinition dar.
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1 Introduction

Supersymmetry is one of the most attractive concepts of theoretical physics for several

reasons. First of all, it is the only possible nontrivial extension of the Poincaré symmetry

group for the S matrix under reasonable physical assumptions [1, 2, 3]. As spacetime

possesses all the Poincaré symmetries it seems to be most natural that this additional

symmetry is realized in nature as well. Furthermore, supersymmetry could resolve most of

the problems of the standard model, e.g. the hierarchy problem and the missing candidate

for a dark matter particle [4, 5]. In its local form as supergravity, supersymmetry could

even provide the framework for a consistent quantum gravity [6].

Supersymmetry is also an essential feature of string theory, which is today the most

promising candidate for a unified fundamental theory of particle physics. In the low

energy limit of string theory (which is supergravity), the vibrational modes of the string

appear as familiar particles such as gauge bosons, matter fermions and scalars but also

as less familiar particles such as 2-, 3- and 4-form fields [7, 8]. The latter live in a

10 dimensional spacetime as this is the number of dimensions of consistent superstring

theories with geometrical interpretation. To find the particles that can be observed in our

four-dimensional world, one has to compactify the extra dimensions e.g. by the Kaluza-

Klein technique [9]. In this process there arise also p-forms that live in four dimensions

[7, 10]. Therefore it is important to study the properties of these fields in supersymmetric

theories.

In this work we investigate supersymmetric actions containing the 3-form gauge field.

This field appears in the Kaluza-Klein compactification of type IIA supergravity [10, 11].

Apart from that, it can be used to describe Chern-Simons terms in super Yang-Mills

theories [12]. The 3-form has the interesting property of not possessing any on-shell

degrees of freedom in the massless case. This can be seen either from its equation of

motion, which makes its field strength a constant, or by finding the Poincaré dual action

which explicitly contains a constant field. These constants that appear in the (on-shell)

action and dual action respectively can be considered as a natural origin of a cosmological

constant which is needed to explain the observed acceleration in the expansion of the

universe [13, 14]. This is another reason for the increased interest in theories including 3-

forms over the last decades. In the massive case however, the 3-form acquires one on-shell

degree of freedom by ‘eating’ a 2-form field. Then it is dual to a massive scalar.

In this thesis we do not restrict to renormalizable actions but rather concentrate on

the general case of a sigma model action with 3-form supermultiplets. We will compute

the component form of this action which has the structure of a Kähler geometry and

eliminate the auxiliary fields to find the effective on-shell action. Special emphasis will

be put on the dualization of this action and the relation between the on-shell component

action and dual action. We will find that the scalar fields of the dual action come with the

same Kähler geometry but expressed in terms of the Legendre transform of the original
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Kähler potential.

This work is structured as follows. Section 2 recalls some aspects of supersymme-

try that are needed throughout this work. In Section 3 the supermultiplet containing

the 3-form and the associated field strength multiplet is introduced. We discuss gauge

and supersymmetry transformations of this multiplet. In an intermezzo we study the

actions of the massless and massive 3-form and their dualization, including the discussion

of boundary terms and boundary conditions for the massless 3-form. Then we proceed

to the supersymmetric case and give the renormalizable actions for the 3-form multiplet

(massless and massive). When we dualize these actions, we will find a new supermulti-

plet which in the massless case is closely related to the complex linear one [15, 16]. In

Section 4 we generalize the analysis to non-renormalizable actions. Here we confine our

attention to the bosonic part of the action and focus on the appearing scalar geometries.

In Section 5 we couple massive 3-form multiplets to chiral ones first in renormalizable,

then in generic theories. We conclude in Section 6. Some additional material is given

in four appendices. Appendix A summarizes the conventions of this work, together with

some useful relations. In Appendix B some generic formulas for eliminating auxiliary

fields are derived. Appendix C gives a brief introduction to the Legendre transformation,

while in Appendix D we analyze the transition of the massive sigma model action to the

dual action on the component level.

This master thesis is based upon the diploma thesis of K. Groh [17]. There has been a

discrepancy between his result for the dual sigma model action of the 3-form multiplet and

a result stated in [18] for the sigma model action with complex linear multiplets which

is a special case of the former (see Sec. 4). The aim of this master thesis is to clarify

this discrepancy and to answer the question whether the dual scalar geometry is Kähler

again. Beyond this, the work of K. Groh has been completely revised and extended in

many ways.

The results found by K. Groh for the renormalizable actions of the massless and

massive 3-form multiplet are stated in Section 3. Here the new contribution of this work

is, besides the supersymmetry variation of the 3-form multiplet, the discussion of boundary

terms and boundary conditions for the 3-forms first on the component level, then in the

supersymmetric generalization in terms of superfields. The main new developments of

this work are presented in Sections 4 and 5: For the sigma model action of the massless

3-form multiplet we will again derive the supersymmetric boundary terms that have to

be added to the action in order to eliminate the massless 3-forms in a consistent way.

In the dualization of this action with the technique proposed in [17] elimination of the

auxiliary fields is performed in a systematic and straightforward way. The correct on-

shell dual component action is found and shown to be equal to the original on-shell

action by use of the duality relations between the physical fields appearing these actions,

thereby providing a consistency check for the correctness of the result. Dualization of

the massive sigma model action is demonstrated and in App. D the on-shell component
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action is translated back into the original action using the duality relations between the

component fields together with their equations of motion. The same check account is

done for the special case of Kähler potentials with a shift symmetry that is treated in

Section 4.4. For the coupling of 3-form multiplets to chiral ones, we will depart from a

more general ansatz than ref. [17] both for the renormalizable as well as for the generic

case. Here complete new contributions are given by the analysis of the conditions for

spontaneous supersymmetry breaking and the mass spectrum in the case of vanishing

superpotentials. In the generic case we will eliminate the auxiliary fields from the action

and determine the scalar potential and the metric for the 3-form field strengths.

The results of [17] and this work will also be presented in a paper [19] to be published

soon.

2 Some aspects of supersymmetry

This work does not give an introduction to supersymmetry; for this we refer to the litera-

ture (see e.g. [20, 21, 22, 23]). However, let us briefly recall some ideas of supersymmetry

that are needed for the understanding of the following sections.

2.1 Supersymmetry algebra, superfields, covariant derivatives,

supersymmetric actions

The generators of simple (N = 1) supersymmetry Qα satisfy the anticommutation rela-

tions
{Qα, Q̄β̇} = 2σm

αβ̇
Pm = −2iσm

αβ̇
∂m, α, β̇ = 1, 2, m = 0, . . . , 3,

{Qα, Qβ} = 0, {Q̄α̇, Q̄β̇} = 0,
(2.1)

where σ0 = −1 and σi with i = 1, 2, 3 are the Pauli matrices. On superspace (the space

which is parameterized by the four spacetime variables xm plus two complex Grassmann

valued coordinates θα), they can be represented by1

Qα = −i ∂
∂θα
− σm

αβ̇
θ̄β̇∂m, Q̄α̇ = i

∂

∂θ̄α̇
+ θβσmβα̇∂m. (2.2)

The concept of superspace makes it very easy to find supermultiplets, i.e. representa-

tions of the supersymmetry algebra (2.1). The operators (2.2) already define a (highly

reducible) representation on the space of superfields (functions that are defined on super-

1Both Qα and Q̄α̇ as defined here differ by a factor of −i from those defined in [20]. With these
conventions there is no sign discrepancy between (2.1) and (2.2). However, the supersymmetry variation
defined in (2.6) (which is the only place where Qα and Q̄α̇ enter in this work) is in agreement with the
conventions of [20] where it is defined as δξF = (ξQ+ ξ̄Q̄)F .
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space). To find subrepresentations one defines the covariant superspace derivatives2

Dα :=
∂

∂θα
+ iσm

αβ̇
θ̄β̇∂m, D̄α̇ :=

∂

∂θ̄α̇
+ iθβσmβα̇∂m. (2.3)

They satisfy

{Dα, Qβ} = 0 = {Dα, Q̄β̇}, {D̄α̇, Q̄β̇} = 0 = {D̄α̇, Qβ},

{Dα, Dβ} = 0 = {D̄α̇, D̄β̇}, {Dα, D̄β̇} = 2iσm
αβ̇
∂m.

(2.4)

Since Dα and D̄α̇ anticommute with Qα and Q̄α̇, they can be used to construct supersym-

metry invariant conditions on superfields (e.g. D̄α̇F = 0) and thus subrepresentations of

the supersymmetry algebra on the space of superfields.

A superfield F can always be expanded in terms of component functions as

F (x, θ, θ̄) = f(x) + θη(x) + θ̄χ̄(x) + θ2h(x) + θ̄2n(x)

+ θσmθ̄vm(x) + θ2θ̄λ̄(x) + θ̄2θψ(x) + θ2θ̄2d(x).
(2.5)

(In the following the arguments of the superfields and component fields will be suppressed.)

It follows from (2.1) that the Qα have mass dimension 1
2
, and consequently θα must have

mass dimension −1
2
. Therefore the components of F have different mass dimensions

depending on the mass dimension of F itself.

From the supersymmetry variation of F

δξF = i(ξQ+ ξ̄Q̄)F, (2.6)

where ξ is a constant 2-component spinor, the variations of the component fields can

be derived. Since these have to be linear in the component fields (the Qαs are linear

operators) and d is the component of F with the highest mass dimension, it is clear that

the supersymmetry variation of d has to be a total divergence. Indeed, it is given by

δξd = i
2
∂m
(
ψσmξ̄ + ξσmλ̄

)
. (2.7)

As total divergences typically vanish under the spacetime integral, supersymmetric actions

can be constructed simply by taking the θ2θ̄2-component of any (real) combination of

superfields and integrating over the Minkowski space. To write these actions in an elegant

way, one defines integration over the Grassmann valued coordinates as∫
d2θ := 1

4

∫
εαβdθαdθβ,

∫
d2θ̄ := 1

4

∫
εβ̇α̇dθ̄α̇dθ̄β̇. (2.8)

2Here again we choose slightly different conventions than [20]; namely D̄α̇ differs by a factor of −1.
This does not affect any of the results stated in this work.
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Here the Berezin integral for Grassmann numbers is used, which is defined by∫
dη η := 1,

∫
dη 1 := 0 (2.9)

(where η is a single Grassmann variable) together with the requirement of linearity. The

prefactors in (2.8) where chosen such that∫
d2θ θ2 = 1 =

∫
d2θ̄ θ̄2, ⇒

∫
d2θ d2θ̄ F = d, (2.10)

i.e., to integrate over θ and θ̄ means to extract the θ2θ̄2-component of the integrand. For

convenience let us also define ∫
d8z :=

∫
d4x

∫
d2θ d2θ̄ . (2.11)

Then a supersymmetric action for N complex superfields F i, i = 1, . . . , N , may be con-

structed as

S =

∫
d8z K(F, F̄ ), (2.12)

where K is a real function. Depending on possible constraints on the F i, the equations

of motion can be given in terms of the superfields by varying the action with respect to

the F i:

δS =

∫
d8z

(
∂K

∂F i
δF i +

∂K

∂F̄ j̄
δF̄ j̄

)
. (2.13)

This has to vanish for every allowed variation δF . If the F i are unconstrained superfields,

also the variation δF i is unconstrained (except for boundary conditions) and then every

component of ∂K/∂F i is multiplied by a component of δF i to contribute to the θ2θ̄2-

component of the integrand, so that one finds the superfield equations of motion

∂K

∂F i
= 0,

∂K

∂F̄ j̄
= 0. (2.14)

When the F i are real superfields, then ∂K/∂F i is also real and by the same argument

one has
∂K

∂F i
= 0. (2.15)

When the F i are constrained superfields, e.g. by the condition D̄α̇F
i = 0, one has to

find the most general solution to the constraints in terms of generic superfields U i, e.g.

F i = D̄2U i, substitute this into the action and then vary with respect to U i. Then

integration by parts with the superspace derivatives has to be applied in order to derive

the superfield equations of motion. This is possible because for Dα and D̄α̇ the Leibniz

rule holds,

Dα(FG) = (DαF )G+ FDαG, D̄α̇(FG) = (D̄α̇F )G+ FD̄α̇G, (2.16)
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and terms of the form∫
d8z Dα

(
FG
)

=

∫
d4x

∫
d2θ d2θ̄ iσm

αβ̇
θ̄β̇∂m

(
FG
)
,∫

d8z D̄α̇

(
FG
)

=

∫
d4x

∫
d2θ d2θ̄ iθβσmβα̇∂m

(
FG
) (2.17)

are indeed boundary terms in the usual sense, which can be dropped in most cases (but

not in all as we will see below).

2.2 Supersymmetry multiplets

Let us now recall some of the N = 1 supermultiplets which will be referred to in the

following sections.

2.2.1 Chiral multiplet

The supermultiplet which is used most frequently is the chiral multiplet. The correspond-

ing superfield Φ is defined by

D̄α̇Φ = 0. (2.18)

It can always be expressed in terms of an unconstrained superfield F as Φ = D̄2F (since

D̄α̇D̄β̇D̄γ̇ = 0 a superfield defined in this way is chiral) and has the generic form

Φ = A+
√

2θψ + iθσmθ̄∂mA+ θ2F + i√
2
θ2θ̄σ̄m∂mψ + 1

4
θ2θ̄2�A,

Φ̄ = A∗ +
√

2θ̄ψ̄ − iθσmθ̄∂mA∗ + θ̄2F ∗ + i√
2
θ̄2θσm∂mψ̄ + 1

4
θ2θ̄2�A∗,

(2.19)

containing a complex scalar A, a Weyl fermion ψ and an auxiliary field F . Its renormal-

izable kinetic action is given by

S =

∫
d8zΦΦ̄ =

∫
d4x
(
− ∂mA∂mA∗ − iψσm∂mψ̄ + FF ∗

)
. (2.20)

Therefore Φ must have mass dimension 1 so that A and ψ have mass dimension 1 and 1/2

respectively. The components of the chiral multiplet transform under supersymmetry as

follows

δξA =
√

2ξψ, δξψ = i
√

2σmξ̄ ∂mA+
√

2ξF, δξF = i
√

2ξ̄σ̄m∂mψ. (2.21)

By inserting Φ = D̄2F into the action (2.20) one can vary with respect to F to find the

superfield equation of motion

D̄2Φ̄ = 0. (2.22)
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2.2.2 Vector multiplet

The vector multiplet is represented by a real superfield V = V̄ . Its θ-expansion can be

written as

V = B + iθχ− iθ̄χ̄+ θ2M∗ + θ̄2M + 2θσmθ̄vm

+ θ2θ̄
(√

2λ̄+ 1
2
σ̄m∂mχ

)
+ θ̄2θ

(√
2λ− 1

2
σm∂mχ̄

)
+ θ2θ̄2

(
D − 1

4
�B
)
,

(2.23)

with real scalars B and D, a complex scalar M , a real vector vm and Weyl spinors χ, λ.

The vector multiplet is used for the description of supersymmetric gauge theories with

vm being the gauge boson. A gauge transformation is implemented as

V → V + Φ + Φ̄, vm → vm + i
2
∂m(A− A∗), (2.24)

with a chiral superfield Φ. The field strength multiplet of V is defined by

Wα = −1
4
D̄2DαV, (2.25)

and contains the 2-form field strength vmn = ∂mvn − ∂nvm. Wα is invariant under (2.24).

By choosing a special gauge, called Wess-Zumino gauge, it is possible to set the compo-

nents B, χ and M in (2.23) to zero.

2.2.3 Linear multiplet

A real multiplet L that satisfies the additional constraint

D2L = 0 (2.26)

is called linear multiplet [21]. It is of the form [24, 25]

L = E + iθη − iθ̄η̄ + 1
2
θσmθ̄εmnpq∂

[nBpq] + 1
2
θ2θ̄σ̄m∂mη − 1

2
θ̄2θσm∂mη̄ − 1

4
θ2θ̄2�E, (2.27)

containing a real scalar E, a 2-form Bpq and a Weyl spinor η. Its action is given by

S = −
∫
d8z L2 =

∫
d4x
(
− 1

2
∂mE∂

mE − iησm∂mη̄ − 3
4
∂[nBpq]∂

nBpq
)
. (2.28)

The 3-form field strength Fnpq := 3∂[nBpq] = ∂nBpq + ∂pBqn + ∂qBnp is invariant under

gauge transformations

Bpq → Bpq + ∂[paq]. (2.29)

Here the parameter aq is itself a gauge field and has three gauge invariant degrees of

freedom, so of the six independent components of Bpq three are gauge invariant. Thus

the linear multiplet carries four bosonic and four fermionic off-shell degrees of freedom.

There is a duality between the chiral and linear multiplet that corresponds to the physical
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equivalence of a scalar field and a 2-form [26].

