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ABSTRACT

Classical vacua of the heterotic string corresponding to c = 9, N = (2; 2)

superconformal theories on the world sheet yield low-energy e�ective �eld theories

with N = 1 space-time supersymmetry in four dimensions, gauge group E

6


E

8

,

several families of 27 and 27 matter �elds, and moduli �elds. String theory

relates matter �elds to moduli; in this article we relate the kinetic terms in

the e�ective Lagrangian for both moduli and matter �elds to the 27

3

and 27

3

Yukawa couplings. Geometrically, we recover the result (obtained previously via

the type II superstring and N = 2 supergravity) that moduli space is a direct

product of two K�ahler manifolds of restricted type, spanned by the moduli related

respectively to the 27 and 27 matter �elds. The holomorphic functions of the

moduli generating the two restricted K�ahler metrics also determine the Yukawa

couplings of the matter �elds. We derive explicit formul� for the metric for the

matter �elds in terms of the metric for the corresponding moduli; the two metrics

are not identical to each other. The precise relation between moduli and matter

metrics takes a slightly di�erent form on subspaces of the moduli space where

the unbroken gauge symmetry is enhanced beyond E

6


E

8

; this phenomenon is

illustrated using the examples of (2,2) orbifolds and tensor products of minimal

N = 2 theories.
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1. Introduction

Heterotic string theory

[1]

| a candidate theory of all fundamental parti-

cle interactions | has a huge set of classical vacuum states, including many

four-dimensional vacua whose features allow them to serve as starting points for

realistic phenomenology. The �rst vacua of this kind having chiral fermions in

four space-time dimensions were constructed from the ten-dimensional heterotic

string by compactifying six of the ten dimensions into a Calabi-Yau manifold.

[2]

The four-dimensional physics of the Calabi-Yau vacua is characterized by N = 1

supersymmetry, E

6


 E

8

gauge group and matter �elds that form several 27 or

27 families of the E

6

. Subsequently, many other heterotic string vacua were con-

structed that share these features. In all such vacua the six dimensions which are

compacti�ed in the Calabi-Yau case are generalized to an \internal" N = (2; 2)

superconformal theory on the world sheet which has Virasoro anomaly c = (9; 9).

?

Besides Calabi-Yau compacti�cations, known examples of the (2,2) vacua include

(2,2) orbifolds

[3]

and tensor products of minimal N=2 models

[4]

or of other ex-

actly solvable N=2 superconformal theories.

[5]

It appears quite possible that all

(2; 2) vacua with spacetime supersymmetry and E

6


 E

8

gauge symmetry are

compacti�cations on (possibly singular) Calabi-Yau manifolds

[4;6]

; however, the

analysis in the present paper does not rely on this remarkable connection.

The (2,2) vacua are only a small subset of the classical vacua of the heterotic

string. The heterotic string itself only requires N = (0; 1) superconformal invari-

ance of the world-sheet theory describing internal degrees of freedom,

[1]

although

N = (0; 2) is needed if a vacuum is to exhibit space-time supersymmetry.

[7]

The

low-energy features of the (0,2) vacua, such as the unbroken gauge group and the

spectrum of massless particles, vary widely from one (0,2) vacuum to another,

? Actually, the internal theory replaces both the six compact dimensions and the six left-

moving world-sheet fermions that are a�ected by imbedding of the spin connection into

the gauge group.

[2]
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making it very likely that some of these vacua lead to viable phenomenology.

However, at the present time, the phenomenological prospects for certain (2,2)

vacua (or rather minor modi�cations of them via a Hosotani-Witten-type mech-

anism

[8]

) appear to be at least as good as for the (0,2) vacua studied to date.

[9]

The (2,2) vacua are much less diverse than the (0,2) vacua, and in fact they share

many common features. The subject of this article is the low-energy behavior

common to all the (2,2) vacua.

For a given vacuum state of the string theory, physics at energies well below

the Planck scale can be described by an e�ective low-energy �eld theory. To

de�ne a �eld theory one needs to list all the �elds and describe the e�ective

Lagrangian; with this information, all other quantities are computable, at least

in principle. In particular, we can map out all the neighboring vacua by studying


at directions in the e�ective potential, and for each vacuum state we can compute

scattering amplitudes for various multi-particle processes. In the state-of-the-art

string theory one can list all light particles that appear in the spectrum of any

particular vacuum state, but one cannot directly obtain an e�ective Lagrangian

for the low-energy limit of the theory. Instead, we shall follow the so-called

S-matrix approach (see for example ref. [10]): One constructs an e�ective �eld

theory that yields the same scattering amplitudes as the full string theory does in

the low-energy limit.

y

Since the subject of this article is not a particular vacuum

state of the heterotic string but the whole class of the (2,2) vacua, we shall derive

some universal relations between various string amplitudes valid for all members

of this class and require that the e�ective low-energy �eld theory obeys the same

relations between the same amplitudes. This will impose severe constraints on

the low-energy e�ective Lagrangian; these constraints are the main results of this

article.

y In ref. [11] this approach was carried out to order O(�

00

) for some speci�c four-dimensional

vacua.
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The S-matrix approach can be carried out to an arbitrary order in perturba-

tion theory. In this article we shall limit ourselves to the classical e�ective �eld

theory in space time and compute all scattering amplitudes at the tree level. For

the string this means that the world sheet is always a complex sphere. How-

ever, the two dimensional conformal �eld theories on the world sheet will be fully

quantized, with no semi-classical or perturbative approximations, and all corre-

lation functions of various world-sheet operators that appear in this article are

exact. Note that while for most two-dimensional quantum �eld theories we do

not have explicit expressions for the various exact correlators, we may still have

exact Ward identities relating those correlators to each other; in this article, we

shall use heavily the Ward identities of the left-moving N = 2 supersymmetry of

the \internal" world-sheet theory.

The �elds of an e�ective low-energy theory describing any classical (2,2) vac-

uum include the gravitational sector (graviton, dilaton and axion, plus superpart-

ners), the E

6
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8

gauge multiplets, and a set of chiral super�elds forming the

27 or 27 representations of E

6

| matter �elds. Moreover, the (2,2) world-sheet

supersymmetry implies that for each 27 or 27 supermultiplet of matter �elds

there is an additional E

6

singlet super�eld whose scalar potential is 
at.

[12;13;14]

Consequently, vacuum expectation values of (the scalar components of) these

singlets are completely unconstrained, resulting in a multi-parameter family of

(2,2) vacua; for this reason these �elds are called moduli. From the world-sheet

point of view the 
at potential for moduli scalars means that the associated ver-

tex operators are exactly marginal, i.e. their �-functions vanish to all orders and

even beyond perturbation theory.

The possible form of e�ective �eld theories describing (2,2) vacua is con-

strained by four-dimensional supersymmetry. N = 1 supergravity theories are

characterized by two analytic functions of scalar �elds, the superpotential W and

the K�ahler function K (sometimes called the K�ahler potential).

[15]

Cubic terms
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(Yukawa couplings)

[16]

as well as other, non-renormalizable, terms

[17]

in the su-

perpotential have been calculated in many special cases. On the other hand, the

K�ahler function K has been much less investigated, though it is also of consider-

able phenomenological interest: K determines the kinetic terms in the e�ective

Lagrangian of moduli and matter �elds which are needed to obtain the physical

normalization of the Yukawa couplings. Furthermore, K enters the scalar poten-

tial and thereby in
uences possible supersymmetry breaking mechanisms. The

K�ahler function K, and its relation to the superpotential, will be the focus of this

article.

The K�ahler function has previously been computed in some special cases.

For Calabi-Yau compacti�cations, the moduli �elds can be divided into two sets:

deformations of the complex structure, which correspond to harmonic (1,2) forms

on the Calabi-Yau manifold and which accompany the 27 matter �elds; and de-

formations of the K�ahler class, which correspond to the (1,1) forms and which

accompany the 27 matter �elds. In the limit that the Calabi-Yau manifold is

large enough to use ten-dimensional �eld theory, the metric for the (1,1) moduli

�elds reduces to the metric on the space of (1,1) forms which is controlled by

the same topological constants of the Calabi-Yau manifold that determine the

27

3

Yukawa couplings.

[18]

Similarly, the metric for the (1,2) moduli in the �eld

theory limit can be expressed in terms of the 27

3

Yukawa couplings, although

these Yukawa couplings are not constants.

[18;19]

The metrics for both moduli and

matter �elds arising from the untwisted sector of an orbifold can be obtained

by simply truncating the ten-dimensional e�ective �eld theory.

[20]

The result of

this procedure actually holds for orbifolds of arbitrary size; this can be veri�ed

by using the symmetries of the string generating functional for scattering am-

plitudes,

[21]

or by using Zamolodchikov's conformal-�eld-theoretic formula for the

metric.

[22;23]

A di�erent and more general approach can be used for the moduli sector of

6



the e�ective �eld theory. The N = (2; 2) superconformal theory which de�nes

a classical vacuum of the heterotic string also de�nes a classical vacuum of the

type II superstring.

[12;24]

In the latter case the e�ective four-dimensional theory

is N = 2 supersymmetric, which severely restricts the form of the e�ective La-

grangian for the moduli.

[25�27]

In particular, the moduli space is a direct product

of two K�ahler spaces

[24;27]

; in the Calabi-Yau case these two spaces are spanned by

(1,1) and (1,2) moduli respectively. The two spaces are of restricted type, which

means that they are each determined by a holomorphic function of the respective

moduli. The same holomorphic function controls kinetic terms in the e�ective

Lagrangian of the vector �elds coming from the Ramond-Ramond sector of the

type II superstring

[27]

and couplings of those vector �elds to the moduli scalars.

In ref. [28] it was argued that these type II couplings are the same as the 27

3

and 27

3

Yukawa couplings in the corresponding (2,2) vacuum of the heterotic

string, and hence that the cubic superpotential for matter �elds is determined

by the same two holomorphic functions that determine the K�ahler function for

the moduli. However, there are several subtleties in making precise the corre-

spondence between the two holomorphic functions and the superpotential; for

example, space-time supersymmetry is local, and in locally supersymmetric the-

ories Yukawa couplings take a di�erent form then in the globally supersymmetric

case treated in ref. [28].

We shall show in this article that the above general results can be obtained

entirely within the heterotic string, without invoking the type II superstring or

N = 2 supergravity in space-time. We rederive the splitting of the K�ahler func-

tion of the moduli into a sum of two functions, K

1

and K

2

, each depending only

on the moduli related to, respectively, 27 or 27 matter �elds; we also verify that

K

1

and K

2

are each of restricted type. In the process we �nd out that the metrics

for the 27 and 27 matter �elds di�er from the metrics for the corresponding mod-

uli. (For any particular (2,2) vacuum this di�erence can always be eliminated by
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a �eld rede�nition; what we mean is that no holomorphic �eld rede�nition would

result in metrics for moduli and matter �elds that are equal to each other for

all vacuum expectation values of the moduli �elds.) This di�erence between the

moduli and matter metrics | which has not been obtained from the type II

superstring (and probably cannot be obtained that way) | plays a key role in

deriving precise relations between moduli and matter couplings. In particular,

relations between K

1;2

and the superpotential which were argued for in ref. [28]

now become consistent with local space-time supersymmetry.

