
Type IIA orientifolds

on SU(2)-structure Manifolds

Dissertation
zur Erlangung des Doktorgrades

des Departments Physik

der Universität Hamburg

vorgelegt von

Thomas Danckaert

aus Leuven

Hamburg 2010



Gutachter der Dissertation: Prof. Dr. J. Louis

Prof. Dr. W. Buchmüller

Gutachter der Disputation: Prof. Dr. J. Louis

Prof. Dr. V. Schomerus

Datum der Disputation: 20.10.2010
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Abstract

We investigate the possible supersymmetry-preserving orientifold projections of type

IIA string theory on a six-dimensional background with SU(2)-structure. We find

two categories of projections which preserve half of the low-energy supersymmetry,

reducing the effective theory from an N = 4 supergravity theory, to an N = 2 super-

gravity. For these two cases, we impose the projection on the low-energy spectrum

and reduce the effective N = 4 supergravity action accordingly. We can identify

the resulting gauged N = 2 supergravity theory and bring the action into canonical

form. We compute the scalar moduli spaces and characterize the gauged symmetries

in terms of the geometry of these moduli spaces. Due to their origin in N = 4

supergravity, which is a highly constrained theory, the moduli spaces are of a very

simple form. We find that, for suitable background manifolds, isometries in all scalar

sectors can become gauged. The obtained gaugings share many features with those of

N = 2 supergravities obtained previously from other G-structure compactifications.

Zusammenfassung

Das Thema dieser Arbeit sind Orientifold-Projektionen der Typ IIA Stringtheorie

auf Mannigfaltigkeiten mit SU(2) Struktur. Wir finden zwei Klassen von Projektio-

nen, welche die Hälfte der Supersymmetrie der niederenergetischen effektiven Theorie

erhalten, und damit die N = 4 Supergravitation zu einer N = 2 Supergravitation re-

duzieren. Für die beiden Projektionen wird das resultierende niederenergetische Spek-

trum berechnet, und in die Wirkung der effektiven N = 4 Theorie eingesetzt. Wir

zeigen, dass das Ergebnis jeweils einer geeichten N = 2 Supergravitation entspricht,

und bringen die Wirkung in die kanonische Form. Wir beschreiben die Moduli-Räume,

welche von den skalaren Feldern parametrisiert werden, und charakterisieren die gee-

ichten Symmetrien der Theorie anhand der Geometrie dieser Räume. Für geeignete

Mannigfaltigkeiten können Isometrieen aller skalaren Sektoren geeicht werden. Die

Eichalgebren, die sich ergeben, weisen viele Ähnlichkeiten auf mit den Algebren aus

N =2 Supergravitationstheorien, die aus früheren Kompaktifizierungen auf Mannig-

faltigkeiten mit reduzierter Strukturgruppe erhalten wurden. Da die resultierenden

N = 2 Supergravitationstheorien ihren Ursprung in einer N = 4 Supergravita-

tion haben, deren Kopplungen aufgrund der hohen Symmetrie stark eingeschränkt

sind, bilden die erhaltenen effektiven Wirkungen eine sehr begrenzte Unterklasse der

N = 2 Supergravitationstheorien.
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Chapter 1

Introduction

The Standard Model has been a tremendous success in explaining the physics of

elementary particles. Ever since its inception in the 1970’s, experiments have con-

firmed the predictions of the model to high accuracy, with only the Higgs boson still

remaining unobserved. From a theoretical perspective, it is satisfying that the rela-

tively constrained framework of renormalizable quantum field theories can describe

the complex behavior of all known fundamental particles.

Nevertheless, there are reasons to look for a more fundamental description, for

which string theory is considered a promising candidate. One cause of dissatisfaction

with the Standard Model is its relatively large number of remaining free parameters,

some of which have to be finely tuned in order for the model to be consistent. Since it

promises a description of all particle physics in terms of a single fundamental object,

string theory could in principle be a vast improvement in this area. However, the

large number of possible vacua in string theory could also mean that we have traded

off one set of parameters for a new, far bigger one. It remains to be seen if the

combination of observational input and string theoretical consistency constraints can

remove some of the arbitrariness in the choice of a vacuum state.

A more fundamental issue is the lack of a quantum mechanical description of grav-

itation, where quantum field theory breaks down. The fact that perturbative string

theory is a perturbatively finite quantum theory, with a spectrum which naturally

contains the graviton, is probably the strongest argument in favor of string theory as

a fundamental theory of nature.

1.1 String Compactification

If string theory is to be a fundamental theory of nature, it should be able to reproduce

known physics. Therefore, a lot of effort is put into the construction of models that

can explain the observations in particle physics and cosmology. This implies that

the low-energy limit of the model should feature some extension of the standard

1



2 1: Introduction

model with spontaneously broken supersymmetry, and that it should reproduce the

known features of cosmology, such as a de Sitter vacuum and a correct inflationary

mechanism. Though a model satisfying all these constraints has not yet been found,

there is still a lot of progress in this area, and promising partial results have been

achieved using a variety of techniques.

Perturbative string theory [1–3] describes one-dimensional objects, strings, mov-

ing through space-time. It is commonly formulated in terms of a two-dimensional

conformal field theory. Classically, this theory describes the time-dependent embed-

ding of the string, described as a two-dimensional space called the world-sheet, into

space-time, which is called the target-space. A first difficulty lies in the fact that,

in the perturbative regime, a consistent string theory is naturally formulated with a

ten-dimensional target space.1 In order to reconcile this with the four-dimensional

observed universe, the most common solution is to assume that six dimensions form a

compact space, whose size is below the scale probed by current experiments. Thus we

have a ten-dimensional background space-time which is a product M = M1,3 × Y6.

Originally, the most attention was given to compactifications on internal manifolds

Y6 which are Calabi-Yau [1, 4], since such backgrounds, being Ricci-flat, fulfill the

vacuum Einstein equations. Using an effective field theory approximation to string

theory, which is given by a ten-dimensional supergravity theory, one may then ob-

tain a four-dimensional low-energy theory via so-called Kaluza-Klein reduction. This

essentially exploits the fact that momentum along the compact directions gets a dis-

crete spectrum, with a separation between the different mass levels of the order of

the inverse length scale of the compact space Y6. Still under the assumption that the

compact space is sufficiently small, one can neglect all but the lightest modes, which

are massless modes in the Calabi-Yau case, to obtain an effective theory valid at low

energies. This effectively reduces the degrees of freedom of each ten-dimensional field

to those of a finite number of four-dimensional fields.

With the compactification ansatz comes the practical problem of moduli stabi-

lization. After the Kaluza-Klein reduction, the remaining four-dimensional theory

generically contains a large number of massless scalar fields, or moduli. These moduli

include the effective four-dimensional fields originating from the metric on the inter-

nal manifold, as well as the string coupling. The metric moduli describe the “shape”

of the internal manifold, including, more specifically, its overall volume. In order to

remain within the regime of validity of the effective theory, the volume of the internal

manifold should be fixed at a value which is large compared to the string length, and

the string coupling should stay small. In a realistic model, furthermore, all scalar

fields should obtain a sufficiently high mass, since no scalar field has been observed

in the real world yet, let alone the large numbers of scalar fields which typically arise

1The requirement of a ten-dimensional space-time arises from the mathematical consistency con-
ditions of the conformal field theory (CFT). These consistency conditions can alternatively be satis-
fied by considering more complicated two-dimensional CFT’s on the world-sheet. However, explicit
low-energy actions for these theories are hard to obtain, and one is restricted to CFT techniques in
their study.
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from string theory compactifications. To address this problem of moduli stabilization,

more sophisticated background configurations must be considered. The first string

models where all moduli could be stabilized used contributions from non-perturbative

effects, as well as background fluxes to generate a suitable potential [5].

1.2 Fluxes and generalized Calabi-Yau manifolds

So-called “flux backgrounds” are vacua where, in addition to the background metric,

non-zero vacuum expectation values are specified for some of the p-form field strengths

(reviews and references can be found in [6–10]). When a p-form field has flux through

a non-trivial cycle in the internal manifold, there is no continuous transformation that

can reduce the flux to zero. Thus, the space of different flux configurations is discrete,

protecting these backgrounds against quantum corrections. The fact that these fluxes

contribute to the potential for the moduli can be understood intuitively as follows:

the presence of flux through a cycle adds an energetic cost to deformations of the

cycle, which then leads to a potential for the moduli describing these deformations

[7].

When studying string theory compactifications, one is usually interested in back-

ground configurations that preserve some amount of low-energy supersymmetry, since

supersymmetry ensures that quantum corrections will not distort the (classical) effec-

tive theory obtained from compactification too heavily. In a compactification scenario,

the four-dimensional supersymmetry will be inherited from the supersymmetry of the

original ten-dimensional theory [1]. Explicitly, this can be seen by decomposing the

parameter of the ten-dimensional supersymmetry transformations into a tensor prod-

uct of a four-dimensional spinor ε4(x) on M1,3 and a six-dimensional spinor η(y) on

Y6 as follows:

ε10 = ε4(x)⊗ η(y) + c.c. . (1.1)

ε4 will appear as a low-energy supersymmetry transformation, as long as the cor-

responding ten-dimensional supersymmetry ε10 leaves the background field configu-

ration invariant. This way, a ten-dimensional supersymmetry transformation gives

rise to one four-dimensional supersymmetry transformation for every η satisfying the

conditions imposed by the preservation of the background.

The background configuration consists of a set of vacuum expectation values for

the bosonic fields, such as the metric on the internal manifold and the dilaton, or,

in the presence of background fluxes, some of the p-form field strengths. Supersym-

metry of the background then amounts to the condition that the supersymmetry

variations of the fermionic fields vanish. In the absence of fluxes, the condition that

the supersymmetry variation of the gravitino vanishes, tells us that the supersym-

metry parameter describing the preserved supersymmetry transformation must be

covariantly constant with respect to the Levi-Civita connection. This implies that

the holonomy group of the background manifold Y6 is reduced, such that it leaves in-
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variant at least one internal spinor η, and therefore the background manifold satisfies

the Calabi-Yau condition.

It turns out that supersymmetric vacua with background fluxes require an internal

manifold Y6 which is no longer necessarily Calabi Yau [6]. The field strengths of the

various p-form fields appear in the gravitino variation, and thus non-zero expectation

values for these field strengths modify the supersymmetry condition. In the pres-

ence of fluxes, the supersymmetry parameter which leaves the background invariant

must be covariantly constant, not with respect to the Levi-Civita connection, but

with respect to a torsionful connection [11–13], where the fluxes appear as torsion

components. In this sense, supersymmetry imposes a careful balancing between the

geometry and the background flux. In the approach taken here, the internal geometry

or the chosen set of fluxes will not be specified in detail.2 Instead we work with a

whole class of internal manifolds and derive the general form of the effective action,

independent of the way the various consistency conditions are met.

Despite the fact that we no longer impose the Calabi-Yau condition, and do not

specify the internal geometry in detail, we can still find meaningful results, due to

the strong constraints imposed by low-energy supersymmetry. In order for the low-

energy theory to have well-defined supersymmetry transformations, as discussed in

the context of equation (1.1), a globally defined spinor η must still exist on the

internal manifold Y6. In mathematical terms, this means that Y6 must have a reduced

structure group, which is a strictly weaker requirement than that of a covariantly

constant spinor, or reduced holonomy group, but still imposes strong restrictions on

the background geometry.

So far, compactifications on SU(3)-structure manifolds have received the most

attention in the literature, since they possess only one globally defined spinor and

hence lead to effective theories with the minimal amount of low-energy supersymme-

try, which is N = 2 in the case of type II compactifications. In this sense, SU(3)-

structure manifolds are the direct generalization of conventional compactifications on

Calabi-Yau threefolds. SU(2)-structure manifolds are more restricted, and possess two

globally defined spinors, leading to N = 4 effective theories [14–20]. The amount of

low-energy supersymmetry can be reduced by including orientifold planes, leading to

N = 1 theories in the case SU(3)-structure compactifications [21–33], and to N = 2

or N = 1 in the case of SU(2)-structure compactifications [15, 34, 31, 35, 36].

1.3 D-branes and O-planes

Since space-time symmetry in the four non-compact dimensions forbids the escape

of flux along the non-compact directions, the total charge in the compact space Y6

must be zero, and therefore charges induced by the fluxes must be canceled on the

compactification manifold. D-branes and O-planes are higher-dimensional objects

2In fact, background flux is not explicitly considered in our calculations.
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which are charged with respect to the p-form fields and as such can balance the total

charge on Y6. Furthermore, the perturbative spectrum of type II string theories does

not contain the non-Abelian gauge fields necessary for any realistic model of particle

physics. This also can be resolved by incorporating stacks of D-branes into the model,

since intersecting stacks of D-branes naturally contain the vector fields and matter

fields that make up a unitary gauge field theory.

Therefore, a fully consistent flux background generally also requires the presence

of D-branes and O-planes. In model-building scenarios, in order not to break any

space-time symmetry, these higher-dimensional objects extend uniformly along all of

the four-dimensional space-time, and wrap a number cycles in the compact space Y6.

In the perturbative string theory, Dp-branes can be described as surfaces to which

the endpoints of open strings are attached. The O-planes arise from the orientifold

projection, which restricts the space of perturbative string to those states that remain

invariant under a specific discrete symmetry of the theory. This symmetry combines

orientation reversal of the two-dimensional world-sheet on which the string pertur-

bation theory is defined, with a discrete symmetry of the target space in which the

strings live. O-planes arise as the fixed points of the target space symmetry. At those

fixed points, only modes which are invariant under the world-sheet orientation reversal

survive the projection, leading to a truncation of the spectrum and a corresponding

reduction of supersymmetry. At low energies, information about the localization of

modes in the compact space Y6 is lost, and one finds that the low-energy effective

action has a reduced amount of supersymmetry as well.

1.4 Structure of this thesis

In this thesis, which contains results from the publications [36, 20], we study orien-

tifold projections of type IIA string theory compactified on manifolds with SU(2)-

structure. Due to the reduction of the structure group to SU(2) there exist not one

but two globally defined, nowhere vanishing spinors on the internal space Y6. As a

simple example, we will also consider the case where the torsion vanishes, or in other

words, where also the holonomy reduces to SU(2). This is the compactification on the

Calabi-Yau manifold K3×T 2, which is the unique six-dimensional compact manifold

with SU(2) holonomy. In the absence of the orientifold projection, this leads to an

effective low-energy theory which is an N = 4 supergravity. Our goal is to perform

an orientifold projection which halves the amount of supersymmetry, leading to an

N = 2 supergravity theory.

The starting point of this work are the results of [37], where the four-dimensional

gauged N = 4 supergravity theory corresponding to the effective action of type

IIA string theory compactified on SU(2)-structure backgrounds was computed. We

then look for orientifold projections which preserve N = 2 supersymmetry in four

dimensions. There are two possible types of projection, one of which leads to seven-
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dimensional, or O6, orientifold planes, whereas the other gives rise to O4 and O8

planes, which are five-, respectively nine-dimensional.

In both cases, the resulting theory after projection is a gauged N = 2 supergrav-

ity. The scalar fields determine a σ-model with a target space of the form

M =
SU(1, 1)

U(1)
× SO(2, n)

SO(2)× SO(n)
× SO(4,m)

SO(4)× SO(m)
, (1.2)

which descends from the scalar field space

SU(1, 1)

U(1)
× SO(6, n+m)

SO(6)× SO(n+m)
(1.3)

of N = 4 supergravity. The first two factors in (1.2) are spanned by the scalars in the

vector multiplets and form a special Kähler manifold. The last factor is quaternion-

Kähler and is spanned by the scalars in the hypermultiplets. Furthermore we find

that isometries of all three components can be simultaneously gauged when appro-

priate torsion components are present. To our knowledge, this situation has not been

encountered previously in any N = 2 compactification of type II string theory.3

We then identify suitable variables which bring the action into the canonical form

of an N = 2 supergravity given in [41]. We calculate all the Killing prepotentials for

the gauged symmetries, and verify that the theory obtained from compactification

satisfies all constraints imposed by N = 2 supergravity.

The thesis is organized as follows: chapter 2 gives a short review of the results

obtained in [37, 19, 38, 42]. We describe the main properties of SU(2)-structure

manifolds, and the derivation of the effective action of type IIA string theory on

these backgrounds in section 2.2. We describe the essential steps leading to the

results in a pedagogical way, explaining technical details only when they are needed

for the subsequent chapters. The main input from this introductory chapter is the

effective gauged N = 4 supergravity theory obtained in [37], and we give the bosonic

Lagrangian in 2.3.

The orientifold projections are discussed in chapter 3. In section 3.1 we first derive

the action of the two different orientifold projections on SU(2)-structure manifolds.

We then discuss how these affect the Kaluza-Klein procedure used to obtain the

effective action from chapter 2. This allows us to implement the projection at the

level of the effective action. This is carried through in detail for the O6 projection in

section 3.2. We then check the consistency of the result with the various constraints

imposed by local N = 2 supersymmetry. The case of O4/O8 orientifold projections

is treated in section 3.3. This calculation proceeds in a similar way, and therefore we

do not repeat all of the arguments in the same level of detail, but focus on the results

instead. We present our conclusions in chapter 4.

3It does occur in certain heterotic SU(2)-structure compactification [38] and can probably also be
arranged in appropriate generalizations of M-theory compactifications on SU(3)-structure manifolds
considered in [39, 40].
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The appendices contain some further background information, as well as calcula-

tional details that we omitted from the main text. Appendix A contains details on

the spinor conventions we used, and their relation to the orientifold projections from

chapter 3. Appendix B contains the calculation of the Killing prepotentials of the

effective N = 2 supergravity theories obtained from compactification, and some cal-

culations verifying the consistency of the couplings of the effective theories obtained

in chapter 3 with the restrictions imposed by N = 2 supergravity. Finally, appendix

C contains some information on the various coset spaces that appear throughout the

thesis. It provides an explicit picture of the effect of the projection on the scalar

field sector, complementing chapter 3 which discusses this in terms of the special and

quaternionic geometry of the N = 2 moduli spaces.





Chapter 2

Compactification on

SU(2)-structure Manifolds

In this introductory chapter, we recall some results on the compactification of type

IIA supergravity theories on a backgroundM1,3×Y6, where Y6 is an SU(2)-structure

manifold. We will be using results from [19], where the moduli space for such com-

pactifications was determined, as well as [37, 38, 42, 20], where the effective action

was computed. The main goal of this section is to obtain the four-dimensional low-

energy effective action, given in equations (2.47)-(2.49), which is that of a specific

N = 4 supergravity theory. We also review some of the geometric properties of

SU(2)-structure manifolds, which will play a role in the compactification.