2.2.4 Complex linear multiplet

The complex linear multiplet Σ is defined by a similar condition as the linear multiplet

but with no reality condition [18, 27]:

D2Σ̄ = 0, D̄2Σ = 0. (2.30)

This is solved by the superfield with the component expansion

Σ = f + θψ +
√

2θ̄ϕ̄+ θ2h+ θσmθ̄wm + θ2θ̄ϑ̄− i√
2
θ̄2θσm∂mϕ̄

+ θ2θ̄2
(
− i

2
∂mw

m − 1
4
�f
)
,

Σ̄ = f ∗ + θ̄ψ̄ +
√

2θϕ+ θ̄2h∗ + θσmθ̄w∗m + θ̄2θϑ− i√
2
θ2θ̄σ̄m∂mϕ

+ θ2θ̄2
(
i
2
∂mw

m∗ − 1
4
�f ∗

)
,

(2.31)

where f and h are complex scalars, wm is a complex vector and ψ, ϕ, ϑ are Weyl spinors.

These are 12 bosonic and 12 fermionic off-shell degrees of freedom. Note that a chiral

multiplet also satisfies (2.30), so that the complex linear multiplet carries a reducible

representation of the supersymmetry algebra (2.1). The action for the complex linear

multiplet reads

S = −
∫
d8zΣΣ̄

=

∫
d4x
(
i
2
f ∗∂mw

m − i
2
f∂mw

m∗ + 1
2
f�f ∗ + 1

2
ψϑ+ 1

2
ψ̄ϑ̄

− iϕσm∂mϕ̄− hh∗ + 1
2
w∗mw

m
)
.

(2.32)

The on-shell action after elimination of the auxiliary fields wm, h, ϑ and ψ is given by

S =

∫
d4x
(
− ∂mf∂mf ∗ − iϕσm∂mϕ̄

)
. (2.33)

Like the action of the chiral multiplet, it describes a complex scalar and a Weyl spinor.

Therefore the chiral multiplet can alternatively be dualized to a complex linear multi-

plet [27].
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3 The 3-form multiplet

3.1 Components, field strength, gauge and supersymmetry trans-

formations

To find a supermultiplet containing the 3-form Cnpq one makes use of the fact that its

Hodge dual is a vector

vm = 1
6
εmnpqC

npq, (3.1)

which can reside in a vector multiplet. The latter is represented by a real superfield3

[12, 29]

U = B + iθχ− iθ̄χ̄+ θ2M∗ + θ̄2M + 1
3
θσmθ̄εmnpqC

npq

+ θ2θ̄
(√

2λ̄+ 1
2
σ̄m∂mχ

)
+ θ̄2θ

(√
2λ− 1

2
σm∂mχ̄

)
+ θ2θ̄2

(
D − 1

4
�B
)
.

(3.2)

Like the vector multiplet given in (2.23), U carries 8 fermionic (χ, λ) and 8 bosonic

(B,D,M and Cnpq) off-shell degrees of freedom. The difference between the 3-form mul-

tiplet and the vector multiplet is only visible in the definitions of their associated field

strength multiplets. A vector field as a 1-form has a 2-form field strength, with another

2-form as its dual. The field strength of the 3-form on the other hand is a 4-form

Hmnpq = 4∂[mCnpq] = ∂mCnpq − ∂nCpqm + ∂pCqmn − ∂qCmnp, (3.3)

with a 0-form (i.e., a scalar) H as its dual,

H = 1
4!
εmnpqHmnpq = 1

6
εmnpq∂mCnpq, Hmnpq = −εmnpqH. (3.4)

For this reason a field strength for the 3-form multiplet cannot be constructed like the

vector multiplet’s defined in (2.25). Instead the field strength multiplet for U is defined

by [30, 31]

S = −1
4
D̄2U, S̄ = −1

4
D2Ū . (3.5)

Since D̄α̇D̄β̇D̄γ̇ = 0, this definition implies that S is a chiral superfield,

D̄α̇S = 0. (3.6)

Its expansion in component fields reads

S = M +
√

2θλ+ θ2(D + iH) + iθσmθ̄∂mM + i√
2
θ2θ̄σ̄m∂mλ+ 1

4
θ2θ̄2�M,

S̄ = M∗ +
√

2θ̄λ̄+ θ̄2(D − iH)− iθσmθ̄∂mM∗ + i√
2
θ̄2θσm∂mλ̄+ 1

4
θ2θ̄2�M∗.

(3.7)

3Compared to the usual normalization we have rescaled U in (3.2) and (3.5) by a factor of 16 to avoid
some clumsy factors in the massive action where the superfield Lagrangian depends directly on U .
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S contains only 4 bosonic and fermionic degrees of freedom off-shell, because the fields B

and χ do not contribute and the field strength H as a scalar field carries only one degree

of freedom. Since S is built from a real superfield, it is not a general chiral field. Indeed,

the imaginary part of the θ2-component of S is the dual field strength H, which, being a

total divergence, is not an unconstrained field.

Since S is a chiral superfield, we assign to it mass dimension 1. Consequently U must

have mass dimension 0. From this it follows that the fields B and χ have both one mass

dimension less than a normal scalar and Weyl fermion, namely 0 and 1/2 respectively.

Therefore, when they enter the massive 3-form action as described in Sec. 3.4, they will

have to be rescaled by parameters of mass dimension 1 in order to get kinetic terms of

the standard form.

It follows directly form the definition (3.5) that S is invariant under the gauge trans-

formation

U → U − L, (3.8)

where L is a linear multiplet, i.e., a real superfield that satisfies D2L = 0 = D̄2L. Accord-

ing to (2.27), L contains the field strength of a 2-form Bpq in its vector component, that

is needed to describe the gauge transformation of the 3-form. At the level of component

fields, (3.8) reads

B → B − E, χ→ χ− η, M →M,

Cnpq → Cnpq − ∂[nBpq], λ→ λ, D → D.
(3.9)

From (3.3) we see that the field strength Hmnpq remains invariant. As shown in the

previous section, the gauge parameter Bpq carries three gauge invariant degrees of freedom.

Thus the 3-form, having four independent components, carries one gauge invariant degree

of freedom which is represented by its dual field strength H. In analogy to the the Wess-

Zumino gauge of the vector multiplet, the components B and χ can be set to zero by use

of the gauge freedom (3.9). However, unlike the θ2-component of the vector multiplet,

the scalar M is gauge invariant and will turn out to be a physical field.

The supersymmetry transformation of the 3-form multiplet is given by [30, 31]

δξM =
√

2ξλ,

δξλ =
√

2iσmξ̄∂mM +
√

2ξ(D + iH),

δξCnpq = εmnpqξ
(

1√
2
σmλ̄+ σml∂lχ

)
+ h.c.,

⇒ δξH = Im
(
i
√

2ξ̄σ̄m∂mλ
)
,

δξB = iξχ− iξ̄χ̄,

δξχ = −2iξM∗ + σmξ̄
(
− i

3
εmnpqC

npq + ∂mB
)
.

(3.10)

Note that the gauge invariant components of S transform among themselves as in an

ordinary chiral multiplet, see (2.21). The second term in the supersymmetry variations
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of the 3-form drops out of δξH so it has to be pure gauge (this term does not appear in

the references [30, 31]). Using

σml = −1
4
εmlrsεrstoσ

to, (3.11)

one can show directly that it constitutes a gauge transformation by writing it as

εmnpqξσ
ml∂lχ = 3

2
∂[nεpq]mlξσ

mlχ. (3.12)

Curiously, the supersymmetry variations of χ involves the field M with no derivatives, so

that supersymmetry can be unbroken only if M has a vanishing vev. We will meet this

issue again in Section 5.

3.2 The massless and massive 3-form action

Before we turn to the supersymmetric case let us get familiar with the renormalizable

actions and equations of motion of the massless and massive 3-form itself. In the massless

case the 3-form does not carry any on-shell degrees of freedom, so that it can be elimi-

nated from the action, thereby taking the form of a constant potential (i.e., an effective

cosmological constant). However, there is an issue with boundary terms and boundary

conditions that shall be discussed in the following. After finding the correct action for

the massless 3-form, the Poincaré dual action will be derived. In the massive case we will

analyze the equations of motion to determine the number of on-shell degrees of freedom.

The canonical renormalizable action of the massless 3-form is4

S3 = − 1
24

∫
d4xHmnpqHmnpq =

∫
d4xH2. (3.13)

Using H = 1
6
εmnpq∂mCnpq, the equations of motion for the 3-form are found to be

−1
3
εmnpq∂mH = 0. (3.14)

They force the field strength to be a constant, H = c with c ∈ R, or

Hmnpq = −c εmnpq. (3.15)

For this reason the massless 3-form has been studied in the context of the cosmological

constant problem [32, 33, 34, 35, 36]. However, the action (3.13) is not the full story. To

see the problem, one has to focus on the boundary term in the variation

δS3 = 1
3

∫
d4x ∂m

(
HεmnpqδCnpq

)
− 1

3

∫
d4x (∂mH)εmnpqδCnpq. (3.16)

4The usual normalization includes another factor of 1/2 which we omit for convenience.
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In order to make this boundary term vanish, one has to impose the condition

δCnpq

∣∣∣
∂M

= 0, (3.17)

where ∂M denotes the boundary of the integration volumeM.5 One might already doubt

whether this is a good boundary condition as it is not gauge invariant. Moreover, it has

been pointed out by Duff [33] that substituting the solution (3.15) back into (3.13) yields

a wrong sign in the correction of the bare cosmological constant Λ0. The correct value

of the effective cosmological constant can be found by coupling the 3-form to gravity via

the action

S3,EH = 1
16πG

∫
d4x
√
−g(R− 2Λ0)− 1

24

∫
d4x
√
−gHmnpqHmnpq

= 1
16πG

∫
d4x
√
−g(R− 2Λ0) +

∫
d4x
√
−gH2,

(3.18)

where in the second step we made use of the generalized Hodge duality relations

H = 1
4!
√
−gε

mnpqHmnpq, Hmnpq = − 1√
−gεmnpqH. (3.19)

(For this, notice our conventions (A.1) which imply e.g. that εmnpqεmnpq = 24g. The

definition of H was chosen such that it is a Lorentz scalar.) Then one solves the equations

of motion of the 3-form,

εmnpq∂mH = 0 ⇒ H = c, (3.20)

and inserts the solution into the stress energy tensor

Tmn = −gmnH2 = −c2gmn, (3.21)

which appears in the Einstein equations

Rmn − 1
2
gmnR = −Λ0g

mn + 8πGTmn ≡ −Λgmn. (3.22)

The effective cosmological constant is then Λ = Λ0 + 8πGc2. On the other hand, substi-

tuting (3.20) into the action (3.18) yields Λ = Λ0 − 8πGc2. This discrepancy is clearly a

result of the incompatibility of the variational constraint (3.17) with the solution (3.20).

Namely, (3.20) is equivalent to

√
−g = 1

24c
εmnpq∂mCnpq. (3.23)

Thus, in order to implement the constraint (3.17) in the on-shell action, one could allow

5Alternatively one could demand δCnpq(x) → 0 for x → ∞ sufficiently fast when one integrates over
the whole Minkowski space.
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only for variations of the metric for which∫
M
d4x δ

√
−g = 1

24c

∫
M
d4x ∂m(εmnpqδCnpq) = 0, (3.24)

which is surely not a reasonable constraint. In fact, there is no way at all to implement the

constraint δCnpq|∂M = 0 in the on-shell action since for given δgmn the on-shell relation

(3.23) fixes δCnpq only up to a gauge transformation. Thus it is not possible to derive

a consistent on-shell action from the action (3.18). The way to cure this disease is to

impose a different variational constraint on the 3-form,

δH
∣∣∣
∂M

= 0. (3.25)

This condition is automatically fulfilled by (3.20), so there is no issue of implementing it in

the on-shell action. In order to apply the new boundary condition, one adds a boundary

term to the action (3.13) [34, 35],

S ′3 =

∫
d4xH2 − 1

3

∫
d4x ∂m

(
HεmnpqCnpq

)
, (3.26)

which does not alter the equations of motion. Indeed, the variation of this action is given

by

δS ′3 = −1
3

∫
d4x (∂mH)εmnpqδCnpq − 1

3

∫
d4x ∂m

(
δHεmnpqCnpq

)
. (3.27)

Substituting the solution H = c into the action S ′3, we find that the boundary term gives

negative twice the value of the kinetic term,

S ′3, on-shell =

∫
d4x c2 − 2

∫
d4x c2 =

∫
d4x (−c2), (3.28)

leading to the correct positive sign in the contribution to the cosmological constant.

Poincaré duality denotes a relation between two actions S and Sdual with the same

number of on-shell degrees of freedom but different field content. This relation is es-

tablished via a so-called first order action Sfirst (i.e., an action which is first order in

‘velocities’), which couples the fields of the action S to those of the dual action Sdual

[37]. When the fields of Sdual are eliminated from Sfirst by their equations of motion one

recovers the original action S. On the other hand the fields of S can be eliminated from

Sfirst to obtain the dual action Sdual. The equations of motion of action and dual action

are equivalent by the duality relations that are contained in the Euler-Lagrange equations

of the first order action. Thus action and dual action are physically equivalent on the

classical level.

The action (3.26) including the boundary term can be dualized via the first order
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action

Sfirst =

∫
d4x
(
− φ2 + 2φH

)
− 1

3

∫
d4x ∂m

(
φ εmnpqCnpq)

=

∫
d4x
(
− φ2 − 1

3
(∂mφ)εmnpqCnpq

)
,

(3.29)

where the scalar field strength H was coupled to a real scalar φ. Inserting the equation

of motion for φ (we impose the boundary condition δφ|∂M = 0)

φ = H (3.30)

into this first order action one finds that it reproduces (3.26) correctly, including the

boundary term. On the other hand, the equations of motion for the Cnpq

εmnpq∂mφ = 0 (3.31)

constrain φ to be a constant, φ = ĉ with ĉ ∈ R. Like in the original action (3.26), the

boundary term makes it possible to obtain these equations without imposing that δCnpq

should vanish on the boundary. Here in the first order action the necessity of adding

a boundary term becomes even more obvious, since only this boundary term makes it

possible to eliminate the 3-form from the action, leading to the dual action6

Sdual =

∫
d4x

(
−ĉ2

)
. (3.32)

The action of the massive 3-form is given by

S3 =

∫
d4x
(
− 1

24
HmnpqH

mnpq − 1
6
m2CnpqC

npq
)
. (3.33)

Note that the mass term breaks the gauge invariance of the action. (The gauge invariance

can be preserved by the Stückelberg mechanism which we will use for the supersymmetric

case in Section 3.4.) The equation of motion that follows from (3.33) is

4∂m∂[mCnpq] −m2Cnpq = 0. (3.34)

Thus the massive 3-form is dynamic and there is no need to add boundary terms to the

action (3.33) because the 3-form will not be eliminated from it. In order to determine

the number of on-shell degrees of freedom, that is, the number of linearly independent

polarizations, we make the ansatz

Cnpq(x) = εnpqe
ipx, (3.35)

6Variations of the dual action with respect to the constant field ĉ are not allowed since we impose the
constraint δĉ|∂M = 0, i.e., δĉ = 0.

16



where εnpq is a constant antisymmetric polarization tensor. Inserting (3.35) into (3.34)

yields

−(p2 +m2)εnpq + 3pmp[nεpq]m = 0. (3.36)

Since the indices n, p, q in (3.36) are antisymmetrized, this equation constitutes four in-

dependent conditions. One of them is the mass-shell condition p2 = −m2, so there are

three independent conditions on the four independent elements of the polarization ten-

sor. Thus the massive 3-form has one physical polarization, i.e., one on-shell degree of

freedom.7 This can also be seen by dualizing the action (3.33) via the first-order action

Sfirst =

∫
d4x
(
− φ2 − 1

3
(∂mφ)εmnpqCnpq − 1

6
m2CnpqC

npq
)
. (3.37)

Here we simply added the mass term to the first-order action (3.29), so the equation of

motion for φ is not altered and (3.33) is correctly reproduced. Eliminating the 3-form

from (3.37) by its equation of motion

m2Cnpq = −εmnpq∂mφ (3.38)

one finds the dual action

Sdual =

∫
d4x
(
− φ2 +

1

6m2
εmnpqεlnpq∂mφ∂

lφ
)

=

∫
d4x
(
− 1

m2
∂mφ∂

mφ− φ2
)
. (3.39)

After rescaling φ → 1√
2
mφ one obtains the canonical action for a real scalar of mass m

which, like the massive 3-form it is dual to, carries one physical degree of freedom.

3.3 Renormalizable action of the massless 3-form multiplet

The gauge invariant action for N massless 3-form multiplets Ua (a = 1, . . . , N) with field

strengths Sa is given by8 [16]

S3 =

∫
d8z δab̄S

aS̄ b̄ =

∫
d4x δab̄

[
− ∂mMa ∂mM∗b̄ − iλaσm∂mλ̄b̄ +DaDb̄ +HaH b̄

]
, (3.40)

where Db̄ = Db and H b̄ = Hb since both are real. The auxiliary fields Da vanish by their

equations of motion Da = 0. The action (3.40) contains the correct kinetic term for the

3-form,

HaHa = − 1
24
Ha
mnpqH

amnpq. (3.41)

7This can be shown with more rigor by going to the rest frame where (pm) = (
√
−p2, 0, 0, 0) (after

proving that there is no solution with p2 = 0) and then inserting different combinations for the indices
n, p, q.