The main body of this article is organized as follows: Section 2 is an overview

of the light �elds characteristic of the (2,2) vacua from both space-time and world-

sheet points of view. Section 3 is devoted to the S-matrix approach to low energy

physics. First, we relate the low-energy limits of various four-particle scattering

amplitudes to the K�ahler function and the superpotential of the e�ective �eld the-

ory. Next, we use the left-moving superconformal symmetry of the world-sheet

theory to relate scattering amplitudes that involve moduli scalars to amplitudes

involving matter �elds. Imposing these relations on the �eld-theoretical am-

plitudes we establish several constraints on the geometry of the �eld space; in

particular, the K�ahler function of the moduli �elds must decompose into K

1

+K

2

and the metric for matter �elds obeys di�erential equations that can be integrated

in terms of K

1

and K

2

. Moreover, we derive equations that relate K

1

to the 27

3

Yukawa couplings and K

2

to the 27

3

couplings. Solving these equations we �nd

that all the 27

3

(27

3

) couplings can be expressed in terms of derivatives of a

single holomorphic function F

1

(F

2

) of the appropriate moduli; K�ahler functions

K

1;2

of the (1,1) and (1,2) moduli spaces have restricted type and are determined

by the same F

1;2

that determine the Yukawa couplings. In section 4 we con-

sider the e�ects on K of enlarging the unbroken gauge group beyond E

6


 E

8

.

(Such extra gauge factors occur in almost all exactly solvable (2,2) vacua that

have been discussed to date.) We �nd that the equations relating the superpo-

8



tential to the K�ahler function of the moduli �elds remain unchanged, but the

equations for the metric of the matter �elds have to be modi�ed. In section 5 we

summarize our results and discuss their implications. The article also has three

appendices: Appendix A contains an alternative derivation of stringy constraints

on the moduli-dependence of the 27

3

and 27

3

terms in the superpotential; Ap-

pendix B exhibits a coordinate system in which these terms can be expressed as

derivatives of F

1

and F

2

; and Appendix C gives the precise relation between the

scattering of moduli scalars in the heterotic string and in the type II superstring.

2. Light Scalar Fields and their Vertex Operators

2.1. Low-Energy Effective Field Theory.

The goal of this article is to describe the low-energy behavior of the heterotic

string in terms of an e�ective �eld theory. The general form of an e�ective

Lagrangian for the light bosons is

L

Bose

=

p

�G

�

1

2�

2

R +

1

4e

2

�

F

(a)

ij

�

2

� g

A

�

B

D

i

�

A

D

i

�

�

�

B

� V (�;

�

�) + � � �

�

;

(2:1)

where G and R are the determinant and the scalar curvature of the space-time

metric G

ij

while g

A

�

B

is the metric on the space of scalar �elds �

A

;

�

�

�

B

. Other

notations in eq. (2.1) are as follows: V (�;

�

�) is the scalar potential, F

(a)

ij

are

gauge �eld strengths, D

i

are gauge-covariant derivatives with respect to space-

time coordinates x

i

, and `� � �' stand for the axion coupling to F

~

F and terms

with more than two space-time derivatives. All string vacua we are interested

in possess unbroken N = 1 supersymmetry in four dimensions, so the e�ective

low-energy theory should be consistent with N = 1 supergravity too. Therefore

all fermionic terms in the e�ective Lagrangian are related to the bosonic terms,

and the bosonic Lagrangian (2.1) itself has to obey several constraints. First, the

9



scalar metric g

A

�

B

(�;

�

�) should be K�ahler, i.e., expressible in terms of a single real

analytic function K of complex scalar �elds �

A

and their hermitian conjugates

�

�

�

A

:

g

A

�

B

(�;

�

�) = K

;A

�

B

�

@

2

K(�;

�

�)

@�

A

@

�

�

�

B

: (2:2)

Second, the scalar potential V (�;

�

�) should have a special form

V (�;

�

�) = exp(�

2

K) �

h

g

A

�

B

(W

;A

+ �

2

WK

;A

)(W

;

�

B

+ �

2

WK

;

�

B

) � 3�

2

jW j

2

i

+

e

2

8

X

(a)

�

K

;A

�Q

(a)

� �

A

+

�

�

�

A

�Q

(a)

�K

;

�

A

�

2

;

(2:3)

where W (�) is a holomorphic function of � and Q

(a)

are the (hermitian) gener-

ators of the gauge group. ( See ref. [15, 29] for a derivation of eq. (2.3), and for

the fermionic terms in the N = 1 supergravity action.) The two terms in the

potential (2.3) are often called the F-term and the D-term, after the common

notations for the auxiliary �elds in scalar and gauge supermultiplets which give

rise to them. Finally, if the gauge coupling e

2

depends on the scalar �elds, then

e

�2

should be a harmonic function, i.e., the real part of a holomorphic function

f(�

A

), and the imaginary part of the same f(�) controls the coupling of axions

to F

~

F .

[29]

If the gauge group is a direct product of several subgroups, then there

may be a separate f(�) for each gauge coupling.

?

In a general N = 1 supergravity the K�ahler function K(�;

�

�), the superpo-

tential W (�) and the gauge couplings e

2

= 1=Ref(�) are completely arbitrary

and independent of each other. However, in all classical vacua of the heterotic

string all gauge couplings are equal to each other

[30]

and are controlled by a single

? Actually, even for a simple non-abelian gauge group one can have f

(a)(b)

(�) transforming

as a symmetric square of the adjoint representation of the gauge group instead of a single

gauge-invariant f(�).

[29]
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scalar �eld | the four-dimensional dilaton; in space-time supersymmetric vacua

the dilaton is the real part of the dilaton/axion complex �eldD and e

�2

= ReD.

[31]

This article is concerned with K and W ; we shall show how they are related to

each other in e�ective theories describing the (2,2) vacua.

In a generic (2,2) vacuum of the heterotic string the gauge group is E

6




E

8

(the E

8

component is pure gauge) and the massless scalars can be listed as

follows: the dilaton/axion �eld D; several generations of matter �elds A

�

and

A

�

that transform as 27 and 27 under E

6

(in our notations we shall always

label the 27 matter �elds with indices taken from the beginning of the greek

alphabet while indices from the middle of the greek alphabet will always refer

to the 27 matter �elds); and several moduli �elds M

A

whose expectation values

parametrize families of related (2,2) vacua. Non-generic (2,2) vacua may present

us with additional gauge �elds and/or additional scalars that are E

6

singlets but

are not moduli.

[32]

(That is, expectation values of these singlets must vanish in

all (2,2) vacua of the heterotic string; from the low-energy point of view, non-

zero VEVs of non-moduli singlets usually lead to positive values of the scalar

potential). For example, there is an extra SU(3) gauge group in the case of the

Z

3

orbifold,

[3]

and there are 224 extra scalar E

6

-singlets in the case of the Calabi-

Yau threefold de�ned as a particular quintic surface in CP

4

.

[4]

In this article our

concern is not with a particular (2,2) vacuum of the heterotic string, but with

entire families of such vacua that can be continuously transformed into each other

by changing expectation values of the moduli �elds. In moduli spaces describing

such families of (2,2) vacua, gauge groups bigger than E

6

appear only at some

isolated points or on some lower-dimensional submanifolds. We shall discuss such

submanifolds in section 4; in this and the following section we shall concentrate

on generic neighborhoods in the moduli space. The case of massless singlets that

are not moduli is more complicated; at present it is controversial whether such

singlets can stay massless throughout the entire moduli space.

[4;33]

In this article
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we shall allow for existence of those singlets, but will not pay them any more

attention than we must.

Ideally, we would like to survey the entire �eld space of an e�ective �eld theory

corresponding to a family of the (2,2) vacua of the heterotic string. Unfortunately,

our state-of-the-art string technology is limited to scattering amplitudes that

involve a �nite number of particles in the spectrum of a string vacuum state.

This limits our survey to the moduli space and its in�nitesimal neighborhood

in the �eld space. For points in the moduli space the superpotential vanishes

together with its �rst and second derivatives with respect to all massless �elds;

hence, using E

6

invariance, we can write

W =

1

3

W

��


(M)A

�

A

�

A




+

1

3

W

���

(M)A

�

A

�

A

�

+O(A

�

A

�

B) +O(B

3

) + � � � ;

(2:4)

where B stand for the E

6

singlet �elds that are not moduli but nevertheless

remain massless throughout the moduli space, and `� � �' refer to superpotential

terms that are of quartic or higher order in matter �elds. The coe�cients W

��


and W

���

are the 27

3

and 27

3

Yukawa couplings and are of obvious phenomeno-

logical interest. At this point we allow them to be arbitrary holomorphic func-

tions of the moduli M

A

, but later we shall see that the moduli-dependence of

the Yukawa couplings is constrained. In the same spirit, we can write the K�ahler

function K as

K =

�1

�

2

log(D +D) +

^

K(M;M )

+ G

�

�

�

(M;M )A

�

A

�

�

+ G

���

(M;M)A

�

A

��

+ O(BB) + O(A

�

A

�

) + O(A

��

A

��

)

+ terms involving higher powers of the matter �elds.

(2:5)

Here

^

K is the K�ahler function of the moduli space, which is itself a K�ahler

manifold with metric g

A

�

B

=

^

K

;A

�

B

(here and henceforth capital latin indices are

12



reserved for the moduli �elds). On the moduli space, the metrics for the 27 and

27 matter �elds are given by the moduli-dependent matrices G

�

�

�

and G

���

; away

from the moduli space, the situation becomes more complicated and di�erent

kinds of �elds start mixing with each other.

Given formul� (2.4) and (2.5), we can write an explicit expression for the

scalar potential of the matter �elds:

V =

e

2

2

X

(a)

�

G

�

�

�

A

�

�

Q

(a)

A

�

+ G

���

A

��

Q

(a)

A

�

�

2

(2:6)

+

exp(�

2

^

K)

D +D

�

W

���

G

���

W

���


�

�

�

�

A

�

A

�

�

27

�

A

�


A

�

�

�

27

+ W

���

G

���

W

������

�

�

A

�

A

�

�

27

�

A

��

A

��

�

27

+ X

��

�

���

�

�

A

�

A

�

�

1

�

A

�

�

A

��

�

1

+ O(jAj

2

jBj

2

) + O(jBj

4

) + � � �

�

where `� � �' stand for terms of higher than quartic order in matter �elds. Here

�

A

�

A

�

�

27

denotes the part of the product of A

�

and A

�

that transforms as

a 27 under E

6

(A

�

A

�

transforms as 27 � 27 = 27 + 351 + 351

0

), etc. The

fourth term in (2.6) (the third F-term) is controlled by Yukawa couplings of the

type BA

�

A

�

and is absent in theories that do not have massless non-moduli

singlets B. Fortunately, even when this term is present, it does not a�ect the

scattering amplitudes that we will use for relating

^

K, G

�

�

�

and G

���

to the Yukawa

couplingsW

��


andW

���

, so we do not need an explicit expression for theX

��

�

���

.