2.1 Type IIA supergravity

Type IIA supergravity is an effective field theory which describes the low-energy

dynamics of type IIA string theory in the perturbative regime. This means that

the effects of massive string modes and string loop corrections are ignored. Its field

content is thus the massless string spectrum, where the bosonic fields are given by

the NS sector, which consists of the metric ĝ, the dilaton ϕ̂ and the two-form B̂, and

the RR-sector, which consists of a one-form Â as well as a three-form Ĉ. The bosonic

part of the action is [2]

SIIA =1
2

∫
e−2ϕ̂

(
d10x

√
−ĝ(R̂ + 4∂M ϕ̂∂

M ϕ̂) + 1
2
dB̂ ∧ ∗dB̂

)
+ 1

4

∫ (
dÂ ∧ ∗dÂ+ F̃4 ∧ ∗F̃4

)
+ 1

4

∫
B̂ ∧ dĈ ∧ dĈ,

(2.1)

where the field strength F̃4 is given by

F̃4 = dĈ − Â ∧ dB̂. (2.2)

9



10 2: Compactification on SU(2)-structure Manifolds

The action is invariant under p-form gauge transformations, with a modified gauge

transformation for Ĉ that keeps F̃4 invariant. Together, the transformations take the

following form

δÂ = dλ0,

δB̂ = dλ1,

δĈ = dλ2 + λ0dB̂,

(2.3)

where the λp are p-form transformation parameters.

The full type IIA theory also contains fermionic fields, given by the two dilati-

nos and the two gravitinos. The complete action has a local N = 2 supersymme-

try relating the bosons and the fermions. The supersymmetry transformations are

parametrized by two ten-dimensional Majorana-Weyl spinors of opposite chirality

εI, εII accounting for 32 supercharges in total.

In a dimensional reduction on a backgroundM1,3×Y6, the ten-dimensional super-

symmetry transformations will descend to supersymmetries of the four-dimensional

theory. We can decompose the parameters of the ten-dimensional supersymmetry

transformations εI,II
10 with respect to the tensor product Spin(1, 3)⊗ Spin(6) as fol-

lows:

εI
10 = εI

+i ⊗ ηi+ + εI
−i ⊗ ηi− ,

εII
10 = εII

+i ⊗ ηi− − εII
−i ⊗ ηi+ ,

(2.4)

where εI,II
+i and ηi+ are four-dimensional and six-dimensional Weyl spinors. εI,II

−i and

ηi− are the opposite chirality spinors, related to their positive chirality counterparts

by complex conjugation (more details on our spinor conventions can be found in

appendix A). Thus we obtain two four-dimensional supersymmetry transformations

for each globally defined internal spinor ηi, provided the chosen background M1,3×Y6

is invariant under the corresponding transformations εI,II
10 .

In general, the construction of a concrete background which solves the equations

of motion and satisfies the supersymmetry conditions requires the correct balancing

of fluxes, as well as localized sources in the form of D-branes and O-planes. We will,

however, not consider these factors explicitly. Instead, we assume that a suitable

background has been chosen, and expand the action of the closed string sector on

this background, setting fluxes to zero.

On an SU(2)-structure manifold, one can construct two independent global spinors.

In other words, the index i in equation (2.4) takes the values i = 1, 2. The four-

dimensional effective theory obtained from a compactification should therefore posses

N = 4 supersymmetry.
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2.2 SU(2)-structures in 6 dimensions

By the isomorphism Spin(6) ∼= SU(4), spinors on Y6 transform in the fundamental

representation 4 of SU(4). The existence of two global sections of the spin bundle,

the spinors ηi, then implies that a set of open neighborhoods on Y6 exists, such that

the transition functions between these neighborhoods preserves two singlets. In other

words, the transition functions do not take values in the full SU(4) but we have

instead the reduction

SU(4)→ SU(2) , 4→ 2⊕ 1⊕ 1 . (2.5)

Alternatively, an SU(2)-structure on a 6-dimensional manifold can be characterized

by the existence of a set of differential forms, subject to the appropriate constraints.

Both pictures will be useful to us, since the orientifold projection is more easily

discussed in terms of the spinors ηi, whereas the derivation of the effective action for

the deformations of Y6 makes use of the differential forms.

Thus, an SU(2)-structure on a six-dimensional manifold Y6 is defined by a real two-

form J , a complex two-form Ω and a complex one-form K satisfying the constraints

[14, 16, 17]

Ω ∧ Ω̄ = 2J ∧ J 6= 0 , K ∧ K̄ 6= 0 ,

Ω ∧ J = 0 , Ω ∧ Ω = 0 ,

KmΩmndY n = KmΩ̄mndY n = 0 , KmJmndY n = 0 .

(2.6)

Here, Y m,m = 1, ..., 6 are coordinates on Y6. The constraints (2.6) imply that the

tangent bundle TY6 splits into two orthogonal components: the two-dimensional

component T2Y6 spanned by the real and imaginary parts of K, and the remaining

4-dimensional component T4Y6, on which Ω and J act.

The SU(2)-structure defines a canonical metric on Y6. It is determined by the

following relations:

KmK̄
m = 2 , KmK

m = 0 , (2.7)

which determines the metric on T2Y6, and

∗J = i
2
K ∧ K̄ ∧ J ,

∗Ω = i
2
K ∧ K̄ ∧ Ω ,

(2.8)

which is the statement that J and the real and imaginary parts of Ω span the Hodge-

self-dual two-forms on T4Y6. Finally,

volY6 = vol2 ⊗ vol4 = ( i
2
K ∧ K̄) ∧ (1

2
J ∧ J) , (2.9)

which tells us that the volume form on Y6 splits into the product of the volume forms

on the two components of the tangent space.
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Note that one can define a triplet of two-forms Jx, x = 1, ..., 3 as follows

Jx = (J,ReΩ, ImΩ), x = 1, ..., 3 . (2.10)

In terms of the Jx, the constraints on J and Ω can be written as

Jx ∧ Jy = 2δxyvol4 ,

KmJxmn = 0 ,

∗Jx = i
2
K ∧ K̄ ∧ Jx ,

(2.11)

which is manifestly invariant under an SO(3) rotation of the triplet Jx. More trivially,

multiplication of K by a U(1) factor also leaves the SU(2)-structure invariant, since it

leads to an SO(2) rotation of the orthogonal frame defined by the real and imaginary

components of K.

The characterization of an SU(2)-structure manifold by the two spinors ηi and the

characterization by the above set of differential forms, are equivalent. The differential

forms defining an SU(2)-structure can be expressed in terms of the two spinors ηi as

follows [14, 16, 17]

J = i
4
(η1†
− γmnη

1
− − η

2†
− γmnη

2
−) dY m ∧ dY n ,

Ω = i
2
η1†
− γmnη

2
− dY m ∧ dY n ,

K = η2†
− γmη

1
+ dY m = K1 + iK2 ,

(2.12)

where the dagger symbol indicates Hermitian conjugation. Using Fierz identities, one

can show that J , Ω and K as defined in (2.12) satisfy the equations (2.6)-(2.9). An

SU(2) rotation of the doublet ηi leads to an SO(3) rotation of the triplet of two-forms

Jx defined earlier, whereas a multiplication of both ηi by the same U(1) phase factor

gives rise to a U(1) rotation of K.

We have introduced the defining properties of a general SU(2)-structure manifold.

To gain some intuition, we return to the special case where Y6 = K3×T 2. Coordinates

on K3 are labeled za, a = 1, ..., 4, and the coordinates on the torus T 2 are yi, i = 1, 2.

In this case we are dealing with a product manifold, and thus the global splitting of

the tangent bundle TY6 = T4Y6 ⊕ T2Y6 is the familiar fact that the tangent bundle

is the direct sum of the tangent bundles on K3 and T 2. The real and imaginary

parts of K are just the basis one-forms on the torus K = dy1 + idy2. Ω and J

are the holomorphic two-form and Kähler form on K3. Indeed, the second line of

(2.12) states that Ω is a (2, 0)-form with respect to the complex structure defined by

J . In addition to the algebraic constraints (2.6), J and Ω satisfy the extra relation

dJ = 0 = dΩ, which can be seen as a consequence of the fact that the spinors ηi are

parallel with respect to the Levi-Civita connection.

In the general SU(2)-structure case, Y6 is not a direct product, but the splitting

of the tangent bundle is still globally defined. This is known as an almost-product



2.2 SU(2)-structures in 6 dimensions 13

structure. Furthermore, Y6 is not necessarily Kähler, or even complex. In the presence

of torsion, the two-forms J and Ω are no longer necessarily closed.

We will now briefly review the derivation of the moduli space of SU(2)-structure

manifolds, following [19, 38]. We are interested in the effective four-dimensional action

for perturbations of the metric on Y6, which we formally write as

gY6(x, Y ) = g(Y ) +
∞∑
n=1

ϕn(x)δgn(Y ) , (2.13)

where generic perturbations of the internal metric would require us to include an

infinite sum of modes δgn. However, we can truncate the generic action to an action

for all ϕn up to a certain mass level, which amounts to truncating the expansion

(2.13) to a corresponding finite set of modes δgn. Such a truncation can be trusted

as long as the separation between the different mass levels is large. The action for

the fields ϕn(x) is then obtained by substituting the ansatz (2.13) for gmn into the

ten-dimensional action and integrating over the six compact directions Y m.

2.2.1 Metric moduli of K3× T 2

It is instructive to look at the case of a compactification on K3× T 2 in some detail.

Here, the internal manifold is Ricci-flat, and there is a set of perturbations to the

metric which leads to massless four-dimensional fields. As we shall illustrate, these

perturbations correspond to the harmonic forms on K3 × T 2. At this point, we are

interested in the terms in the effective action obtained from the reduction of the ten-

dimensional Ricci scalar, that describe the metric moduli space. Restricting ourselves

to the components of the internal metric gmndY mdY n, the contribution from the ten-

dimensional Einstein-Hilbert term to the four-dimensional Lagrangian is given by1

e−1L4 = −1
8

∫
Y6

volY6 g
mqgnp∂Mgmn∂

Mgpq, (2.14)

where the index M = 0, ..., 9 labels derivatives with respect to all ten-dimensional

coordinates.

From a four-dimensional perspective, derivatives ∂µ with respect to the non-

compact directions xµ give rise to kinetic terms, whereas terms with derivatives along

the compact directions ∂m lead to potential terms in the four-dimensional action.

The terms containing internal derivatives (∂mgnp)
2 will vanish precisely for harmonic

functions gnp.

At this point, we want to split the action into a component gab(x, z) describing

the metric on K3, with coordinates za, and a component gij(x, y) describing the

1We have set the dilaton ϕ̂ to zero since we are only interested in the metric moduli for the
moment. Furthermore, the reduction of the Ricci scalar gives rise to further terms that can be
absorbed into the four-dimensional dilaton field.
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metric on T 2, with coordinates yi. Therefore we assume that the perturbed metric

remains block-diagonal. This is consistent as long as we are studying the massless

perturbations to the metric: mixed terms gai can not appear at the massless level,

since no harmonic 1-forms exist on K3 [43]. Similarly, since the only harmonic function

on the compact spaces T 2 and K3 is the constant function, gab can not depend on the

coordinates yi, and gij can not depend on the za. Thus, the right hand side of (2.14)

splits into two terms

L4 = LT 2 + LK3 ,

e−1LT 2 = −1
8
e−ρ
∫
T 2

volT 2gikgjl∂Mgij∂
Mgkl , (2.15a)

e−1LK3 = −1
8
e−η

∫
K3

volK3 g
acgbd∂Mgab∂

Mgcd , (2.15b)

where e−η represents the volume of the torus T 2, and the factor e−ρ is the volume of

K3.

The massless modes on T 2, for which the internal derivatives (∂igkl)
2 in (2.15a)

vanish, are just the modes that do not depend on the T 2 coordinates yi. Therefore

the ansatz becomes gij(x, y) = gij(x), and (2.15a) reduces to

e−1LT 2 = −1
8
e−(ρ+η)gikgjl∂µgij∂

µgkl . (2.16)

The moduli space associated to this action is the well-known moduli space of flat

torus metrics

MT 2 =
Sl(2,R)

SO(2)
× R+ . (2.17)

It is not immediately obvious what ansatz one should make for the components

gab in (2.15b). It turns out that the metric on K3 is best described in terms of

perturbations to the two-forms J and Ω described in (2.10). As it was shown explicitly

in [38], (2.15b) can be rewritten as

− 1
8
e−η

∫
K3

volK3 g
acgbd∂Mgab∂

Mgcd = −1
4
e−η

∫
K3

volK3 g
acgbd∂MJ

x
ab∂

MJxcd , (2.18)

where the three two-forms Jx are now both x- and z-dependent. We now recall the

fact that the Kähler form J and holomorphic 2-form Ω on K3 are harmonic forms.

This will make the moduli corresponding to their variation massless. Indeed, terms

with internal derivatives (∂aJ
x
bc)

2 will vanish if the Jx are zero modes of the Laplacian

on K3. Hodge theory tells us that the number of harmonic two-forms on K3 is equal

to the dimension of the second cohomology H2(K3,R), which is 22.

Jxab(x, z) = e−
1
2
ρ(x)ξxα(x)ωαab(z) , α = 1, ..., 22 , (2.19)

where we have extracted the overall volume factor e−ρ. In order to better understand

the nature of the (3×22) matrix ξxα that was just introduced, we need some information
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on the space of harmonic forms on K3. Namely, the intersection form ηαβ on K3, which

is defined as

ηαβ = (ωα, ωβ) =

∫
K3

ωα ∧ ωβ, (2.20)

defines a metric of signature (3, 19) on the space of harmonic two-forms.

With this information, one sees that the first constraint in (2.11) leads to the

following 9 constraints on the matrix ξxα

ηαβξxαξ
y
β = 2δxy . (2.21)

These constraints imply that ξxα is parametrized by 57 physical moduli fields. We

will not choose an explicit parametrization, but instead keep the constraints (2.21)

in mind. The 57 degrees of freedom of ξxα represent the choice of a three-dimensional

subspace of positive-normed vectors2 in H2(K3,R) ∼= R3,19. We can therefore identify

the moduli space of Ricci-flat K3 metrics with the Grassmannian

MK3 =
SO(3, 19)

SO(3)× SO(19)
× R+ , (2.22)

where the factor R+ represents the volume modulus ρ. A representative of the element

in MK3 determined by ξxα is given by

Hα
β = −δαβ + ξxαξxβ . (2.23)

It follows from the fact that the Jx span the space of self-dual harmonic two-forms

on K3, that the action for the Hodge *-operator on the ωα is determined by Hα
β as

follows:

∗ ωα = Hα
βω

β . (2.24)

Using (2.20) and (2.21), the action (2.18) becomes

e−1LK3 = −1
8
e−ρ−η∂µρ∂

µρ+ 1
4
e−ρ−η∂µξ

x
α∂

µξxβ(ηαβ − 1
2
ξyαξyβ) , (2.25)

which can be written in terms of Hα
β as follows:

e−1LK3 = −1
8
e−ρ−η∂µρ∂

µρ+ 1
16
e−ρ−η∂µH

α
β∂

µHβ
α . (2.26)

This concludes our condensed review of the derivation of the moduli space of met-

rics on K3 × T 2. We have chosen to go into some detail because the derivation of

the result for a general SU(2)-structure manifold essentially follows the same steps.

However, the general calculation involves a number of technicalities, mainly due to

the fact that a general SU(2)-structure manifold is no longer a direct product. The

previous discussion contains the essential ingredients of the derivation, and the fol-

lowing section will only discuss the necessary modifications to our ansatz, and the

corresponding changes to the effective Lagrangian.

2We will call such spaces spacelike three-planes in the remainder of the text.
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2.2.2 Metric moduli of general SU(2)-structure manifolds

The results obtained for K3 × T 2 in the previous section have to be extended to a

general class of SU(2)-structure manifolds. A metric on a general SU(2)-structure

manifold is still specified by the set of differential forms K, J and Ω. Thus, we can

parametrize the deformations of the metric by the deformations of these differential

forms.

However, it turns out to be more difficult to consistently truncate the infinite

space of metric deformations on Y6 to a finite set, reducing the action (2.14) to an

action containing only a finite number of four-dimensional fields. As we have seen,

on K3 × T 2, the lightest perturbations are given by harmonic forms. These forms

are well understood, and the topology of the internal space provides us with enough

information to determine the effective action, even though the Calabi-Yau metric is

not known explicitly. Assuming that the first non-zero eigenvalues of the Laplacian

are of the same order as the inverse length scale of the manifold, the truncated modes

can be made sufficiently massive when the compact space is small enough.

On a general SU(2)-structure manifold, the forms J,Ω and K are no longer re-

quired to be closed, as a consequence of the torsion of the internal manifold. Conse-

quently, we can no longer expand them in a set of harmonic forms. Furthermore, the

distinction between “light” and “heavy” modes coming from various perturbations to

the metric is no longer as clear-cut, since all deformation to the metric can in principle

lead to massive four-dimensional fields. Obtaining mass terms for the perturbations

of the internal metric was one of the motivations of the endeavor in the first place, but

the point is that one must take care that one is working with a consistent truncation.

As a consequence, there is currently no explicit characterization of the set of

modes with respect to which one can expand the deformations of the internal metric

on SU(2)-structure manifolds. To make progress, the current approach is to as-

sume that there exists a consistent truncation to finite set of modes, determining

the low-energy theory. One then makes a general ansatz and tries to characterize

the differential forms in this ansatz via various consistency conditions [44–49]. Using

these assumptions, the moduli space of SU(2)-structure manifolds was determined in

[18, 37, 19, 38].

Imposing that no massive gravitinos are present in the low-energy theory, also

requires that one removes from the spectrum those perturbations that change the

splitting of the tangent bundle [19]

TY6 = T2Y6 ⊕ T4Y6 . (2.27)

This means that, in the low-energy limit, the two orthogonal subspaces T2Y6 and T4Y6

are fixed, and only the separate metrics within these two components are dynamical.

This is the generalization of the statement that perturbations on K3 × T 2 preserve

the block-diagonal structure of the metric. However, due to the fact that Y6 is no

longer a global product manifold, the action can no longer be written in the simple
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form (2.15). Furthermore, it was shown that, to lowest energy, the set of forms that

appear in our expansion is limited to the complex one-form K and a finite space of

two-forms Λ2,finiteY6, with a basis ωα, α = 1, ..., n. The two-forms ωα are now no

longer required to be harmonic, and we leave their total number n as an unknown,

since it would depend on the concrete background one is considering.

As was mentioned before, the external derivatives of the forms K, J and Ω no

longer vanish for an SU(2)-structure with torsion. Therefore, we must allow that

the differential forms used in our Kaluza-Klein expansion have non-zero exterior

derivatives. Consistency then requires that exterior derivatives of these forms close

among each other [44], and we can introduce constant matrices T̃αiβ and constants ti

parametrizing the exterior derivatives as follows [18, 37, 38]:

dωα = T̃αiβK
i ∧ ωβ ,

dKi = tiK1 ∧K2 .
(2.28)

here, our treatment is not completely general, since we have not included possible

derivatives dKi ≡ θiαω
α.3

Using d2 = 0 and Stokes’ theorem, specifically the equation
∫

dKi ∧ ωα ∧ ωβ = 0,

one finds the following constraints on the torsion coefficients:

T̃αiγT̃
γ
jβ − T̃

α
jγT̃

γ
iβ = −εijtkT̃αkβ , (2.29a)

ηαγT̃ βiγ + T̃αiγη
γβ = ηαβεijt

j , (2.29b)

where the matrix ηαβ is now defined as

ηαβ =

∫
Y6

K1 ∧K2 ∧ ωα ∧ ωβ . (2.30)

It was shown in [19] that in the general case, ηαβ still defines a metric of signature

(3, n− 3).