8To obtain the component action integration by parts was applied for the fields Ma and λa which is
not completely correct since we cannot assume that boundary terms involving the 3-form field strengths
Ha vanish and the latter transform into these fields under supersymmetry. However, as boundary terms
do not affect the equations of motion, it is legitimate to drop them here.
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According to the discussion in the previous section, one has to add a boundary term to

the action (3.40) in order to impose the gauge invariant boundary condition δHa|∂M = 0

instead of δCa
npq|∂M = 0. The supersymmetric generalization of this idea can be found by

considering the variation of the action (3.40) with respect to Ua,

δS3 =

∫
d8z
(
S̄aδSa + SaδS̄a

)
= −1

4

∫
d8z S̄aD̄α̇D̄

α̇δUa + h.c.

= −1
4

∫
d8z
(
D̄α̇

(
S̄aD̄α̇δUa

)
− D̄α̇S

aD̄α̇δUa
)

+ h.c.

= −1
4

∫
d8z

[
D̄α̇

(
S̄aD̄α̇δUa − (D̄α̇S̄a)δUa

)
+ (D̄2S̄a)δUa

]
+ h.c.

(3.42)

(Here the Leibniz rule (2.16) was applied. In the last step, note the two minus signs

from moving Dα̇ past Dα̇S̄a and switching the index positions that cancel each other.)

Thus we see that the action (3.40) would require the supersymmetric boundary condi-

tions δUa|∂M = 0 and Dα(δUa)|∂M = 0. As we want to impose gauge invariant (and

supersymmetric) boundary conditions we naturally choose

δSa
∣∣∣
∂M

= 0, Dα(δSa)
∣∣∣
∂M

= 0. (3.43)

In order to apply these, we add to the action the boundary terms

B = 1
4

∫
d8z D̄α̇

(
S̄aD̄α̇Ua − (D̄α̇S̄a)Ua

)
+ h.c. (3.44)

These were chosen such that the terms that arise when the δ-operator acts on one of the

the Ua in (3.44) cancel the boundary terms in (3.42). In exchange one gets boundary terms

proportional to δSa and Dα(δSa) (and their complex conjugates); namely the variation

of the new action

S ′3 = S3 + B (3.45)

with respect to U is given by

δS ′3 = 1
4

∫
d8z
[
− (D̄2S̄a)δUa + D̄α̇

(
(δS̄a)D̄α̇Ua − D̄α̇(δS̄a)Ua

)
+ h.c.

]
. (3.46)

Thus for S ′3 we can apply the variational constraints (3.43). As Ua is real but otherwise

unconstrained, one finds the superfield equations of motion

D2Sa + D̄2S̄a = 0. (3.47)
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The boundary terms for the 3-forms that are contained in (3.44) can be found by writing

it as

B = Re

∫
d8z D̄α̇

(
S̄aD̄α̇Ua

)
− 1

2
Re

∫
d8z D̄2

(
S̄aUa

)
= −Im

∫
d8z ∂m(θσm)α̇

(
S̄aD̄α̇Ua

)
+ 1

2
Re

∫
d8z θ2�

(
S̄aUa

)
,

(3.48)

where all θ-derivatives under the full superspace integral have been dropped. Here we are

interested only in boundary terms involving the 3-forms Ca
npq without derivatives. The

only such term originates from multiplying

1
3
(σ̄mθ)α̇εmnpqC

anpq, (3.49)

which is contained in D̄α̇Ua, with the θ̄2-component of S̄a

θ̄2(Da − iHa) = −iθ̄2Ha, (3.50)

where we used the trivial equation of motion for Da. Thus we see that the first term in

the second line of (3.48) contains the correct boundary term for the 3-forms (cf. (3.26))

−1
3

∫
d4x ∂m

(
HaεmnpqCa

npq

)
. (3.51)

The equations of motion for the Ca
npq

−1
3
εmnpq∂mH

a = 0 (3.52)

imply that the 3-form field strengths become constants, Ha = ca with ca ∈ R. Thus the

action (3.40) describes 2N bosonic and 2N fermionic degrees of freedom on-shell. By

virtue of the boundary term (3.51), it is seen that the 3-forms create a constant positive

potential

V = caca, (3.53)

which corresponds to a positive correction of the bare cosmological constant. Since the

ground state has a non-vanishing energy expectation value, supersymmetry must be spon-

taneously broken. Indeed, the supersymmetry variation of λ given in (3.10) shows that

it transforms inhomogeneously when H becomes a non-vanishing constant, so that it can

be identified as the Goldstone fermion.

3.4 Renormalizable action of the massive 3-form multiplet

One can add a gauge invariant mass term to the action (3.40) with the help of the

Stückelberg mechanism [38]. To this end one introduces N additional linear multiplets

L′a with the transformation law

L′a → L′a − La, (3.54)
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where the transformation parameters La are also linear superfields. Then Ua − L′a is

gauge invariant and one can add to the action the terms [29]

Smass =

∫
d8z
(
−1

2
m2
ab(U

a − L′a)(U b − L′b) + ξa(U
a − L′a)

)
, (3.55)

where it is understood that m2
ab = macmcb with a symmetric mass matrix mab = mba and

the ξa parameterize possible Fayet-Iliopoulos terms.9 The additional degrees of freedom

that where introduced in the form of the L′a can be absorbed into the Ua by fixing the

gauge to L′a = 0 (which is obtained by choosing La = L′a) so that the L′a drop out of the

action. In the following we will always work in this gauge. Furthermore, we take out the

massless modes (which can be treated as described in section 3.3) so that we can assume

without loss of generality that mab is invertible. We then find the action10

S3 =

∫
d8z
(
δab̄S

aS̄ b̄ − 1
2
m2
abU

aU b + ξaU
a
)

=

∫
d4x
[
− ∂mMa ∂mMa∗ − iλaσm∂mλ̄a +DaDa +HaHa

− 1
2
m2
ab

(
iχaσm∂mχ̄

b −
√

2iχaλb +
√

2iχ̄aλ̄b + 2MaM b∗

+ 2BaDb − 1
2
Ba�Bb + 1

3
Ca
npqC

bnpq
)

+ ξa
(
Da − 1

4
�Ba

)]
.

(3.56)

The auxiliary fields Da can be eliminated by their equations of motion

2δabD
b −m2

abB
b + ξa = 0. (3.57)

This is done most conveniently by “completing the square” as described in Appendix B,

leading to the on-shell action

S3 =

∫
d4x
[
− ∂mMa ∂mMa∗ − iλaσm∂mλ̄a +HaHa

−m2
ab

(
i
2
χaσm∂mχ̄

b − i√
2
χaλb + i√

2
χ̄aλ̄b +MaM b∗

+ 1
4
∂mBa∂mB

b + 1
6
Ca
npqC

bnpq
)
− 1

4

(
m2
abB

b − ξa
)(
m2
acB

c − ξa
)]
.

(3.58)

As already mentioned in Sec. 3.1, the fields Ba and χa have non-canonical mass dimension

and therefore have to be rescaled in order to obtain kinetic terms of the canonical form.

This is done by the field redefinitions

B′a := 1
2

(
δabmbcB

c −m−1abξb
)
, χ′a := − i√

2
δabmbcχ

c. (3.59)

9Terms cubic in U would render the action non-renormalizable.
10To be on the safe side, on could add the boundary terms (3.44) also to the massive action. However,

these are not really needed since we are not going to eliminate the massive 3-forms from the action.
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Here the fields Ba where also shifted to absorb their vacuum expectation values 〈Ba〉 =

m−2abξb. Note that the Fayet-Iliopoulos term in (3.55) has not broken supersymmetry

due to the mass term also present in (3.55). Then the on-shell action becomes

S3 =

∫
d4x
[
− ∂mMa ∂mM

a∗ −m2
abM

aM b∗ − ∂mB′a∂mB′a −m2
abB

′aB′b

− iλaσm∂mλ̄a − iχ′aσm∂mχ̄′a −mabχ
′aλb −mabχ̄

′aλ̄b

+HaHa − 1
6
m2
abC

a
npqC

bnpq
]
.

(3.60)

We see that the fermions λa and χ′a form N massive Dirac spinors corresponding to 4N

fermionic degrees of freedom. As shown in Section 3.2, the massive 3-forms contribute

one on-shell degree of freedom each. Together with the N complex scalars Ma and the N

real scalars B′a we thus also have 4N bosonic on-shell degrees of freedom.

3.5 Dualization of the massless action

The massless action (3.45) can be reproduced from the first order action [16]

Sfirst =

∫
d8z (−δab̄FaF̄b̄ + FaS

a + F̄āS̄
ā) + Bfirst, (3.61)

with the boundary terms

Bfirst = 1
4

∫
d8z
[
D̄α̇

(
FaD̄

α̇Ua − D̄α̇FaU
a
)

+ h.c.
]
. (3.62)

Here the Fa are unconstrained, i.e., generic superfields. For later convenience we write

their component field expansion as

Fa = fa + θψa +
√

2θ̄ϕ̄a + θ2ha + θ̄2na + θσmθ̄wam

+ θ2θ̄ϑ̄a + θ̄2θ(ζa − i√
2
σm∂mϕ̄a) + θ2θ̄2(da − 1

4
�fa − i

2
∂mw

m
a ),

F̄b̄ = f ∗b̄ + θ̄ψ̄b̄ +
√

2θϕb̄ + θ̄2h∗b̄ + θ2n∗b̄ + θσmθ̄w∗b̄m

+ θ̄2θϑb̄ + θ2θ̄(ζ̄b̄ − i√
2
σ̄m∂mϕb̄) + θ2θ̄2(d∗b̄ −

1
4
�f ∗b̄ + i

2
∂mw

m∗
b̄ ),

(3.63)

where fa, ha, na and da are complex scalars, wam is a complex vector and ψa, ϕa, ϑa

and ζa are Weyl spinors. Eliminating the Fa from (3.61) by inserting their equations of

motion

δab̄F̄b̄ = Sa, (3.64)

one recovers the kinetic action of the massless 3-form multiplet (3.40) as well as the correct

boundary terms (3.44).

In order to eliminate the fields Ua from (3.61) one inserts the definition (3.5) for their
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field strengths Sa to rewrite the action as

Sfirst =

∫
d8z
(
− 1

2
δab̄FaF̄b̄ − 1

4
FaD̄

2Ua + 1
4
D̄α̇

(
FaD̄

α̇Ua − D̄α̇FaU
a
)

+ h.c.
)

=

∫
d8z
(
− δab̄FaF̄b̄ − 1

4

(
D̄2Fa +D2F̄a

)
Ua
)
,

(3.65)

where again the Leibniz rule (2.16) was applied. As shown on the component level for the

3-form in Sec. 3.2, the first order action takes a simple form by virtue of the boundary

terms (3.62). In this form, varying with respect to Ua immediately and without dropping

any boundary term yields the constraint for Fa

0 = −1
4

(
D̄2Fa +D2F̄a

)
= na + n∗a + θζa + θ̄ζ̄a + θ2da + θ̄2d∗a + iθσmθ̄∂m(na − n∗a)

+ i
2
θ2θ̄σ̄m∂mζa + i

2
θ̄2θσm∂mζ̄a + 1

4
θ2θ̄2�(na + n∗a) .

(3.66)

As usual, Poincaré duality has exchanged the equation of motion with the constraint with

respect to the duality relation (3.64) (cf. (3.47)). We will see below that the condition

(3.66) is special for the massless case in that it reduces the number of degrees of freedom

in Fa while in the massive case the Fa remain unconstrained superfields. (3.66) implies

that ζa and da vanish whereas na becomes a purely imaginary constant,

ζa = 0, da = 0, na = iĉa with ĉa ∈ R, (3.67)

so that Fa takes the form

Fa = fa + θψa +
√

2θ̄ϕ̄a + θ2ha + iθ̄2ĉa + θσmθ̄wam + θ2θ̄ϑ̄a − i√
2
θ̄2θσm∂mϕ̄a

+ θ2θ̄2(−1
4
�fa − i

2
∂mw

m
a ),

F̄b̄ = f ∗b̄ + θ̄ψ̄b̄ +
√

2θϕb̄ + θ̄2h∗b̄ − iθ
2ĉb̄ + θσmθ̄w∗b̄m + θ̄2θϑb̄ − i√

2
θ2θ̄σ̄m∂mϕb̄

+ θ2θ̄2(−1
4
�f ∗b̄ + i

2
∂mw

m∗
b̄ ).

(3.68)

It contains 12 bosonic and 12 fermionic off-shell degrees of freedom. Using (3.66) and

(3.68) we obtain as the dual component action

Sdual =

∫
d8z (−δab̄FaF̄b̄)

=

∫
d4x
[
f ∗a ( i

2
∂mw

m
a + 1

4
�fa) + 1

2
ψaϑa − i

2
ϕaσ

m∂mϕ̄a

− 1
2
hah

∗
a − 1

2
ĉaĉa + 1

4
w∗amw

m
a + h.c.

]
.

(3.69)

After eliminating the auxiliary fields ψa, ϑa, ha and wam this becomes

Sdual =

∫
d4x
(
− ∂mfa∂mf ∗a − iϕaσm∂mϕ̄a − ĉaĉa

)
. (3.70)
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Just like the original action (3.40), the dual action describes N complex scalars and N

Weyl spinors. The field strengths of the 3-forms are represented by the constants ĉa, that

also create a constant positive potential. In fact, the superfield equation of motion (3.64)

includes the duality relation

Ha = δab̄Imn∗b̄ = −δabĉb, (3.71)

so that the cosmological constants of action and dual action coincide.

Before we proceed let us note that in the dualization of the massless action a new

multiplet F appeared. It differs from the complex linear multiplet, whose component

expansion is given in (2.31), only by the free constant ĉ (for ĉ = 0 they coincide). This

difference arises from the fact that S is not a general chiral superfield but constructed

from a real superfield U via (3.5). If U was complex then D̄2Fa and D2F̄a had to vanish

separately in (3.66) as in the duality between the chiral and the complex linear multi-

plet [27].

3.6 Dualization of the massive action

In the massive case the first order action is given by

Sfirst =

∫
d8z
(
− δab̄FaF̄b̄ + FaS

a + F̄āS̄
ā − 1

2
m2
abU

aU b + ξaU
a
)
, (3.72)

where the mass and Fayet-Iliopoulos terms were simply added to (3.61) and the boundary

term was dropped. Since the equations of motion for the Fa are the same as in the massless

case, the massive action (3.56) is correctly reproduced when the Fa are eliminated from

(3.72).

In order to find the dual action one has to rewrite (3.72) as in (3.65) (now dropping

all boundary terms)

Sfirst =

∫
d8z
(
− δab̄FaF̄b̄ − 1

4
Ua
(
D̄2Fa +D2F̄a

)
− 1

2
m2
abU

aU b + ξaU
a
)
, (3.73)

and then again eliminate the 3-form multiplets Ua by their equations of motion

−1
4
(D̄2Fa +D2F̄a)−m2

abU
b + ξa = 0. (3.74)

In contrast to the massless case (3.66) the superfields Fa now remain unconstrained.

Therefore the complex scalars da, na and the Weyl spinors ζa no longer drop out of the

dual action. Substituting (3.74) into (3.73) and using the abbreviation

Ωa := −1
4

(
D̄2Fa +D2F̄a

)
, (3.75)
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one obtains the dual action

Sdual =

∫
d8z
(
− δab̄FaF̄b̄ + 1

2
m−2ab(Ωa + ξa)(Ωb + ξb)

)
. (3.76)

With the θ-expansions of Fa and Ωa as given in (3.63) and (3.66) respectively, and after

applying integration by parts, one finds the component form

Sdual =

∫
d4x
(
− fad∗a − f ∗ada − 1

2
∂mfa∂

mf ∗a + i
2
∂mfaw

m∗
a − i

2
wma ∂mf

∗
a + 1

2
wma w

∗
am

+ 1
2
ψaϑa + 1

2
ψ̄aϑ̄a + 1√

2
ϕaζa + 1√

2
ϕ̄aζ̄a − iϕaσm∂mϕ̄a − hah∗a − nan∗a

+m−2ab
(
−∂mna∂mn∗b − i

2
ζaσ

m∂mζ̄b + dad
∗
b

) )
.

(3.77)

Note that the ξa have dropped out of the action due to the fact that the highest component

of Ωa is a total spacetime divergence (remember that they also dropped out of the original

action (3.56) by a field redefinition). The action (3.77) still contains the auxiliary fields

ha, ψa, ϑa, da and wma . Eliminating them by their equations of motion yields the on-shell

action

Sdual =

∫
d4x
(
− ∂mfa ∂mf ∗a −m2

abfaf
∗
b −m−2ab∂mna∂

mn∗b − nan∗a

− iϕaσm∂mϕ̄a − i
2
m−2abζaσ

m∂mζ̄b + 1√
2
ϕaζa + 1√

2
ϕ̄aζ̄a

)
.

(3.78)

By the field redefinitions

n′a := δabm
−1bcnc , ζ ′a := − 1√

2
δabm

−1bcζc, (3.79)

the kinetic terms for the na and ζa take the standard form,

Sdual =

∫
d4x
(
− ∂mfa ∂mf ∗a −m2

abfaf
∗
b − ∂mn′a∂mn′∗a −m2

abn
′
an
′∗
b

− iϕaσm∂mϕ̄a − iζ ′aσm∂mζ̄ ′a −mab(ϕaζ
′
b + ϕ̄aζ̄

′
b)
)
.