Note that because D + D � 2ReD = 2=e

2

, the entire scalar potential (2.6) is

proportional to the gauge coupling e

2

.
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2.2. Vertex Operators for Moduli and Matter Fields.

This article is concerned with classical vacua of the heterotic string that can

be obtained by adjoining a c = (9; 9), N = (2; 2) superconformally invariant

theory on the world sheet to the four N = (0; 1) free world-sheet super�elds

that are responsible for the four-dimensional space-time and to the left-moving

SO(10)
E

8

Kac-Moody algebra that is responsible for most of the gauge group.

N = (2; 2) superconformal theories are characterized by having two N = 2 super-

Virasoro algebras | one left-moving, one right-moving | each generated by a

Virasoro operator T

B

, an abelian current J and a conjugate pair of fermionic

operators T

�

F

of conformal weight h =

3

2

and J -charges q = �1. We shall assume

that all primary Neveu-Schwarz �elds of either algebra have integral J -charges;

this is required for the right-moving N = 2 superalgebra to lead to N = 1

supersymmetry in space-time,

[7]

and for the left-moving N = 2 superalgebra to

lead to the enlargement of the gauge group from SO(10) to E

6

. The left-moving

superalgebra is also responsible for the existence of moduli �elds and their relation

to the matter �elds; this algebra is going to be our main tool.

A general multiplet of theN = 2 superalgebra has four components, but there

are also chiral multiplets that have only two components; lower components of

chiral multiplets satisfy 2h = jqj. Of particular interest to us are chiral multiplets

of the left-moving algebra whose lower components 	

�

have h =

1

2

and q =

�1; upper components �

�

of these multiplets are marginal (have h = 1) and

neutral (q = 0). The singular terms in the operator product expansions of the

superalgebra generators with 	

�

and �

�

can be summarized in the following

formul�:

14



T

B

(w) �	

�

(z) =

1=2

(w � z)

2

	

�

(z) +

1

w � z

@	

�

(z) + � � � ;

T

B

(w) � �

�

(z) =

@

@z

�

�

�

(z)

w � z

�

+ � � � ;

J(w) �	

�

(z) =

�1

w � z

	

�

(z) + � � � ;

J(w) � �

�

(z) = 0 + � � � ;

2T

�

F

(w) �	

�

(z) = 0 + � � � ;

2T

�

F

(w) � �

�

(z) =

@

@z

�

	

�

(z)

w � z

�

+ � � � ;

2T

�

F

(w) �	

�

(z) =

1

w � z

�

�

(z) + � � � ;

2T

�

F

(w) � �

�

(z) = 0 + � � � ;

(2:7)

where `� � �' stand for terms that are not singular when (w � z) ! 0. For-

mul� (2.7) disregard all right-moving quantum numbers of the operators 	

�

and �

�

, even their �z-dependence. This is justi�ed by complete commutativity of

the left-moving and right-moving superalgebras.

The operators 	

�

are important because they appear in vertices of the 27

and the 27 matter �elds. To be precise, matter �elds that belong to decuplets of

the SO(10) � E

6

have vertices of the form

27 �elds A

�

p̂

 ! i�

p̂

(z) �	

+

�

(z; �z) ; � = 1; : : : ; N

1

;

27 �elds A

�

p̂

 ! i�

p̂

(z) �	

�

�

(z; �z) ; � = 1; : : : ; N

2

;

anti-27 �elds A

��

p̂

 !

�

i�

p̂

	

+

�

�

y

= i�

p̂

(z) �	

�

��

;

anti-27 �elds A

��

p̂

 !

�

i�

p̂

	

�

�

�

y

= i�

p̂

(z) �	

+

��

;

(2:8)

where p̂ is the SO(10) vector index and �

p̂

(z) are free left-moving fermions that

generate the SO(10) Kac-Moody algebra | the SO(10) Kac-Moody currents are

i�

p̂

�

q̂

for p; q 2 10, p < q. This Kac-Moody algebra is enlarged to E

6

by adding

to it the left-moving current J | which generates the U(1) subgroup of E

6

that
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commutes with the SO(10) | and also the 16+16 Ramond sector operators that

are products of the SO(10) spinors with the h =

3

8

; q = �

3

2

operators obtained

from the unit operator via spectral 
ow in the N = 2, c = 9 superalgebra.

[34]

Spectral 
ow also relates vertex operators of the 27 �elds that transform as

16 + 1 under SO(10) to the 	

+

operators and relates vertex operators of the

16 + 1 2 27 �elds to the 	

�

. Notice that vertex operators of both A

�

and A

��

involve 	

+

since both types of �elds transform as 27's under E

6

; however, the

right-moving structure of operators 	

+

�

and 	

+

��

is quite di�erent, corresponding

to the fact that 	

+

�

makes a holomorphic scalar �eld in space-time whereas 	

+

��

makes an anti-holomorphic �eld | carrying a barred index. The same is true for

the operators 	

�

�

and 	

�

��

.

Space-time �elds are dual to the world-sheet �elds in the sense that a linear

rede�nition of the former results in the inverse rede�nition of the latter; this

accounts for the lowered indices �; �; ��; �� in (2.8). Likewise, integrated correlation

functions of vertices give Green's functions of space-time �elds with the external

legs truncated and therefore they also carry lowered indices. For example, the

two-point functions of the matter vertices yield the Zamolodchikov metric

[22]

for

the matter �elds:

D

�

i�

p̂

	

+

�

�

(z; �z) �

�

i�

q̂

	

�

�

�

�

(z

0

; �z

0

)

E

= �

p̂q̂

G

�

�

�

�

�

�

z � z

0

�

�

�4

;

D

�

i�

p̂

	

�

�

�

(z; �z) �

�

i�

q̂

	

+

��

�

(z

0

; �z

0

)

E

= �

p̂q̂

G

���

�

�

�

z � z

0

�

�

�4

:

(2:9)

The �'s anticommute with 	

�

and




�

p̂

(z) � �

q̂

(z

0

)

�

= �

p̂q̂

(z � z

0

)

�1

; therefore,

the matter metrics G

�

�

�

and G

���

can be obtained from two-vertex correlators




	

+

	

�

�

via

D

	

+

�

(z; �z) �	

�

�

�

(z

0

; �z

0

)

E

= G

�

�

�

� (z � z

0

)

�1

(�z � �z

0

)

�2

;




	

�

�

(z; �z) �	

+

��

(z

0

; �z

0

)

�

= G

���

� (z � z

0

)

�1

(�z � �z

0

)

�2

:

(2:10)

Note that the Zamolodchikovmetrics for the matter �elds obtained from eqs. (2.9)
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or (2.10) are the same G

�

�

�

and G

���

that appear in the Lagrangian of the low-

energy e�ective �eld theory via eq. (2.5): This is a necessary condition for the

e�ective theory to reproduce the correct residues of massless poles in string scat-

tering amplitudes. (One can see this explicitly for the four-particle amplitudes

presented in the next section, by factorizing them on the graviton poles.) In

the e�ective �eld theory, matrices G

�

�

�

and G

���

explicitly depend on the mod-

uli �elds; in the string formul� (2.10), this dependence is implicit: Each set of

vacuum expectation values of the moduli �elds corresponds to a speci�c vacuum

state of the heterotic string, and the correlators in (2.10) are evaluated for that

particular vacuum state.

Now consider the operators �

�

. They are marginal and neutral, which makes

them vertex operators for massless scalars that are E

6

singlets.

[4;13;14]

Moreover,

�

�

are upper components of N = 2 supermultiplets and hence can be added to

the world-sheet Lagrangian without breaking the left-movingN = 2 superalgebra.

From the space-time point of view this means that scalar �elds associated with

�

�

are not just massless singlets but moduli | �elds that can have arbitrary

vacuum expectation values without breaking the (2,2) structure of the vacuum

and therefore without generating a potential (see refs. [13,14] for proofs of this

assertion). As with the matter vertices, moduli vertices are dual to moduli �elds,

but since the moduli space is non-linear, this duality is local: Given a (2,2)

vacuum and a corresponding point on the moduli space, moduli vertices are dual

to dM

A

and dM

�

A

; from the di�erential geometry point of view this means that

the moduli vertices are co-vectors on the moduli space. For a general coordinate

system on the moduli space we thus have vertices for holomorphic moduli �elds

that are some linear combinations of the vertices �

+

�

and �

�

�

, and similarly for

the anti-holomorphic moduli:

M

A

$ U

�

A

� �

+

�

+ U

�

A

� �

�

�

;

M

�

A

$ U

��

�

A

� �

�

��

+ U

��

�

A

� �

+

��

:

(2:11)
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The U

�

A

, etc., are moduli-dependent matrices, but from the world-sheet point of

view they are c-numbers and not operators. The two-dimensional operators �

+

�

,

etc., here are �xed by the current algebra (2.7) in terms of 	

+

�

, etc., which appear

in the vertex operators for the four-dimensional �elds A

�

and A

�

via eqs. (2.8).

For any particular point in the moduli space we can �nd local coordinatesM

�

andM

�

that trivialize the U matrices at that point; unfortunately, it is generally

impossible to simultaneously trivialize the U matrices everywhere in the moduli

space, or even in a �nite piece of the moduli space. However, we shall prove in

the next section that one can de�ne separate sets of �eldsM

a

and M

m

such that

the matrix elements U

�

m

, U

�

a

, U

��

�m

and U

��

�a

in eqs. (2.11) all vanish in a �nite

patch. In the case of a Calabi-Yau compacti�cationM

a

andM

m

are respectively

(1,1) moduli and (1,2) moduli; for the (2,2) vacua that are not obviously related

to the Calabi-Yau manifoldsM

a

are simply the moduli related to the 27 matter

�elds while M

m

are the moduli related to the 27's. To simplify the terminology,

we shall refer to these two types of moduli as (1,1) moduli and (1,2) moduli

regardless of whether the (2,2) vacuum under consideration has anything to do

with Calabi-Yau manifolds. In a basis that distinguishes between the two types

of moduli �elds moduli vertex operators are given by:

(1,1) moduli M

a

$ U

�

a

� �

+

�

, a = 1; : : : ; N

1

;

(1,2) moduli M

m

$ U

�

m

� �

�

�

, m = 1; : : : ; N

2

;

anti-(1,1) moduli M

�a

$ U

��

�a

� �

�

��

, �a = 1; : : : ; N

1

;

anti-(1,2) moduli M

�m

$ U

��

�m

� �

+

��

, �m = 1; : : : ; N

2

:

(2:12)

In our notations we shall distinguish (1,1) and (1,2) moduli from each other by

labelling the former with lower case indices taken from the beginning of the latin

alphabet while reserving the middle of the alphabet for the latter; capital latin

indices will refer to moduli �elds of either kind, i.e., an M

A

can be either an M

a

or an M

m

.
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With these conventions, all string amplitudes involving moduli �elds carry U

factors; in particular, the metric for the (1,1) moduli �elds is given by:

g

a

�

b

jz � z

0

j

4

= U

�

a

U

�

�

�

b

�

D

�

+

�

(z; �z) � �

�

�

�

(z

0

; �z

0

)