Instead of using the matrices T̃ , we choose a new basis of traceless matrices Tαiβ,

in terms of which the constraint (2.29b) takes a simpler form:

Tαiβ := T̃αiβ − 1
2
εijt

jδαβ , (2.31)

Since the term we are subtracting is proportional to the identity matrix, this does not

change the commutation property (2.29a). However, the relation (2.29b) is modified.

Equations (2.29) therefore become

TαiγT
γ
jβ − T

α
jγT

γ
iβ = −εijtkTαkβ , (2.32a)

ηαγT βiγ + Tαiγη
γβ = 0 , (2.32b)

3So far, it has not been possible to calculate the effective action in the most general case. Instead,
we assume that the almost product structure defined by the Ki is integrable, which amounts to the
fact that, in every local neighborhood of Y6, coordinates (yi, za) exist such that T2Y6 is spanned by
the directions ∂/∂yi and T4Y6 is spanned by ∂/∂za [50].
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and the exterior derivative of the two-forms ωα becomes

dωα = TαiβK
i ∧ ωβ + 1

2
Kiεijt

jδαβω
β . (2.33)

Now that we have discussed how our Kaluza-Klein ansatz for the metric on K3× T 2

can be adapted to the case of general SU(2)-structure manifolds Y6, we can discuss

the resulting moduli space and effective action.

Since the space T2Y6 is fixed, and spanned by the real and imaginary components

Ki of the one-form K, xµ-dependent perturbations to the metric on T2Y6 can be

written as [19]

gmn(x, Y ) = gij(x)Ki
mK

j
n , (2.34)

where we note that the components gij are no longer the components of the metric

with respect to a coordinate basis. Nevertheless, the gij have the same degrees of

freedom as a 2-dimensional constant metric, and thus describe the same moduli space

as in the previous section

M2 =
Sl(2,R)

SO(2)
× R+ , (2.35)

though the fact that the Ki now depend on the internal coordinates gives rise to

modifications of the effective action.

Variations of the metric on T4Y6 are again determined by the variations of the

two-forms Jx. As before, the Jx are expanded with respect to the forms ωα

Jx = e−
1
2
ρξxαω

α , (2.36)

where ξxα and the volume ρ are xµ-dependent. The ξiα now determine a spacelike three-

plane in the vector space spanned by the two-forms ωα. We can identify this vector

space with R3,n−3, since it is equipped with a metric via ηαβ, which has signature

(3, n − 3). Therefore, the moduli space remains of the same form as in the case of

K3× T 2

M4 =
SO(3, n− 3)

SO(3)× SO(n− 3)
× R+ , (2.37)

which has dimension 3(n− 3).

We conclude that the space of light moduli of a general SU(2)-structure manifold

has a similar form as the moduli space of K3×T 2. Bigger differences arise at the level

of the effective action, however. Due to the non-closedness of the forms Ki and ωα,

terms with derivatives ∂igmn of the metric with respect to the internal coordinates

are no longer required to vanish. Therefore, extra terms arise in the dimensional

reduction of the Ricci scalar (2.14), which in turn leads to extra terms in the effective

action besides the kinetic terms (2.16) and (2.26). The computation of the action

for this general case was carried through in [38], where it was found that the terms

containing internal derivatives of the metric assemble into the potential

V = 5
8
e−ρ−ηgijt

itj + 1
16
gij[M,Ti]

α
β[M,Tj]

β
α . (2.38)
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This analysis did not take into account the remaining components of the metric, as

well as the other fields in the spectrum of type IIA string theory. Upon including

also these remaining degrees of freedom, one finds that the torsion coefficients give

rise to further changes in the effective action. In particular, the derivatives in the

kinetic terms (2.16) and (2.26) become covariant derivatives, reflecting the fact that

the scalar fields are now charged with respect to deformations of the internal manifold.

These issues are the subject of the next section.

2.3 Reduction of the type IIA action

We gave a fairly detailed account of the derivation of the effective action for the low-

energy dynamics of the metric on Y6 and the structure of the resulting moduli space,

since many of those details will be useful to us when we impose the orientifold pro-

jection on these fields in chapter 3. During this discussion, we focused our attention

on the internal metric gmn. We now return to the complete action and the complete

spectrum of type IIA supergravity (2.1). Thus, we make a Kaluza-Klein ansatz for

the dependence on the internal coordinates Y m of the remaining fields, by expanding

them in the same set of differential forms Ki, ωα we used in our expansion of the

metric gmn.

The ansatz for the complete ten-dimensional metric ĝMN , including components

on the non-compact directions xµ then reads [37]

ĝMNdxMdxN = gµνdx
µdxν + gijE iE j + gab[ρ; ξxαω

α]dzadzb , (2.39)

where, instead of working with the Ki directly, we used an expansion with respect to

the one-forms

E i = Ki −Gi
µdxµ , (2.40)

The Gi
µ = −gijgjµ depend on the off-diagonal components of the metric. This expan-

sion is convenient because E i is invariant under the symmetry transformation

Ki → Ki + ∂µλ
i(x)dxµ ,

Gi
µ → Gi

µ + ∂µλ
i(x) ,

(2.41)

which is present in our four-dimensional effective theory as a remnant of the ten-

dimensional diffeomorphism symmetry of the original theory. Expanding with respect

to the E i then guarantees that the thus defined four-dimensional fields have canonical

transformation properties with respect to the diffeomorphism symmetry (2.41).

The expansion (2.39) contains the four-dimensional metric gµν , as well as off-

diagonal components Gi
µ. The components Gi

µ will appear as four-dimensional vector

fields in the effective action. We ignored these fields in the discussion of sections

2.2.1 and 2.2.2, and their presence will give rise to additional terms in the effective

action. There are no components gµadx
µdza, for the same reasons that cause the
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components giaK
iza to vanish, discussed in the previous sections. The components of

the metric on T4Y6, finally, are labeled by gab[ρ; ξxαω
α], to indicate their dependence

on the overall volume ρ(x), the (3n− 9) moduli encoded in the matrix ξxα(x), and the

basis of two-forms ωα, as was also discussed in the previous sections.

The ten-dimensional dilaton field ϕ̂(xM) just reduces to a four-dimensional scalar

field ϕ(xµ). The Neveu-Schwarz two-form field B̂ is decomposed as follows:

1
2
B̂MNdxM ∧ dxN = 1

2
Bµνdx

µ ∧ dxν

+Biµdxµ ∧ E i

+ b12E1 ∧ E2 + bαω
α ,

(2.42)

whereas the Ramond-Ramond one- and three-form Â and Ĉ have the expansion

ÂMdxM = Aµdxµ + aiE i , (2.43)

1
3!
ĈMNPdxM ∧ dxN ∧ dxP = ( 1

3!
Cµνρ − 1

2
AµBνρ)dx

µ ∧ dxν ∧ dxρ

+ (1
2
Ciµν − AµBiν)dx

µ ∧ dxν ∧ E i

+ (C12µ − Aµb12)dxµ ∧ E1 ∧ E2 (2.44)

+ (Cαµ − Aµbα)dxµ ∧ ωα

+ ciαE i ∧ ωα .

The subtractions in the first four lines of (2.44) assure that the field strengths of

the four-dimensional form fields dC, dCi, dC12 and dCα remain invariant under the

ten-dimensional p-form gauge transformations (2.3).4 For clarity, we have explic-

itly written the components of the four-dimensional fields with respect to the four-

dimensional differentials dxµ. In the remainder of this thesis, we will mostly suppress

four-dimensional indices µ, writing Cµνρdx
µ ∧ dxν ∧ dxρ ≡ C, Biµdxµ ≡ Bi, and so

on.

With these preparations, we can give the full effective action obtained by sub-

stituting the Kaluza-Klein expansions for the fields above into the action (2.1), and

integrating over the compact directions. After the formulation of the right Kaluza-

Klein ansatz, the calculation of the effective action is a rather tedious procedure.

Therefore, we do not go into further detail here, and instead refer to [38] for the

derivation of the action for the metric moduli, and to [37, 20] for details on the re-

duction of the action for the RR fields. We choose to work with a bosonic spectrum

consisting only of scalar and vector fields, and therefore higher p-forms are eliminated

from the action.

4Of course, as in the case of the ten-dimensional diffeomorphism symmetry, only part of the ten-
dimensional p-form gauge freedom (2.3) remains in our effective theory. The remaining symmetry
transformations are obtained by expanding the p-form transformation parameters from (2.3) with
respect to the differential forms Ki and ωα in the same manner as the p-form fields.
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j = 2 j = 1 j = 0

ĝ

gµν Gi
µ gij

Hα
β

ρ

ϕ̂ ϕ

B̂

Biµ Bµν/β

b12

bα
Â Aµ ai

Ĉ
C12µ/C̃ Ciµν/γi
Cαµ ciα

Table 2.1: The full spectrum of the N = 4 supergravity theory obtained from com-

pactification on an SU(2)-structure manifold. The first column indicates the field in

the original ten-dimensional theory, the other columns list the fields in the effective

four-dimensional theory, grouped by helicity. For fields that are dualized, we indicate

the original field and its dual separated by a /.

A three-form field in four dimensions has no degrees of freedom, therefore C was

integrated out. Then, the two-form fields B and Ci were replaced by their Hodge

dual scalar fields β and γi. Due to the specific couplings of Ci and C12, it is necessary

to replace C12 by a dual vector field C̃ as well. Schematically, we can summarize the

relationship between the various fields as follows:

∗dCi ∼ gijε
jkdγk ,

∗dB ∼ dβ ,

∗dC12 ∼ dC̃ .

(2.45)

In order to make the distinction between the various types of fields easier, we denote

scalar fields using lower case roman or greek letters, whereas capital roman letters

denote vector fields. The only exception is the matrix Hα
β, which consists of scalar

fields. An overview of all the fields in the effective theory is given in table 2.1. In

total, the spectrum consists of the graviton, (6 + n) vector fields, and (2 + 6n) scalar

fields, which corresponds to the bosonic content of one N = 4 gravity multiplet and

n vector multiplets.

In terms of these fields, the bosonic part of the action can be written as

SN =4 = Sscalar + Svector + Spotential , (2.46)

where the scalar kinetic term is
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Sscalar =

∫
1
2

[
− ∗R + 2d(ϕ+ 1

2
η + 1

2
ρ) ∧ ∗d(ϕ+ 1

2
η + 1

2
ρ)

− 1
8
DHα

β ∧ ∗DH
β
α + 1

2
e2ϕ gijDai ∧ ∗Daj

+ 1
2
eρHαβDb

α ∧ ∗Dbβ + 1
2
e2ηDb12 ∧ ∗Db12

+ 1
4
(gikgjlDgij ∧ ∗Dgkl +Dρ ∧ ∗Dρ)

]
+1

4
e4ϕ+2ρ+2η

[
Dβ − εijaiDγj

+ εij 1
2
(c αi Dcjα + aib

αDcjα + c αi Dajbα + c αi ajDbα)
]

∧ ∗
[
Dβ − εklakDγl

+ εkl 1
2
(c β
k Dclβ + akb

βDclβ + c β
k Dalbβ + c β

k alDbβ)
]

+1
4
e2ϕ+2ρgij(Dγi − bαDciα) ∧ ∗(Dγj − bβDcjβ)

+1
4
e2ϕ+ρHαβg

ij(Dc αi + aiDb
α) ∧ ∗(Dc β

j + ajDb
β) ,

(2.47)

the kinetic term and topological terms for the vector fields are

Svector = 1
4

∫
e−(2ϕ+η+ρ)

[
gijDGi ∧ ∗DGj

+ gij(DBi +DGkbik) ∧ ∗(DBj +DGlbjl)
]

+eρ−η(DC̃ − bαDCα + 1
2
bαb

αDA− (γk − bαckα)DGk)

∧ ∗(DC̃ − bβDCβ + 1
2
bβb

βDA− (γl − bβclβ)DGl)

+e−(ρ+η)(DA−DGkak) ∧ ∗(DA−DGlal)

+e−ηHαβ(DCα −DAbβ −DGkc α
k )

∧ ∗(DCβ −DAbβ −DGlc βl )

−1
4

∫
b12ηαβDCα ∧ DCβ − 2b12DA ∧ DC̃

+1
2

∫
εij(DBi +DGkbik)

∧
[
(cjα + ajbα)DCα − ajDC̃ − (γj + 1

2
ajbαb

α)DA

+ (εjkβ + ajγk − 1
2
c α
j ckα − 1

2
ajb

αckα − 1
2
akb

αcjα)DGk
]

+1
2
(εijDBi ∧ Cα ∧ TαjβCβ + 2Bit

i ∧ DA ∧ C̃ −Bit
i ∧ DCα ∧ Cα) ,

(2.48)
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and the potential is given by

Spotential =

∫
e2ϕ+η+ρ ∗

[
5
8
e2ηgijt

itj − 1
16
gij[H,Ti]

α
β[H,Tj]

β
α

+ 1
4
gijeρHαβ(Tαiγ − 1

2
εikt

kδαγ)b
γ(T βjδ − 1

2
εjlt

lδβδ)b
δ
]

+1
4
e4ϕ+3η+3ρ ∗

(
bα(T β1αc2β − T β2αc1β + 1

2
ticiα)

)2

+ ∗1
4
e4ϕ+3η+ρtiait

jaj

+ ∗ 1
4
e4ϕ+3η+2ρHαβ(εijTαiγ(c

γ
j + ajb

γ)− 1
2
tkc α

k + 1
2
tkakb

α)

· (εklT βkδ(c
δ
l + alb

δ)− 1
2
tkc β

k + 1
2
tlalb

β) .
(2.49)

Almost all kinetic terms in the action (2.47),(2.48) contain covariant derivatives.

We use the notation Ds for the covariant derivative of a scalar field s, whereas the

covariant derivative DV denotes the non-Abelian field strength of the vector V . The

covariant derivatives of the various scalar fields are given by

Dgij = dgij +Gl(εilt
kgkj + εjlt

kgik) ,

Dϕ = dϕ ,

Dη = dη +Gkεklt
l ,

Dρ = dρ−Gkεklt
l ,

Dγi = dγi − C̃εijtj +Gkεijt
jγk ,

Dβ = dβ + 1
2
Cα(εijTαiβc

β
j − 1

2
tic αi ) ,

Dai = dai −Gjεjit
kak ,

Db12 = db12 −Bjt
j −Gjεjkt

kb12 ,

Dbα = dbα +Gj(T βjα + 1
2
εjkt

kδβα)bβ ,

Dciα = dciα +Gj(T βjα + 1
2
εjkt

kδβα)ciβ −Gjεjit
kckα

− Cβ(T βiα + 1
2
εijt

jδβα) ,

DHα
β = dHα

β −Gj(TαjγH
γ
β −H

α
γT

γ
jβ) ,

Dξxα = dξiα −GiTαiβξ
xβ .

(2.50)

We note that all scalar fields except the dilaton ϕ are charged, and that all vector

fields except A take part in the gauging. The last line of (2.50) indicates the covariant

derivatives of the ξxα which are implicit in the Hα
β via (2.23). The corresponding
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vector field strengths are

DGi =dGi + tiG1 ∧G2 ,

DBi =dBi + εijt
kGj ∧Bk ,

DA =dA ,

DC̃ =dC̃ + εjkt
kGj ∧ C̃ ,

DCα =dCα − TαjβGj ∧ Cβ + 1
2
εjkt

kGj ∧ Cα .

(2.51)

The charges of the fields all depend on the torsion parameters Tαiβ and ti. The action

for compactification on K3×T 2 can be obtained by setting all the torsion parameters

to zero, and the number of two-forms ωα to n = 22, the second Betti number of K3.

In this case, all covariant derivatives D and D become simple exterior derivatives d,

and the potential term (2.49) vanishes.

It was shown in [37] that the action (2.47)-(2.49) describes the bosonic fields of a

gauged N = 4 supergravity theory, which puts a strong constraint on the theory. In

particular, the scalar field space of an N = 4 theory is required to be of the form

Mscalar =
SU(1, 1)

U(1)
× SO(6, n)

SO(6)× SO(n)
. (2.52)

For the case at hand, the first factor is described by the complex field

τ = b12 + ie−η , (2.53)

and the second factor is a coset space similar to the space of metric moduli (2.37) (the

moduli space (2.37) is now, of course, a subspace of (2.52)). As we show explicitly in

section C.1 of the appendix, the 6n remaining scalar fields can be used to parametrize

a matrix V Iā, I = 1, ..., n+ 6 , ā = 1, ..., 6 subject to the constraints

V āIηIJV
b̄J = δāb̄ , (2.54)

for a constant metric ηIJ of signature (6, n). In other words, the columns V ā may be

thought of as (pseudo-)orthonormal vectors in an internal vector space R6,n. Together,

they determine a 6-dimensional subspace of spacelike vectors in R6,n. Similarly to the

kinetic term (2.26) for the metric moduli on K3, the total kinetic term can now be

written in terms of a matrix

M I
J = −δIJ + V āIV ā

J . (2.55)

Indeed, in terms of τ and M I
J , the scalar action (2.47) takes the simple form

Sscalar =

∫
1

4 Im(τ)2
Dτ ∧ ∗Dτ̄ − 1

16
DM I

J ∧ ∗DMJ
I , (2.56)

for appropriately defined covariant derivatives. We refer to appendix C for more

details on such coset Lagrangians.

We have now reviewed the necessary background information in order to be able

to construct an orientifold projection on the SU(2)-structure background, and give

the effective action.



Chapter 3

The Orientifold Projection

In the previous chapter we have introduced the effective theory of type IIA string the-

ory compactified on a six-dimensional background manifold Y6 with SU(2)-structure.

The result is a gauged N = 4 supergravity theory. The aim of this chapter is to

find the Z2 orientifold projections compatible with this background, and to derive

the resulting N = 2 supergravity theory. The implementation of the O6 orientifold

projection and its results, mainly discussed in section 3.2, are the subject of [36].

3.1 Orientifold Action

The orientifold procedure consists of truncating the spectrum of the theory to those

states invariant under the action of a discrete symmetry O. The discrete symmetry

from which the orientifold projection receives its name, is orientation reversal Ωp of

the two-dimensional string world sheet. Labeling the coordinates on the world sheet

(σ, τ), Ωp acts as

Ωp(σ, τ) = (σ, 2π − τ) . (3.1)

The complete orientifold action further contains a spacetime involution S, and a

possible factor (−1)FL , where FL is the number of left-moving fermionic degrees of

freedom. Depending on the action of S, it can be necessary to include the operator

(−1)FL to assure that O squares to unity on fermionic states. The transformation

Ωp interchanges left-moving and right-moving modes on the world-sheet. In type

IIA string theory, the left- and right-moving fermionic fields have opposite spacetime

chirality. Thus, a consistent orientifold transformation O must contain a spacetime

involution S which relates fermions of different chirality, and therefore also inverts

the spacetime orientation. The background vacuum should be invariant under the

orientifold map O, and therefore S should be an isometry of the background metric.