(3.80)

The action (3.80) is dual to the renormalizable massive action of the 3-form multiplet

given in (3.60) and describes the dynamics of 2N massive complex scalars fa, n
′
a and N

massive Dirac spinors formed by ϕa, ζ
′
a. The massive 3-forms Ca

npq and real scalars Ba

that appear in (3.60) are represented in the dual action by the complex scalars n′a, so that

action and dual action again contain an equal number of on-shell degrees of freedom.
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4 Non-renormalizable action

4.1 From the superfield Lagrangian to the on-shell action

In this section we drop the requirement of renormalizability and consider an action with

arbitrary real functions G,K of the 3-forms Ua and their field strengths Sa respectively,11

S3 =

∫
d8z
(
K(S, S̄)−G(U − L′)

)
. (4.1)

Such non-renormalizable actions are called non-linear sigma models. They can arise as

low energy limits of string theories or higher dimensional supergravities.

The action S3 is invariant under gauge transformations (3.8), (3.54) and as before we

choose the gauge L′ = 0. For simplicity we restrict our analysis to the bosonic part of the

action by setting all fermionic components to zero. After defining the usual abbreviations

for the derivatives

Ka1...anb̄1...b̄m(M,M∗) :=
∂K

∂Sa1 . . . ∂San∂S̄ b̄1 . . . ∂S̄ b̄m

∣∣∣∣
θ=θ̄=0

,

Ga1...an(B) :=
∂G

∂Ua1 . . . ∂Uan

∣∣∣∣
θ=θ̄=0

,

(4.2)

we Taylor expand K(S, S̄) around (M,M∗),

K(S, S̄) = K(M,M∗) +Ka∆
a
S +Kb̄∆̄

b̄
S + 1

2
Kab∆

a
S∆b

S + 1
2
Kāb̄∆̄

ā
S∆̄b̄

S +Kab̄∆
a
S∆̄b̄

S, (4.3)

where
∆a
S := Sa −Ma = iθσmθ̄∂mM

a + θ2(Da + iHa) + 1
4
θ2θ̄2�Ma,

∆̄ā
S := S̄ ā −M∗ā = −iθσmθ̄∂mM∗ā + θ̄2(Dā − iH ā) + 1

4
θ2θ̄2�M∗ā.

(4.4)

Note that (4.3) is exact since products of three ∆’s vanish. Using (4.3) one can easily

perform the θ-integration of K(S, S̄) to find∫
d8zK =

∫
d4x

[
1
4
Ka�M

a + 1
4
Kb̄�M

∗b̄ + 1
4
Kab∂mM

a∂mM b + 1
4
Kāb̄∂mM

∗ā∂mM∗b̄

+Kab̄

(
− 1

2
∂mM

a∂mM∗b̄ + (Da+iHa)(Db̄−iH b̄)
)]

=

∫
d4x

[
Kab̄

(
− ∂mMa∂mM∗b̄ +DaDb +HaHb

)
− i(Kab̄ −Kbā)D

aHb

]
,

(4.5)

where in the second step integration by parts was applied and the chain rule

∂mKa = Kab∂mM
b +Kab̄∂mM

∗b̄ (4.6)

11We choose a minus sign for the G-term in order to have Gab|B=0 = m2
ab, cf. (3.56), so that a positive

definite Gab corresponds to a ghost free theory.
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(and similar for ∂mKb̄) was used. The complex scalar fields Ma can be viewed as coor-

dinates of a Kähler manifold with the metric Kab̄ derived from the Kähler potential K

[20, 39].

Using

Ua −Ba = θ2Ma∗ + θ̄2Ma + 1
3
θσmθ̄εmnpqC

anpq + θ2θ̄2
(
Da − 1

4
�Ba

)
, (4.7)

one can perform the θ-integration of G(U) with the same technique,

−
∫
d8z G(U) = −

∫
d4x

[
Ga

(
Da − 1

4
�Ba

)
+ 1

2
Gab

(
2MaM b∗ + 1

3
CanpqCb

npq

)]
. (4.8)

Because K is real and partial derivatives commute, the Kähler metric Kab̄ is hermitian:

(Kbā)
∗ = Kb̄a = Kab̄. (4.9)

Since Kab̄ is the coefficient matrix of the kinetic terms for the fields Ma (and Ca
npq), we

demand here that it is also positive definite to exclude unphysical ghost fields with kinetic

terms of the wrong sign. Then it follows from

0 < Kab̄ x
axb = 1

2
(Kab̄ +Kbā)x

axb for all x ∈ RN\{0} (4.10)

that also the symmetric, i.e., real part of the Kähler metric is positive definite and in

particular invertible. Thus the equations of motion for the auxiliary fields Da

2(ReKab̄)D
b + 2(ImKab̄)H

b −Ga = 0 (4.11)

have the solution

Da = 1
2
(ReK)−1ab (Gb − 2(ImK)bcH

c) , (4.12)

where (ImK)bc = −(ImK)cb denotes the imaginary part of the Kähler metric while

(ReK)−1ab denotes the inverse of the real part of the Kähler metric. Thus the Da can be

eliminated from the action by “completing the square” as in (B.4) (with Mab = Kab̄ and

Ja = 2(ImK)abH
b −Ga) to obtain the on-shell action

S3 =

∫
d4x
[
Kab̄

(
− ∂mMa∂mM

∗b̄ +HaH b̄
)
−Gab

(
MaM b∗ + 1

6
CanpqCb

npq

)
+ 1

4
Ga�B

a − 1
4

(
Ga + 2Hc(ImK)ca

)
(ReK)−1ab

(
Gb − 2(ImK)bdH

d
)]

=

∫
d4x
[
−Kab̄ ∂

mMa∂mM
∗b̄ −Gab

(
1
4
∂mBa∂mB

b +MaM b∗ + 1
6
CanpqCb

npq

)
+ gabH

aHb +Ga(ReK)−1ab(ImK)bcH
c − 1

4
Ga(ReK)−1abGb

]
,

(4.13)
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where in the second step integration by parts was used and a real metric

gab := (ReK)ab + (ImK)ac(ReK)−1cd(ImK)db (4.14)

for the 3-form scalar field strengths Ha was defined. Using the symbol K for the Kähler

metric rather than the Kähler potential, g can be written in matrix notation as

g = ReK − 1
2
(K−K∗)(K+K∗)−1(K−K∗)

= ReK − 1
2

(
(K−K∗)− 2(K−K∗)(K+K∗)−1K∗

)
= ReK − 1

2

(
K −K∗ + 2K∗ − 4K(K+K∗)−1K∗

)
= K(ReK)−1K∗.

(4.15)

The last expression for g shows explicitly that it is positive definite and that its inverse

is given by

g−1ab =
[
K∗−1(ReK)K−1

]ab
= Re(K−1ab̄). (4.16)

The scalar potential of the action (4.13) is

V = GabM
aM b∗ + 1

4
Ga(ReK)−1abGb. (4.17)

Depending on the choice of the functions K and G it can lead to non-vanishing vacuum

expectation values of the fields Ba and Ma like in the renormalizable case (3.58).

As Ha = 1
6
εmnpq∂mC

a
npq, the equations of motion for the 3-forms that follow from

(4.13) are

−1
3
GabC

bnpq = 1
3
εmnpq∂m

(
gabH

b − 1
2
(ImK)ab(ReK)−1bcGc

)
. (4.18)

In the massless case G = 0 they force gabH
b to be constant,

gabH
b = ca with ca ∈ R. (4.19)

Then it is important to add appropriate boundary terms to the action (4.1) as one wants

to eliminate the 3-forms by (4.19). These terms should cancel all boundary terms in the

variation δS3 containing δUa’s in favor of boundary terms containing δSa’s, which can be

assumed to vanish. Since

δS3 =

∫
d8z
(
Ka(S, S̄)δSa +Kb̄(S, S̄)δS̄ b̄

)
= −1

4

∫
d8z
(
D̄α̇

(
Ka(S, S̄)D̄α̇δUa

)
− D̄α̇Ka(S, S̄)D̄α̇δUa + h.c.

)
= −1

4

∫
d8z
(
D̄α̇

(
KaD̄

α̇δUa − (D̄α̇Ka)δU
a
)

+ (D̄2Ka)δU
a + h.c.

)
,

(4.20)
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we add to the action (4.1) the boundary terms

B = 1
4

∫
d8z D̄α̇

(
Ka(S, S̄)D̄α̇Ua − (D̄α̇Ka(S, S̄))Ua

)
+ h.c. . (4.21)

Then the variation

δ(S3 + B) = 1
4

∫
d8z
(
D̄α̇

(
δKaD̄

α̇Ua − (D̄α̇δKa)U
a
)
− (D̄2Ka)δU

a + h.c.
)

(4.22)

contains only boundary terms proportional to δSa or D̄α̇δS̄ ā (and their complex conju-

gates) that can be dropped. As a byproduct of this calculation we have found the massless

superfield equations of motion

D̄2Ka(S, S̄) +D2Kā(S, S̄) = 0. (4.23)

To extract the relevant 3-form boundary terms from B we rewrite it as (cf. (3.48)),

B = Re

∫
d8z D̄α̇

(
Ka(S, S̄)D̄α̇Ua

)
− 1

2
Re

∫
d8z D̄2

(
Ka(S, S̄)Ua

)
= −Im

∫
d8z ∂m(θσm)α̇

(
Ka(S, S̄)D̄α̇Ua

)
+ 1

2
Re

∫
d8z θ2�

(
Ka(S, S̄)Ua

)
.

(4.24)

To further evaluate these expressions we use the θ-expansions of Ua, D̄α̇Ua and Ka(S, S̄),

Ua = Ba + θ2Ma∗ + θ̄2Ma − 1
3
θ̄σ̄mθεmnpqC

anpq + θ2θ̄2
(
Da − 1

4
�Ba

)
,

D̄α̇Ua = −2θ̄α̇Ma + 1
3
(σ̄mθ)α̇εmnpqC

anpq − i(σ̄mθ)α̇∂m(Ba + θ̄2Ma) + θ2(. . . ),

Ka(S, S̄) = Ka(M,M∗) + iθσmθ̄
(
Kab∂mM

b −Kab̄∂mM
∗b̄)+ θ̄2Kab̄(D

b̄−iH b̄) + θ2(. . . ).

(4.25)

The terms in D̄α̇Ua and Ka(S, S̄) that contain at least two θ’s have not been written

out as they do not contribute in (4.24). Here we are interested only in boundary terms

involving the 3-forms Ca
npq without derivatives, which are all contained in the first term

in the second line of (4.24) (and originate from the product of the second term in D̄α̇Ua

with the θ̄2-component of Ka(S, S̄)). They read

B3 = −1
3

∫
d4x ∂m

( (
(ReK)abH

b − (ImK)abD
b
)
εmnpqCa

npq

)
. (4.26)

Inserting the solution for Db (4.12) with G = 0 into this expression it becomes

B3 = −1
3

∫
d4x ∂m

( (
(ReK)ab + (ImK)ac(ReK)−1cd(ImK)db

)
HbεmnpqCa

npq

)
= −1

3

∫
d4x ∂m

(
gabH

aεmnpqCb
npq

)
.

(4.27)

Now we are ready to eliminate the 3-forms from the massless sigma model action. When
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the 3-forms are on-shell, i.e., when they satisfy (4.19), the boundary term (4.27) becomes

negative twice the kinetic term contained in (4.13)

gabH
aHb = g−1abcacb = Re

(
K−1ab̄

)
cacb, (4.28)

so that the massless sigma model action becomes

S3 =

∫
d4x
(
−Kab̄ ∂

mMa∂mM
∗b̄ − Re

(
K−1āb

)
cacb

)
. (4.29)

The second term in (4.29) has the form of a (positive) potential for the fields Ma which

can contain a positive contribution to the cosmological constant. Furthermore, the Ma

can acquire masses by spontaneous supersymmetry breaking. As we will see below, the

same phenomenon occurs in the massless dual action.

4.2 Dual action in the massless case

We now want to find a dual action for (4.1) in the massless case where G = 0. For the

first order action we make the ansatz

Sfirst =

∫
d8z
(
− K̂(F, F̄ ) + FaS

a + F̄āS̄
ā
)
, (4.30)

where K̂ is real. The equations of motion for the Fa then read

∂K̂

∂Fa
= Sa,

∂K̂

∂F̄ā
= S̄ ā. (4.31)

In order to reproduce (4.1) (with G = 0), K̂ has to fulfill the equation

K(
∂K̂

∂F
,
∂K̂

∂F̄
) = Fa

∂K̂

∂Fa
+ F̄ā

∂K̂

∂F̄ā
− K̂(F, F̄ ), (4.32)

i.e., K has to be the Legendre transform of K̂ (and vice versa, because the Legendre

transformation is its own inverse, see App. C). Thus (4.31) is equivalent to

Fa =
∂K

∂Sa
≡ Ka(S, S̄). (4.33)

In order to eliminate the Ua from the first order action (4.30) without dropping any

boundary term, we again have to add the boundary terms (3.62). Note that these exactly

reproduce the terms given in (4.21) for Fa = Ka(S, S̄). Just like in (3.65), we can then

write the action in the form

Sfirst + Bfirst =

∫
d8z
(
−K̂(F, F̄ )− 1

4
Ua(D̄2Fa +D2F̄a)

)
. (4.34)

29



Variation with respect to the Ua yields here the same condition on the Fa as in the

renormalizable case,

D̄2Fa +D2F̄a = 0, (4.35)

and thus Fa again takes the form (3.68). With the fermionic components set to zero, we

have

∆F
a := Fa − fa = θ2ha + iθ̄2ĉa + θσmθ̄wam + θ2θ̄2

(
−1

4
�fa − i

2
∂mw

m
a

)
,

∆̄F
b̄ := F̄b̄ − f ∗b̄ = θ̄2h∗b̄ − iθ

2ĉb̄ + θσmθ̄w∗b̄m + θ2θ̄2
(
−1

4
�f ∗b̄ + i

2
∂mw

m∗
b̄

)
.

(4.36)

To compute the component form of the dual action we extract the θ2θ̄2-component of

K̂(F, F̄ ) by Taylor expanding around (f, f ∗),

K̂(F, F̄ ) = K̂(f, f ∗) + K̂a∆F
a + K̂ ā∆̄F

ā + 1
2
K̂ab∆F

a ∆F
b + 1

2
K̂ āb̄∆̄F

ā ∆̄F
b̄ + K̂ab̄∆F

a ∆̄F
b̄ . (4.37)

Using K̂ab = K̂ba and K̂ āb̄ = K̂ b̄ā one easily finds

Sdual = −
∫
d8z K̂(F, F̄ )

= −
∫
d4x

[
K̂a
(
− 1

4
�fa − i

2
∂mw

m
a

)
+ K̂ ā

(
− 1

4
�f ∗ā + i

2
∂mw

m∗
ā

)
+ K̂ab

(
− 1

4
wamw

m
b + iĉahb

)
+ K̂ āb̄

(
− 1

4
w∗āmw

m∗
b̄ − iĉāh

∗
b̄

)
+ K̂ab̄

(
− 1

2
wamw

m∗
b̄ + hah

∗
b + ĉaĉb̄

)]
.