E

: (2:13)

Now, using the current algebra (2.7) we can show that

D

�

+

�

(z; �z) � �

�

�

�

(z

0

; �z

0

)

E

=

I

z

dw

2�i

D

2T

�

F

(w) �	

+

�

(z; �z) � �

�

�

�

(z

0

; �z

0

)

E

=

I

z

0

dw

2�i

D

	

+

�

(z; �z) � 2T

�

F

(w) � �

�

�

�

(z

0

; �z

0

)

E

=

@

@z

0

D

	

+

�

(z; �z) �	

�

�

�

(z

0

; �z

0

)

E

:

(2:14)

Hence, in view of eq. (2.10),

g

a

�

b

= U

�

a

G

�

�

�

U

�

�

�

b

: (2:15)

Similarly, the metric for the (1,2) moduli is given by

g

m�n

= U

�

m

G

���

U

��

�n

: (2:16)

Equations (2.15) and (2.16) are examples of string-derived relations between dif-

ferent terms in the e�ective Lagrangian of the light scalars | in this case, kinetic

terms for the moduli and for the matter �elds. To make full use of these equations

one obviously needs to know the U matrices; we shall compute them in the next

section.
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Now consider the matrix elements of the moduli metric g

A

�

B

that mix the

(1,1) and the (1,2) moduli:

g

a�n

jz � z

0

j

4

= U

�

a

U

��

�n

�




�

+

�

(z; �z) ��

+

��

(z

0

; �z

0

)

�

= U

�

a

U

��

�n

�

I

dw

2�i




2T

�

F

(w) �	

+

�

(z; �z) � �

+

��

(z

0

; �z

0

)

�

= 0

(2:17)

because the operator product of T

�

F

(w) and �

+

(z

0

) has no singularity at w! z

0

;

g

m

�

b

also vanishes for similar reasons. But the moduli space is a K�ahler manifold,

so g

a�n

=

^

K

;a�n

and g

m

�

b

=

^

K

;m

�

b

; hence, block-diagonalization of the moduli metric

implies that

^

K(M

A

;M

�

A

) = K

1

(M

a

;M

�a

) + K

2

(M

m

;M

�m

) (2:18)

(up to a harmonic function that does not a�ect the metric).

?

It immediately

follows from eq. (2.18) that the moduli space is a direct product of two separate

spaces for the (1,1) moduli and for the (1,2) moduli, i.e., the metric for the former

does not depend on the latter and vice versa. Note however that this argument

only proves that the moduli space is a direct product as a metric space provided

it is a direct product as a (complex) di�erentiable manifold, i.e., provided one

can consistently de�ne separate complex �elds M

a

and M

m

for the two kinds

of moduli, and we haven't yet proved that this is possible. For the type II

superstring, the moduli space of a (2,2) vacuum has to decompose into a product

of two subspaces because the e�ective low-energy theory has N = 2 space-time

supersymmetry ( (1,1) and (1,2) moduli scalars belong to di�erent types of N = 2

supermultiplets).

[24]

This result applies to the heterotic string as well since both

? This argument also explains why the dilaton/axion �eld D appears in (2.5) all by itself:

The string origin of this �eld di�ers from any others massless scalar �elds in the theory,

and for any vacuum state of the heterotic string there are no metric terms that mix the

D with other scalars.
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string theories yield the same moduli for the same (2,2) vacuum (see Appendix C

for precise relations between moduli of the two string theories). However, one

should not need the N = 2 four-dimensional supersymmetry to prove the moduli

space decomposition for the heterotic string, and we shall give such a proof in

the next section.

3. Reconstructing Geometry from String Amplitudes

3.1. Scattering Amplitudes in Field Theory.

In this section we shall follow the S-matrix program of ref. [10] that was

outlined in the introduction to this article. Speci�cally, we shall compute four-

particle scattering amplitudes that involve moduli and/or matter scalars. From

the string theory point of view these amplitudes are related to each other through

the current algebra (2.7). On the other hand, in �eld theory these amplitudes are

controlled by seemingly unrelated terms in the e�ective Lagrangian. Speci�cally,

four-moduli scattering amplitudes are controlled by the Riemann curvature of

the moduli space, amplitudes involving two moduli and two matter �elds are

controlled by the moduli dependence of the metric for the matter �elds, and

amplitudes involving four matter �elds are dominated by the gauge and Yukawa

interactions.

Let us begin with the scattering of moduli. Having no potential and no gauge

couplings, moduli �elds interact with each other via sigma-model couplings that

are present whenever the moduli space is not 
at. The Feynman rules of the

sigma model provide for four tree-level diagrams contributing to a four-point
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function:

.

.

.
.
.
.
.
.
.
.
..
.
..
..
...
..........

...
..
.
..
.
..
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
..
.
.
..
.
..
...
....
....
....
...
..
.
..
.
.
..
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

@

@

@

@R

�

�

�

�	

@

@

@

@R

�

�

�

�	

M M

MM

=
�

@

@

@

@

@R

�

�

�

�

�	

@

@

@

@

@R

�

�

�

�

�	

+

�

�

?

H

H

H

H

Hj

�

�

�

�

��

H

H
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H
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+
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-�

A

A

A

A

AU

�

�

�

�

��

A

A

A

A

AU

�

�

�

�

��

+

� �

-�

B

B

B

B

BN

�

�

�

�

�


�

�

�

�

�

�

�

�

�+

Q

Q

Q

Q

Q

Q

Q

Q

Qs

(3:1)

For a sigma model with a K�ahler metric, vertices are given by the derivatives

of K times the square of the total 4-momentum of the lines incoming to the

vertex. (Incoming lines correspond to holomorphic �elds, outgoing lines to anti-

holomorphic �elds.) Due to these kinematic factors, the last two diagrams in

(3.1) vanish on the mass shell, while the combined e�ect of the �rst two diagrams

is

A

�

(M

A

;M

B

;M

�

C

;M

�

D

) = is

^

K

;AB

�

C

�

D

+ is

^

K

;AB

�

E

�

ig

�

EF

s

�is

^

K

;F

�

C

�

D

� isR

A

�

CB

�

D

:

(3:2)

Here s � �(k

1

+ k

2

)

2

is one of the three Mandelstam kinematic variables; the

other two variables are t � �(k

1

+ k

4

)

2

and u � �(k

1

+ k

3

)

2

. Note that in a

K�ahler geometry the Riemann tensor obeys R

A

�

CB

�

D

= R

B

�

CA

�

D

in addition to the

other symmetries under index permutations.

Besides sigma-model interactions, gravity also contributes to the scattering of

moduli particles. A four-moduli amplitude gets contributions from the t-channel

and the u-channel exchanges of a graviton:
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which together yield
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(3:4)

(the s-channel exchange does not contribute since g

AB

= 0). No other interac-

tions present in the e�ective Lagrangian (2.1) contribute to the tree-level scat-

tering of moduli scalars. Thus we can summarize the �eld theory amplitude for

the four-moduli scattering amplitude as
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g
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:

(3:5)

Note that the right hand side of this formula depends solely on the geometry

of the moduli space. Hence a string expression for the four-moduli scattering

amplitude becomes a di�erential equation for

^

K(M;M ).

Next consider a scattering amplitude that involves two moduli and two matter

scalars. Since the 27 and 27 matter �elds remain exactly massless for all values

of the moduli, the scalar potential does not contribute to tree-level scattering

amplitudes that involve only two matter scalars. Similarly, gauge interactions

do not contribute to amplitudes involving only two charged particles. Thus the

only interactions in (2.1) that contribute to the two-moduli two-matter amplitude

are gravity and the two-derivative interactions due to moduli-dependence of the

matter metric:
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Therefore,
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are mixed components of the Riemann tensor for the whole �eld space. Again,

given a string expression for the two-moduli two-matter-�elds amplitude, for-

mul� (3.6) become di�erential equations for the matter metrics G

�

�

�

and G

���

.

Finally, consider scattering processes that involve four matter �elds and no

moduli. Among the matter �elds, two must transform as the 27 of E

6

while the

other two transform as the 27; there are three E

6

-invariant ways to contract the

gauge indices of these �elds. For the sake of notational simplicity we shall not

use E

6

-invariant amplitudes; instead, we shall restrict our attention to the case

when all four external �elds belong to decuplets of the SO(10) � E

6

; all other

amplitudes can be reconstructed from these by the E

6

invariance. Several kinds

of interactions contribute to scattering of four matter �elds, but at low energies

two e�ects dominate the amplitude: gauge scattering and contact four-scalar

interactions due to quartic terms in the scalar potential (2.6):
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).

(3:8)

Assuming the gauge group is exactlyE

6

(no \accidentally"massless gauge bosons),
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the gauge scattering amplitudes are:
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�

;

(3:9)

where the factors

1

3

come from the ratio between the coupling constants for the

SO(10) and the U(1) subgroups of E

6

; we normalize these couplings according

to the convention that for the SO(10) generators Q

(a)

, tr

10

�

Q

(a)

Q

(b)

�

= 2�

(a)(b)

.

Contact interactions due to the D-terms in the scalar potential (2.6) con-

tribute to the scattering amplitudes expressions that are identical to eqs. (3.9),

except that the kinematical factors

u�s

t

and

t�s

u

are absent. Finally, contact

interactions due to the F-terms in (2.6) contribute
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:

(3:10)

Note that in the low-energy limit both gauge and potential contributions behave

like O(1) under uniform rescaling of all 4-momenta. All other interactions, such

as quartic terms in the K�ahler function, or e�ects of moduli exchanges, or gravity,

etc., contribute terms that in the low-energy limit decrease like O(k

2

) or faster.
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Hence, as far as the e�ective �eld theory is concerned, the scattering amplitudes

for four matter �elds are:

i

2e

2

A

FT

(A

�

p̂

; A

�

q̂

; A

�


r̂

; A

�

�

ŝ
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�

1

3

�

p̂ŝ
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(3:11)

we have used 2=(D +D) = e

2

and s+ t+ u = 0 in deriving these formul�.

3.2. String Relations Between Scattering Amplitudes.

At this point we know which scattering amplitudes we need in order to recon-

struct the kinetic terms in the low-energy e�ective Lagrangian, so let us compute

them. Let us begin with the string amplitude A(M

a

; A

�

; A

�


;M

�

d

). There is only

one E

6

-invariant amplitude of this kind, so without loss of generality we can

choose the matter particles to belong to SO(10) decuplets; thus we have
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Here J is the Jacobian for using SL

2

(C) to �x z
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; z

2
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3

and is independent of z

4

,
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and E(z

j
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) is the correlation function of the exponentials e

i

p

2�

0

k

j

�X

appearing

in the vertex operators evaluated at non-zero momenta k
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; an explicit expression

for E in terms of z
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is given by
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(3:13)

Beyond the e

i

p

2�

0

k

j

�X

factors, heterotic vertex operators �

�

and 	

�

themselves

depend on the momenta. However, this dependence only a�ects the right-moving

degrees of freedom and completely commutes with the left-moving N = 2 super-

algebra; since it is the left-moving superalgebra that we are going to use here, we

can safely ignore the momentum dependence of �

�

and 	

�

.