This translates into the requirement that S conserves the space spanned by the spinors

ηi that define the SU(2)-structure (2.12). As we explain in detail in appendix A,

this leaves us with essentially two different types of involution S, and corresponding

orientifold projections:

25



26 3: The Orientifold Projection

• Orientifolds with O6-planes: S is an involution with (1+6)-dimensional fixed-

point loci, and acts on the spinors ηi as follows:

S(ηi±) = ±ηi∓ . (3.2)

This action of S squares to minus the identity, and therefore the factor of (−1)FL

must be added. The orientifold action takes the form

OO6 = SΩp(−1)FL . (3.3)

• O5- and O8-planes: The involution S has (1 + 5)- or (1 + 7)-dimensional fixed-

point loci. The action of S is given by

S(η1
±) =± η2

∓ ,

S(η2
±) =∓ η1

∓ .
(3.4)

Now the action of S squares to the identity, and the complete orientifold action

is

OO4/O8 = SΩp . (3.5)

As we shall see, characterization of S by its action on the internal spinors ηi gives

us the information we need in order to determine the action of S on all of the fields

in our theory. We will call a field F “even”, respectively “odd”, if it transforms as

S(F ) = ±F under the action of S. However, in order to determine the complete

orientifold action O, we still need to know the effect of the operators Ωp and (−1)FL .

Using the world-sheet description of the various type IIA fields, one finds [32, 33]1

ΩpS :



ϕ̂ → S(ϕ̂)

ĝ → S(ĝ)

B̂ → −S(B̂)

Â → S(Â)

Ĉ → −S(Ĉ)

, (−1)FL :



ϕ̂ → ϕ̂

ĝ → ĝ

B̂ → B̂

Â → −Â
Ĉ → −Ĉ

. (3.6)

In other words, Ωp and (−1)FL are extra internal symmetries of the effective field

theory, multiplying fields by a factor of (±1).

The orientifold projection now consists of truncating all modes which are not

invariant under the total action of O. In the NS sector, OO6 and OO4/O8 have a

similar effect: the dilaton ϕ̂ and metric ĝ must be even

S(ϕ̂) = ϕ̂ ,

S(ĝ) = ĝ ,
(3.7)

1We use the shorthand S(F ) to denote the action of S on a p-form field FM...PdxM∧...∧dxP by its
pullback, i.e. S(F ) = F (S(x))M...P

∂SM

∂xQ ...
∂SP

∂xR dxM∧...∧dxQ, for a transformation S : xM → SM (x).
Equation (3.6) gives the combined action of ΩpS, since an action of Ωp alone can not be given meaning
in type IIA theory, due to the different chiralities of the left- and right-moving sector.
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whereas for the two-form B̂, only odd modes survive:

S(B̂) = −B̂ . (3.8)

For the RR fields, the situation is different in each case, since the factor (−1)FL is not

present inOO4/O8. Thus in the O6 projection, combining the two columns of (3.6), one

finds that the one-form Â must transform with eigenvalue (−1), and the three-form

Ĉ must be invariant. The opposite holds in the case of an O4/O8 projection:

O6 O4/O8

S(Â) = −Â, S(Â) = Â,

S(Ĉ) = Ĉ, S(Ĉ) = −Ĉ.

(3.9)

This restriction on the possible internal coordinate dependence of the different

fields leads to a truncation of the effective four-dimensional spectrum, since, in the

Kaluza-Klein expansion (2.39)-(2.44), each ten-dimensional field may only be ex-

panded with respect to Kaluza-Klein modes with the correct transformation proper-

ties under the action of S. We discuss the adaption to the Kaluza-Klein ansatz and

the corresponding low-energy effective theory for the two cases separately.

3.2 O6 orientifolds

The action (3.2) of the O6 orientifold on the internal spinors, leads to the following

transformation of the two-forms Ω and J [32, 33]:

S(J) = −J ,

S(Ω) = −Ω̄ ,
(3.10)

and the transformation of the complex one-form K is

S(K) = K̄ . (3.11)

Thus, J,Re(Ω) and Im(K) are odd forms, while Im(Ω) and Re(K) are even.

Since S2 = 1 when acting on two-forms, the space of two-forms ωα introduced

in section 2.2.2 splits into an even and an odd eigenspace. We choose a basis of

two-forms in each of these spaces. The space of even forms is labeled H2,+, with a

basis ωA, A = 1, ..., n+, and the space of odd two-forms is labeled H2,−, with a basis

ωP , P = 1, ..., n−.

H2,+ = {ω ∈ Λ2,finite |S(ω) = ω} = span{ωA, A = 1, ...n+} ,

H2,− = {ω ∈ Λ2,finite |S(ω) = −ω} = span{ωP , P = 1, ...n−} .
(3.12)
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We now use the fact that2

ηAP =

∫
K1 ∧K2 ∧ ωA ∧ ωP =

∫
K1 ∧K2 ∧ S(ωA) ∧ S(ωP )

=−
∫
K1 ∧K2 ∧ ωA ∧ ωP = −ηAP ,

(3.13)

to show that the intersection form ηαβ reduces to the block-diagonal form

ηαβ =

(
ηAB 0

0 ηPQ

)
(3.14)

under the splitting Λ2,finiteY6 = H2,+ ⊕H2,−. From (3.10) we can see that the forms

J and Re(Ω) are in the space H2,−, whereas Im(Ω) is in H2,+. In other words, H2,−

contains two linearly independent positive-normed vectors, whereas H2,+ contains

only one. Therefore ηPQ is an inner product of signature (2, n−) on H2,−, and ηAB is

an inner product of signature (1, n+) on H2,+.

We note that the transformation properties of the differential forms ωA, ωP , K1

and K2 also hold for their exterior derivatives. Since d(S(F )) = S(dF ) holds for every

map S and every differential form F , the exterior derivative of a differential form has

the same parity with respect to S, as F itself. Therefore, the exterior derivatives

(2.28), (2.33) must reduce to

dωA = TA1BK
1 ∧ ωB − 1

2
tK1 ∧ ωA + TA2PK

2 ∧ ωP ,

dωP = T P1QK
1 ∧ ωP − 1

2
tK1 ∧ ωP + T P2BK

2 ∧ ωB ,

dK1 = 0 ,

dK2 = tK1 ∧K2 .

(3.15)

3.2.1 The spectrum

We are now prepared to discuss the resulting low-energy spectrum of the theory. We

begin by determining the low-energy moduli space of metrics on Y6 after orientifold

projection. The projection imposes the transformations (3.10) on J and Ω. There-

fore, we expand fluctuations of J and Re(Ω) with respect to the odd forms ωP , and

fluctuations of Im(Ω) with respect to the even forms ωA. The parametrization (2.19)

becomes

J1,2 = e−
1
2
ρξ1,2
P ωP , P = 1, ..., n− ,

J3 = e−
1
2
ρξ3
Aω

A, A = 1, ..., n+ .

(3.16)

In other words, imposing the orientifold symmetry (3.10) reduces the parameter space

of metric fluctuations to the choice of two orthogonal fixed-norm vectors ξ1, ξ2 in

2 To see that the first line of (3.13) holds, note that the pull-back by S enjoys the property∫
K1 ∧K2 ∧ ωA ∧ ωP = −

∫
S(K1 ∧K2 ∧ ωA ∧ ωP ), where the minus sign appears because S in-

verts the orientation on the manifold Y6, and S(K2) = S(Im(K)) = −K2
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R2,(n−−2), and one fixed-norm vector ξ3 in R1,(n+−1). This corresponds to the reduction

of the moduli space (2.37) to the subspace

SO(2, n− − 2)

SO(2)× SO(n− − 2)
× SO(1, n+ − 1)

SO(n+ − 1)
× R+ . (3.17)

This is consistent with the constraint that the Hodge ∗ operation on Λ2,finiteY6, defined

by the matrix Hα
β, is invariant under the involution S. This implies that the Hodge

∗ operator can only act within the spaces H2,+ and H2,−, i.e. Hα
β reduces to block-

diagonal form as well:

Hα
β =

(
HA

B 0

0 HP
Q

)
, (3.18)

where the matrices HA
B and HP

Q depend on the parameters ξx as follows:

HA
B = −δAB + ξ3Aξ3

A, HP
Q = −δPQ + (ξ1P ξ1

Q + ξ2P ξ2
Q) . (3.19)

The action of S on the remaining components of the metric can be understood by

looking at the explicit expansion of the metric with respect to the basis {dxµ, Ki}.
This leads to the components ĝµν , ĝµj and ĝij, defined as follows:

ĝMNdxMdxN =ĝµν(x)dxµdxν + ĝij(x)KiKj + ĝiν(x)Kidx1ν + ĝµj(x)dxµKj

+ gabdz
adzb .

(3.20)

Comparing this to the expansion (2.39), we see that the components g and ĝ are

related by

ĝµν = gµν + gijG
i
µG

j
ν , ĝiν = −gijGj

ν , ĝij = gij . (3.21)

Since dxµ and K1 are even, and K2 is odd, the components of ĝ proportional to

dxµdxν , dxµK1, (K1)2 and (K2)2 are even, components proportional to K2dxµ or

K1K2 are odd, and are therefore projected out. Thus we are left with the compo-

nents ĝµν , ĝiµ, ĝ11 and ĝ22, or, returning to the variables from (2.39), the components

gµν , G
1
µ, g11 and g22.

The modification of the Kaluza-Klein ansatz for the remaining fields proceeds in

a similar fashion. We expand fields with respect to the differential forms

dxµ, E1 = K1 −G1
µdxµ, E2 = K2, ωA, ωP , (3.22)

as in equations (2.42)-(2.44). Each term in the expansion is even or odd, depending

on the number of odd differential forms it contains, for example, terms proportional

to dxµ, ωA or K1 are even, terms proportional to K2 or ωP are odd, and terms

proportional to the product of two odd forms, such as K2∧ωP are even again. Then,

depending on the action (3.6) of O, either odd modes or even modes are truncated

from the Kaluza-Klein expansion.

The orientifold action (3.6) implies that the two-form field B̂ has to transform as

S(B̂) = −B̂, so that only odd modes survive in the expansion of B̂ in (2.42). The odd
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j = 2 j = 1 j = 0

ĝ

gµν G1
µ g11, g22

HA
B [×(n+ − 1)]

HP
Q [×(2n− − 4)]

ρ

ϕ̂ ϕ

B̂
B2µ b12

bP
Â a2

Ĉ

CAµ c1A

c2P

C1µν/γ2

Table 3.1: This table lists the massless fields which survive the O6 orientifold pro-

jection. The hatted fields are the massless ten-dimensional fields while the unhatted

fields are the massless modes in four space-time dimensions with j indicating their

(four-dimensional) spin. The indices A,B = 1, ..., n+ label components from the

expansion in even two-forms, the indices P,Q = 1, ..., n− correspond to odd two-

forms. For convenience, we have indicated the number of parameters contained in

the matrices H in square brackets. As in the case without orientifold projection, the

four-dimensional two-form is exchanged for its dual scalar field γ2.

modes are the coefficients of E1∧dxµ, E1∧E2 and ωP or in other words the components

B1µ, b12 and bP . Â similarly transforms as O(Â) = −S(Â), so that only the odd

component a2 is kept. The three-form Ĉ transforms as O(Ĉ) = S(Ĉ) which implies

that the even modes C2µν , CAµ, c1A, c2P and Cµνρ remain in the spectrum. Finally,

the dilaton should be invariant under the action of S as well, which is satisfied as the

low-energy mode coming from the ten-dimensional dilaton has no internal coordinate

dependence.

As summarized in table 3.1, we have reduced the spectrum of the original N = 4

theory to (2 + n+) vector fields, 4n− + 2n+ + 2 scalar fields, and the metric. This

corresponds to the bosonic field content of N = 2 supergravity with n+ + 1 vector

multiplets and n− hypermultiplets. In the next section we will examine the effective

action for these fields in detail, and show that it corresponds to the (bosonic) action

of a gauged N = 2 supergravity theory. For this to be true, the scalar sector of

the theory must be a sigma model where the target space is a direct product of a

special Kähler manifoldMS.K., spanned by the 2(n++1) complex scalars in the vector

multiplets, and a quaternion-Kähler manifold MQ.K., spanned by the 4n− scalars in

the hypermultiplets:

MN =2 =MS.K. ×MQ.K. (3.23)

In this case, this structure is inherited from the N = 4 theory we started out with.

As we recalled in section 2.3, the scalar fields of the N = 4 theory live in a target
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space

SU(1, 1)

U(1)
× SO(6, n)

SO(6)× SO(n)
(3.24)

where the second factor is described by 6 orthonormal vectors V ā
I in R6,n, ā =

1, ..., 6; I = 1, ..., 6 + n;n = n+ + n−. As we show explicitly in section C.2, the

orientifold projection leaves the first factor of (3.24) intact, and projects the V ā onto

two orthogonal subspaces. Two of the V ā are reduced to orthonormal vectors in

R2,n+ . They combine with the first factor from (3.24) to form the moduli space

MS.K. =
SU(1, 1)

U(1)
× SO(2, n+)

SO(2)× SO(n+)
. (3.25)

The four remaining V ā form the Grassmannian

MQ.K. =
SO(4, n−)

SO(4)× SO(n−)
. (3.26)

As discussed in, for example, [41], it is a well-known fact that the symmetric spaces

MS.K. and MQ.K. in equations (3.25) and (3.26) are special Kähler, respectively

quaternion-Kähler manifolds.

We will now look at the N = 2 moduli space more explicitly, by reducing also

the effective action (2.47)-(2.49). This will allow us to identify the canonical data

of the N = 2 supergravity theory, such as holomorphic variables for the special

Kähler manifold and the corresponding prepotential, the gaugings and their Killing

prepotentials.

3.2.2 The N = 2 theory

Projecting out the odd modes, the scalar, vector and potential terms from the effective

action (2.47)-(2.49) are reduced. The kinetic term (2.47) for the scalars now takes

the form

Sscalar =

∫
− 1

2
∗R + d(ϕ+ 1

2
η + 1

2
ρ) ∧ ∗d(ϕ+ 1

2
η + 1

2
ρ)

− 1
16

(DHA
B ∧ ∗DHB

A +DHP
Q ∧ ∗DH

Q
P ) + 1

4
e2ϕg22Da2 ∧ ∗Da2

+1
4
eρHPQDb

P ∧ ∗DbQ + 1
4
e2ηDb12 ∧ ∗Db12

+1
8
(gikgjlDgij ∧ ∗Dgkl +Dρ ∧ ∗Dρ)

+1
4
e2(ϕ+ρ)g22(dγ2 − bPDc2P ) ∧ ∗(dγ2 − bQDc2Q)

+1
4
e2ϕ+ρg11HABDc

A
1 ∧ ∗Dc B

1

+1
4
e2ϕ+ρg22HPQD(c P

2 + a2Db
P ) ∧ ∗(Dc Q

2 + a2Db
Q) ,

(3.27)
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the term (2.48) for the vector fields becomes

Svector = 1
4

∫
e−(2ϕ+η+ρ)g11dG1 ∧ ∗dG1

+e−(2ϕ+η+ρ)g22(DB2 − b12dG1) ∧ ∗(DB2 − b12dG1)

+e−ηHAB(DCA − dG1c A
1 ) ∧ ∗(DCB − dG1c B

1 )

−b12ηABDCA ∧ DCB

−2(DB2 − b12dG1) ∧ (c1ADCA − 1
2
c A

1 c1AdG1)

−TA1BdB2 ∧ CA ∧ CB − tB2 ∧ dCA ∧ CA ,

(3.28)

and the remaining terms from the potential (2.49) are given by

Spotential =

∫
∗
(

5
8
e2ϕ+3η+ρg22(t)2 + 1

4
e4ϕ+3η+ρ(ta2)2

− 1
16
e2ϕ+η+ρ(g11[H,T1]AB[H,T1]BA + g11[H,T1]PQ[H,T1]QP

+ 2g22[H,T2]PA[H,T2]AP )

+1
4
e2ϕ+2ρ+ηbRbS

(
g11HPQ(T P1R + 1

2
tδPR)(TQ1S + 1

2
tδQS)

+ g22HABT
A
2RT

B
2S

)
+1

4
e4ϕ+3η+3ρ

(
bP (c2QT

Q
1P − c1AT

A
2P + 1

2
tc2P )

)2

+1
4
e4ϕ+3η+2ρHPQ

(
T P1R(c R

2 + a2b
R)− 1

2
t(c P

2 − a2b
P )− T P2Ac A

1

)
·
(
TQ1S(c S

2 + a2b
S)− 1

2
t(c Q

2 − a2b
Q)− TQ2Bc

B
1

))
.

(3.29)

The couplings of the vector fields in (3.28) may only depend on scalars in the vector

multiplets. This allows us to determine which are the scalar degrees of freedom in

the vector multiplets, and we find that they are given by the n+ + 1 complex scalars

zA = c A
1 + ie−(ϕ+

1
2
ρ)√g11ξ

3A ,

τ = b12 + ie−η .
(3.30)

The complex scalar τ describes a SU(1, 1)/U(1) coset as before. We recall that it

follows from (2.21) that ξ3A is restricted to have norm ξ3Aξ3
A = 2, and thus contains

only (n+ − 1) degrees of freedom. The required extra degree of freedom turns out to

be the scalar factor e−(ϕ+
1
2
ρ)√g11.

In the hypermultiplet sector, it is convenient to use the following variables

T ≡ a2 + ie−ϕ
√
g22 ,

MPQ ≡ Re(T )ηPQ + iIm(T )HPQ ,

φ ≡ 2e−ϕ−ρ
√
g22 ,

φ̃ ≡ −2γ2 − bP c2P .

(3.31)
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The fields in (3.31), together with the scalars bP and c2P , which undergo no field

redefinition, account for 4n− degrees of freedom. HPQ contains (2n− − 4) degrees

of freedom, the c2P and bP contribute another 2n− degrees of freedom, and the 4

remaining degrees of freedom come from φ, φ̃ and the complex scalar T .

Thus, the spectrum of the theory contains the following set of N = 2 multiplets:

• The gravity multiplet, whose bosonic degrees of freedom are the metric/graviton

gµν and the graviphoton G1
µ.

• (n+ + 1) vector multiplets, which contain, as bosonic fields, one vector and one

complex scalar each. These are given by (B2µ, τ) and the n+ pairs (CA
µ , z

A).

• n− hypermultiplets, consisting of the 4n− scalar fields HP
Q, c2P , bP , φ, φ̃ and

T .