(4.38)

The fields ha and wam have purely algebraic equations of motion and can thus be elim-

inated. This is most conveniently done for the ha by completing the square as in (B.7)

(with Ja = −iK̂abĉb) resulting in12

Sdual =

∫
d4x

[
1
4
K̂abwma wbm + 1

4
K̂ āb̄wm∗ā w∗b̄m + 1

2
K̂ab̄wma w

∗
b̄m

− ∂mK̂a
(

1
4
∂mfa + i

2
wma
)
− ∂mK̂ ā

(
1
4
∂mf ∗ā − i

2
wm∗ā

)
+
(
K̂acK̂−1

cd̄
K̂ d̄b̄ − K̂ab̄

)
ĉaĉb̄

]
,

(4.39)

where integration by parts was applied for the terms in the first line of (4.38). The

wma appear in the action (4.39) in the most general quadratic form for complex auxiliary

fields given in (B.8). Following the prescription given in Appendix B, we can complete

12As K is the Legendre transform of K̂, it is implicit in formula (C.11) — with K and K̂ exchanged
— that K̂ab̄ is invertible.
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the square with respect to the wma by writing the action as

Sdual =

∫
d4x

[
1
4

(
(wma + uma ) (wm∗ā + um∗ā )

)(K̂ab K̂ab̄

K̂ āb K̂ āb̄

)(
wbm + ubm

w∗
b̄m

+ u∗
b̄m

)

− 1
4

(
uma um∗ā )

(
K̂ab K̂ab̄

K̂ āb K̂ āb̄

)(
ubm

u∗
b̄m

)

− 1
4
∂mfa∂mK̂

a − 1
4
∂mf ∗ā∂mK̂

ā −
(
K̂ab̄ − K̂acK̂−1

cd̄
K̂ d̄b̄

)
ĉaĉb̄

]
,

(4.40)

where the uma have to solve the equations(
K̂ab K̂ab̄

K̂ āb K̂ āb̄

)(
ubm

u∗
b̄m

)
= −i

(
∂mK̂

a

−∂mK̂ ā

)
. (4.41)

Here the Hesse matrix of the Legendre transformed Kähler potential K̂(f, f ∗) has ap-

peared,

Hess K̂ =

(
K̂ab K̂ab̄

K̂ āb K̂ āb̄

)
. (4.42)

As derived in Appendix C, it is the inverse of the Hesse matrix of K(M,M∗). However,

let us ignore this fact for the moment and only notice that Hess K̂ is invertible with its

inverse given by (cf. (B.13))

(Hess K̂)−1 =

(
C D

D∗ C∗

)
where

Dab̄ =
(
K̂ b̄a − K̂ b̄c̄K̂−1

c̄d K̂
da
)−1

,

Cab = −K̂−1
ac̄ K̂

c̄d̄D∗d̄b.
(4.43)

The equations of motion for the wam and w∗ām imply that the term in the first line of

(4.40) (the “square”) vanishes and we write the term in the second line as

−1
4

(
uma um∗ā )

(
K̂ab K̂ab̄

K̂ āb K̂ āb̄

)(
ubm

u∗
b̄m

)
= 1

4

(
∂mK̂a −∂mK̂ ā

)(Cab Dab̄

D∗āb C∗
āb̄

)(
∂mK̂

b

−∂mK̂ b̄

)
. (4.44)

Thus we obtain the on-shell action (note that D is hermitian, D∗āb = Dbā)

Sdual =

∫
d4x

[
− 1

2
∂mK̂aDab̄∂mK̂

b̄ + 1
4
∂mK̂aCab∂mK̂

b + 1
4
∂mK̂ āC∗āb̄∂mK̂

b̄

−1
4
∂mfa∂mK̂

a − 1
4
∂mf ∗ā∂mK̂

ā − Re
(
D−1b̄a

)
ĉaĉb

]
.

(4.45)

To simplify this expression, we use the hermicity of Dab̄ and K̂−1
ab̄

to write the matrix C

that is defined in (4.43) as

Cab = −Dbc̄K̂
c̄d̄K̂−1

d̄a
. (4.46)
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Then we substitute this expression to rewrite the terms in (4.45) that depend on C,

∂mK̂aCab∂mK̂
b = −∂mK̂bDbc̄K̂

c̄d̄K̂−1
d̄a

(
K̂ae ∂mfe + K̂aē ∂mf ∗ē

)
= −∂mK̂bDbc̄

((
K̂ c̄e −D−1c̄e

)
∂mfe + K̂ c̄ē∂mf ∗ē

)
= −∂mK̂aDab̄ ∂

mK̂ b̄ + ∂mK̂
a∂mfa,

(4.47)

where in the second step we made use of the expression for Dab̄ given in (4.43). By (4.47)

and its complex conjugate the dual action (4.45) can be written as13

Sdual =

∫
d4x
(
−Dab̄ ∂

mK̂a∂mK̂
b̄ − Re

(
D−1āb

)
ĉaĉb

)
. (4.48)

This is the moment to remember that (Hess K̂)−1 = HessK, and in particular

Dab̄(f, f
∗) = Kab̄(M,M∗), (4.49)

where Kab̄ has to be evaluated at

Ma = K̂a(f, f ∗), M∗ā = K̂ ā(f, f ∗). (4.50)

Equation (4.50) is just the lowest component of the Legendre relation (4.31), that appeared

as the equation of motion for Fa in the first order action (4.30). Thus we see that the

kinetic term of the dual on-shell action (4.48) is, upon using the Legendre relation (4.50),

equal to that of the original action (4.5). In particular the “new” metric

Dab̄ =
(
K̂ b̄a − K̂ b̄c̄K̂−1

c̄d K̂
da
)−1

(4.51)

appearing in the dual action is again Kähler with respect to the variables K̂a and K̂ b̄.

The constants ĉa that are dual to the 3-forms appear in (4.48) with the matrix

Re
(
D−1āb

)
, which is a function of the fa. Thus this term, as the second term in (4.29)

which it corresponds to, has the form of a potential that can lead to an effective cosmo-

logical constant or to mass terms for the fa, even though no mass term was introduced a

priori. In the following we will show that also these potential terms are equal with respect

to the duality relation of the constants ca and ĉa which is contained in (4.31). To find this

relation, we have to determine the θ2 and θ̄2-components of (4.31) with constrained Fa

(i.e., na = iĉa). While the θ-expansion of Sa can be read off from (4.4), that of K̂a(F, F̄ )

can be found by the usual Taylor expansion technique,

∂K̂

∂Fa
= K̂a + K̂ab∆F

b + K̂ab̄∆̄F
b̄ + 1

2
K̂abc∆F

b ∆F
c + 1

2
K̂ab̄c̄∆̄F

b̄ ∆̄F
c̄ + K̂abc̄∆F

b ∆̄F
c̄ , (4.52)

13Here an error in the corresponding result of ref. [17] has been corrected. For the case of the complex
linear multiplet, i.e. for ĉa = 0, ref. [18] also gives a different result due to an error in that work.
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and ∆F
a = Fa − fa is given in (4.36). Thus the θ2 and θ̄2-components of (4.31) with

constrained Fa read

K̂abhb − iK̂ab̄ĉb̄ = Da + iHa,

K̂ab̄h∗b̄ + iK̂abĉb = 0.
(4.53)

The second equation in (4.53) is just the equation of motion for the auxiliary field ha

which we already used to compute the on-shell action (4.48). Inserting the solution for

hb,

hb = iK̂−1
bc̄ K̂

c̄d̄ĉd̄, (4.54)

into the first equation in (4.53), one finds the on-shell duality relation

Ha = Re
(
K̂abK̂−1

bc̄ K̂
c̄d̄ − K̂ad̄

)
ĉd = −Re

(
D−1ad̄

)
ĉd. (4.55)

From the last equation one can derive the relation between the constants ca and ĉa ap-

pearing in the on-shell action and dual action respectively:

ca = gabH
b = −ĉa, (4.56)

where (4.16) and (4.49) were used. Now we see that the sigma model action of the massless

3-form multiplet (4.29), is indeed equal to its dual action (4.48) by use of the two duality

relations (4.50) and (4.56).

Should one really be surprised about the equality of action and dual action with

respect to the duality relations? Or is it rather something one could have expected from

the beginning? To answer this question, let us briefly recall what we have done in this

section: We began by writing down a first order action Sfirst from which the original action

S3 could be reproduced by using the Euler-Lagrange equations for the new superfields Fa

given in (4.31). In mathematical language, this simply reads

∂K̂

∂Fa
= Sa ⇒ Sfirst = S3. (4.57)

Then we eliminated the 3-form superfields Ua from Sfirst by their Euler-Lagrange equations

(4.35) to obtain the dual action Sdual, that is

D̄2Fa +D2F̄a = 0 ⇒ Sfirst = Sdual. (4.58)

Now elementary logic tells us that(
∂K̂

∂Fa
= Sa ∧ D̄2Fa +D2F̄a = 0

)
⇒ S3 = Sdual. (4.59)

In other words, action and dual action are equal when both the Euler-Lagrange equations

for the Fa as well as those of the Ua are used. However, the situation is not that simple
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because these two superfield equations contain all the equations of motion of the first

order action, in particular also those of the physical fields Ma and fa appearing in the

on-shell action and dual action. Therefore one can not expect that these actions can be

translated into each other only by use of the duality relations (4.50) and (4.56). It has

to be considered as coincidence that this is nevertheless possible for the massless case.

It certainly has to do with the fact that the number of off-shell degrees of freedom of

the action (4.29) and dual action (4.48) coincide so that the duality relations (4.50) and

(4.56) constitute only a field redefinition. Using this field redefinition to re-express the

dual action in terms of the fields Ma and constants ca one will find an action whose

equations of motion are equivalent to those of the dual action by (4.50). The massless

3-form action (4.29) has the same property, therefore it is not a big surprise that they

coincide. We will see below that in the massive case there is no field redefinition that

relates the dual action to the 3-form action and one has to make use of the equations of

motion of the 3-forms (which are then dynamical fields that can not be eliminated from

the action) to translate them into each other.

4.3 Dual action in the massive case

Let us now turn to the massive case where the potential G(U) is non-trivial. We simply

add this term to the first order action (4.30),

Sfirst =

∫
d8z
(
− K̂(F, F̄ ) + FaS

a + F̄b̄S̄
b̄ −G(U)

)
, (4.60)

where K̂ is again the Legendre transform of K. Since the Euler-Lagrange equations (4.31)

do not change, the original action (4.1) is reproduced correctly. We then rewrite the action

as14

Sfirst =

∫
d8z
(
− K̂(F, F̄ ) + ΩaU

a −G(U)
)
, (4.61)

where Ωa was defined in (3.75), and determine the Euler-Lagrange equation for Ua to be

∂G

∂Ua
= Ωa. (4.62)

To eliminate the Ua from the action we have to assume that there is a Legendre transform

Ĝ of G, i.e., a function which satisfies

Ĝ(
∂G

∂U
) = Ua ∂G

∂Ua
−G(U). (4.63)

When this is the case, we find as a dual action

Sdual =

∫
d8z
(
−K̂(F, F̄ ) + Ĝ(Ω)

)
. (4.64)

14Again, in the massive case it is legitimate to drop boundary terms.
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The superfields Fa remain unconstrained as in the massive renormalizable case so that

their bosonic part is given by

Fa = fa + θ2ha + θ̄2na + θσmθ̄wam + θ2θ̄2(da − 1
4
�fa − i

2
∂mw

m
a ),

F̄ā = f ∗ā + θ2n∗ā + θ̄2h∗ā + θσmθ̄w∗ām + θ2θ̄2(d∗ā − 1
4
�f ∗ā + i

2
∂mw

m∗
ā ).

(4.65)

For the K-part of the action we now obtain

SK = −
∫
d8z K̂(F, F̄ )

= −
∫
d4x

[
K̂a
(
da − 1

4
�fa − i

2
∂mw

m
a

)
+ K̂ab

(
−1

4
wma wbm + hanb

)
+ h.c.

+ K̂ab̄
(
−1

2
wma w

∗
b̄m + hah

∗
b̄ + nan

∗
b̄

) ]
.

(4.66)

Note that compared to (4.38), the complex scalars da and na also appear in the massive

dual action since the Fa are unconstrained. For the G-term we use the θ-expansion of Ωa

as given in (3.66) but with fermionic components set to zero,

Ωa = 2Re(na) + θ2da + θ̄2d∗a − 2θσmθ̄∂mIm(na) + 1
2
�Re(na). (4.67)

Now perform the θ-integration of Ĝ(Ω),

SG =

∫
d8z Ĝ(Ω)

=

∫
d4x
[

1
2
Ĝa�Re(na) + 1

2
Ĝab
(
dad

∗
b + d∗adb − 2∂mIm(na)∂

mIm(nb)
)]

=

∫
d4x Ĝab

(
dad

∗
b − ∂mRe(na)∂

mRe(nb)− ∂mIm(na)∂
mIm(nb)

)
=

∫
d4x Ĝab

(
dad

∗
b − ∂mna∂mn∗b

)
,

(4.68)

where the derivatives Ĝa and Ĝab are defined in the usual way and in the third step we

made use of

∂mĜ
a = 2Ĝab∂mRe(nb). (4.69)

After assembling the whole action Sdual = SK +SG, the part of the Lagrangian containing

the auxiliary fields da and ha is

Ld,h = Ĝabdad
∗
b − K̂ada − K̂ ād∗ā − K̂ab̄hah

∗
b̄ − K̂

abnahb − K̂ āb̄nāh
∗
b̄ . (4.70)

As derived in Appendix B, by the equations of motion for da and ha (4.70) becomes

−K̂ b̄Ĝ−1
ba K̂

a + naK̂
acK̂−1

cd̄
K̂ d̄b̄n∗b̄ , (4.71)
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where Ĝ−1
ab = Gab|Ba=Ĝa since Gab is the Hesse matrix of G(B) and Ĝab is that of

Ĝ(2Re(n)). Thus we obtain the intermediate result

Sdual =

∫
d4x

[
1
4
K̂abwma wbm + 1

4
K̂ āb̄wm∗ā w∗b̄m + 1

2
K̂ab̄wma w

∗
b̄m

− ∂mK̂a
(

1
4
∂mfa + i

2
wma
)
− ∂mK̂ ā

(
1
4
∂mf ∗ā − i

2
wm∗ā

)
−D−1ab̄nan

∗
b̄ − K̂

b̄Ĝ−1
ba K̂

a − Ĝab∂mna∂mn
∗
b

]
,

(4.72)

where D−1ab̄ = K̂ab̄ − K̂acK̂−1
cd̄
K̂ d̄b̄. Note that the action (4.72) differs from the massless

action (4.39) only by the three terms in the last line of (4.72). Therefore the auxiliary

fields wma can be eliminated using the same steps as in the massless case and resulting

on-shell actions will differ by the same terms, namely

Sdual =

∫
d4x
(
−Dab̄∂

mK̂a∂mK̂
b̄ − Ĝab∂mna∂mn

∗
b −D−1ab̄nan

∗
b̄ − K̂

aĜ−1
ab K̂

b̄
)
. (4.73)

Just as for the renormalizable action discussed in section 3.6, the massive 3-forms are no

longer dual to constants but replaced, together with the real scalars Ba, by the complex

scalars na. The kinetic term for these scalars also takes the form of a Kähler geometry

with the Legendre transform of G as Kähler potential. The last two terms in (4.73)

can give rise to masses for the scalars fa and na. In Appendix D it is shown that the

massive dual on-shell action (4.73) is equal to the 3-form action (4.13) upon using the

duality relations that are contained in (4.31) and (4.62) and the equations of motion of

the 3-forms.

4.4 Dualization in the case of Kähler potentials with a shift

symmetry

Not every sigma model action with 3-form multiplets can be dualized in the way described

in sections 4.2 and 4.3. Let us consider the specific class of Kähler potentials that have

a shift symmetry Sa → Sa + iRa, where Ra is a real superfield. Such Kähler potentials

only depend on the real parts of the superfields Sa, i.e.

K(S, S̄) = K(S + S̄). (4.74)

Then one has

Kab̄ = Kab = Kāb ⇒ Kab̄ ∈ R. (4.75)
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Thus the massive component action (4.13) becomes

S3 =

∫
d4x
[
−Kab ∂

mMa∂mM
b∗ −Gab

(
1
4
∂mBa∂mB

b +MaM b∗ + 1
6
CanpqCb

npq

)
+KabH

aHb − 1
4
GaK

−1abGb

]
,

(4.76)

and the massless action (4.29) is

S3 =

∫
d4x
(
−Kab ∂

mMa∂mM
b∗ −K−1abcacb

)
=

∫
d4x
(
−Kab

(
∂m(ReMa)∂m(ReM b) + ∂m(ImMa)∂m(ImM b)

)
−K−1abcacb

)
.

(4.77)

Note that in the massless as well as in the massive case the fields ImMa have no self-

interaction terms, in particular they are massless.

The actions (4.76) and (4.77) can not be dualized as described in the previous sections

because the arguments of the Legendre transform K̂ of K

Fa =
∂K

∂Sa
=
∂K

∂S̄ ā
= F̄ā (4.78)

have to be real.15 Therefore in the massless case a first order action is given by [17]

Sfirst =

∫
d8z
(
− K̂(F ) + Fa(S

a + S̄a)
)

+ Bfirst, (4.79)

with boundary terms as before (cf. (3.62))

Bfirst = 1
4

∫
d8z
[
D̄α̇

(
FaD̄

α̇Ua − (D̄α̇Fa)U
a
)

+ h.c.
]
. (4.80)

and K̂ is the Legendre transform of the function K that takes only one real argument.

Since the Fa are real, their component expansion can be written as

Fa = fa + θ2na + θ̄2n∗a + θσmθ̄wam + θ2θ̄2
(
da − 1

4
�fa

)
, (4.81)

where fa, da and wam are real. Varying the action (4.79) with respect to F a yields

Sa + S̄a =
∂K̂

∂Fa
. (4.82)

This is the Legendre relation that leads back to the original action

S3 =

∫
d8z K(S + S̄). (4.83)

15To be more precise, there is no Legendre transform of K in the sense of (4.32) because the Hesse
matrix of K with Sa and S̄ā considered as independent variables is not invertible.
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Substituting Sa + S̄a = −1
4
(D2 + D̄2)Ua in (4.79) the Euler-Lagrange equation for Ua is

found to be
0 = −1

4
(D2 + D̄2)Fa

= (na + n∗a) + θ2
(
da + i

2
∂mw

m
a

)
+ θ̄2

(
da − i

2
∂mw

m
a

)
− iθσmθ̄∂m (na − n∗a) + 1

4
θ2θ̄2�(na + n∗a).