Now, let us apply the current algebra (2.7) to the correlator that appears in

eq. (3.12). Using the operator product expansion of T

�

F

with 	

+

, we can write
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�

; (3:14)

where � is an arbitrary complex number, �

+

1

is a short-hand notation for �

+

�

(z

1

; �z

1

),

etc., and the contour of integration circles z

1

but not the other vertices. The same

contour can be reinterpreted as circling (in the opposite direction) z

2

; z

3

; z

4

and

1 instead of z

1

; however, the integrand has no singularity at z

3

(the operator

product of T

�

F

(w) with 	

�

3

is non-singular at w ! z

3

), and the single pole at

w ! z

2

can be cancelled by choosing � = z

2

. The integral around in�nity also

vanishes: since the conformal dimension of T

F

is

3

2

, the correlator is O(w

�3

)

at w ! 1 and the leading term in the integrand of (3.14) behaves like w

�2

.
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Hence, the only contribution to the contour integral comes from the singularity

at w! z

4

that yields

I

z

4

dw

2�i

w � z
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� z
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� 2T
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4
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; (3:15)

and the integral on the right hand side of eq. (3.12) can be rewritten as
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= �

p̂q̂

�

Z

C

d

2

z

4

E �




	

+

1

�	

+

2

�	

�

3

�	

�

4

�

�

�

�

0

s=4

z

12

z

34

�

�

0

t=4

z

14

z

23

�

:

Here the factor �

p̂q̂

=z

23

comes from

D

�

p̂

2

� �

q̂

3

E

, and the second expression follows

from the �rst via integration by parts (we use eq. (3.13) and s+ t+ u = 0).

Next consider the amplitude A(A

�

; A

�

; A

�


; A

�

�

). Choosing all four matter

particles to belong to the decuplets of the SO(10), we have
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(3:17)

All we need now is an explicit expression for the correlator of the gauge fermions:
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: (3:18)

If we now compare the right hand sides of eqs. (3.16) and (3.17), it becomes

apparent that

A(M

a

; A

�

p̂

; A
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;M

�

d
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�
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4

U

�
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�
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s � A(A
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q̂

) � t � A(A
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q̂

; A
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q̂

; A

�

�

p̂

)

�

(3:19)

(no sum over the SO(10) vector indices p̂ 6= q̂). Formula (3.19) is the �rst of

several relations between various string amplitudes that we shall use as constraints

on the low-energy e�ective �eld theory.
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There are other two-moduli two-matter-�elds amplitudes: The two moduli

�elds may be of the (1,2) type rather than the (1,1) type as in eq. (3.19), and

the two matter �elds may be 27's rather than 27's. All these amplitudes involve

world-sheet correlators of the type
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�	

+

�	

�

� �

�

�

, where �

+

is either �

+

�

or

�

+

��

, 	

+

is either 	

+

�

or 	

+

��

, etc. In the arguments leading to formula (3.19) we

relied on the left-moving current algebra (2.7), which is not a�ected by the right-

moving quantum numbers that distinguish between the 27 and anti-27 matter

�elds or between (1,1) and anti-(1,2) moduli. Hence, the very same arguments

(modulo permutations of particles) also yield
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(again, no sum over p̂ 6= q̂).

On the other hand, amplitudes that involve one (1,1) modulus and one (1,2)

modulus (and two matter �elds) vanish identically since they involve the van-

ishing correlators
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+

	

+

	

�

�

+

�

and




�

�

	

+

	

�

�

�

�

. These two correlators are

complex conjugates of each other, so it is su�cient to verify that
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(3:21)

The �rst equality here is exactly analogous to eq. (3.14), and the contour in-

tegral is evaluated in exactly the same way; however, the operator product of

T

�

F

(w) and �

+

4

has no singularity when w! z

4

, and the integral vanishes. This

argument assures the vanishing of \mixed" amplitudes A(M

a

; A

�

; A

�


;M

�n

) and

A(M

a

; A

�

; A

��

;M

�n

) (and their complex conjugates) and completes the coverage
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of all four-particle amplitudes involving one modulus, one matter �eld, one anti-

matter �eld and one anti-modulus.

?

Now consider a four-(1,1)-moduli scattering amplitude
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(3:22)

Using the current algebra (2.7) we can write �

+

1

as a contour integral of 2T

�

F

(w)

around 	

+

1

and then pull the contour of integration from the back of the complex

sphere so it runs around z

2;3;4

instead of z

1

. But the integral of 2T

�

F

(w) around

a �

+

(z) vanishes while the integral around a �
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(z) yields a @

z
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, so we obtain
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Retracing the steps that led us from eq. (3.12) to eq. (3.16), we can express the

correlators on the right hand side of (3.23) in terms of 	

�

only; this gives us
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When computing a tree-level four-particle string amplitude such as (3.22),

we keep locations of three vertices �xed and integrate over the fourth. Because

of SL

2

(C) invariance

[35]

the integrand is exactly the same regardless of which of

z

1;2;3;4

is used as an integration variable; the only di�erence is that the Jacobian

J depends on the other three vertex locations. Hence, if the integrand has the

form A�@B=@z

j

, j = 1; 2; 3; 4, we can choose z

j

to be the integration variable and

integrate by parts, then keep the new integrand but integrate over z

i

with i 6= j.

? These are the only two-moduli two-matter-�elds amplitudes that we will need in this

article. Among other amplitudes, A(A

�

; A

�

;M

�c

;M

�n

) and its complex conjugate obey

equations similar to eqs. (3.19) and (3.20), while all the remaining two-moduli two-matter-

�elds amplitudes vanish identically.
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This technique allows integration by parts over any of the z

1;2;3;4

regardless of

which z

i

is the integration variable. Thus, after we substitute (3.24) into (3.22),

we can integrate by parts over both z

3

and z

4

, and the integral on the right hand

side of eq. (3.22) becomes
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It remains to compare (3.23) to the four-matter-�elds amplitudes (3.17); this

yields:
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(no sum over p̂ 6= q̂).

Finally, consider other four-moduli scattering amplitudes. Given two types

of holomorphic moduli, there are nine types of amplitudes that involve two holo-

morphic and two anti-holomorphic moduli �elds. Three types of amplitudes are

related to world-sheet correlators
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; these amplitudes, to the order

in �

0

necessary for this article, are summarized in the following formul�:
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(The �rst equation here is eq. (3.26). The second equation substitutes M

�m

, M

l

,

A

��

and A

�

for M

b

, M

�c

, A

�

and A

�


, respectively, and can be proven by exactly
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the same arguments as (3.26); we have interchanged particles 2 and 3 for future

convenience. The third equation substitutes in addition M

�n

, M

k

, A

��

and A

�

for

M

a

, M

�

d

, A

�

and A

�

�

, respectively, and interchanges particles 1 and 4.)

The other six four-moduli amplitudes are related to correlators
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(and their hermitian conjugates) that vanish identically. In-

deed,
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since the operator product of T

�

F

and �

+

has no singularity, and
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where the last equality is just eq. (3.21).

3.3. Riemann Tensor, Moduli Space Decomposition and Metric for

the Matter Fields.

Having established several string relations between various four-particle scat-

tering amplitudes, let us use these relations to describe the geometry of the �eld

space. We begin with the Riemann tensor of the moduli space, which is related

by formula (3.5) to the scattering amplitudes for four moduli �elds. Our string

formul� for these amplitudes distinguish between the (1,1) moduli and the (1,2)

moduli, so we shall compute the components of the Riemann tensor in a basis

that respects this distinction. (Local bases of this kind exist for all points of the

moduli space regardless of whether these bases are consistent with a global coor-

dinate system.) In such a basis, all components of R

A

�

CB

�

D

except R

a�cb

�

d

, R

k �ml�n
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and R

a �ml

�

d

(and components related to these by index permutations) must van-

ish because of the vanishing of the corresponding string amplitudes. Moreover,

R

a �ml

�

d

vanishes too. To see this, let us substitute the second formula in (3.11)

into the second formula in (3.27); the result is
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Here the second equation follows from the �rst because of eqs. (2.15) and (2.16)

and because in the heterotic string theory gauge and gravitational couplings are

related to each other via �

0

e

2

= 2�

2

.

[1]

In view of formul� (3.5) and (2.17),

eq. (3.30) implies that R

a �ml

�

d

= 0.

Now consider the holonomy group of the moduli space. The restricted holon-

omy group of a Riemannian manifold is generated by parallel transport along

contractible loops in that manifold, and the associated Lie algebra is generated

by components of the Riemann tensor viewed as matrices in the �rst two indices

of R. We have just seen that for the moduli space the only non-vanishing com-

ponents of the Riemann tensor are R

a�cb

�

d

and R

k �ml�n

, so the restricted holonomy

group of the moduli space must be contained in U(N

1

) 
 U(N

2

). But there is

a theorem valid for any Riemannian geometry that says that if the (restricted)

holonomy group of a manifold decomposes into a direct product of commuting

subgroups, then the manifold is (locally) a direct product of several submani-

folds.

[36]

In our case, this means that there are independent moduli spaces for the

(1,1) moduli and the (1,2) moduli; both of these spaces are K�ahler, and the full

moduli space is their direct product (hence (2.18)

?

). Note that only a local basis

? Actually, the statement that the moduli space decomposes refers to its metric rather

than to its K�ahler function

^

K. This decomposition implies eq. (2.18) only after a K�ahler

transform that changes

^

K by a harmonic function �(M )+�(M ) that does not a�ect the

metric (�(M ) is a holomorphic function of both M

a

and M

m

). In N = 1 supergravity, a
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is needed to evaluate the restricted holonomy group. Therefore, in contrast to

our argument at the end of section 2, this time the possibility of parametrizing

the moduli space with separate (1,1) and (1,2) moduli �elds is not assumed but

proved.

Having veri�ed that the moduli space is a direct product of separate moduli

spaces for the (1,1) moduli and the (1,2) moduli, we would like to study the

geometry of each component. Riemann tensors R

a�cb

�

d

and R

k �ml�n

for the (1,1)

and (1,2) moduli spaces can be obtained from formul� (3.5), (3.27) and (3.11).

After some algebra that uses eqs. (2.15), (2.16) and �

0

e

2
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2
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(3:31)

where (WUUU)

abe

is a short-hand notation for W

���

U

�

a

U

�

b

U

�

e

, etc. Unfortu-

nately, equations (3.31) cannot be solved for the moduli metrics g

a

�

b

and g

m�n

until we know the U matrices that appear in these equations. To compute the U

matrices we need additional equations relating moduli and matter metrics; such

equations are provided by string formul� (3.19), (3.20) and A(M

a

; A

�

; A

�


;M

�n

) =

� � � = 0 for scattering amplitudes that involve both moduli and matter �elds.