In terms of the sets of variables (3.30) and (3.31), the scalar kinetic term (3.27)

indeed decouples into a separate term for the scalars in the vector multiplets, and one

for the scalars in the hypermultiplets, which are discussed in detail in the following

subsections. The separation of the scalar fields into hyper- and vector multiplets

involves a rather complicated redefinition of the four fields ϕ, g11, g22 and ρ, but one

can see that the number of degrees of freedom is preserved by this redefinition. We also

note that the dilaton, which is the expansion parameter in string perturbation theory,

is a combination of fields from both hyper- and vector multiplets. This implies that

both vector- and hypermultiplet moduli spaces are sensitive to string loop corrections

[51]. This is in contrast to N = 2 theories obtained from compactifications of type IIA

theory on Calabi-Yau threefolds, where the dilaton is entirely part of a hypermultiplet,

and the moduli space of the vector multiplets therefore does not receive string loop

contributions [52].

Vector multiplets

Rewriting (3.27) in terms of the scalars defined in equations (3.30) and (3.31), the

action for the scalars (3.30) can be written as

Svector =

∫
−1

(τ − τ̄)2
Dτ ∧ ∗Dτ̄ +GAB̄Dz

A ∧ ∗Dz̄B, (3.32)

where the coupling GAB̄ is given by the expression

GAB̄ = −4
(z − z̄)A(z − z̄)B

((z − z̄)C(z − z̄)C)2
+

2ηAB
(z − z̄)C(z − z̄)C

. (3.33)

The combined metric defined by the couplings in (3.32) is Kähler with the Kähler

potential

K = − ln i(τ̄ − τ)− ln[−1
4
ηAB(z − z̄)A(z − z̄)B] = ln(1

4
e2ϕ+ρ+ηg11) . (3.34)
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K is a Kähler potential for the coset space [41]

MS.K. =
SU(1, 1)

U(1)
× SO(2, n+)

SO(2)× SO(n+)
. (3.35)

We note that K can also be expressed by the following integrals over the internal

manifold:

K = ln

∫
K1 ∧ ∗K1 − 2 ln

∫
e−ϕ̂J3 ∧ ∗J3 , (3.36)

where we have used the expansion (3.16) of J3.

As required by N = 2 supergravity MS.K. is a special Kähler manifold. This

is equivalent to the requirement that K can be derived from a holomorphic func-

tion, the prepotential F , according to the formula K = − ln i[X̄IFI −XIF̄I ], where

FI = ∂IF . In the case of the Kähler potential (3.34), this relationship is satisfied for

the prepotential

F = −τηABz
AzB

4X0
, (3.37)

and a choice of special coordinates XI

XI = (X0, X ı) = (1, τ, zA) , I = 0, ..., n++1; ı = 1, ..., n++1. (3.38)

From the covariant derivatives (2.50) and the definition of the complex fields τ

and zA in (3.30), we find that the complex covariant derivatives are given by

Dµτ = ∂µτ + tG1
µτ − tB2µ ,

Dµz
A = ∂µz

A − (TA1B + 1
2
tδAB)G1

µz
B + (TA1B + 1

2
tδAB)CB

µ .
(3.39)

We denote these covariant derivatives collectively as

DµX
ı = ∂µX

ı − V I
µ k

ı
I , (3.40)

where V I labels n+ + 2 vector fields in the theory

V I = (V 0, V 1, V A) = (G1, B2, C
A) , I = 0, ..., n++1 , (3.41)

and the kI are a set of n+ + 2 Killing vectors, describing the isometries of the target

space (3.35) that are gauged. The kıI are the components of the Killing vectors with

respect to the coordinate basis ∂/∂X ı of the tangent space of MS.K., kI = kıI∂Xı .

Thus, the kI can be expressed as

k0 = −tτ∂τ + (TA1B + 1
2
tδAB)zB∂zA ,

k1 = t∂τ ,

kA = −(TB1A + 1
2
tδBA)∂zB ,

(3.42)

where, following the labeling of the vector fields introduced in (3.41), k0 is the Killing

vector associated to G1, k1 is associated to B2, and the kA correspond to the vector
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fields CA. In order to check that the gauge transformations induced by the covariant

derivatives (3.39) are indeed isometries of the target manifold (3.35), we can use the

property that Killing vectors kI of a Kähler manifold should depend on a so-called

Killing prepotential PI . The PI are real quantities that determine the isometries via

the equation

kıI = iGı̄∂̄PI , (3.43)

where Gı̄ is the inverse of the Kähler metric obtained from (3.34). We can indeed

find solutions for (3.43) and the kI found in (3.42). We find the expressions

P0 = i
τ + τ̄

2(τ − τ̄)
t+ i

(z − z̄)A(TA1B + 1
2
tδAB)(z + z̄)B

(z − z̄)2
,

P1 = i
1

τ − τ̄
t ,

PA = −2i
(z − z̄)B(TB1A + 1

2
tδBA)

(z − z̄)2
.

(3.44)

The formulation of the gauge transformations in terms of Killing vectors makes it

easy to calculate the commutators, and we find the algebra

[k0, k1] = tk1 ,

[k0, kA] = −(TB1A + 1
2
tδBA)kB ,

[k1, kA] = [kA, kB] = 0 .

(3.45)

The algebra (3.45) is the semi-direct sum of two Abelian sub-algebras [40]: the Abelian

algebra of the coordinate shifts k1 and kA, and the algebra consisting of the sole

generator k0. As any semi-direct sum of Abelian algebras, it is solvable.3 Such

solvable Lie algebras seem to be a general feature of the gaugings obtained in G-

structure compactifications [40, 18, 38].

One can see that the non-Abelian field strengths in the effective action (3.28)

have the correct form DAI = dAI + 1
2
f IJKA

J ∧ AK , with the structure constants f IJK
defined by [kJ , kK ] = f IJKkI . After the orientifold projection, the non-Abelian field

strengths (2.51) are reduced to

DG1 = dG1 ,

DB2 = dB2 + tG1 ∧B2 ,

DCA = dCA − (TA1B + 1
2
tδBA)G1 ∧ CB ,

(3.46)

from which one can read off the structure constants f 1
01 and fA0B corresponding to

(3.45).

3A Lie algebra g is said to be solvable if its commutator series gn, defined by gn = [gn−1, gn−1],
vanishes for some n. Here, equation (3.45) tells us that g2 = [g, g] consists only of the commuting
generators k1 and kA, so we have g3 = 0.
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The quadratic couplings of the vector field strengths DAI are determined by the

prepotential F as well. In an N = 2 supergravity theory, they should take the form

1
2

∫
Re(N )IJDAI ∧ DAJ − Im(N )IJDAI ∧ ∗DAJ , (3.47)

where, up to electric/magnetic duality transformations, the complex matrix N de-

pends on the scalar fields in the vector multiplets as follows:

NIJ = F̄IJ + 2i
Im(F)IKIm(F)JLX

LXK

Im(F)MNXMXN
. (3.48)

The FIJ are the second derivatives of the prepotential F with respect to the coordi-

nates XI . One can verify that the quadratic couplings found in the action (3.28), are

indeed of the above form, and we give the explicit expressions for the components of

N in terms of the special coordinates (τ, zA) in section B.1 of the appendix.

Apart from the quadratic couplings (3.47), the action also contains a Chern-

Simons type term

− 1
4

∫
TA1BdB2 ∧ CA ∧ CB + tB2 ∧ dCA ∧ CA . (3.49)

As found in [53], terms of this type are necessary when certain transformations that

do not leave the prepotential F invariant, are gauged. One can allow for a gauge

transformation δX ı = ΛIkıI which leads to a variation of the prepotential (3.37) of

the form

δF = ΛICI,JKX
JXK , (3.50)

where the CI,JK are constant, real and symmetric in the last two indices. The real

part of the matrix N (3.47) changes under this variation, and in order for the total

Lagrangian to be invariant, it must contain the extra topological term

δS = 2
3

∫
CI,JKA

I ∧ AJ ∧ (dAK − 3
8
fKLMA

L ∧ AM) . (3.51)

The Killing vectors k1 and kA give rise to a variation of the prepotential of the form

(3.50), with constants

C1,AB = −1
4
tηAB , CA,1B = CA,B1 = +1

4
(TC1A + 1

2
tδCA)ηCB , (3.52)

which, when substituted into equation (3.51) give precisely the contribution (3.49).

For the constants (3.52), the terms in (3.51) containing the wedge product of four vec-

tor potentials cancel. A similar situation was encountered in [40] for compactifications

to four dimensions of M-theory on manifolds with SU(3)-structure.
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Hypermultiplets

The action (3.27) leads to the following action for the hypermultiplet scalars (3.31)

Shyper =

∫
−1

(T − T̄ )2
DT ∧ ∗DT̄ − 1

16
DHP

Q ∧ ∗DHP
Q

+
1

4φ2
dφ ∧ ∗dφ+

1

2φ
(ImM)PQDb

P ∧ ∗DbQ

+
1

2φ
(ImM)−1 PQ (Dc1P + (ReM)PRDb

R
)

∧ ∗
(
DC1Q + (ReM)QSDb

S
)

+
1

4φ2
(Dφ̃+ bPDc2P − c2PDb

P )

∧ ∗(Dφ̃+ bQDc2Q − c2QDb
Q) .

(3.53)

In the first line of (3.53) the T -dependent term contains the action for an SU(1, 1)/U(1)

coset, and the term containing HP
Q gives the action for the first component of the

projected metric moduli space (3.17), the SO(2, n− − 2)/SO(2) × SO(n− − 2) coset.

Therefore, the first line of the action describes the following submanifold of the σ-

model target space:

SU(1, 1)

U(1)
× SO(2, n− − 2)

SO(2)× SO(n−)
, (3.54)

which is of the same type as (3.35), and is therefore also a special Kähler manifold.

The complete action (3.53) is a sigma-model action for a quaternion-Kähler target

space constructed out of the special Kähler submanifold (3.54) using the c-map [54,

55]. The c-map describes a class of quaternion-Kähler manifolds which can be be

constructed out of special Kähler manifolds. In the case of the manifold (3.54), the

image of the c-map is the coset space

MQ.K. =
SO(4, n−)

SO(4)× SO(n−)
, (3.55)

which is known to be quaternion-Kähler. In appendix C we verify that (3.53) de-

scribes the SO(4, n−) coset (3.55) explicitly in terms of the underlying SO(4, n−)

coset matrices parametrized by the moduli. This gives us an explicit view of the

relation between the coset representatives of (3.55) and variables used in the c-map

metric (3.53).
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The covariant derivatives in the action (3.53) are

DξiP = dξiP −G1T P1Qξ
iQ ,

DbP = dbP −G1(T P1Qb
Q + 1

2
tδPQ)bQ ,

Dc2P = dc2P +G1(TQ1P + 1
2
tδQP )c2Q − CAηABT

B
2P ,

DT = dT +G1tT ,

Dφ̃ = dφ̃− CATA2P bP .

(3.56)

In the first line of (3.56), we chose to express the covariant derivatives in terms of

the variables ξiP related to HP
Q as in equation (3.19). The isometries gauged by

these covariant derivatives can be described in terms of the following Killing vectors

on MQ.K.:

k0 = T P1Qξ
iQ∂ξiP + (T P1Q + 1

2
δPQ)bQ∂bP

− (TQ1P + 1
2
δQP )c2Q∂c2P

+ tT∂T ,

kA = ηABT
B
2P (∂c2P

+ ∂φ̃) .

(3.57)

As is required for consistency, the gauged symmetries (3.57) onMQ.K. have the same

algebra as the gauged symmetries (3.42) onMS.K.. The only non-trivial commutator

relation we need to verify is [k0, kA], and we obtain

= ηABT
B
2P (T P1Q + 1

2
tδPQ)bQ∂φ̃

+ ηABT
B
2P (T P1Q + 1

2
δPQ)∂c2Q

= ηAB(TB1C − 1
2
δBC)TC2P (∂c2P

− ∂φ̃)

= −(TB1A + 1
2
δBA)ηBCT

C
2P (∂c2P

− ∂φ̃),

(3.58)

where we have used the constraints (2.32). In the last line of (3.58) we recognize the

commutator [k0, kA] from (3.45).

The Killing vectors (3.57) onMQ.K. also depend on a set of Killing prepotentials.

However, their calculation is more involved than in the case of the Killing prepotentials

on MS.K.. Therefore, we have chosen to present it in section B.2 of the appendix.

We also need to know the expression for the Killing prepotentials in order to verify

that the potential obtained from the compactification is consistent with N = 2

supergravity. We find agreement, but since the calculation is somewhat lengthy as

well, we included it in section B.3 of the appendix.

This concludes our discussion of the effective action obtained from O6 orientifold

compactifications. We have identified all the canonical quantities and structures

which determine the action of gauged N = 2 supergravity theories, and verified that

the effective action (3.27)-(3.29) obtained from the compactification agrees is indeed

of the required form.
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3.3 O4/O8 orientifolds

We can now discuss the second type of orientifold projection, which leads to a vacuum

with O4 and/or O8 orientifold planes. This section follows essentially the same line

of reasoning as the previous one, with only the results differing. To avoid unnecessary

repetition, we present a lot of the arguments more concisely.

Recalling equation (3.4), the action of O on the internal spinors is now

S(η1
±) =± η2

∓ ,

S(η2
±) =∓ η1

∓ .
(3.59)

Using their decomposition (2.12) into bi-spinors, we find the that S leaves the two-

forms Ω and J invariant:
S(J) = J ,

S(Ω) = Ω ,
(3.60)

whereas the complex one-form K again transforms as

S(K) = K̄ . (3.61)

This result confirms the intuitive picture that fixed-point loci of S are either five- or

nine- dimensional. Looking at the action of S locally around a fixed point, the O4/O8

orientifold projection flips the direction in T2Y6 spanned by Im(K), and either zero or

all four directions along T4Y6, leading to the transformation properties (3.60), (3.61)

of differential forms on these tangent spaces. The above transformation properties

will lead to a different projection of the Kaluza-Klein expansions for the fields, which

we will now investigate.

The transformations (3.60) imply that perturbations of the internal metric may

only be expanded with respect to two-forms which remain invariant under the trans-

formation S. However, this does not imply that the set of two-forms Λ2,finite which

defines the consistent Kaluza-Klein truncation, can not include other two-forms which

transform as S(ω) = −ω, and which may appear in the expansion of the various form

fields in the spectrum.

Therefore, we can again define eigenspaces of “even” two-forms ωA ∈ H2,+ and

“odd” two-forms ωP ∈ H2,− as in (3.12). The spaces H2,±, however, have different

properties when compared to their O6 counterparts, as becomes apparent when we

look at the reduction of the intersection form η with respect to these subspaces. The

SO(3, n) metric defined by η again splits into a block-diagonal form

ηαβ =

(
ηAB 0

0 ηPQ

)
, (3.62)

but the metrics ηAB and ηPQ now have a different signature compared to the case

of the O6 orientifold projection. Following the transformation property (3.60), the
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two-forms J and Ω, which are positive-normed with respect to the metric η, must be

contained in H2,+. The signature of ηAB on H2,+ is therefore (3, n+−3), whereas H2,−

contains only negative-normed two-forms, i.e. ηPQ is negative-definite, with signature

(0, n−).4 The exterior derivatives of the differential forms ωA, ωP , K1 and K2 take

the same form as in the case of the O6 projection (3.15).

3.3.1 The spectrum

We can now discuss which modes of the effective theory survive the O4/O8 orientifold

projection. As follows from equation (3.60), the fluctuations of the two-forms Ω and

J should all be expanded with respect to even forms ωA. Therefore, the counterpart

of equation (3.16) is

Jx = e−
ρ
2 ξxAω

A, A = 1, ..., n− ; x = 1, ..., 3. (3.63)

The ξiA describe the coset space

SO(3, n+ − 3)

SO(3)× SO(n+ − 3)
, (3.64)

and contain (3n+ − 9) degrees of freedom. The reduction of the parameter space

(2.37) to (3.64) corresponds to the following projection of the matrix Hα
β:

Hα
β =

(
HA

B 0

0 −δPQ

)
. (3.65)

The perturbations of the metric along the two-dimensional component T2Y6 of the

internal manifold and along the non-compact directions, are truncated in the same

manner as in the case of the O6 projection. Therefore, we are again left with the

four-dimensional metric gµν , the scalars g11 and g22, as well as the vector field G1
µ.

Also the scalar fields ρ and ϕ are preserved as before.

Formally, the projection of the NS two-form B̂ is also the same as in section

3.2.1, again with the caveat that the set of forms ωP is now of a different nature,

as follows from the discussion surrounding (3.62). Thus we have the scalar fields

bP , P = 1, ..., n−, b12, and the vector field B2.

Another difference arises in the truncation of the modes coming from the RR one-

and three-form fields Â and Ĉ. As explained in section 3.1, the O4/O8 orientifold

projection only involves the map

OO4/O8 = SΩp , (3.66)

4Irrespective of the different nature of the spaces H2,±, of their elements and of the intersection
metric, compared to section 3.2, we will use the same symbols for these quantities throughout this
section.
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j = 2 j = 1 j = 0

ĝ

gµν G1
µ g11, g22

HA
B [×(3n+ − 9)]

ρ

ϕ̂ ϕ

B̂
B2µ b12

bP

Â Aµ a1

Ĉ

C12µ/C̃ c2µν/γ1

CPµ c1P

c2A

Table 3.2: Spectrum of the effective theory after O4/O8 orientifold projection. The

matrix HA
B now contains (3n+ − 9) scalar degrees of freedom.

and no factor of (−1)FL is called for. As indicated in equation (3.9), this implies

that the RR one-form Â should now be expanded with respect to even forms, and Ĉ

should be expanded with respect to odd forms. Therefore, the remaining components

of Â are the scalar a1, as well as the four-dimensional vector field Aµ. The surviving

components of Ĉ are now scalar fields c1P , c2A and c2µν (which is dualized into a

scalar γ1), as well as vector fields C12µ and CPµ.

An overview of the spectrum after the O4/O8 orientifold projection is given in

table 3.2. We count a total of (4+n−) vector fields, (4n+ +2n−−2) scalar fields, and

the metric. These are the bosonic degrees of freedom of an N = 2 supergravity theory

with one gravity multiplet, (n−+ 3) vector multiplets, and (n+− 2) hypermultiplets.