(4.84)

This equation, which is used to eliminate the 3-form multiplets from the action and find

a dual action, imposes the constraints

da = 0, ∂mw
m
a = 0, na = iĉa, ĉa ∈ R (4.85)

on the components of Fa. The second condition is solved by wam = εmnpq∂
nBpq

a with a

2-form Bpq, so that Fa takes the form

Fa = fa + iθ2ĉa − iθ̄2ĉa + θσmθ̄εmnpq∂
nBpq

a − 1
4
θ2θ̄2�fa. (4.86)

Therefore we find as a dual action

Sdual = −
∫
d8z K̂(F )

= −
∫
d4x
(
− 1

4
K̂a�fa + 1

2
K̂ab

(
2ĉaĉb − 1

2
εmnpq∂

nBpq
a ε

mlrs∂lBbrs

) )
=

∫
d4x K̂ab

(
− 1

4
∂mfa∂mfb − 3

2
∂[nBpq]

a ∂nBbpq − ĉaĉb
)
.

(4.87)

The 2N bosonic on-shell degrees of freedom contained in the Ma are distributed in the

dual action among the real scalars fa and the 2-forms Bpq
a , which carry one degree of

freedom each. As shown in Appendix C, equation (4.82) is equivalent to

Fa =
∂K

∂(Sa + S̄a)
. (4.88)

This equation contains the duality relations between the components of the massless 3-

form multiplet U and 2-form multiplet F . Using

Sa+S̄a = 2ReMa−2θσmθ̄∂m(ImMa)+θ2(Da+iHa)+θ̄2(Da−iHa)+1
2
θ2θ̄2�(ReMa), (4.89)

one finds from the lowest component of (4.88)

fa = Ka(2ReM) ⇒ ∂mfa = 2Kab∂m(ReM b), (4.90)

while the θσmθ̄-component reads

εmnpq∂
nBpq

a = −2Kab∂m(ImM b) ⇒ ∂[nBpq]
a = 1

3
εmnpqKab∂m(ImM b), (4.91)
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and finally from the θ2-component

iĉa = Kab(D
b + iHb) ⇒ ĉa = KabH

b = gabH
b = ca. (4.92)

(The last equation also contains the equation of motion of Da, KabD
b = 0.) Let us now

check whether the dual component action (4.87) can be translated into the massless 3-

form action (4.77) by these duality relations. First of all (4.90) implies K̂ab = K−1ab.

Thus we see that the last term in (4.87) coincides with the potential term in (4.77). With

the second equation in (4.90) and (4.91) we can also translate the kinetic terms to obtain

Sdual
∼=
∫
d4x
(
−Kab

(
∂m(ReMa)∂m(ReM b)− ∂m(ImMa)∂m(ImM b)

)
−K−1abcacb

)
.

(4.93)

This equals (4.77) up to the sign of the kinetic term for ImMa. To understand where

this difference arises from, let us consider the relations (4.90), (4.91) and (4.92) as field

redefinitions we choose without knowing anything about Poincaré duality. When we

express the action (4.87) in terms of the new fields ReMa and ImMa we have to keep in

mind that ImMa is not a free field, because according to (4.91) it satisfies

∂m
(
Kab∂

m(ImM b)
)

= 0. (4.94)

This is just the equation of motion for ImMa that follows from (4.77).16 Therefore one

should not be surprised about the fact that (4.93) does not coincide with (4.77). The

θσmθ̄-component of (4.88) relates ImMa to the constrained fields wma , and the constraint

corresponds to the equation of motion for ImMa which follows from the 3-form action

with unconstrained ImMa. Of course the expression (4.93) equals (4.77) upon using

(4.94) because by this equation the kinetic term for ImMa simply vanishes. But action

and dual action cannot be translated into each other by a field redefinition as in the

complex massless case. This is already clear from the fact that they do not contain an

equal number of off-shell degrees of freedom as the imaginary parts of the Ma are dual to

the 2-forms Bpq
a that possess three gauge invariant off-shell degrees of freedom each.

As an example consider the Kähler potential

K(S, S̄) = − log(S + S̄). (4.95)

The massless action including the boundary term for the 3-form is then given by

S =

∫
d4x

1

(2ReM)2

[
− ∂mM∂mM∗ +H2

]
− 1

3

∫
d4x ∂m

[
1

(2ReM)2
HεmnpqCnpq

]
. (4.96)

16Interestingly, the equation of motion for Bpqa , 0 = ∂n
(
K̂ab∂[nB

pq]
b

)
∼ εmnpq∂n∂m(ImMa), is also

automatically fulfilled by the duality relations (4.91) and (4.90).
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To find K̂(F ), use the Legendre relation F = ∂K/∂S = −(S + S̄)−1 and

K̂(F ) = −K(S, S̄) + F (S + S̄) = log(−F )− 1. (4.97)

Thus the dual action is given by

Sdual = −
∫
d8z K̂(F )

=

∫
d4x

1

f 2

(
− 1

4
∂mf∂mf − 3

2
∂[nBpq]∂nBpq − ĉ2

)
.

(4.98)

The duality relations read here

f = − 1

2ReM
, ∂[nBpq] = 1

12
(ReM)−2εmnpq∂m(ImM), ĉ =

H

(2ReM)2
. (4.99)

5 Coupling to chiral fields

5.1 Renormalizable coupling

In this section we want to study the coupling of N 3-form multiplets Ua to Nc chiral fields

Φi. We start with the massive action (3.56) and add interaction terms and kinetic terms

for the chiral superfields. The action is then of the form17

S =

∫
d4x

[ ∫
d2θ d2θ̄

(
SaS̄a + ΦiΦ̄i − 1

2
m2
abU

aU b + ξaU
a
)

+

∫
d2θW (S,Φ) +

∫
d2θ̄ W ∗(S̄, Φ̄)

]
.

(5.1)

Generally the function W can contain both interaction terms that couple the superfields

Sa to the Φi, as well as potential terms which depend only on the Sa or Φi respectively:

W (S,Φ) = W int.(S,Φ) +W S(S) +WΦ(Φ) . (5.2)

In order for the action to be renormalizable W can be at most cubic in the superfields. To

determine the component form of (5.1) we only have to add to (3.56) the θ2θ̄2-component

of ΦiΦ̄i as given in (2.20) and the θ2-component of W (S,Φ) which can be found with the

usual Taylor expansion technique. With the shorthands for the derivatives of W

Wa(M,A) :=
∂W

∂Sa

∣∣∣
θ=θ̄=0

, Wi(M,A) :=
∂W

∂Φi

∣∣∣
θ=θ̄=0

etc. (5.3)

17Note that this is a gauge fixed action, with the gauge specified in section 3.4. Furthermore, for
renormalizable theories m2

ab has to be constant and we do not consider the possibility of a ΦU coupling.
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this yields

S =

∫
d4x

[
− ∂mMa ∂mM

a∗ − iλaσm∂mλ̄a − ∂mAi ∂mAi∗ − iψiσm∂mψ̄i + F iF i∗

+DaDa +HaHa −m2
ab

(
i
2
χaσm∂mχ̄

b − i
2

(
χaλb − χ̄aλ̄b

)
+MaM b∗

+BaDb − 1
4
Ba�Bb + 1

6
Ca
npqC

bnpq
)

+ ξa
(
Da − 1

4
�Ba

)
+
(
Wa (Da + iHa) +WiF

i − 1
2
Wijψ

iψj − 1
2
Wabλ

aλb −Waiλ
aψi + h.c.

)]
.

(5.4)

By completing the square for the auxiliary fields Da and F i they can be easily eliminated

from the action (5.1) to get

S =

∫
d4x

[
− ∂mMa ∂mM

a∗ − iλaσm∂mλ̄a − ∂mAi ∂mAi∗ − iψiσm∂mψ̄i

−m2
ab

(
i
2
χaσm∂mχ̄

b − i√
2

(
χaλb − χ̄aλ̄b

)
+MaM b∗ + 1

6
Ca
npqC

bnpq
)

− 1
4
m2
ab∂

mBa ∂mB
b +HaHa − 1

4

(
m2
abB

b − ξa − 2Re(Wa)
)2

−WiW
∗
i

+
(
iWaH

a − 1
2
Wijψ

iψj − 1
2
Wabλ

aλb −Waiλ
aψi + h.c.

)]
.

(5.5)

Here again the fields B and χ should be redefined as in (3.59) to give their kinetic terms

the standard form and to absorb the vacuum expectation value of B. Then one obtains

the action

S =

∫
d4x
[
− ∂mMa ∂mM

a∗ − iλaσm∂mλ̄a − iχ′aσm∂mχ̄′a − ∂mAi ∂mAi∗ − iψiσm∂mψ̄i

−
(
mabχ

′aλb +Waiλ
aψi + 1

2
Wabλ

aλb + 1
2
Wijψ

iψj + h.c.
)

− ∂mB′a∂mB′a +HaHa − 1
6
m2
abC

a
npqC

bnpq − 2Im(Wa)H
a − V

]
(5.6)

with a scalar potential

V = m2
abM

aM b∗ +WiW
∗
i +

(
mabB

′b − ReWa

)2 ≥ 0. (5.7)

The form of this potential implies that supersymmetry is unbroken if and only if there is

a field configuration for which the equations

mabB
′b − ReWa = 0, Wi = 0, Ma = 0 (5.8)

are fulfilled, because then and only then is 〈V〉 = 0. (This can also be seen directly from

the supersymmetry variations of the chiral multiplet (2.21) and the 3-form multiplet (3.10)

using the equations of motion for F i and Da.) Since mab is invertible, the first equation

in (5.8) has always a solution that fixes only the Ba. For renormalizable interactions the
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function W int. in (5.2) is of the form

W int.(S,Φ) = µa,iS
aΦi + ρa,ijS

aΦiΦj + γab,iS
aSbΦi, (5.9)

where ρa,ij = ρa,ji and γab,i = γba,i, so that the second and third equation in (5.8) can be

summarized to

0 = Wi|M=0 =
(
W int.
i (M,A) +WΦ

i (A)
)
|M=0 = WΦ

i (A). (5.10)

From this it is seen that in the class of models considered here supersymmetry is bro-

ken for exactly the same superpotentials WΦ as in the well known chiral theories, the

O’Raifeartaigh models, because in those theories the scalar potential is simply given by

V = WiW
∗
i when W (Φ) is the superpotential [41]. It is particularly interesting that the

superpotential W S for the 3-form field strength multiplets cannot break supersymme-

try due to the presence of the non-singular mass matrix mab, which also prevented the

Fayet-Iliopoulos term from breaking supersymmetry.

Let us now analyze the mass spectrum for the case of vanishing superpotentials

W S(S) = 0 = WΦ(Φ). By (5.9) one then has

Wi = µa,iM
a + 2ρa,ijM

aAj + γab,iM
aM b,

Wa = µa,iA
i + ρa,ijA

iAj + 2γab,iM
bAi.

(5.11)

Thus the potential (5.7) vanishes (i.e., is minimized) for Ma = B′a = Ai = 0 so that

supersymmetry is unbroken. Since all fields have vanishing vacuum expectation values,

contributions to the mass matrices only come from terms that are quadratic in the fields.

For the scalars Ma these can be found in

m2
abM

aM b∗ +WiW
∗
i =

(
m2
ab + µ∗a,iµb,i

)
Ma∗M b + . . . , (5.12)

where the dots denote terms that are at least cubic. Thus the Ma mix among themselves

to form mass eigenstates and their mass matrix is given by

m̂2
ab = m2

ab + µ∗a,iµb,i. (5.13)

Next collect the mass terms for the scalars Ai and Ba (from now on we drop the prime

on B′a and χ′a) which are entirely contained in the term

(
mabB

b − Re(Wa)
)2

=
(
mabB

b − 1
2
µa,iA

i − 1
2
µ∗a,iA

i∗)2
+ . . . . (5.14)

To analyze the corresponding mass matrix it is useful to define

(Ãα
)

:=
(
Ba Ai A∗j̄

)
, (µa,α) := (mab, −1

2
µa,i, −1

2
µ∗a,j̄), α = 1, . . . , N + 2Nc, (5.15)
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so that the mass terms in (5.14) can be written as∣∣∣∣∣
N+2Nc∑
α=1

µa,αÃ
α

∣∣∣∣∣
2

= µ∗a,αµa,βÃ
α∗Ãβ. (5.16)

Thus we have determined the quadratic mass matrix m2B,A
αβ = µ∗a,αµa,β for the fields Ãα.

The special structure of this matrix, namely that it is the product of an N × (N + 2Nc)-

matrix (µa,α) with its hermitian conjugate, allows for two significant statements about

its eigenvalues. First, there are (at least) 2Nc massless states, which correspond to the

2Nc linearly independent vectors ~vr ∈ CN+2Nc , r = 1, . . . , 2Nc that satisfy the N linear

equations

µa,αv
r
α = 0, a = 1, . . . , N. (5.17)

Second, the remaining N eigenvalues of m2B,A coincide with the eigenvalues qa of the

hermitian matrix

Qab := µ∗a,βµb,β = m2
ab + 1

2
Re
(
µa,iµ

∗
b,i

)
. (5.18)

To see this, denote by Uab the elements of the unitary matrix that diagonalizes Q,

UacQcdU
∗
bd = qaδab, U∗caUcb = δab. (5.19)

Then the N + 2Nc component vector

~ua =
(
Uabµ

∗
b,α

)
α=1,...,N+2Nc

, (5.20)

is eigenvector of m2B,A with eigenvalue qa:

m2B,A
αβ (~ua)β = µ∗c,αµc,βUabµ

∗
b,β = µ∗c,αUabQbc = (~ud)αU

∗
dcUabQbc = qa(~ua)α. (5.21)

As an example consider the simplest case N = Nc = 1 where the mass matrix m2B,A reads

m2B,A = (µ∗αµβ) =

 m

−1
2
µ∗

−1
2
µ

(m − 1
2
µ − 1

2
µ∗
)
. (5.22)

The two massless states correspond to the two linearly independent solutions ~v1, ~v2 of

0 = µβvrβ = mvr1 − 1
2
µvr2 − 1

2
µ∗vr3, r = 1, 2. (5.23)
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These should be chosen to be orthonormal, for example

~v1 :=
−i√
2|µ|

 0

µ∗

−µ

 , ~v2 :=
1

|µ|
√
µµ∗ + 2m2

µµ∗

mµ∗

mµ

 , (5.24)

where ~v2 was found by taking the cross product of ~µ = (µα) with ~v∗1. The massless fields

are then given by

A1 :=
i√
2|µ|

(
µA− µ∗A∗

)
, A2 :=

1

|µ|
√
µµ∗ + 2m2

(
µµ∗B +mµA+mµ∗A∗

)
.

(5.25)

Note that these are two real fields, so that each carries only one degree of freedom. The

third eigenvector of m2
αβ is (µ∗α) with eigenvalue

m̃2 = µβµ
∗
β = m2 + 1

2
µµ∗. (5.26)

The field that has this mass is given by

A3 :=
1√

m2 + 1
2
µµ∗

(
mB − 1

2
µA− 1

2
µ∗A∗

)
. (5.27)

The action (5.6) contains only one mass term for the 3-forms Ca
npq and their mass matrix

is simply m2
ab. Thus we have (in principal) determined the 4N + 2Nc mass eigenvalues of

all the bosonic fields of the theory.

One might also be interested in the fermion masses, as they should be in some way

related to the boson masses by supersymmetry. The mass m of a fermion Ψ can be defined

from its second order equation of motion,

�Ψ = m2Ψ + . . . , (5.28)

where the dots denote terms that are at least quadratic in the fields. Let us consider

first the case of one chiral and one 3-form multiplet and then generalize to arbitrary N

and Nc. The part of the Lagrangian that defines the fermion masses (i.e., that is purely

fermionic and quadratic in fields) is then given by

Lferm.
mass = −iλσm∂mλ̄− iχσm∂mχ̄− iψσm∂mψ̄ −m(χλ+ χ̄λ̄)− µλψ − µ∗λ̄ψ̄. (5.29)

Thus the equations of motion of the fermions λa, χa and ψi can be written in matrix

notation as

−iσm∂m

λ̄χ̄
ψ̄

 =

 0 m µ

m 0 0

µ 0 0


λχ
ψ

+ . . . . (5.30)
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With the last equation and its complex conjugate the action of the d’Alambert operator

on the fermionic fields is found to be

�

λχ
ψ

 = −σmσ̄n∂m∂n

λχ
ψ

 =

 0 m µ∗

m 0 0

µ∗ 0 0


 0 m µ

m 0 0

µ 0 0


λχ
ψ

+ . . .

=

m
2 + µ∗µ 0 0

0 m2 mµ

0 µ∗m µ∗µ


λχ
ψ

+ . . . .