Combining these formul� with eqs. (3.6) and (3.11) we arrive at the following

expressions for the R

��
A

�

D

components of the Riemann tensor of the whole �eld

space:

K�ahler transform that is accompanied by rescaling the superpotential by the holomorphic

factor exp(��

2

�(M )) is unobservable, so through the rest of this article we shall assume

that eq. (2.18) holds exactly (i.e., without extra harmonic terms).
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1

�

2

R

��
a

�

d

= U

�

a

G

��


�G

�

�

�

U

�

�

�

d

+

2

3

G

��


� g

a

�

d

� exp(�

2

^

K) � (WUU)

�ae

g

e

�

f

(WUU)

�

f

�

d�


;

1

�

2

R

��
k�n

=

1

3

G

��


� g

k�n

;

R

��
a�n

= 0;

R

��
k

�

d

= 0;

(3:32)

components R

���A

�

D

obey similar equations.

In order to simplify formul� (3.32) as equations for the matrix U � fU

�

a

g,

we raise the �rst index of the Riemann tensor and rewrite eqs. (3.7), (3.2) and

(2.15) in a matrix form:

R

��

�C

�

D

� [R

C

�

D

]

��

�

�

=

�

@

C

�

G

�1

� @

�

D

G

��

��

�

�

;

R

�a

bC

�

D

� [R

C

�

D

]

�a

�

b

=

�

@

C

�

g

�1

� @

�

D

g

��

�a

�

b

;

g

a

�

b

� [g]

a

�

b

=

h

UGU

y

i

a

�

b

:

In these notations, comparing eqs. (3.32) and (3.31) yields

@

C

�

U

y

g

�1

U � @

�

D

�

U

�1

gU

y

�1

��

= U

y

@

C

�

g

�1

� @

�

D

g

�

U

y

�1

+

�

2

3

@

C

@

�

D

(K

2

�K

1

)� 1 :

(3:33)

This equation may look cumbersome, but it is rather easy to solve; the general

solution is given by

U

�

a

(M;M ) = V

�

a

(M) � exp

�

�

2

6

�

K

1

�K

2

�

�

; (3:34)

where V(M) is an arbitrary matrix-valued holomorphic function of the moduli

�elds M

a

and M

m

. Similarly,

U

�

m

(M;M ) = V

�

m

(M) � exp

�

�

2

6

�

K

2

�K

1

�

�

: (3:35)
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The arbitrariness of V(M) is not an artifact of using insu�cient information

to fully determine the U matrices, but a consequence of independent choices of

coordinate systems for the moduli and for the matter �elds. We are free to make

a linear rede�nition of the matter �elds A

�

, and the coe�cients of this trans-

formation can be moduli-dependent as long as they are holomorphic functions

of the moduli �elds. (Non-holomorphic �eld rede�nitions are inconsistent with

the manifestly complex K�ahler geometry (2.2) we have used throughout this arti-

cle.) Thus the U

�

a

(M;M ) and U

�

m

(M;M ) are determined only up to holomorphic

matrix-valued factors; obviously, V

�

a

(M) and V

�

m

(M) are precisely such factors.

Since apart from these factors the U matrices are proportional to unit matrices,

there is a natural choice of matter �elds A

a

� (V

�1

)

a

�

A

�

and A

m

� (V

�1

)

m

�

A

�

that eliminates the V's; henceforth we shall always make this choice of �elds and

use the same indices for both moduli and matter �elds (as long as we are not

discussing components of the Riemann tensor that involve both kinds of �elds).

With this convention, we can write explicit formul� expressing metric matrices

for the matter �elds in terms of the metrics and K�ahler functions for the moduli:

G

a

�

b

= g

a

�

b

� exp

�

�

2

3

(K

2

�K

1

)

�

;

G

m�n

= g

m�n

� exp

�

�

2

3

(K

1

�K

2

)

�

:

(3:36)

It is important to notice that in contrast to g

a

�

b

and g

m�n

, G

a

�

b

and G

m�n

depend

on both types of moduli.

Formul� (3.31) now become explicit equations relating the K�ahler geometry

of the moduli space to the Yukawa couplings of the matter �elds:

1

�

2

R

a�cb

�

d

= g

a�c

g

b

�

d

+ g

a

�

d

g

b�c

� exp(2�

2

K

1

) �W

abe

g

e

�

f

W

�

f�c

�

d

;

1

�

2

R

k �ml�n

= g

k �m

g

l�n

+ g

k�n

g

l �m

� exp(2�

2

K

2

) �W

kli

g

i�|

W

�| �m�n

:

(3:37)

Note that non-trivial U factors are essential for the consistency of eqs. (3.37):

Because the moduli spaces for the (1,1) and the (1,2) moduli are completely
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independent of one another, a consistent equation for the Riemann curvature of

the (1,1) moduli space cannot involve K

2

, which depends on the (1,2) moduli

(and vice versa). Both eqs. (3.31) contain the factor e

�

2

^

K

= e

�

2

K

1

� e

�

2

K

2

which

depends on both kinds of moduli, and it is the U factors (3.34) and (3.35) that

turn it into the e

2�

2

K

1

factor appearing in the �rst eq. (3.37) and the e

2�

2

K

2

factor in the second equation. The U factors also make eqs. (3.37) invariant with

respect to K�ahler transforms of the two moduli spaces: K

1

7! K

1

� �

1

(M

a

) �

�

1

(M

�a

) and K

2

7! K

2

� �

2

(M

m

) � �

2

(M

�m

). Under these transforms the U

factors corresponding to V � 1 make the matter �elds A

a

and A

m

rescale with

factors e

�

�

2

3

(�

1

��

2

)

, so the Yukawa couplings transform as W

abc

7! e

2�

2

�

1

W

abc

and W

lmn

7! e

2�

2

�

2

W

lmn

; these are precisely the transformations that leave

eqs. (3.37) invariant.

3.4. Yukawa Couplings and Metric for Moduli Fields.

There are two ways to look at eqs. (3.37): as di�erential equations for the

K�ahler functions K

1;2

in terms of the Yukawa couplings W

abc

and W

lmn

, or as

algebraic equations for the Yukawa couplings in terms of the K�ahler functions and

their derivatives. From the latter point of view the fact that the moduli space is

a direct product immediately implies that W

abe

| the 27

3

Yukawa couplings |

should depend only on the (1,1) moduli M

a

and not on the (1,2) moduli M

m

,

while W

kli

| the 27

3

Yukawa couplings | should depend only on the (1,2)

moduli.

?

Using more direct string arguments, Distler and Greene

[37]

proved that

this is indeed the case. Less immediate constraints imposed by eqs. (3.37) on

the Yukawa couplings follow from the Bianchi identity for the Riemann tensor:

r

e

R

a�cb

�

d

= r

a

R

e�cb

�

d

, where r is the covariant derivative operator. Since the

? Yukawa couplings we are discussing here are unnormalized cubic terms in the superpoten-

tial. Normalized Yukawa couplings also depend on the matter �elds' metric, and eq. (3.36)

tells us that normalized 27

3

couplings do depend on the (1,2) moduli, but this depen-

dence is limited to a common rescaling of all 27

3

couplings. The same holds for the 27

3

couplings and (1,1) moduli.
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metric tensor is covariantly constant, and W is anti-holomorphic, eqs. (3.37)

imply

r

a

�

e

2�

2

K

1

W

bcd

�

= r

b

�

e

2�

2

K

1

W

acd

�

;

r

k

�

e

2�

2

K

2

W

lmn

�

= r

l

�

e

2�

2

K

2

W

kmn

�

:

(3:38)

Like the result of Distler and Greene, these equations can be obtained either from

eqs. (3.37) or from direct string arguments; in Appendix A we shall give a stringy

proof of eqs. (3.38).

The signi�cance of (3.38) is as an integrability condition: In K�ahler geometry,

covariant derivatives with holomorphic indices commute with each other, and the

integrability condition for a vector �eld X

a

to be a gradient of a scalar is thus

r

a

X

b

= r

b

X

a

. (X

a

is a vector �eld on the moduli space, not in space-time.)

Similarly, if a symmetric tensor �eld X

a

1

���a

n

obeys r

b

X

a

1

���a

n

= r

a

1

X

ba

2

���a

n

(i.e., r

b

X

a

1

���a

n

is symmetric with respect to all its n+1 indices), then X

a

1

���a

n

=

r

a

1

� � �r

a

n

X for some scalar �eld X.

y

Once we have set V � 1, W

abc

(M

a

) and

W

lmn

(M

m

) become symmetric tensors on the respective moduli spaces; hence,

eqs. (3.38) are integrability conditions for having

�

3

exp(2�

2

K

1

) �W

abc

(M

a

) = r

a

r

b

r

c

�

exp(2�

2

K

1

) � Z

1

(M

a

;M

�a

)

�

;

�

3

exp(2�

2

K

2

) �W

lmn

(M

m

) = r

l

r

m

r

n

�

exp(2�

2

K

2

) � Z

2

(M

m

;M

�m

)

�

;

(3:39)

where Z

1;2

are some scalar functions of the respective moduli. (The factors �

3

and e

2�

2

K

1;2

are introduced for future convenience.) Note that the functions Z

1;2

are invariant under reparametrizations of the respective moduli spaces, but they

are not holomorphic; the requirement that formul� (3.39) should yield Yukawa

couplings that are holomorphic functions of the moduli is a non-trivial constraint

y These integrability conditions are local, i.e., are su�cient only on simply-connected man-

ifolds. However, in this article we ignore all topological complications and limit ourselves

to simply-connected pieces of the moduli space.
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on the Z

1;2

. We can write this constraint in a generally covariant form, but we do

not know how to solve it in a general coordinate system. Nevertheless, we shall

prove in Appendix B that one can make a holomorphic rede�nition of moduli

�elds and a K�ahler transform that together will reduce eqs. (3.39) to

�

3

W

abc

= @

a

@

b

@

c

F

1

;

�

3

W

lmn

= @

l

@

m

@

n

F

2

;

(3:40)

where F

1;2

are holomorphic functions of the appropriate moduli �elds. Unlike the

Z

1;2

that are non-holomorphic but invariant under �eld rede�nitions, the F

1;2

are

holomorphic but are tied to a particular coordinate system, and even when there

are several coordinate systems for which eqs. (3.40) hold, each system will have

its own F 's. Similarly, eqs. (3.39) are invariant under K�ahler transforms provided

Z

1;2

transform like the Yukawa couplings W

abc

and W

lmn

| Z

1;2

7! e

2�

2

�

1;2

Z

1;2

| but eqs. (3.40) are valid only for a particular K�ahler choice of K

1;2

.