As we demonstrate in the following sections, the scalar target space is of a similar

form as the target space of the O6 theory. It turns out that the special Kähler space

associated to the vector multiplets is now

MS.K. =
SU(1, 1)

U(1)
× SO(2, n− + 2)

SO(2)× SO(n− + 2)
, (3.67)

which is 2(n−+ 3)-dimensional, and the quaternionic space describing the hypermul-

tiplets is

MQ.K. =
SO(4, n+ − 2)

SO(4)× SO(n+ − 2)
, (3.68)

which is 4(n+−2)-dimensional. The results (3.67) and (3.68) are to be expected, since

we know the dimension of MS.K. and MQ.K. from the number of scalar fields in the

N = 2 vector and hypermultiplets, and since the total moduli spaceMS.K. ×MQ.K.

must be a subset of the N = 4 moduli space (2.52). In the next section, we look at

the effective action, and characterize the resulting N = 2 supergravity theory in full

detail.
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3.3.2 The N = 2 theory

We can now look at the effective action obtained by reducing the N = 4 action (2.47)-

(2.49) to those terms containing only fields which survive the O4/O8 projection. As

a consequence, the scalar kinetic term (2.47) is reduced to

Sscalar =

∫
− 1

2
∗R + d(ϕ+ 1

2
η + 1

2
ρ) ∧ ∗d(ϕ+ 1

2
η + 1

2
ρ)

− 1
16
DHA

B ∧ ∗DHB
A + 1

4
e2ϕg11da1 ∧ ∗da1

+1
4
eρηPQDb

P ∧ ∗DbQ + 1
4
e2ηDb12 ∧ ∗Db12

+1
8
(gijgklDgik ∧ ∗Dgjl +Dρ ∧ ∗Dρ)

+1
4
e2ϕ+2ρg11(Dγ1 − bPDc1P ) ∧ ∗(Dγ1 − bQDc1Q)

+1
4
e2ϕ+ρ

(
HABg

22Dc A
2 ∧ ∗Dc B

2

+ ηPQg
11(Dc P

1 + a1Db
P ) ∧ ∗D(c Q

1 + a1b
Q)
)
,

(3.69)

the kinetic and topological terms (2.48) for the vector fields become

Svec = 1
4

∫
e−(2ϕ+η+ρ)g11dG1 ∧ ∗dG1

+e−(2ϕ+η+ρ)g22(DB2 − dG1b12) ∧ ∗(DB2 − dG1b12)

+eρ−η(DC̃ − bPDCP + 1
2
b2dA− (γ1 − bP c1P )dG1)

∧ ∗(DC̃ − bQDCQ + 1
2
b2dA− (γ1 − bP c1P )dG1)

+e−(ρ+η)(dA− dG1a1) ∧ ∗(dA− dG1a1)

−e−ηηPQ(DCP − dAbP − dG1c P
1 )

∧ ∗(DCQ − dAbQ − dG1c Q
1 )

−b12ηPQDCP ∧ DCQ + 2b12dA ∧ DC̃

−2(DB2 − dG1b12)

∧
(
(c1P + a1bP )DCP − a1DC̃ − (γ1 + 1

2
a1b

2)dA

+ (a1γ1 − 1
2
c1P c

P
1 − c1Pa1b

P )dG1
)

−(dB2 ∧ CPT P1QCQ − 2B2t ∧ dA ∧ C̃ +B2t ∧ dCP ∧ CP ) ,

(3.70)
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and the scalar potential (2.49) reduces to the expression

Spotential =

∫
∗
(

5
8
e2ϕ+3η+ρg22(t)2

− 1
16
e2ϕ+η+ρ(g11[H,T1]AB[H,T1]BA + 2g22[H,T2]AP [H,T2]PA)

+1
4
e2ϕ+2ρ+ηbRbS

(
− g11ηPQ(T P1R + 1

2
tδPR)(TQ1S + 1

2
tδQS)

+ g22HABT
A
2RT

B
2S

)
+1

4
e4ϕ+3η+2ρHAB

(
TA1Cc

C
2 − 1

2
tc A

2 − TA2P (c P
1 + a1b

P )
)

·
(
TB1Dc

D
2 − 1

2
tc B

2 − TB2Q(c Q
1 + a1b

Q)
))
.

(3.71)

We can identify the degrees of freedom in the vector multiplets by looking at the

scalars which determine the gauge kinetic couplings in the action (3.70). One finds

that the special Kähler space (3.67) is described by the following set of 3+n− complex

fields:
τ = b12 + ie−η ,

u = (γ1 + 1
2
a1bP b

P )− ie−ϕ√g11(e−ρ − 1
2
bP b

P ) ,

v = a1 + ie−ϕ
√
g11 ,

wP = c P
1 + a1b

P + ie−ϕ
√
g11b

P .

(3.72)

The complex scalar τ describing the SU(1, 1) coset in the N = 4 theory is again

preserved by the projection. We refer to appendix C for the action of the orientifold

on the SO(6, n) coset component of the N = 4 moduli space. Equation (C.17)

provides an explicit picture of the separation of the scalar degrees of freedom into

vector- and hypermultiplets, and was used to identify the complex variables (3.72).

The complex scalars u, v, wP span the SO(2, n+ + 2) component of the moduli space

(3.67), and we denote them together as za = (u, v, wP ), a = 1, ..., n− + 2.5

As will become clear from the structure of the effective action, the bosonic spec-

trum fits into the following N = 2 multiplets:

• the gravity multiplet, containing the metric gµν and the graviphoton G1
µ,

• (n− + 3) vector multiplets, each containing one vector and one complex scalar.

These are the pairs (B2µ, τ), (C̃µ, u), (Aµ, v) and (CP , wP ).

• (n+ − 2) hypermultiplets, containing the (4n+ − 8) remaining scalar degrees of

freedom from the fields

HA
B , c2A , e

−(ϕ+
ρ
2

)√g22 . (3.73)

As in the case of the O6 orientifold projection, we observe that both hyper- and

vector multiplets carry a dilaton dependence.

5The complex variables za are not to be confused with the (real) coordinates za used in chapter
2 (footnote 3).
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Vector multiplets

In terms of the complex variables τ and za = (u, v, wP ) defined in (3.72), the action

for the scalars in the vector multiplets becomes

Svector =

∫
−1

(τ − τ̄)2
Dτ ∧ ∗Dτ +Gab̄Dz

a ∧ ∗Dz̄b̄ , (3.74)

where the coupling Gab̄ is again a Kähler metric for the SO(2, n+ + 2) coset space.

The total Kähler potential determining the couplings (3.74) is

K = − ln i
4
(τ − τ̄)

(
−2(u− ū)(v − v̄) + (w − w̄)PηPQ(w − w̄)Q

)
, (3.75)

which may be written in terms of the za = (u, v, wP ) as

K = − ln i(τ̄ − τ)− ln[−1
4
ηab(z − z̄)a(z − z̄)b] , (3.76)

with a metric ηab given by

ηab =

 0 −1 0

−1 0 0

0 0 ηPQ

 . (3.77)

Since ηPQ has the negative-definite signature (0, n+), it follows that the combined

metric ηab has signature (1, n+ + 1). This is a Kähler potential of the same form as

the one found for the O6 orientifold, this time for the special Kähler space (3.67). It

can be described in terms of the holomorphic prepotential

F = −X
1(−2X2X3 + ηPQX

PXQ)

4X0
, (3.78)

for a choice of special coordinates

XI = (X0, X1, X2, X3, XP ) = (1, τ, u, v, wP ) , I = 0, ..., n− + 3 . (3.79)

Evaluating the Kähler potential in terms of the original Kaluza-Klein field variables,

we find the same result as in (3.34),

K = ln(1
4
e2ϕ+η+ρg11) , (3.80)

which may be expressed by the same geometrical formula (3.36).

From the covariant derivatives (2.50), we find that the covariant derivatives of the

complex fields (3.72) are given by

Dµτ = ∂µτ + tG1
µτ − tB2µ ,

Dµu = ∂µu− tG1
µu+ tC̃µ ,

Dµv = ∂µv ,

Dµw
P = ∂µw

P − (T P1Q + 1
2
tδPQ)wQG1

µ + (T P1Q + 1
2
tδPQ)CQ

µ .

(3.81)
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We now label the vector fields in our theory V I , where the index I = 0, ..., n− + 3 is

the same index that labels the coordinates XI in (3.79). The corresponding vector

fields are given by

V I = (V 0, V 1, V 2, V 3, V P ) = (G1, B2, C̃, A, C
P ) . (3.82)

Then, the isometries of the moduli space MS.K. which are gauged by the covariant

derivatives (3.81), can be described by the following Killing vectors on MS.K.

k0 = tu∂u − tτ∂τ + (T P1Q + 1
2
tδPQ)wQ∂wP ,

k1 = t∂τ ,

k2 = −t∂u ,

kP = −(TQ1P + 1
2
tδQP )∂wQ .

(3.83)

In order to show that the kI indeed correspond to isometries of the special Kähler

manifold (3.67), we can again show that they depend on a set of Killing prepotentials

satisfying the equations (3.43). Solving these equations leads to the set of prepoten-

tials

P0 = i
(w − w̄)P (T P1Q + 1

2
tδPQ)(w + w̄)Q

(z − z̄)2
− i(v − v̄)(u+ ū)

(z − z̄)2
t

+ i
τ + τ̄

2(τ − τ̄)
t ,

P1 = i
1

τ − τ̄
t ,

P2 = 2i
v − v̄

(z − z̄)2
t ,

PP = −2i
(w − w̄)Q(TQ1P + 1

2
tδQP )

(z − z̄)2
,

(3.84)

where the shorthand (z − z̄)2 now stands for the expression

(z − z̄)2 = (z − z̄)aηab(z − z̄)b

= −2(u− ū)(v − v̄) + (w − w̄)PηPQ(w − w̄)Q .
(3.85)

Since no fields are charged with respect to the vector field V 3 = A, there are no

corresponding Killing vector k3 and Killing prepotential P3 in equations (3.83) and

(3.84).

We can evaluate the commutators of the gauge transformations using the Killing

vectors kI , and we find the gauge algebra

[k0, k1] = tk1 ,

[k0, k2] = −tk2 ,

[k0, kP ] = −(TQ1P + 1
2
tδPQ)kQ ,

(3.86)
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with all other commutators vanishing. This algebra is very similar to the one found

in (3.45). We find that it is again the semi-direct sum of two Abelian subalgebras:

the coordinate shifts generated by k1, k2 and kP , and the algebra containing k0 as a

single element. The non-Abelian field-strengths are also consistent with the structure

constants obtained in (3.86), and read

DG1 = dG1 ,

DB2 = dB2 + tG1 ∧B2 ,

DC̃ = dC̃ − tG1 ∧ C̃ ,

DA = dA ,

DCP = dCP − (T P1Q + 1
2
tδPQ)G1 ∧ CQ .

(3.87)

The couplings of the vector fields can be derived from the holomorphic prepotential

(3.78) and its transformation properties as before. The quadratic couplings in the

Lagrangian (3.70) can be found using the general formula (3.47) given in the previous

section. The matrix NIJ describing these couplings is given in section B.1 of the

appendix. The Chern-Simons term

− 1
4

∫
dB2 ∧ CP ∧ T P1QCQ + tB2 ∧ dCP ∧ CP + 2tB2 ∧ C̃ ∧ dA (3.88)

is again of the form (3.51) for the following set of constants CI,JK

C1,23 = C1,32 = 1
4
t , C1,PQ = −1

4
tηPQ ,

C2,13 = C2,31 = −1
4
t , CP,1Q = CP,Q1 = 1

4
(TR1P + 1

2
tδRP )ηRQ ,

(3.89)

which can be obtained from the variation of the prepotential (3.78) under the gauge

transformations (3.83).

Hypermultiplets

The Lagrangian for the scalars in the hypermultiplets (3.73) now takes the form

S =

∫
1
2
e2ϕ+ρg22D(e−ϕ−

ρ
2
√
g22) ∧ ∗D(e−ϕ−

ρ
2
√
g22)

+1
4
e2ϕ+ρg22HABDc

A
2 ∧ ∗Dc B

2

− 1
16
DHA

B ∧ ∗DHB
A ,

(3.90)

with the covariant derivatives

Dµ(e−ϕ−
ρ
2
√
g22) = ∂µ(e−ϕ−

ρ
2
√
g22) + 1

2
tG1

µe
−ϕ−ρ

2
√
g22 ,

Dµc
A

2 = ∂µc
A

2 −G1
µ(TA1B − 1

2
tδAB)c B

2 + CPTA2P ,

DµH
A
B = ∂µH

A
B −G1

µ([T,H]AB) .

(3.91)
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Compared to the O6 orientifold compactification, the hypermultiplet sector now looks

much simpler. We want to show that the action (3.90) is that of a sigma model with

the quaternion-Kähler target space

MQ.K. =
SO(4, n+ − 2)

SO(4)× SO(n+ − 2)
. (3.92)

This manifold is of the same type as the hypermultiplet moduli space in the O6

orientifold theory. There, we showed that the Lagrangian for the scalars in the hy-

permultiplets matched the explicit description of the c-map given in [55]. Of course

the manifold (3.92) is also the image of a suitable special Kähler manifold via the

c-map, but the structure of the Lagrangian (3.90) does not make this relationship

explicit. Therefore, it is more natural to work directly with the explicit description

of the manifold (3.92) in terms of SO(4, n+ − 2) coset matrices.

To this end, we assemble the scalars into the following SO(4, n+ − 2) matrix

Mu
v, u, v = 1, ..., (n+ + 2):

Mu
v =



−1
2
e2ϕ+ρg22(c2)2 e2ϕ+ρg22 e2ϕ+ρg22c2B

1
4
e2ϕ+ρg22(c2)4

+e−2ϕ−ρg22

+HCDc
C

2 c D
2

−1
2
e2ϕ+ρg22(c2)2 −1

2
e2ϕ+ρg22(c2)2c2B

−c2CH
C
B

−1
2
e2ϕ+ρg22(c2)2c A

2

−c2CH
CA e2ϕ+ρg22c A

2

e2ϕ+ρg22c A
2 c2B

+HA
B


, (3.93)

where (c2)2 is shorthand for the contraction c A
2 c B

2 ηAB, and (c2)4 = ((c2)2)2. The

corresponding metric of signature (4, n+ − 2) is given by6

ηuv =

 0 1 0

1 0 0

0 0 ηAB

 . (3.94)

Indeed, the action (3.90) is identical to the coset action

S =

∫
DMu

v ∧ ∗DMv
u , (3.95)

where the covariant derivative of the matrix M can be written as

DµM = ∂µM−G1
µ[t0,M]− CP

µ [tP ,M] , (3.96)

for the following matrices t0 and tP :

(t0)uv =

 0 0 0

0 −t 0

0 0 TA1B − 1
2
tδAB

 , (tP )uv =

 0 0 0

0 0 −TC2PηCB
−TA2P 0 0

 . (3.97)

6We recall from our discussion after equation (3.62) that ηAB has signature (3, n+−3), so the
block matrix ηuv has signature (4, n+−2).
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As a consistency check, we can verify that the gauge transformations contained in

(3.96) also satisfy the algebra (3.86). In order to do this, we need to verify the non-

trivial commutators, which, in our case, are the commutators [t0, tP ]. Commuting

the matrices given in (3.97) and using the identities (2.32), we find

[t0, tP ] = (TQ1P + 1
2
tδQP )tP . (3.98)

which is consistent with the algebra (3.86), the extra minus coming from the fact

that (3.86) was computed in terms of the associated Killing vectors. Therefore, the

gaugings in the hypermultiplet sector are compatible with those of the vector mul-

tiplet sector discussed in the previous section. The Killing prepotentials for gauged

isometries of the quaternion-Kähler target space (3.92) are given in section B.2 of the

appendix, where we also verify the consistency of the scalar potential.

This concludes our discussion of the O4/O8 orientifold compactifications. We have

seen that the resulting low-energy effective action is a consistent N = 2 supergravity

theory.



Chapter 4

Conclusions

In this thesis, we have investigated the possible orientifold projections of type IIA

string theory compactified on SU(2)-structure manifolds. Imposing the orientifold

projection on the spectrum reduces the amount of supersymmetry of the low-energy

effective theory from N = 4 to N = 2. We have found two different ways in which

the orientifold projection can act on the field content of the N = 4 effective theory

by looking at the action of the orientifold on the internal spinors that parametrize

the low-energy supersymmetry transformations. The two projections correspond to

vacua containing O6 orientifold planes and vacua containing O4 and O8 orientifold

planes respectively.

We have applied the projections to the low-energy effective action obtained from

compactification on SU(2)-structure manifolds [37, 18, 20], and have shown that the

two resulting actions can be written in the form of a standard N = 2 supergravity. By

identifying the complex scalar fields in the vector multiplet sector, we could verify that

the various couplings in the effective Lagrangian are indeed those of a gauged N = 2

supergravity theory. The total scalar field space after the orientifold projection is of

the form

MO6 =
SU(1, 1)

U(1)
× SO(2, n+)

SO(2)× SO(n+)
× SO(4, n−)

SO(4)× SO(n−)
,

MO4/O8 =
SU(1, 1)

U(1)
× SO(2, n− + 2)

SO(2)× SO(n− + 2)
× SO(4, n+ − 2)

SO(4)× SO(n+ − 2)
.

(4.1)

The number n± is the number of two-forms in the Kaluza-Klein expansion which

transforms with eigenvalue ±1 under the involution S which is part of the orientifold

map. The first two factors in (4.1) appear as the scalar target space of the vector

multiplets, and are special Kähler manifolds. The third factor is a quaternion-Kähler

manifold, and forms the scalar target space of the hypermultiplets. We observe that

the two orientifold projections select a different subspace of the SO(6, n) coset from

the original N = 4 moduli space, and project the vector fields as well, in such a way

that the resulting theory is N = 2 supersymmetric. To separate the scalar degrees

of freedom into hyper- and vector multiplet sectors, we have performed various field
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redefinitions. For both orientifold projections, these field redefinitions mixed the

degrees of freedom from the Ramond and Neveu-Schwarz sectors. In particular, both

target hyper- and vector multiplet spaces depend on the original dilaton, and are

therefore expected to receive string loop corrections.

The presence of torsion, which leads one to use a Kaluza-Klein expansion with

respect to differential forms which are not closed, leads to gauged symmetries in

the effective theory. In the presence of suitable torsion components, which depend

on the chosen compactification manifold, isometries on all components of the scalar

target spaces (4.1) can become gauged. In both cases, the resulting gauge algebra is

a semi-direct sum of two Abelian sub-algebras, similar to the algebras found in other

G-structure compactifications [38, 40].

A natural extension of the present work would be to investigate whether the

combination of both orientifold projections could give rise to a consistent, and non-

trivial gauged N = 1 supergravity theory. Alternatively, one could check whether

non-geometric fluxes, such as those considered in [18], can be used to arrange for

spontaneous N = 2→ N = 1 supersymmetry breaking along the lines of [56].

An application of these results could be to study the potential of the effective

N = 2 theories obtained in chapter 3, and investigate moduli stabilization, as was

done for SU(2)-structure compactifications of type IIB in [57].



Appendix A

Spinor conventions and projections

In this appendix we give a brief overview of the conventions used for the spinor

representations in various dimensions, and discuss the transformation properties of

those spinors under the orientifold map. This section is largely based upon [31], with

some adaptions due to our slightly different conventions.

A.1 Representations

In agreement with the compactification ansatz, the ten-dimensional spinors transform

in a representation of Spin(1, 3) × Spin(6). The corresponding decomposition of the

ten-dimensional gamma-matrices γM is given by

Γµ = γµ ⊗ 1 , Γm = γ5 ⊗ γm , (A.1)

where the γµ, µ = 0, ..., 3 and γm,m = 1, ..., 6 are the four-dimensional, respectively

six-dimensional gamma-matrices, and γ5 is the four-dimensional chirality operator.