(5.31)

With the last expression we have found the quadratic mass matrix for λ, χ and ψ. The

spinor λ is a mass eigenstate with mass m̂2 = m2 + µµ∗. This coincides with the mass of

the field M which is the superpartner of λ. The quadratic mass matrix for χ and ψ can

be written as

m2χ,ψ =

(
m2 mµ

µ∗m µ∗µ

)
=

(
m

µ∗

)(
m µ

)
. (5.32)

It has a similar structure as m2B,A in the bosonic sector, cf. (5.22). But note that m2χ,ψ is

a mass matrix for two complex Weyl spinors, i.e. four physical states while m2B,A describes

the masses of three real scalars, i.e. three physical states and the fourth bosonic state is

that of the 3-form Cnpq. The fermion mass matrix m2χ,ψ has two eigenvectors

~w1 =
1√

m2 + µµ∗

(
µ

−m

)
, ~w2 =

1√
m2 + µµ∗

(
m

µ∗

)
. (5.33)

with eigenvalues 0 and m̂2 = m2 + µµ∗ respectively. They correspond to the linear

combinations

η1 =
1

m̂
(µ∗χ−mψ), η2 =

1

m̂
(mχ+ µψ). (5.34)

The results for the 1 + 1 dimensional case can be summarized as follows:

boson mass2 fermion mass2

M m̂2 = m2 + µµ∗ λ m̂2

A1, A2 0 η1 0

A3 m̃2 = m2 + 1
2
µµ∗ η2 m̂2

Cnpq m2

One might naively expect that the bosonic and fermionic mass spectra coincide in a theory

with unbroken supersymmetry. The argument would be as follows: For any field φ of the

theory with mass m the equation of motion

0 = (−� +m2)φ+ . . . , (5.35)

45



where the dots again denote terms at least quadratic in the fields, must be supersymmetry

invariant. So if ψ is the superpartner of φ, δξφ ∼ ξψ, the supersymmetry variation of

(5.35) shows that ψ also must have mass m because the supersymmetry variation of the

higher order terms is again of higher order if no field transforms inhomogeneously (i.e.,

supersymmetry is unbroken). So why do the fermionic and bosonic masses differ in the

theory at hand? The answer is that the dots in (5.35) could also include a term linear in

fields but with derivatives. Namely, the action (5.6) contains a term which is quadratic

in fields but cannot be treated as a mass term:

−2(ImWa)H
a = i(µa,iA

i − µ∗a,iAi∗)Ha + . . . . (5.36)

This term appears in the equations of motion for A and A∗:

�A = −µ∗(mB − 1
2
µA− 1

2
µ∗A∗) + iµ∗H + . . . ,

�A∗ = −µ(mB − 1
2
µA− 1

2
µ∗A∗)− iµH + . . . .

(5.37)

Now take for example the massless field A1 whose supersymmetry variation is, according

to (5.25) and with δξA =
√

2ξψ given by

δξA1 = − 2

|µ|
Im
(
µξψ

)
, (5.38)

although ψ is not even a mass eigenstate. But from (5.37) one finds

�A1 = −
√

2|µ|H + . . . . (5.39)

This explains why A1 does not have a massless superpartner: The supersymmetry varia-

tion of the left hand side of (5.39) is according to (5.38) and (5.31)

�(δξA1) = − 2

|µ|
Im
(
µξ�ψ

)
= −2|µ|Im

(
ξ(mχ+ µψ)

)
, (5.40)

while acting with δξ on the right hand side of (5.39) yields

−
√

2|µ|δξH = −2|µ|Im
(
−iξσm∂mλ̄

)
= −2|µ|Im

(
ξ(mχ+ µψ)

)
, (5.41)

where δξH is given in (3.10) and in the last step the equation of motion for λ as given

in (5.30) was used. Thus we have checked that the equation of motion (5.39) is indeed

supersymmetry invariant (to first order in fields, but of course it is invariant to all orders)

when all fields are on-shell.

It is not difficult to generalize this analysis to the case of Nc chiral and N 3-form
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multiplets. The second order equation of motion for the spinors is then given by

�

λ
a

χa

ψi

 =

m
2
ab + µ∗a,iµb,i 0 0

0 m2
ab macµc,j

0 µ∗c,imcb µ∗c,iµc,j


λ

b

χb

ψj

+ . . . . (5.42)

Thus the spinors λa mix among themselves to form mass eigenstates and their mass matrix

coincides with that of the Ma. This is what we expected as these fields are superpartners,

being contained in the same chiral supermultiplet Sa. Again, the quadratic mass matrix

for the χa and ψi can be analyzed in exactly the same way as m2
αβ in the bosonic sector,

since it is also of the form

m2χ,ψ
%σ = µ̂∗a,%µ̂a,σ where (µ̂a,%) := (mab, µa,i), ρ, σ = 1, . . . , N +Nc. (5.43)

From this it is clear that there are Nc zero eigenvalues (which correspond to 2Nc massless

states) and the remaining N eigenvalues coincide with those of the matrix

Q̂ab := µ̂∗a,%µ̂b,% = m2
ab + µ∗a,iµb,i. (5.44)

(Interestingly, this is identical with the mass matrix m̂2
ab of the Ma and λa.) Notice the

slight difference to (5.18) and remember that Q̂ gives the mass spectrum for 2N fermionic

states while Q defines the masses of only N bosonic states. From the supersymmetry

transformation of the 3-form multiplet (3.10) one sees that the spinor χ has as super-

partners B as well as Cnpq. Therefore supersymmetry relates the mass eigenstates formed

by the χa and ψi to those formed by the Ba, Ai and Ca
npq in a rather complex way. As

we have seen for the 1 + 1 dimensional case, one cannot even say that the 2Nc massless

bosonic and fermionic states are superpartners. This is due to the presence of the term

linear in Ha in the action (5.6) which is also responsible for the difference between the

bosonic and fermionic mass spectrum.

By a superpotential WΦ, the fields Ai can get non-vanishing vevs, and in the case of

spontaneously broken supersymmetry the same applies to the Ma. In general, the mass

spectrum of the theory gets much more complicated when superpotentials with terms

linear in S or Φ are included in the action, since then Wa or Wi respectively contain

constants that give rise to additional mass terms (including terms that mix the Ma with

the Ai) and even more mass terms arise when the scalars acquire non-vanishing vevs.

5.2 Non-renormalizable coupling

In the non-renormalizable case we allow for arbitrary couplings G(U,Φ, Φ̄) between the

3-form and chiral superfields, as well as non-renormalizable kinetic terms that mix the
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fields of the chiral with those of the 3-form multiplets. Thus we start with the expression

S =

∫
d4x

[ ∫
d2θ d2θ̄

(
K(S, S̄,Φ, Φ̄)−G(U,Φ, Φ̄)

)
+

∫
d2θW (S,Φ) +

∫
d2θ̄ W ∗(S̄, Φ̄)

]
.

(5.45)

We again consider only the bosonic part of the action. Since both the Sa and the Φi are

chiral superfields the θ-integration of K(S, S̄,Φ, Φ̄) can be performed in the same manner

as that of K(S, S̄) in (4.5), leading to∫
d8z K =

∫
d4x

[
Kab̄

(
− ∂mMa ∂

mM∗b̄ +DaDb̄ +HaH b̄
)

+ 2(ImKab̄)H
aDb

+Kij̄

(
− ∂mAi∂mA∗j̄ + F iF ∗j̄

)
+Kāi

(
− ∂mM∗ā∂mAi + (Dā−iH ā)F i

)
+Kaj̄

(
− ∂mMa∂mA∗j̄+(Da+iHa)F ∗j̄

)]
.

(5.46)

Using the component expansions (4.7) and (2.19) (with fermionic components set to zero)

one finds for the G-part of the action∫
d4x

[
−Ga

(
Da − 1

4
�Ba

)
− 1

4
Gi�A

i − 1
4
Gj̄�A

∗j̄ − 1
2
Gab

(
2MaM b∗ + 1

3
CanpqCb

npq

)
− 1

4
Gij∂mA

i∂mAj − 1
4
Gīj̄∂mA

∗̄i∂mA∗j̄ −Gij̄

(
F iF ∗j̄ − 1

2
∂mA

i ∂mA∗j̄
)

−Gai

(
MaF i − 1

6
iεmnpqCa

npq∂mA
i
)
−Gaj̄

(
MaF ∗j̄ − 1

6
iεmnpqCa

npq∂mA
∗j̄
)]

=

∫
d4x

[
−Gij̄

(
− ∂mAi ∂mA∗j̄ + F iF ∗j̄

)
−Gab

(
1
4
∂mB

a∂mBb +MaM b∗ + 1
6
Ca
npqC

bnpq
)

−GaD
a −GaiM

aF i −Gaj̄M
a∗F ∗j̄ + 1

6
i
(
Gai∂

mAi −Gaj̄∂
mA∗j̄

)
εmnpqC

anpq

]
,

(5.47)

where the terms with d’Alambert operators were rewritten using integration by parts and

the chain rule

∂mGa = Gab∂mB
b +Gai∂mA

i +Gaj̄∂mA
∗j̄ (5.48)

(and similar for ∂mGi). Note that the ‘mixed kinetic’ terms proportional to Gai∂mA
i∂mBa

(and complex conjugate), that arise with this step, cancel due to the different signs of the

�-terms in U and Φ. Let us take a moment to argue why such a term cannot appear in

a supersymmetric action. To this end, consider the simplest case N = Nc = 1 and the

terms

µ ∂mA∂
mB + µ∗ ∂mA

∗∂mB, (5.49)

where µ is a constant of mass dimension 1 which for simplicity we take to be real. The

supersymmetry variation of (5.49) is, according to (3.10) and (2.21), given by

δξ
(
µ ∂m(A+ A∗)∂mB

)
=
√

2µ ∂m(ξψ + ξ̄ψ̄)∂mB + iµ ∂m(A+ A∗)∂m(ξχ− ξ̄χ̄). (5.50)
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The only term whose supersymmetry variation could cancel this is a mixed kinetic term

for the superpartners ψ and χ of A and B,

√
2µψσm∂mχ̄ + h.c. . (5.51)

For simplicity, suppose that χ and ψ transform as

δξχ = σmξ̄ ∂mB, δξψ =
√

2iσmξ̄ ∂mA, (5.52)

neglecting the other terms given in (3.10) and (2.21) (this is legitimate as one wants to

collect all terms whose supersymmetry variation could cancel (5.50)). Then the super-

symmetry variation of (5.51) would be

√
2µ δξ

(
ψσm∂mχ̄

)
+ h.c. = −2iµ (∂nA)ξ̄σ̄nσm∂mχ̄−

√
2µψσmσ̄nξ(∂m∂nB) + h.c.

= 2iµ (∂nA)ξ̄∂nχ̄−
√

2µ ∂m(ξψ)∂mB + h.c. + ∂m(. . . ),
(5.53)

where in the second step we made use of σ̄(mσn) = −ηmn and ∂m(. . . ) denotes a total

divergence as we applied integration by parts twice on the first term and once on the

second term. Thus the sum of (5.50) and (5.53) is, modulo a total divergence, given by

iµ∂m(A− A∗)∂m(ξχ+ ξ̄χ̄). (5.54)

Roughly speaking, the supersymmetry variation of (5.49) cannot be canceled since there is

no spinor whose supersymmetry variation would be proportional to A+A∗. The argument

presented here, though far from being rigorous, is supported by the fact that when the

fermionic components of the supermultiplets are included, the ψ, χ mixed kinetic terms

∼ Gaj̄χ
aσm∂mψ̄

j̄ also cancel, as one can easily check. Therefore it is appropriate to say

that these interactions are forbidden by supersymmetry.

Assembling the different parts of the action (5.45) (the last two terms where already

computed in Sec. 5.1) we obtain the component form

S =

∫
d4x

[
Kab̄

(
− ∂mMa ∂

mM∗b̄+DaDb̄+HaH b̄
)

+ 2Im(Kab̄)H
aDb

+
(
Kāi

(
−∂mM∗ā∂mAi+(Dā−iH ā)F i

)
+h.c.

)
+ Pij̄

(
−∂mAi∂mA∗j̄+F iF ∗j̄

)
−Gab

(
1
4
∂mB

a∂mBb +MaM b∗ + 1
6
Ca
npqC

bnpq
)
−GaD

a

−GaiM
aF i −Gaj̄M

a∗F ∗j̄ + i
6

(
Gai∂mA

i −Gaj̄∂mA
∗j̄
)
εmnpqCa

npq

+WiF
i +W ∗

ī F
∗̄i +Wa

(
Da + iHa

)
+W ∗

ā

(
Dā − iH ā

)]
,

(5.55)

were we defined Pij̄ := Kij̄ − Gij̄. The action still contains the auxiliary fields F i and

Da. To eliminate them, we again follow the prescription given in Appendix B and first
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consider only the part of the Lagrangian containing the F i. With the definitions

Zi := −iKiāH
ā −GaiM

a +Wi, Ji := DāKāi + Zi, (5.56)

this is18

LF = F iPij̄F
∗j̄ + JiF

i + J∗j̄ F
∗j̄

=
(
F i + J∗k̄P

−1k̄i
)
Pij̄
(
F ∗j̄ + P−1j̄kJk

)
− J∗j̄ P

−1j̄iJi.
(5.57)

By completing the square for the F i in this way, it can be immediately seen how the

action changes by elimination of the F i: only the second term in the second line of (5.57)

survives. Then the part of the Lagrangian containing the fields Da becomes (note that Ji

also depends on the Da)

LD = Da(Kab̄ −Kaj̄P
−1j̄iKib̄)D

b̄ +QaD
a

= (Da + 1
2
QcR

−1ca)Rab(D
b + 1

2
R−1bdQd)− 1

4
QaR

−1abQb

(5.58)

where
Qa := −2Im(Kab̄)H

b −Ga + 2Re
(
Wa −Kaj̄P

−1j̄iZi
)
,

Rab := Re
(
Kab̄ −Kaj̄P

−1j̄iKib̄

)
.

(5.59)

Now the Da can also be eliminated from the action: again the first term in the second

line of (5.58) vanishes and one finds that all the terms in the Lagrangian containing the

auxiliary fields F i and Da are replaced by

−Z∗j̄P
−1j̄iZi − 1

4
QaR

−1abQb. (5.60)

This expression contains potential terms for the scalars Ma, Ba and Ai as well as terms

involving the field strengths Ha. To separate them, let us define

Z̃i := −GaiM
a +Wi, Q̃a := −Ga + 2Re

(
Wa −Kaj̄P

−1j̄iZ̃i
)
. (5.61)

Then (5.60) can be written as

−
(
iHcKcj̄ + Z̃∗j̄

)
P−1j̄i

(
− iKic̄H

c̄ + Z̃i
)
− 1

4

(
2HcIm(Kc̄a) + Q̃a

)
R−1ab

(
− 2Im(Kbc̄)H

c + Q̃b

)
(5.62)

18In a ghost free theory Pij̄ is invertible, as it is the coefficient matrix of the kinetic term for the scalars
Ai.
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and the on-shell action becomes

S =

∫
d4x

[
−Kab̄∂mM

a∂mM∗b̄ − Pij̄ ∂mAi∂mA∗j̄ −Kāi∂mM
a∂mA∗̄i −Kāi∂mM

∗ā∂mAi

−Gab

(
1
4
∂mB

a∂mBb + 1
6
Ca
npqC

bnpq
)

+ i
6

(
Gai∂mA

i −Gaj̄∂mA
∗j̄
)
εmnpqCa

npq

+ ĝabH
aHb + Im

(
Q̃aR

−1abKbc̄ − 2Z̃∗j̄P
−1j̄iKic̄ − 2Wc

)
Hc − V

]
,

(5.63)

where the 3-form field strengths come with the metric

ĝab = Re
(
Kab̄ −Kaj̄P

−1j̄iKib̄

)
+ Im(Kac̄)R

−1cdIm(Kdb̄) (5.64)

and the scalar potential is given by

V = GabM
aM b∗ + Z̃∗j̄P

−1j̄iZ̃i + 1
4
Q̃aR

−1abQ̃b. (5.65)

6 Conclusion

We have seen in this work how to construct N = 1 supersymmetric, gauge invariant

actions of the 3-form multiplet in four dimensions, and how to dualize these actions.

First we briefly discussed the renormalizable case, and then proceeded to study generic

sigma model actions and their appropriate dualization. We introduced supersymmetric

boundary terms in order to eliminate the massless 3-forms from the action and find

a consistent on-shell action. First we dualized the massless action with the help of a

Legendre transformation of the Kähler potential as proposed in [17]. Elimination of

auxiliary fields has been demonstrated for the dual action and the scalar geometry of the

resulting on-shell action has been shown to be identical with that of the original action.

Even more, the dualization of the massless sigma model action has been recognized as a

simple field redefinition given by the duality relations between the physical fields of action

and dual action. In the massive case with a generic potential for the 3-form superfields,

the dual action has been constructed by a Legendre transformation of this potential.

Thereby arises an additional scalar field, whose kinetic term also has the structure of a

Kähler geometry. We also discussed the special case of Kähler potentials with a shift

symmetry including a simple example.

Finally we coupled the massive 3-form multiplets to chiral ones, first in a renormal-

izable, then in a generic theory. In the renormalizable case we discussed the condition

for spontaneous supersymmetry breaking and thereby showed that it is identical with

that of a simple O’Raifeartaigh model. Furthermore we analyzed the mass spectrum

for the case of vanishing superpotentials and showed that for each chiral multiplet there

are two bosonic and two fermionic massless states. Here we saw that the bosonic and

fermionic mass spectra, even though supersymmetry is unbroken, do not coincide due to
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a term in the action that is linear in the 3-form scalar field strengths. In the case of

non-renormalizable couplings we briefly argued why supersymmetry forbids a particular

interaction between a real and a complex scalar. Lastly we showed how to eliminate the

auxiliary fields from the action to obtain the on-shell action and derive the scalar potential

and the metric for the 3-form field strengths.