Now let us go back to eqs. (3.37) and treat them as di�erential equations for

the K�ahler functions K

1;2

of the two moduli spaces. Given the Yukawa couplings,

the solution to each of these equations is unique up to a holomorphic �eld rede�-

nition and a K�ahler transform. To see that, let us expand K

1

into a power series

in M

a

and M

�a

; analyticity of K

1

assures us that this is always possible. The

leading operator in the di�erential equation for K

1

is @

a

@

b

@

�c

@

�

d

; hence all terms

in the expansion of K

1

that are at least quadratic in both holomorphic and anti-

holomorphic �elds are completely determined by terms that carry lower powers

of M

a

and/or M

�a

. On the other hand, all terms that are purely holomorphic

or purely anti-holomorphic can be arbitrarily changed by K�ahler transforms and

the terms that are linear in either M

a

or M

�a

are freely changeable by holomor-

phic rede�nitions of moduli �elds. In particular, for any K�ahler manifold we can

write its K�ahler function in the form K =

P

a

M

a

M

�a

+O(M

2

M

2

) (we call this

form of K \holo-normal" for reasons that will be explained in Appendix B); once

we do it for the (1,1) moduli space, eq. (3.37) completely determines all terms
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in K

1

. In Appendix B we shall see that for holo-normal K

1;2

one can always

write formul� (3.40) for the Yukawa couplings. Therefore, both the geometry of

the (1,1) moduli space and the 27

3

Yukawa couplings are completely determined

by eq. (3.37) in terms of a single holomorphic function F

1

of the (1,1) moduli.

Similarly, the geometry of the (1,2) moduli space and the 27

3

Yukawa couplings

are determined by a holomorphic function F

2

of the (1,2) moduli.

We do not have explicit formul� for holo-normal solutions of eqs. (3.37).

However, the so-called restricted K�ahler manifolds familiar from the supergravity

literature

[25;26;38]

have K�ahler functions that are not holo-normal but nevertheless

obey eqs. (3.37) for Yukawa couplings given by formul� (3.40). Explicit formul�

for these K�ahler functions are given by:

K

1;2

= ��

�2

log Y

1;2

; (3.41)

where Y

1

(M

a

;M

�a

) =

N

1

X

a=1

�

@

a

F

1

+ @

�a

F

1

�

� (M

a

+M

�a

) � 2

�

F

1

+ F

1

�

and Y

2

(M

m

;M

�m

) =

N

2

X

m=1

�

@

m

F

2

+ @

�m

F

2

�

� (M

m

+M

�m

) � 2

�

F

2

+ F

2

�

;

verifying that these are indeed solutions to eqs. (3.37) is a straightforward but

very tedious exercise. Notice that formul� (3.41) are not generally covariant; this

is related to the fact that the F

1;2

are only de�ned for some special coordinate

systems and transform non-trivially when we go from one such coordinate system

to another.

?

? Comparing F 's describing the same manifold in di�erent coordinate systems may be

facilitated by having explicit formul� for both K

1;2

and Z

1;2

| the covariant generators

of the Yukawa couplings. An explicit formula for Z

1

can be written as:

Z

1

= F

1

+ F

1

�

X

a

F

1;�a

(M

a

+M

�a

) +

1

2

X

ab

F

1;�a

�

b

(M

a

+M

�a

)(M

b

+M

�

b

) ;

a similar formula holds for Z

2

. Verifying that these formul� for Z

1;2

are consistent with
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In the supergravity context restricted K�ahler manifolds appear as manifolds

spanned by scalar �elds belonging to vector multiplets of a four-dimensional

N = 2 supergravity theory. Heterotic string vacua that are only N = 1 su-

persymmetric in four dimensions a priori need not have anything to do with the

N = 2 supergravity. However, the moduli of the (2,2) vacua are special since

they also appear in the same vacua of the type II superstring,

[14;24]

and whereas

the scattering amplitudes of moduli in the two string theories are not identical,

they do agree to order O(k

2

); a proof of this assertion is given in Appendix C.

Therefore, the K�ahler functions of the moduli are the same in heterotic, type IIA

and type IIB superstrings; this fact was used in ref. [27] to show that K

1

and K

2

are of restricted type, i.e. given by eq. (3.41) for some holomorphic functions F

1

and F

2

. In ref. [28] it was argued that in addition the 27

3

and 27

3

Yukawa cou-

plings are given by third derivatives of the holomorphic functions F

1;2

; however,

such a statement is meaningless without a choice of coordinate system for both

the matter �elds and the moduli. Our results, eqs. (3.40) and (3.41), show that

there is a coordinate system in which this statement is correct.

eqs. (3.39) and with Yukawa couplings given by W

abc

= F

1;abc

and W

lmn

= F

2;lmn

is

another straightforward but tedious exercise.
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4. (2,2) Vacua with Enhanced Gauge Symmetry

4.1. Effect of Enlarged Gauge Group on Metrics for Moduli and

Matter Fields.

So far in this paper we have explicitly assumed that the gauge group is

E

6


E

8

. However, it is well known that at special points or subspaces of moduli

space the low-energy gauge group is H 
 E

6


 E

8

; in such a subspace otherwise

massive gauge bosons become massless and generate H. The majority of exactly

solvable N = (2; 2), c = 9 models constructed to date have this property, for

example orbifolds

[3]

and Gepner's models.

[4]

In this subsection we investigate how

additional massless gauge bosons a�ect our previous results. The heterotic string

relations (3.19), (3.20), and (3.27) between various scattering amplitudes remain

unaltered in the presence of H. However, extra gauge bosons do a�ect the four-

matter-�elds amplitudes on the right-hand sides of these equations, and we shall

see that this modi�es formul� (3.36) for the matter-�eld metric. Also, many

string amplitudes vanish due to conservation of charges with respect to H, which

results in a splitting of the moduli space into di�erent charge sectors, analogous

to, and in addition to, the splitting into (1,1) forms and (1,2) forms. Later in

this section, we shall apply these results to orbifolds and calculate the metrics

of moduli and matter �elds coming from both untwisted and twisted sectors of

an orbifold, as functions of the untwisted moduli. Then we shall perform an

analogous calculation for one of Gepner's models, or more precisely for some

subspaces of the moduli space that pass through the point described by Gepner's

model, and that also have enhanced gauge symmetry.

For simplicity we assume that the extra gauge group is abelian

?

| H =

U(1)

n

. Let us choose a basis for the 27 �elds A

�

and 27 �elds A

�

in which

? The generalization to a nonabelian group is a bit subtler because gauge representation

indices on matter �elds can be related via U matrices to global indices on moduli, and

vice versa.
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they have de�nite U(1)

n

-charges, which we shall denote by Q

(a)

�

and Q

(a)

�

, (a) =

1; : : : ; n. The e�ects of extra gauge bosons on the various four-matter-�elds

amplitudes turn out to be very similar to the e�ects of the U(1) gauge boson

in E

6

that commutes with SO(10) | both are exchanged in exactly the same

SO(10)-singlet channels. For this reason, it proves to be very convenient to treat

the extra U(1)

n

factors on an equal footing with the U(1) � E

6

and have all n+1

U(1) currents canonically normalized. For the U(1) in E

6

, which is generated by

the current J of the N = 2 superconformal algebra, this means that we calculate

charges with respect to J

c

�

1

p

3

J rather than J ; in particular, the U(1) charge

of the components of a 27 (27) that transform as a 10 of SO(10) is now +

1

p

3

(�

1

p

3

). Let us de�ne an (n+1)-vector of charges for the 10 �elds in a 27 or 27,

where the (0) component carries the U(1) � E

6

charge:

Q

�

� fQ

(a)

�

g

n

(a)=0

; where Q

(0)

�

= +

1

p

3

for a 27; Q

(0)

�

= �

1

p

3

for a 27:

(4:1)

Since we can now distinguish 27's from 27's by their charge, in this section we

shall not make any further distinction between them, and shall henceforth denote

both types of matter �elds by Greek indices from the beginning of the alphabet,

A

�

, A

�

, etc.. Similarly, both (1,1) and (1,2) moduli shall be denoted byM

a

,M

b

,

etc.. All the equations derived in this section will be valid for �elds of either type

once the appropriate charges are substituted.

In explicit models with extra gauge symmetry, the �elds T

�

F

do not have

de�nite H-charges,

y

and therefore neither do most of the moduli M

a

, since their

vertices are obtained from vertices of A

�

by taking the operator product with

y This assertion can be proved by reductio ad absurdum: Suppose T

�

F

do have de�nite

charges �q with respect to a Kac-moody current J

0

that generates part of H. Then, at

z 7! w we have J

0

(z) � T

�

F

(w) =

�q

z�w

T

�

F

(w) + O(1) =

�q

w�z

T

�

F

(z) + O(1), which implies

that

1

q

J

0

(z) and T

�

F

(z) belong to the same left-moving N = 2 supermultiplet. But the

only Kac-Moody current in the same supermultiplet with T

�

F

is J , which generates the

U (1) inside E

6

rather than a part of H.
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T

�

F

. In fact, those moduli that are not completely neutral under H must be

linear combinations of �elds with di�erent H-charges, because 
atness of the

scalar potential for the moduli requires that the D-term for each generator of

H cancels. Moduli �elds that are completely neutral with respect to H span

the H-preserving subspace of the moduli space, and shall be denoted by N

A

.

The remaining moduli are charged under H and are denoted C

d

. In this section

capital indices will be reserved for neutral moduli | of either (1,1) or (1,2) type

| while lower-case indices will be used for both charged and neutral moduli. In

the orbifold examples we shall discuss below, the enhanced gauge symmetry is

H = U(1)

2

and is present only in the orbifold limit; the neutral and charged

moduli are from the untwisted and twisted sectors respectively.

Throughout the subspace of enhanced gauge symmetry the charged �elds C

d

must have vanishing vacuum expectation values. Thus to study this subspace

we expand the e�ective Lagrangian into powers of C

d

and C

�

d

and retain only

the lowest relevant terms in this expansion, just as we did before with respect

to the matter �elds. As far as the K�ahler function K is concerned, this means

that we con�ne our attention to the K�ahler function for the neutral �elds N

A

alone, plus the N

A

-dependence of the metrics for the charged moduli and for all

the matter �elds. H-charge conservation in the e�ective �eld theory requires the

matter-�eld metric G

�

�

�

(and all its derivatives with respect to N

A

and N

�

A

) to

be block diagonal, mixing only �elds with the same H-charge:

G

�

�

�

= R

�

�

�C

�

D

= 0 unless Q

�

= Q

�

: (4:2)

We would like to argue that the metric for both charged and neutral moduli,

g

a

�

b

, has the same block-diagonal structure as the matter-�eld metric G

�

�

�

| in

terms of the H-charges Q

�

= Q

�

of the associated matter �elds, not the charges

of the moduli themselves. As discussed in section 2, for any particular point

in the neutral moduli space one can trivialize the U -matrices that relate g

a

�

b

to
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G

�

�

�

in eqs. (2.15); the question is again how much of the trivialization can be

maintained over a �nite patch of the neutral moduli space. We shall see that the

block-diagonal structure of g

a

�

b

can indeed be maintained; in essence, this result

is just a re�nement of the block-diagonal structure of g

a

�

b

with respect to (1,1)

versus (1,2) moduli, and is proved in the same way.