The ten-dimensional chirality operator Γ11 is the tensor product of the four- and

six-dimensional chirality operators γ5 and γ7

Γ11 = γ5 ⊗ γ7 . (A.2)

We work with four- and six-dimensional Weyl spinors, and use subscript ± to in-

dicate their chirality. Hermitian conjugation is denoted by the symbol †. Complex

conjugation changes the chirality, and we have the following Majorana conditions in

four and six dimensions:

ζ± = B(4)ζ
∗
∓ , η± = B(6)η

∗
∓ , (A.3)

where the following relations hold

B−1
(4)γµB(4) = γ∗µ , (A.4a)

B−1
(6)γmB(6) = −γ∗m . (A.4b)
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The ten-dimensional spinors are Majorana-Weyl, and satisfy the Majorana condition

ε = B(10)ε
∗ , (A.5)

where B(10) is given by

B(10) = Γ11 ·B(4) ⊗B(6), (A.6)

and satisfies

B−1
(10)ΓMB(10) = −Γ∗M . (A.7)

A.2 Transformation properties

We will now discuss the action of the orientifold involution on spinors. Locally, the

target space involution S is a combination of a number of reflections. Since we want

to preserve all four-dimensional symmetry, these reflections will be along directions

in the internal space Y6. A reflection that preserves the ten-dimensional Majorana

property and only acts on the internal component of a ten-dimensional spinor should

act on the spinors with the transformation

Rm = iΓmΓ11 = i1⊗ γmγ7 . (A.8)

For an orientifold with Op-planes, S consists of l = 10 − (p + 1) reflections. Taking

the square of S = Rm1 ...Rml
, we get the following action on spinors

S2 = (−1)
l(l−1)

2 1 . (A.9)

In the case of O6 planes, we have S2 = −1, so we need to add the extra factor (−1)FL

to the total orientifold action O, in order to ensure that O2 = 1 also for fermionic

states. One can also verify the following property of the action of S on an internal

spinor η

B(6)S(η)∗ = (−1)lS(B(6)η
∗) , (A.10)

thus, for the type IIA orientifold involutions S, which contain an odd number l of

reflections, six-dimensional Majorana conjugation anticommutes with the action of

the involution.

If the orientifold projection is to preserve some of the supersymmetry, S must

map between the ten-dimensional supersymmetry parameters

S(εI
10) = εII

10 ,

S(εII
10) = ± εI

10 ,
(A.11)

where the minus sign applies in the case of O6 orientifolds, accounting for the fact

that S2 = −1.

Since S is an isometry of our chosen SU(2)-structure background Y6, it must

preserve the space of global spinors on the internal manifold. This space is spanned
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by the ηi, and therefore a (2× 2) matrix U exists, such that S(ηi+) = U i
jη
j
−. Adding

the action on η− as well, we find

S

(
ηi+
ηi−

)
=

(
0 U i

j

−Ū i
j 0

)(
ηj+
ηj−

)
, (A.12)

where we have used that S(η−) = −B(6)S(η+)∗ = −Ū i
jη
j
+, due to (A.10). Since the

action of S, defined in (A.8), is unitary, U must be a unitary matrix as well.

We will now see that there are only two possible choices for the matrix U , to

which all other matrices can be reduced by the choice of an appropriate basis of

spinors ηi. As was explained in section 2.2, the SU(2)-structure on Y6 is determined

by the spinors ηi, up to a rotation of these spinors by a unitary matrix V i
j. Choosing

such a new basis η̃ defined by η̃i+ = V i
jη
j
+, the matrix U transforms as1

Ũ = V UV T . (A.13)

Therefore, to find all the different involutions S of our background, we need to find

all the possible unitary (2× 2) matrices U , which are not related by a transformation

(A.13).

O6 orientifolds

For an involution with seven-dimensional fixed-point loci, or a reflection along l = 3

directions, equation (A.9) tells us that S2 = −1, and therefore UŪ = 1. Since U is

also unitary, we find U = UT . A symmetric unitary (2× 2) matrix U can be written

as

U = eiα
(
eiγ cos(β) i sin(β)

i sin(β) e−iγ cos(β)

)
∼
(

1 0

0 1

)
, (A.14)

which may be brought into diagonal form Ũ i
j = δij by an appropriate transformation

(A.13). With respect to a suitable basis of spinors ηi, the orientifold action therefore

takes the form

S(ηi±) = ± ηi∓ . (A.15)

Looking at the decomposition (2.4) of the ten-dimensional supersymmetry param-

eters, and using the transformation property (A.15), we see that imposing (A.11)

(taking the minus sign in the second line) forces

εI
i = εII

i , (A.16)

reducing the available four-dimensional supersymmetry.

1We note the appearance of V T instead of V † in the transformation (A.13), which is due to the
fact that the complex conjugate spinor ηi− transforms as η̃i− = V̄ ijη

j
−.
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O4/O8 orientifolds

For an involution S with five- or nine-dimensional fixed-point loci, or reflections along

1 or 5 internal directions, equation (A.9) tells us that S2 = 1, which implies that

UŪ = −1. Therefore U is now a skew-symmetric unitary matrix

U =

(
0 eiα

−eiα 0

)
∼
(

0 1

−1 0

)
, (A.17)

which takes the form U i
j = εij in a suitable basis. Thus, we can work in a basis of

spinors in which S acts on the ηi as

S(η1
±) = ±η2

∓ ,

S(η2
±) = ∓η1

∓ .
(A.18)

In the case of an O4/O8 orientifold, the ten-dimensional supersymmetry parameters

are related as in equation (A.11), now without the minus sign. Using (A.18) in the

decomposition (2.4), we see that the four-dimensional supersymmetry transformations

must satisfy
εI

1 = εII
2 ,

εI
2 = −εII

1 .
(A.19)

We see that the antisymmetry of the matrix U forces a mixing between the two inter-

nal spinors in the case of an O4/O8 orientifold projection. Therefore, the presence of

an extra internal spinor, i.e. SU(2)-structure, is necessary to define the (supersym-

metric) O4/O8 orientifold projection [31],2 and this option is absent in the case of

orientifolds of SU(3)-structure compactifications [22, 21, 28].

2When studying so-called “dynamical SU(3) × SU(3)-structures”, this is a local requirement at
the location of the O-planes [31].



Appendix B

N = 2 supergravity couplings

This appendix contains some calculations that were used in chapter 3. We verify that

the kinetic couplings of the vector fields in the N = 2 theories obtained from the

orientifold projections have the required form (3.47). We also calculate the Killing

prepotentials describing the isometries on the quaternion-Kähler spaces and verify the

consistency of the potential for the effective actions (3.27)-(3.29) and (3.69)-(3.71).

B.1 Gauge kinetic couplings

The quadratic couplings of the vector field strengths in the Lagrangian take the form

1
2
Re(NIJ)DV I ∧ DV J − 1

2
Im(NIJ)DV I ∧ ∗DV J , (B.1)

where the matrix N depends on the scalar fields in the vector multiplets. Up to

possible electric/magnetic duality rotations, the matrix N in an N = 2 supergravity

theory must be of the following form:

NIJ = F̄IJ + 2i
Im(F)IKX

KIm(F)JLX
L

Im(F)MNXMXN
, (B.2)

where the FIJ are the second derivatives of the prepotential F with respect to the

special coordinates XI . We will now show that the quadratic couplings in the effective

actions (3.28) and (3.70) are of the form (B.2) (without the need to perform additional

electric/magnetic duality transformations).

Due to the high similarity of the N = 2 theories obtained from the O6 and O4/O8

projections, the calculation is essentially the same in both cases. The target spaces

described by the scalars in the vector multiplets are both cosets of the form

SU(1, 1)

U(1)
× SO(2, n)

SO(2)× SO(n)
, (B.3)

the only difference being the complex dimension n of the second factor. Consequently,

the prepotentials for both N = 2 theories can be written as

F =
X1XpηpqX

q

4X0
, (B.4)
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where the indices p and q take values p, q = 1, ..., n, and the metric ηpq has signature

(1, n− 1). We will use this notation to evaluate the formula (B.2) for general spaces

of the form (B.3). In order to obtain the specific couplings for the O6 and O4/O8

orientifold, we just need to substitute the Xp by the special coordinates XA defined

in (3.38) or Xa, defined in (3.79), and ηpq by the corresponding metric ηAB or ηab in

the result.

Deriving F given in (B.4) with respect to the XI = (X0, X1, Xp) twice, we find

FIJ = 1
2

 −τX2 1
2
X2 τXq

1
2
X2 0 −Xq

τXp −Xp τηpq

 , (B.5)

where X2 = XpηpqX
q and Xp = ηpqX

q. We have already set X0 = 1 and X1 = τ ,

since this holds in both cases. Furthermore we find

Im(FIJ)XJ = 1
4
i

 −τ̄ X̄2 − iτ Im(X2) + τ̄ ηpqX
pX̄q

1
2
(X − X̄)2

(τ − τ̄)(X − X̄)p

 , (B.6)

and

Im(FIJ)XIXJ = 1
4
i(τ − τ̄)(X − X̄)pηpq(X − X̄)q = e−K . (B.7)

We can now use the definitions (3.38) and (3.79) of the special coordinates Xp for the

O6 and O4/O8 orientifold projections to evaluate equations (B.5)-(B.7), and calculate

the matrix NIJ by inserting the results into the formula (B.2) for both cases. For the

O6 projection, we find the matrix

NO6 =1
2

 −b12c
C

1 c1C
1
2
c C

1 c1C b12c1B
1
2
c C

1 c1C 0 −c1B

b12c1A −c1A −b12ηAB



+ i
2
e−2ϕ−ρ−η


−g11 − g22(b12)2

−e2ϕ+ρHABc
A

1 c B
1

b12g
22 e2ϕ+ρc C

1 HCB

b12g
22 −g22 0

e2ϕ+ρHACc
C

1 0 −e2ϕ+ρHAB

 ,

(B.8)

which agrees with the couplings in the effective action (3.28) for the vector fields

(V 0, V 1, V A) = (G1, B2, C
A). The couplings of the O4/O8 theory are given in equa-

tion (B.9) (page 57), and these agree with the effective action (3.70) for the set of

vector fields (V 0, V 1, V 2, V 3, V P ) = (G1, B2, C̃, A, C
P ).
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N
O

4
/
O

8
=

1 2

            2b
1
2
(a

1
γ̃
−

1 2
c
R

1
c 1
R

)
−
a

1
γ

1
+
c
R

1
c 1
R

+
a

1
bR
c 1
R

−
b 1

2
a

1
−
b 1

2
(γ

1
+

1 2
a

1
b2

)
b 1

1
2
(c

1
Q

+
a

1
b Q

)

−
a

1
γ

1
+
c
R

1
c 1
R

+
a

1
bR
c 1
R

0
a

1
γ

1
+

1 2
a

1
b2

−
(c

1
Q

+
a

1
b Q

)

−
b 1

2
a

1
a

1
0

b 1
2

0

−
b 1

2
(γ

1
+

1 2
a

1
b2

)
γ

1
+

1 2
a

1
b2

b 1
2

0
0

b 1
2
(c

1
P

+
a

1
b P

)
−

(c
1
P

+
a

1
b P

)
0

0
−
b 1

2
η P

Q

            

+
i 2

                −
e−

2
ϕ
−
ρ
−
η
(g

1
1

+
g

2
2
(b

1
2
)2

)

+
e−

η
c
R

1
c 1
R
−
e−

ρ
−
η
(a

1
)2

−
eρ
−
η
(γ̃

)2

b 1
2
e−

2
ϕ
−
ρ
−
η
g

2
2

γ̃
eρ
−
η

e−
ρ
−
η
a

1
+
e−

η
bR
c 1
R

+
1 2
eρ
−
η
γ̃
b2

−
eρ
−
η
γ̃
b Q

−
e−

η
c 1
Q

b 1
2
e−

2
ϕ
−
ρ
−
η
g

2
2

−
e−

2
ϕ
−
ρ
−
η
g

2
2

0
0

0

eρ
−
η
γ̃

0
−
eρ
−
η

−
1 2
eρ
−
η
b2

eρ
−
η
b Q

e−
ρ
−
η
a

1
+
e−

η
bR
c 1
R

+
1 2
eρ
−
η
γ̃
b2

0
−

1 2
eρ
−
η
b2

−
e−

ρ
−
η

+
e−

η
b2

−
1 4
eρ
−
η
(b

2
)2

1 2
eρ
−
η
b2
b Q

−
e−

η
b Q

−
e−

η
c 1
P
−
eρ
−
η
b P
γ̃

0
eρ
−
η
b P

1 2
eρ
−
η
b2
b P
−
e−

η
b P

e−
η
(η
P
Q
−
eρ
b P
b Q

)

                ,

b2
=
bP
b P
,

γ̃
=
γ

1
−
bP
c 1
P
.

(B.9): The kinetic couplings of the gauge fields in the O4/O8 orientifold theory.



58 B: N = 2 supergravity couplings

B.2 Killing prepotentials

Like isometries of Kähler manifolds, isometries of quaternion-Kähler manifolds can be

derived from Killing prepotentials as well. However, in contrast to the Kähler case,

the prepotentials PI are no longer scalar functions of the moduli space. Instead, there

is now an SU(2) triplet PxI , x = 1, 2, 3 for each isometry. A triplet PxI determines an

isometry by the equation [41]

− kuI Kx
uv = ∂vPxI + εxyzωyvPzI , (B.10)

where ωx is the SU(2) connection, and Kx is the SU(2) curvature form

Kx = dωx + 1
2
εxyzωy ∧ ωz . (B.11)

In other words, the SU(2) covariant derivative acting on the triplet PxI is equal to

(−) the insertion of the Killing vector kuI into the SU(2) curvature form Kx
uv. We

can now calculate these quantities for the quaternion-Kähler target spaces (3.55) and

(3.68) obtained from the orientifold projections. This serves as a check that the gauge

transformations indeed correspond to isometries of the hypermultiplet moduli space.

Furthermore, the scalar potential in an N = 2 supergravity theory also depends on

these Killing prepotentials, and therefore we need to calculate them in order to check

the consistency of the potential, which we do in section B.3. The following approach

is based on the one outlined in [41].

Both quaternion-Kähler target spaces are scalar cosets of the form

MQ.K. =
SO(4, n)

SO(4)× SO(n)
, (B.12)

for different dimensions m. As is discussed in appendix C, these cosets can be repre-

sented by a (4 +n)× 4 matrix Zpa whose columns represent four (pseudo)-orthogonal

R4,n vectors.

Zpa : Zpaη
pqZqb = δab , (B.13)

where p, q are SO(4, n) indices, a, b are SO(4) indices, and ηpq is a metric of signature

(4, n). From the matrix Z the SO(4) component θab of the connection on MQ.K. can

be obtained

θab = Zpaη
pqdZqb , (B.14)

from which one can then extract the SU(2) connection by decomposing with respect

to the three self-dual ‘t Hooft matrices Σx+ given in [41]:

ωx = −1
2
tr(θΣx+) , x = 1, 2, 3 . (B.15)

Explicitly, the components ωx in (B.15) are

ω1 = θ12 + θ34 ,

ω2 = θ24 + θ31 ,

ω3 = θ23 + θ14 .

(B.16)
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Using these formulas, we will now solve equation (B.10) for the two cosets (3.55) and

(3.68).

B.2.1 O6 orientifold

The matrix Zpa describing the SO(4, n−) coset obtained from the O6 projection is

given in section C.2. Extracting the relevant columns from the SO(6, n) coset in

equation (C.13), we can obtain the explicit form of the matrix Z

ZO6 = 1√
2



e−ϕ−
ρ
2
√
g22 + eϕ+

ρ
2
√
g22

·(a2γ − 1
2
(c2)2 − c2Ra2b

R)

e
ρ
2 (γ − bRc2R)

−a2e
−ρ

2
−ξiRc2R0

eϕ+
ρ
2
√
g22 0 0

−eϕ+
ρ
2
√
g22(γ + 1

2
a2b

2) e−
ρ
2 − 1

2
e
ρ
2 b2 −ξiP bP

−eϕ+
ρ
2
√
g22a2 −e

ρ
2 0

eϕ+
ρ
2
√
g22(c2P + a2bP ) e

ρ
2 bP ξiP


, (B.17)

where the index i in the last column takes the values i = 1, 2. The matrix Z satisfies

(B.13) for the following metric η:

η =


0 1 0 0 0

1 0 0 0 0

0 0 0 −1 0

0 0 −1 0 0

0 0 0 0 ηPQ

 , (B.18)

which is obtained by similarly reducing the complete R6,n metric ηIJ from (C.11) to

the subspace in which the columns of (B.17) live.

Using (B.14) and (B.16), we find the SU(2) connection

ω1 = −1
2
(εϕ
√
g22da2 + eϕ+ρ

√
g22(bPdc2P − dγ))

+ 1
4
(ξ1Pdξ2

P − ξ2Pdξ1
P ) ,

ω2 = 1
2
(eϕ+

ρ
2
√
g22ξ1P (dc2P + a2dbP )− e

ρ
2 ξ2PdbP ) ,

ω3 = −1
2
(eϕ+

ρ
2
√
g22ξ2P (dc2P + a2dbP ) + e

ρ
2 ξ1PdbP ) .

(B.19)

Now we need to solve equation (B.10) for the PxI . It is convenient to express the

Killing vectors on the quaternionic side in terms of the variables in (B.19) as follows:

k0 = T P1Qξ
xQ∂ξxP − ta2∂a2 − c2Q(TQ1P + 1

2
δQP )∂c2P

− bQ(TQ1P − 1
2
δQP )∂bP ,

kA = ηABT
B
2P∂c2P

.
(B.20)
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Inserting the SU(2) connection (B.19) and the Killing vectors (B.20) into equation

(B.10), we find the solutions

P1
0 = 1

2
(teϕ

√
g22a2 + eϕ+ρ

√
g22c2Q(TQ1P + 1

2
tδQP )bP − ξ1

PT
P
1Qξ

2Q) ,

P2
0 = 1

2
eρξ2

P (T P1Q + 1
2
tδPQ)bQ

− 1
2
eϕ+

ρ
2
√
g22ξ1

P

(
T P1Q(c Q

2 + a2b
Q)− 1

2
t(c P

2 − a2b
P )
)
,

P3
0 = 1

2
eρξ1

P (T P1Q + 1
2
tδPQ)bQ

+ 1
2
eϕ+

ρ
2
√
g22ξ2

P

(
T P1Q(c Q

2 + a2b
Q)− 1

2
t(c P

2 − a2b
P )
)
,

(B.21)

for the isometries gauged by G1. The isometries gauged by the vector fields CA have

the prepotentials

P1
A = −1

2
eϕ+ρ

√
g22bPT

P
2A ,

P2
A = 1

2
eϕ+

ρ
2
√
g22ξ1

PT
P
2A ,

P3
A = 1

2
eϕ+

ρ
2
√
g22ξ2

PT
P
2A .