Future projects that follow this work may include the coupling of the 3-form multiplet

to gravity, the 3-form in extended supersymmetry, as well as applications of the results

to string theory.
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Appendix

A Conventions and useful relations

The Minkowski metric is taken to be η = diag(−1, 1, 1, 1) and we fix the totally antisym-

metric tensor εmnpq by

ε0123 = 1, ε0123 = det g = −1 for g = η. (A.1)

Spinor indices are raised and lowered with the antisymmetric tensor εαβ as follows

ψα = εαβψ
β, ψα = εαβψβ

ε12 = ε21 = 1, ε21 = ε12 = −1, εαβε
βγ = δγα.

(A.2)

Two spinors can form Lorentz invariant products by contraction of their indices:

ψχ := ψαχα = χψ, ψ̄χ̄ := ψ̄α̇χ̄
α̇ = χ̄ψ̄, θ2 := θθ, θ̄2 := θ̄θ̄ (A.3)

The Pauli matrices σm and σ̄m are defined by

σmαα̇ := (−1, σ1, σ2, σ3)αα̇, σ̄mα̇α := εα̇β̇εαβσm
ββ̇
. (A.4)

They satisfy

σ̄(mσn) = −ηmn ⇒ σ̄mσn∂m∂n = −�,

εαβ (σmχ̄)β = −(χ̄σ̄m)α ⇒ ψσmχ̄ = −χ̄σ̄mψ.
(A.5)

When computing the component form of a supersymmetric action, one often has to rewrite

various combinations of θs using the following relations

(θψ)(θχ) = −1
2
θ2(ψχ), (θ̄ψ̄)(θ̄χ̄) = −1

2
θ̄2(ψ̄χ̄),

θσmθ̄ · θσnθ̄ = −1
2
θ2θ̄2ηmn, θσmσ̄nθ = −θ2ηmn.

(A.6)

When working with θ-derivatives, one should keep in mind that

∂

∂θα
= −εαβ

∂

∂θβ
,

∂

∂θ̄α̇
= −εα̇β̇

∂

∂θ̄β̇
,

∂

∂θα
θ2 = 2θα,

∂

∂θ̄α̇
θ̄2 = 2θ̄α̇,

∂2

∂θ2
:=

∂

∂θα

∂

∂θα
,

∂2

∂θ̄2
:=

∂

∂θ̄α̇
∂

∂θ̄α̇
,

∂2

∂θ2
θ2 = 4,

∂2

∂θ̄2
θ̄2 = 4.

(A.7)

53



The generators of supersymmetry were chosen to be represented by19

Qα =
∂

∂θα
− iσmαα̇θ̄α̇∂m, Q̄α̇ = − ∂

∂θ̄α̇
+ iθασmαα̇∂m, (A.8)

while the covariant superspace derivatives were defined as

Dα :=
∂

∂θα
+ iσm

αβ̇
θ̄β̇∂m, D̄α̇ :=

∂

∂θ̄α̇
+ iθβσmβα̇∂m. (A.9)

They satisfy

{Qα, Q̄β̇} = −2iσm
αβ̇
∂m, {Dα, D̄β̇} = 2iσm

αβ̇
∂m,

{Dα, Dβ} = 0 = {D̄α̇, D̄β̇}, ⇒ DαDβDγ = 0 = D̄α̇D̄β̇D̄γ̇,

D2 = − ∂2

∂θ2
− 2i

∂

∂θα
(σmθ̄)α∂m − θ̄2�, D̄2 = − ∂2

∂θ̄2
− 2i(θσm)α̇

∂

∂θ̄α̇
∂m − θ2�.

(A.10)

B Elimination of auxiliary fields

Most of the known supermultiplets contain besides the physical fields also auxiliary fields,

i.e. fields that do not carry any on-shell degrees of freedom. These can be eliminated from

the action by using their purely algebraic equations of motion. The equations of motion

of the on-shell action are of course equivalent to those of the original action. Elimination

of N auxiliary fields can become computationally involved in the case of complex fields.

However, when they occur in a quadratic form, which is often the case, a generalization

of the well known technique of “completing the square” simplifies this task a lot. Since

we use this technique frequently throughout this work, we want to describe the general

procedure here.

Suppose we have N real auxiliary fields Da that occur in the Lagrangian as

L = DaMabD
b + JaD

a + C, (B.1)

where Mab, Ja and C are arbitrary functions of all other fields contained in the action. In

order for the Lagrangian to be real, Ja and C have to be real and M has to be a hermitian

matrix, even though only its symmetric, i.e. real part contributes in (B.1), which we take

to be invertible here.20 To eliminate the Da, we could simply insert their equations of

motion

2(ReMab)D
b + Ja = 0 ⇒ Db = −1

2
(ReM)−1baJa (B.2)

19Our conventions for the supersymmetry generators and covariant superspace derivatives differ slightly
from those of [20]. For a discussion see the footnotes in Sec. 2.1.

20If ReM was not invertible, each of its zero eigenvalues would account for a constraint on the fields
that couple to the Da, vbJb = 0, where v is a corresponding zero eigenvector.

54



into the Lagrangian (B.1). However the same can be achieved in a more elegant way by

first shifting the Da,

D̃a := Da + 1
2
(ReM)−1acJc, (B.3)

and then rewriting the Lagrangian as

L = D̃a(ReMab)D̃
b − 1

4
Ja(ReM)−1abJb + C. (B.4)

Now we immediately see that the first term in (B.4) (the “square“) vanishes by the

equations of motion for the Da (or D̃a respectively) and we can easily read off the final

Lagrangian.

Now suppose that there are complex auxiliary fields F a that occur in the Lagrangian

as

L = F aKab̄F
∗b̄ + JaF

a + J∗b̄F
∗b̄ + C, (B.5)

where K is an invertible hermitian matrix, Ja is a complex and C a real function of the

other fields. Here the square is completed by shifting

F̃ a := F a + J∗c̄K
−1c̄a, (B.6)

so that the Lagrangian becomes

L = F̃ aKab̄F̃
∗b̄ − J∗āK−1ābJb + C. (B.7)

Again the “square“ vanishes by the equations of motion for the F a and F ∗b̄.

Note that (B.5) does not give the most general form of quadratic terms for N complex

auxiliary fields; one could also have terms proportional to FF and F ∗F ∗ multiplied by a

symmetric matrix M and its complex conjugate,

L = F aMabF
b + F ∗āM∗

āb̄F
∗b̄ + 2F aKab̄F

∗b̄ + JaF
a + J∗b̄F

∗b̄ + C. (B.8)

Now the task of completing the square is more complicated than for (B.5). However, the

quadratic structure of the Lagrangian (B.8) becomes clearer when writing it in the form

L =
(
F T F †

)(M K

K∗ M∗

)(
F

F ∗

)
+
(
F T F †

)( J
J∗

)
+ C. (B.9)

Then, by making the ansatz

L =
(
(F + T )T (F + T )†

)(M K

K∗ M∗

)(
F + T

F ∗ + T ∗

)
−
(
T T T †

)(M K

K∗ M∗

)(
T

T ∗

)
+ C,

(B.10)
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one finds that the T a have to satisfy (note that the block matrix in (B.10) is symmetric)

2

(
M K

K∗ M∗

)(
T

T ∗

)
=

(
J

J∗

)
. (B.11)

Provided that K and the matrix

H :=

(
M K

K∗ M∗

)
(B.12)

are invertible, the inverse is of the form

H−1 =

(
N G

G∗ N∗

)
, where

G =
(
K∗ −M∗K−1M

)−1
,

N = −
(
K−1MG

)∗
.

(B.13)

Then the on-shell Lagrangian becomes (note that G is hermitian)

Lon-shell = −1
4

(
JT J†

)
H−1

(
J

J∗

)
+ C

= −1
4

(
JaN

abJb + J∗āN
∗āb̄J∗b̄

)
− 1

2
JaG

ab̄J∗b̄ + C.

(B.14)

C Legendre transformation

The Legendre transform of a function K : Rn → R is defined by [40]

K̂(p) = max
x∈Rn

(
pix

i −K(x)
)
. (C.1)

The existence of the maximum for all p is equivalent to the invertibility of the relation

pi =
∂K

∂xi
(x) (C.2)

to give a function x(p). The latter is unambiguous as long as K is convex (or concave).

Otherwise (C.2) does not necessarily describe a maximum (or minimum). Given a function

x(p) that satisfies (C.2), the Legendre transform can also be written as

K̂(p) = pix
i(p)−K(x(p)). (C.3)

Thus its derivative is given by

∂K̂

∂pi
(p) = pj

∂xj

∂pi
+ xi − ∂K

∂xj
(x(p))

∂xj

∂pi
= xi(p). (C.4)
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If we denote the variable of the double Legendre transform
ˆ̂
K as x̃, the function p(x̃) is

defined by
∂K̂

∂pi
(p(x̃)) = x̃i. (C.5)

Thus equation (C.4) shows that x(p(x̃)) = x̃ (i.e. x̃ is really the original variable x) which

implies that the Legendre transformation is its own inverse:

ˆ̂
K(x̃) = x̃ipi(x̃)− K̂(p(x̃))

= x̃ipi(x̃)−
(
xi(p(x̃))pi(x̃)−K(x(p(x̃)))

)
= K(x̃).

(C.6)

From the relations (C.2) and (C.4) it follows that the second derivatives obey

∂2K

∂xi∂xj
=
∂pi
∂xj

,
∂2K̂

∂pj∂pk
=
∂xj

∂pk
, (C.7)

which implies

∂2K

∂xi∂xj
∂2K̂

∂pj∂pk
= δki , or HessK =

(
Hess K̂

)−1
. (C.8)

Here the derivatives of K̂ have to be evaluated at p(x) = ∂K/∂x when those of K are

evaluated at x.

In the case of a Kähler potential K(z, z̄) with Kähler metric

Kij̄ =
∂2K

∂zi∂z̄j
(C.9)

one has

HessK =

(
Kij Kij̄

Kīj Kīj̄

)
, Hess K̂ =

(
K̂ij K̂ij̄

K̂ īj K̂ īj̄

)
. (C.10)

The inverse of a block matrix of the form of Hess K̂ is given in equation (B.13). Thus we

obtain the formula

Kij̄ =
(
K̂ j̄i − K̂ j̄k̄K̂−1

k̄l
K̂ li
)−1

. (C.11)

D Translation of the massive dual sigma model ac-

tion on the component level

In this appendix we translate the massive dual on-shell action (4.73) back into the 3-form

action (4.13) by use of the relations between the physical fields fa, na and Ma, Ba, Ca
npq

that are contained in (4.31) and (4.62). As indicated at the end of section 4.2, we will

also have to make use of the equations of motion for the 3-forms (4.18) to achieve this.
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As the relation between the fa and Ma is the same as in the massless case,

K̂a(f, f ∗) = Ma, K̂ ā(f, f ∗) = M∗ā, (D.1)

the kinetic terms for the fa (the first term in (4.73)) and Ma (the first term in (4.13))

are again seen to be equal by these relations. For the other terms in (4.73) we have to

express real and imaginary part of na in terms of the fields Ba and Ca
npq (or Ha resp.).

For the real part of na we use the lowest component of (4.62),

2Re(na) = Ga(B). (D.2)

This is the Legendre relation between the coordinates of G(B) and Ĝ(2Ren) and thus

implies Ĝ−1
ab = Gab. Thus we can translate the last term in (4.73),

−K̂aĜ−1
ab K̂

b̄ = −GabM
aM b∗, (D.3)

and the term on the right hand side is indeed present in (4.13). For the imaginary part

of na we can use again the θ2 and θ̄2-components of (4.31) like in (4.53) but now with

unconstrained Fa (whose bosonic part is given in (4.65)):

K̂abhb + K̂ab̄n∗b̄ = Da + iHa,

K̂ab̄h∗b̄ + K̂abnb = 0.
(D.4)

Inserting h∗
b̄

from the second equation into the complex conjugate of the first one we find

Dā − iH ā =
(
K̂ āb − K̂ āc̄K̂−1

c̄d K̂
db
)
nb = D−1ābnb (D.5)

Using Dab̄ = Kab̄ and taking the imaginary part of this equation we can solve for Im(na),

Im(na) = −(Re(K−1))−1
ab

(
Im(K−1b̄c)Re(nc) +Hb

)
= −gab

(
1
2
Im(K−1b̄c)Gc +Hb

)
, (D.6)

where in the second step we used (4.16) and (D.2). With these expressions for the real

and imaginary part of na we readily translate the third term in (4.73),

−D−1b̄anan
∗
b̄ = −Re(D−1b̄a)

(
RenaRenb + ImnaImnb

)
+ 2Im(D−1b̄a)ImnaRenb

= −1
4
GbRe(K−1b̄a)Ga −

(
Hc − 1

2
GdIm(K−1d̄c)

)
gcb
(

1
2
Im(K−1b̄a)Ga +Hb

)
−GbIm(K−1b̄a)gac

(
1
2
Im(K−1c̄d)Gd +Hc

)
= −1

4
Gb

(
Re(K−1b̄a) + Im(K−1b̄c)gcdIm(K−1d̄a)

)
Ga − gabHaHb,

(D.7)

where in the second step we used again (4.16). Now a quick auxiliary calculation is
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required where one uses four different forms the metric g can take,

g = K(ReK)−1K∗ = 2K−K(ReK)−1K = K∗(ReK)−1K = 2K∗−K∗(ReK)−1K∗, (D.8)

to rewrite

Im(K−1) g Im(K−1) = −1
4
(K−1 −K∗−1) g (K−1 −K∗−1)

= 1
4
(K−1gK∗−1 −K−1gK−1 +K∗−1gK−1 −K∗−1gK∗−1)

= (ReK)−1 − Re(K−1).

(D.9)

Thus the term (D.7) becomes

−D−1b̄anan
∗
b̄ = −1

4
Gb(ReK)−1baGa − gabHaHb. (D.10)

These terms are also present in (4.13), but the second term apparently has the wrong

sign. But before we interpret the result let us proceed and translate also the second term

in (4.73). Here it is obvious that we need another expression for Imna than (D.6) to get

terms that look similar to those in (4.13). This can be found in the θσmθ̄-component of

(4.62), which reads

−2∂mIm(na) = 1
3
GabεmnpqC

bnpq. (D.11)

One can easily check that this equation combined with (D.6) yields the equation of motions

of the 3-forms that we already stated in (4.18). (Therefore we are already implicitly using

the equations of motion of the 3-forms when using both equation (D.6) and (D.11).) With

the help of (D.11) and (D.2) which implies

∂mRe(na) = 1
2
Gab∂mB

b (D.12)

one finds

−Ĝab∂mna∂mn
∗
b = −Gab

(
1
4
∂mB

a∂mBb − 1
6
Ca
npqC

bnpq
)
. (D.13)

Putting everything together we have translated the massive dual action (4.73) as∫
d4x
[
−Kab̄ ∂

mMa∂mM
∗b̄ −Gab

(
1
4
∂mBa∂mB

b +MaM b∗ − 1
6
CanpqCb

npq

)
− gabHaHb − 1

4
Ga(ReK)−1abGb

]
.

(D.14)

This is quite similar to the 3-form action (4.13), but not exactly the same: the terms

∼ C2 and H2 have the wrong sign and the term linear in Ha is missing. However, the

expression (D.14) is not an action for the 3-forms since in its construction the equations

of motion of the 3-forms have been used. Nevertheless it may serve as a check account for

the correctness of (4.13) and (4.73) to use these again to bring (4.13) to the form (D.14).

It is then most elegant to include in (4.13) the boundary terms for the 3-forms which we
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ignored in the massive case. Before elimination of the Da they are given by (4.26). After

inserting the solution (4.12) for Da and with the abbreviation

Na := gabH
b − 1

2
(ImK)ab(ReK)−1bcGc (D.15)

the boundary terms become

B3 = −1
3

∫
d4x εmnpq∂m

(
Na · Ca

npq

)
= −1

3

∫
d4x
(
εmnpq∂mNa · Ca

npq + 6NaH
a
)
. (D.16)

Now the equations of motion for the 3-forms (4.18) can be written as

εmnpq∂mNa = −GabC
bnpq. (D.17)

Inserting them into (D.16) one finds

B3 =

∫
d4x
(

1
3
GabC

a
npqC

bnpq − 2gabH
aHb −Gc(ReK)−1cb(ImK)baH

a
)
. (D.18)

When these terms are added to (4.13), one gets exactly the expression (D.14)! Thus we

have translated the massive sigma model action and dual action into each other on the

component level. However we had to use the equations of motion of the 3-forms for this,

which means that the transition from action to dual action can not be performed by a

field redefinition as in the massless case. This is already clear from the fact that action

and dual action do not contain an equal number of off-shell degrees of freedom as the

massive 3-form possesses four off-shell degrees of freedom while the scalars na (which are

dual to Ca
npq and Ba) contain only two off-shell degrees of freedom each. Nevertheless the

equations of motion of action and dual action are of course equivalent with respect to the

duality relations stated here.
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