(B.22)

The Killing prepotentials (B.21) may also be expressed by the following integral

formulas over the internal manifold Y6:

P1
0 = 1

2
eϕ+ρ

√
g22

∫
Y6

(Ĉ− ∧ dB̂ + J1 ∧ dJ1 ∧ Â) + 1
2
eρ
∫
Y6

J1 ∧ dJ2 ∧K2 ,

P2
0 = 1

2
eϕ+ρ

√
g22

∫
Y6

(dB̂ ∧ Â ∧ J1 − dJ1 ∧ Ĉ−)− 1
2
e

3ρ
2

∫
Y6

dB̂ ∧K2 ∧ J2 ,

P3
0 = −1

2
eϕ+ρ

√
g22

∫
Y6

(dB̂ ∧ Â ∧ J2 − dJ2 ∧ Ĉ−)− 1
2
e

3ρ
2

∫
Y6

dB̂ ∧K2 ∧ J1 .

(B.23)

Ĉ− contains those components of the three-form field Ĉ which have one leg along the

direction K2, which is orthogonal to the orientifold plane. In the integrals (B.23),

this leaves us with only the components c2PK
2 ∧ ωP (we recall that c2AK

2 ∧ ωA is

projected out by the orientifold projection). For the prepotentials (B.22) we find

P1
A = 1

2
eϕ+ρ

√
g22ηAB

∫
Y6

dB̂ ∧ ωB ∧K1 ,

P2
A = −1

2
eϕ+ρ

√
g22ηAB

∫
Y6

dJ1 ∧ ωB ∧K1 ,

P3
A = 1

2
eϕ+ρ

√
g22ηAB

∫
Y6

dJ2 ∧ ωB ∧K1 .

(B.24)
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B.2.2 O4/O8 orientifold

For the O4/O8 orientifold theory, we look at equation equation (C.17) to obtain the

matrix Z describing the SO(4, n+ − 2) coset.

ZO4/O8 = 1√
2


−1

2
eϕ+

ρ
2
√
g22c2Bc

B
2

+e−ϕ−
ρ
2
√
g22

−ξxBc2B

eϕ+
ρ
2
√
g22 0

eϕ+
ρ
2
√
g22c2A ξxA

 , (B.25)

where we recall that the index x in the second column now takes the values x = 1, 2, 3.

The corresponding metric of signature (4, n+ − 2) was already given in (3.94).

Proceeding as outlined in the previous sections, we find the SU(2) connection1

ωx = (−1)x 1
2
eϕ+

ρ
2
√
g22(ξxAdc2A − 1

2
εxyzξyAdξzA) . (B.26)

The gauged isometries of the hypermultiplet moduli space are described by the Killing

vectors k0 and kP . In terms of the variables used in (B.26), they read

k0 = TA1Bξ
xB∂ξxA − c2A(TA1B + 1

2
tδAB)∂c2B

+ 1
2
tχ∂χ ,

kP = −TA2P∂c2A
,

(B.27)

where we have used the shorthand χ = eϕ+
ρ
2
√
g22. Solving the equation (B.10) now

leads to the prepotentials

Px0 = (−1)(x+1) 1
2
(ξxA(TA1B − 1

2
tδAB)c B

2 − 1
2
εxyzξyAT

A
1Bξ

zB) , (B.28)

PxP = (−1)x 1
2
eϕ+

ρ
2
√
g22ξxAT

A
2P , (B.29)

which can also be described by the following integral formulas

Px0 = (−1)(x+1) 1
2
(eϕ+ρ

√
g22

∫
Y6

dJ1 ∧ Ĉ− − εxyzeρ
∫
Y6

dJy ∧ Jz ∧K2) , (B.30)

PxP = (−1)(x+1) 1
2
eϕ+ρ

√
g22ηPQ

∫
dJx ∧ ωQ ∧K1 , (B.31)

where C− now stands for the components c2AK
2 ∧ ωA, since these are the ones pre-

served by the orientifold projection.

B.3 The potential

In a four-dimensional N = 2 supergravity theory, the target space of the scalar

moduli, together with a choice of gaugings, fixes the theory. In particular the scalar

1The indices y, z on the right-hand side of equation (B.26) are summed over, the index x is of
course free.
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potential can be expressed as [41]

V = eKXIX̄J(gı̄jk
ı̄
Ik

j
J + 4huvk

u
I k

v
J)−

(
1
2
(ImN )−1 IJ + 4eKXIX̄J

)
PxI PxJ . (B.32)

K is again the Kähler potential which describes the couplings gı̄ of the vector multi-

plet moduli zi, the XI are the special coordinates and the kI are the Killing vectors

associated to the gauge symmetries. huv contains the couplings in the kinetic term

describing the quaternion-Kähler target space of the hypermultiplets. We computed

the matrix NIJ and the prepotentials PxI in the previous sections. As a final con-

sistency check on the N = 2 effective theories we have obtained, we can now verify

that the potential obtained from compactification also satisfy this equation.

B.3.1 O6 orientifold

Using the results from section 3.2.2, it is straightforward to compute

eKXIX̄Jgı̄k
ı̄
Ik


J = 3

8
e2ϕ+ρ+3ηg22t

2 + 1
4
e2ϕ+η+ρg11ξ3

AT
A
1BT

B
1Cξ

3C

= 3
8
e2ϕ+η+ρg11t2 − 1

16
e2ϕ+η+ρg11[H,T1]AB[H,T1]BA .

(B.33)

The last equality follows from the decomposition (3.19), the tracelessness of the TA1B
and the normalization of the ξxA. To compute the contribution from the hypermul-

tiplet sector, essentially one only needs to plug the Killing vectors kuIX
I into the the

differentials dqu in the effective action (3.53). We obtain the result

eKXIX̄Jhuvk
u
I k

v
J = − 1

16
e2ϕ+ρ+ηg11[H,T1]PQ[H,T1]QP + 1

4
e2ϕ+ρ+3ηg22(t)2

+ 1
4
e4φ+ρ+3η(ta2)2

+ 1
4
e2ϕ+2ρ+ηg11HPQ(T P1R + 1

2
tδPR)bR(TQ1S + 1

2
tδQS)bS

+ 1
4
e4ϕ+3ρ+3η

(
bP (c2Q(TQ1P + 1

2
tδQP )− c1AT

A
2P )
)2

+ 1
4
e2ϕ+2ρ+ηg22(ξ3

AT
A
2P b

P )2

+ 1
4
e4ϕ+2ρ+3ηHPQ(
T P1R(c R

2 + a2b
R)− T P2Ac A

1 − 1
2
t(c P

2 − a2b
P )
)

·
(
TQ1S(c S

2 + a2b
S)− TQ2Bc

B
1 − 1

2
t(c Q

2 − a2b
Q)
)

+ 1
4
e2ϕ+ρ+ηg22HPQT

P
2Aξ

3ATQ2Bξ
3B .

(B.34)

When computing the last term in equation (B.32), it turns out that the prefactor

multiplying the prepotentials Px0 cancels:(
1
2
(ImN )−1 IJ + 4eKXIX̄J

)
PxI PxJ = eηηABPxAPxB . (B.35)
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The remaining contribution to the potential is then

−eηηABPxAPxB = − 1
4
e2ϕ+2ρ+ηg22ηABT

A
2P b

PTB2Qb
Q

− 1
4
e2ϕ+ρ+ηg22ηABT

A
2P ξ

iPTB2Qξ
iQ .

(B.36)

Combining the last lines of equations (B.34) and (B.36), we obtain

1
4
e2ϕ+ρ+ηg22(HPQT

P
2Aξ

3ATQ2Bξ
3B − ηABTA2P ξiPTB2QξiQ)

= −1
8
e2ϕ+ρ+ηg22[H,T ]PA[H,T ]AP ,

(B.37)

again by using equation (3.19), and the orthonormality properties of the ξ. We can

now see that the sum of the three terms (B.33), (B.34) and (B.36) gives precisely the

potential obtained in (3.29).

B.3.2 O4/O8 orientifold

We now compute the potential for the O4/O8 orientifold projection. The contribu-

tions from the first two terms in (B.32) are

eKXIX̄Jgı̄k
ı̄
Ik


J = 1

2
e2ϕ+ρ+3ηg22(t)2

− 1
4
e2ϕ+2ρ+ηg11ηPQ(T P1R + 1

2
tδPR)bR(TQ1S + 1

2
δQS)bS ,

(B.38)

eKXIX̄Jhuvk
u
I k

v
J = − 1

16
e2ϕ+ρ+ηg11[H,T1]AB[H,T1]BA

+ 1
4
e4ϕ+2ρ+3ηHAB

(
TA1Cc

C
2 − 1

2
tc A

2 − TA2P (c P
1 + a1b

P )
)

·
(
TB1Dc

D
2 − 1

2
tc B

2 − TB2Q(c Q
1 + a1b

Q)
)

+ 1
4
e2ϕ+2ρ+ηg22HABT

A
2P b

PTB2Qb
Q

+ 1
8
e2ϕ+ρ+3ηg22(t)2 .

(B.39)

In the third term, the prepotentials Px0 drop out again. We find

−
(

1
2
(ImN )−1 IJ + 4eKXIX̄J

)
PxI PxJ = −eηηPQPxPPxQ

= −1
4
e2ϕ+ρ+ηg22ηPQξ3

AT
A
2P ξ

3
BT

B
2Q

= −1
8
e2ϕ+ρ+η[H,T ]PA[H,T ]AP .

(B.40)

The last equality can be deduced in the same way as equation (B.37). The potential

obtained from compactification, as given in the effective action (3.71), is equal to the

sum of the contributions (B.38), (B.39) and (B.40).





Appendix C

SO(m,n) coset spaces

Symmetric spaces of the form

M =
SO(m,n)

SO(m)× SO(n)
(C.1)

appear as part of the moduli spaces in the effective theories discussed in the pre-

vious chapters. A point in M can be thought of as representing an m-dimensional

subspace of positive-normed vectors in Rm,n. Indeed, a point in SO(m,n) is a pseudo-

orthonormal basis in Rm,n, and we can divide out an SO(m)×SO(n) subgroup by con-

sidering the equivalence class all orthonormal bases related by an SO(m) rotation of

the m positive-normed basis vectors, and an SO(n) rotation of the n negative-normed

vectors in its orthogonal complement. Consequently, a point in M can be identified

with the space spanned by the m positive-normed basis vectors of an SO(m,n) matrix

(or, equivalently, with its complement, the space spanned by the n negative-normed

basis vectors).

A representation for these coset spaces is given by [58]

L(X)ΛΣ =

 (1 +XXT )
1
2 X

XT (1 +XTX)
1
2

 , (C.2)

where X is a real (m× n) matrix of coordinates, and Λ,Σ = 1, ...,m + n are indices

in Rm,n. One can see that L is an SO(m,n) matrix with respect to the SO(m,n)

metric ηΛΣ = diag(1m,−1n). The first m columns of L form m orthogonal vectors

V ᾱ, ᾱ = 1, ...,m:

V Λᾱ =

(
(1 +XXT )

1
2

XT

)
. (C.3)

A matrix which is invariant under SO(m) rotations in the space spanned by the V ᾱ,

and SO(n) rotations of its orthogonal complement, is then given by

MΛΣ = (LLT )ΛΣ , (C.4)

65
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and the canonical action for a sigma-model with target space M is given by

SM =

∫
−dMΛ

Σ ∧ ∗dMΣ
Λ . (C.5)

An equivalent formula for MΛΣ is given by

MΛΣ = 2V ᾱΛV ᾱΣ − ηΛΣ . (C.6)

The general formula (C.6) can be recognized in equations (2.23), (2.55) and (3.19).

We now give explicit formulas for the V ā, ā = 1, ..., 6 describing the moduli space of

the original N = 4 supergravity, and for the orientifold action on the V ā, giving us

an explicit description of the moduli spaces of the orientifolded theories.

C.1 SO(6, n) coset

As it was found in [37], the action (2.47) for the scalar sector of the N = 4 super-

gravity theory is of the form (C.5). Recalling (2.56), the full scalar kinetic term is

given by

Sscalar =

∫
1

4 Im(τ)2
Dτ ∧ ∗Dτ̄ − 1

16
DM I

J ∧ ∗DMJ
I , (C.7)

where τ = b12 + ie−η, and the D are appropriate covariant derivatives. The matrix

MIJ written in [37] is repeated in terms of our conventions in equation (C.8) (page

67).

Six orthonormal vectors V ā that determine the matrix MIJ can be written explic-

itly in terms of the moduli as follows:

V ā
I = 1√

2



e−ϕ−
ρ
2 e ̄i + eϕ+

ρ
2 ek̄cki −aie−

ρ
2 + e

ρ
2 (γi − bγciγ) −ξxγciγ

eϕ+
ρ
2 δı̂ke

k̄ 0 0

−eϕ+
ρ
2 ek̄(γk + 1

2
akb

2) e−
ρ
2 − 1

2
e
ρ
2 b2 −ξxβbβ

−eϕ+
ρ
2 ek̄ak −e

ρ
2 0

eϕ+
1
2
ρek̄(ckα + akbα) e

ρ
2 bα ξxα


, (C.9)

where we have split the multi-index ā = (̄ı, 3, x), ı̄ = 1, 2;x = 1, 2, 3. The matrix e ̄i
is a vielbein relating the two-dimensional metric gij and a flat metric δı̄̄

gij = e ı̄i e
̄
j δı̄̄ , (C.10)

and the shorthand expressions b2 and cij are explained in (C.8). The V ā are orthonor-

mal with respect to the SO(6, n) metric

ηIJ =


0 δi̂ 0 0 0

δı̂j 0 0 0 0

0 0 0 −1 0

0 0 −1 0 0

0 0 0 0 ηαβ

 (C.11)
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M
I
J

=

                              e−
2
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g i
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c i
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b α
c j
β

−
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ρ
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1 2
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k
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lj
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1 2
eρ
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j
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bα
c j
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)

−
e2
ϕ
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ρ
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j
g
jk

·(γ
k

+
1 2
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k
b2

)e−
ρ
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H
α
β
b α
b β

+
1 4
eρ
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2
)2

+
e2
ϕ

+
ρ
g
k
l (
γ
k

+
1 2
a
k
b2

)

·(γ
l
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1 2
a
lb

2
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..
.

..
.
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eρ

(γ
j
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c j
α
)
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e2
ϕ

+
ρ
g
k
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k
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j
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e2
ϕ

+
ρ
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j
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jk
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k
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ρ
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1 2
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k
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l
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1 2
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b2

e2
ϕ

+
ρ
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eρ

..
.

eρ
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(γ
j
−
bγ
c j
γ
)
−
H

γ
α
c j
γ

+
e2
ϕ

+
ρ
g
k
l (
c k
α

+
a
k
b α

)c
lj

e2
ϕ

+
ρ
δ ̂
j
g
jk

·(c
k
α

+
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k
b α

)−
H
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α
b γ
−

1 2
eρ
b2
b α

−
e2
ϕ

+
ρ
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k
l (
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k
b α

)

·(γ
l
+

1 2
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lb

2
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eρ
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e2
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ρ
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·(c
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                              

c i
j

=
a
iγ
j
−

1 2
η
α
β
(c
iα
c j
β

+
c i
α
a
j
b β

+
a
ib
α
c j
β
)

+
ε i
j
β
,

b2
=
bα
b α
.

(C.8): The full SO(6, n) coset matrix. The multi-index I splits as I = (i, ı̂, 5, 6, α),

with i, ı̂ = 1, 2 and α = 1, ...n, numbering the two-forms in the Kaluza-Klein expan-

sion. Since M is symmetric, the elements of the upper triangle are left in ellipsis in

order to improve readability.
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We can now look at the action of the orientifold projections from chapter 3 on the

vectors V āI . It follows from the discussion of the moduli spaces for the orientifold

theories (see the discussion around equations (3.25), (3.26), (3.67) and (3.68)), that

the projection should reduce the N = 4 coset space into a product

SO(6, n)

SO(6)× SO(n)

O−→ SO(2, n1)

SO(2)× SO(n1)
× SO(4, n− n1)

SO(4)× SO(n− n1)
, (C.12)

where the number n1 depends on the projection. This is realized by projecting the

V ā onto two orthogonal subspaces, one of which is four-dimensional, the other two-

dimensional.

C.2 O6 orientifold

Table 3.1 lists the scalar fields that survive the O6 orientifold projection. The degrees

of freedom of the metric gij on the torus are reduced to the diagonal components g11,

g22, correspondingly, the vielbein e ı̄i is reduced to diag(
√
g11,
√
g22). As discussed at

the beginning of section 3.2.1, the moduli of the internal metric, encoded in the ξxα

are reduced to ξ3A, containing n+− 1 moduli, and ξiP , containing 2n−− 2 degrees of

freedom. For the remaining scalar fields in the matrix V ā
I , table 3.1 tells us whether

they survive the projection. The result is the projected matrix Ṽ ā
I given in equation

(C.13) (page 69).

The matrix (C.13) is reduced to two orthonormal vectors in R2,n+, the left and

right columns of (C.13), and four vectors in R4,n−, the three center columns of (C.13).

As one can see, the outer columns depend only on the scalar fields that determine

the complex coordinates zA (3.30) in the vector multiplets. These scalars span the

component
SO(2, n+)

SO(2)× SO(n+)
(C.14)

of the special Kähler space (3.35). Indeed, constructing an SO(2, n+) matrix out of

them according to the general formula (C.6), one can reproduce the scalar kinetic

term (3.32) from the formula (C.5).

The inner columns of (C.13) contain all scalar fields in the hypermultiplets (3.31).

They make up four orthonormal vectors in R4,n− , which describe the quaternion-

Kähler component (3.55) of the moduli space,

SO(4, n−)

SO(4)× SO(n−)
. (C.15)

Again, we can obtain the kinetic term (3.53) using the general formulas (C.6) and

(C.5). This way, we can explicitly see that the c-map metric given by (3.53) corre-

sponds to the scalar coset (C.15).
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Ṽ
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1 √
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c 1
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eϕ

+
ρ 2
√ g22
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2
b P
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e
ρ 2
b P
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P
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                         

(C.13): The projected coset representative for the O6 projection. With respect to the

SO(6, n) metric ηIJ given in (C.11), replacing ηαβ by the block-diagonal form given

in (3.14), the two outer columns are orthogonal to the three inner columns (which

represent four SO(6, n) vectors, since the fourth column still carries an index i = 1, 2).
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C.3 O4/O8 orientifold

The projection of the SO(6, n) coset to the subspace

SO(2, n− + 2)

SO(2)× SO(n− + 2)
× SO(4, n+ − 2)

SO(4)× SO(n+ − 2)
, (C.16)

can be seen explicitly in equation (C.17) (page 71). To arrive at this result, we proceed

as in the last section, this time using the spectrum of the O4/O8 theory, listed in

table 3.2.
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                     

(C.17): The projected coset for O4/O8 orientifold projections. As in (C.13), the

columns V ā are projected onto two orthogonal subspaces. Columns one and three

contain the scalar fields in the vector multiplets, and live in an R2,n−+2 subspace of

R6,n. Columns two and four contain the scalars in the hypermultiplets and live in

the orthogonal R4,n+−2 subspace (note that the fourth column still carries an index

x = 1, 2, 3).
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