To proceed further we need to study how the scattering amplitudes that are

related to each other by (3.19), (3.20) and (3.27) receive additional �eld theory

contributions due to exchanges of H gauge bosons. Since our inquiry is limited to

the dependence of the various metrics on the neutral moduli only, all amplitudes

on the left-hand sides of (3.19), (3.20) and (3.27) will contain at least two neutral

moduli, and thus will be una�ected by the presence of extra gauge bosons. On

the other hand, the amplitudes on the right-hand sides | for four matter �elds all

transforming as the 10 of SO(10) | do get contributions from H gauge boson

exchange (and from the associated D-terms). In fact, the n extra U(1) gauge

bosons are exchanged between these matter �elds precisely when the U(1) gauge

boson in E

6

(also an SO(10) singlet) is exchanged. The only di�erence is a factor

Q

(a)

�

Q

(a)

�

for the (a)

th

gauge boson, replacing Q

(0)

�

Q

(0)

�

= �

1

3

for the U(1) � E

6

gauge boson. (The sign is plus if A

�

and A

�

are both 27's or both 27's, and is

minus if one is a 27 and one a 27.) Hence the only correction needed for the

three �eld theory amplitudes (3.11) is to make the respective replacements

1

3

7! Q

�

�Q

�

;

�

1

3

7! Q

�

�Q

�

;

1

3

7! Q

�

�Q

�

:

(4:3)

The corrections (4.3) do not a�ect amplitudes on the right-hand side of equa-

tions (3.27), and therefore formul� (3.31) for the Riemann tensor of the moduli

space still hold. However, some of the amplitudes on the right-hand sides of

eqs. (3.19) and (3.20) are a�ected, with the result that eqs. (3.32) for R

��
A

�

D

now
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become (using also (3.31))

R

��
A

�

D

= ��

2

Q

A

�Q

�

G

��


g

A

�

D

+ U

b

�

U

�c

�


�R

b�cA

�

D

: (4:4)

Here Q

A

is the charge vector of the matter �eld associated with the modulus

N

A

(recall that N

A

itself is neutral) and R

b�cA

�

D

is given by eq. (3.31). Charge

conservation under all n+1 U(1) factors | eq. (4.2) | when combined with for-

mula (4.4) tells us that, unless the moduli �elds M

b

and M

c

accompany matter

�elds A

�

and A




with the same H-charges Q

�

= Q




, we must have R

b�cA

�

D

= 0

for all neutral moduli N

A

and N

D

. For the case when moduli N

b

and N

c

are

themselves neutral, this immediately implies that the restricted holonomy group

of the space of H-preserving moduli decomposes into a product of commuting

subgroups. Consequently,

[36]

the H-preserving subspace of the moduli space is

locally a direct product of smaller-dimension subspaces; each of the latter sub-

spaces is spanned by all the neutral moduli N

A

that accompany matter �elds

with a given U(1)

n+1

charge-vector Q

A

. In terms of the K�ahler function this is

expressed by

K(N;N ) =

X

q

K

q

(N

q

; N

�q

) ; (4:5)

where q labels the di�erent charge sectors (not just individual �elds). Note that if

we ignore all but the (0) component of the charge-vector Q

�

, then there are just

two di�erent charge sectors, one containing all the (1,1) moduli and the other

containing all the (1,2) moduli; then eq. (4.5) just reproduces the (1,1)/(1,2)

splitting (cf. eq. (2.18)).

At this point we can solve eq. (4.4) along the lines of our solution to

eqs. (3.32). We �nd

U

�

a

(N;N) = V

�

a

(N) � exp

�

1

2

�

2

Q

�

�Q

q

K

q

�

; (4:6)

with an implicit sum over all charge sectors q for the neutral moduli. Clearly, we

can set the V matrices equal to 1 as before. Then the matter-�eld metric takes

46



the form

G

a

�

b

= g

a

�

b

� exp

�

��

2

Q

�

�Q

q

K

q

�

: (4:7)

This equation can be thought of as giving the matter-�eld metric in terms of

the moduli metric, but it also shows that the moduli metric has the same block-

diagonal structure as the matter-�eld metric,

g

a

�

b

= 0 unless Q

�

= Q

�

: (4:8)

As we will see later in the section, this property can be an aid in solving for

the moduli metric on subspaces of enhanced gauge symmetry. Notice that in the

absence of extra gauge bosons formul� (4.7) reduce to formul� (3.36): For n = 0,

Q

�;�

= �

1

p

3

and

P

q

Q

q

K

q

=

1

p

3

� (K

1

�K

2

).

Next consider the e�ect of H-charge conservation on the Yukawa couplings.

We must have

W

��


= 0 unless Q

�

+Q

�

+Q




= (�

p

3; 0; : : : ; 0): (4:9)

The �

p

3 in the zeroth component of this equation enforces E

6

invariance on the

cubic couplings, requiring that they be either 27

3

or 27

3

couplings (cf. eq. (4.1),

which gives the Q

(0)

�

charges); the reason for this total U(1) � E

6

charge being

�

p

3 rather than zero is our convention of measuring charges of all matter �elds

as if they were 10's of SO(10), while in the actual 27

3

or 27

3

couplings only two

of the �elds are decuplets and the third is an SO(10) singlet.

From eqs. (4.9) and (4.6) we see that all e�ects of extra gauge bosons on

the U -matrices cancel out of the products (WUUU)

abc

and (WUUU)

lmn

, which

allows us to proceed from eqs. (3.31) to eqs. (3.37) exactly as before, without any

modi�cations. Naturally, the subsequent derivation of formul� (3.40) and (3.41)

also goes through exactly as before. The only di�erence is that eqs. (4.9) impose

47



powerful constraints on the form of F

1;2

; we shall exploit these constraints later in

this section. To summarize, we have just shown that in a subspace of the moduli

space where an extra gauge group H appears, the metric for the moduli N

A

spanning the subspace is given in terms of holomorphic functions F

1;2

(N) by the

same formula as before. In addition the subspace has a direct product structure;

each factor in the product is spanned by all the moduli that are accompanied by

matter �elds with a �xed H-charge. Finally, the matter-�eld metric is expressed

in terms of the moduli metric by a di�erent relation than before.

4.2. Orbifold Examples.

Abelian (2,2) orbifolds provide a nice application of our results. They are

constructed by twisting some six-dimensional torus by a \point group" P of SO(6)

rotations that are symmetries of the torus, i.e. that act crystallographically on

the corresponding lattice. To preserve exactly N = 1 spacetime supersymmetry,

P should lie in an SU(3) subgroup of SO(6), and should act nontrivially on all

three complex planes of the torus. To get a (2,2) orbifold of the heterotic string,

each SU(3) rotation of the six-dimensional torus is accompanied by the identical

gauge transformation in a standard SU(3) subgroup of one of the two E

8

factors,

namely the SU(3) appearing in the decomposition E

8

� E

6


 SU(3). Hence,

the four-dimensional gauge group is enlarged beyond E

6


 E

8

and contains also

the subgroup H of the SU(3) that commutes with P . If P is abelian, H can be

U(1)

2

, SU(2)� U(1) (if P = Z

4

or Z

6

), or SU(3) (if P = Z

3

). For simplicity we

restrict ourselves here to the case H = U(1)

2

.

The orbifold model has various moduli coming both from the untwisted sector

and from the twisted sectors. The untwisted (1,1) moduli correspond to changing

the radii of the torus, and the untwisted (1,2) moduli to changing its complex

structure, while preserving the torus's symmetry under P . The extra gauge group

H is present for any choice of radius (or complex structure), so the untwisted
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moduli must be neutral under H and can be denoted by N

A

.

?

If H = U(1)

2

,

then it is easy to see that there are exactly three untwisted (1,1) moduli, with

the following vertex operators:

untwisted (1,1) moduli N

A

$ �

+

A

= @

z

X

i

�

�

@

�z

X

�{

; A = i = 1; 2; 3; (4:10)

where the three complex scalar �elds X

i

parametrize the torus. In addition

there may be up to three untwisted (1,2) moduli, depending on the choice of P ,

although usually there are none. Here we shall compute the N

A

-dependence of

the metrics for the untwisted and twisted (1,1) moduli and 27's while ignoring

untwisted and twisted (1,2) moduli and 27's, and the dependence of the above

metrics on the untwisted (1,2) moduli

[21;40]

; it is entirely straightforward to treat

them too using the same approach.

In order to apply our formula (4.7) for the matter-�eld metric to the orbifold

case, we need to know the charges of the matter �elds, which in turn relies on how

the N = 2 superconformal algebra and the extra U(1)

2

currents are represented

in the conformal �eld theory. In terms of X

i

and its superpartner  

i

, one has

2T

+

F

=

3

X

i=1

 

i

� @

z

X

�{

;

2T

�

F

=

3

X

i=1

�

 

�{

� @

z

X

i

;

J =

3

X

i=1

J

i

�

3

X

i=1

 

i

�

�

 

�{

:

(4:11)

The extra U(1)

2

currents are the two linear combinations of the J

i

that are

orthogonal to J =

P

J

i

, for example

1

p

2

(J

1

� J

2

) and

1

p

6

(J

1

+ J

2

� 2J

3

).

? Actually, H can be enlarged even further at special radii where the toroidal compacti�ca-

tions themselves lead to four-dimensional gauge groups larger than E

8


E

8

.

[39]

We won't

consider those special radii here.
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However, it is more convenient to use the basis J

1

, J

2

, J

3

for the three charges;

in this basis eq. (4.9) becomes

W

abc

= 0 unless Q

�

+Q

�

+Q




= (1; 1; 1): (4:12)

The three currents J

i

can be bosonized: J

i

= i@H

i

,  

i

= e

iH

i

,

�

 

�{

= e

�iH

i

; this

is useful for �nding the charges of twisted matter �elds.

The vertex operators for the three untwisted 27 �elds that accompany the

untwisted moduli in (4.10) use the h =

1

2

, q = 1 lower component �elds

	

+

A

=  

i

�

�

@

�z

X

�{

; A = i = 1; 2; 3: (4:13)

The U(1)

3

charges are clearly

Q

1

= (1; 0; 0); Q

2

= (0; 1; 0); Q

3

= (0; 0; 1): (4:14)

Vertex operators for twisted 27's use the lower components of twist super�elds,

which have the form

	

+

tw

= � � s = � � e

i�

1

H

1

e

i�

2

H

2

e

i�

3

H

3

: (4:15)

Here � and s are respectively bosonic and fermionic twist �elds with dimensions

1

2

P

�

i

(1 � �

i

) and

1

2

P

�

2

i

; the �

i

are the angles (divided by 2�) through which

the three complex planes are rotated in the given twisted sector, 0 � �

i

< 1. To

get the correct dimension h =

1

2

for 	

+

tw

, one requires �

1

+ �

2

+ �

3

= 1. The

U(1)

3

charges of 	

+

tw

are easily read o� the second equation in (4.15):

Q

tw

= (�

1

; �

2

; �

3

); 0 � �

i

< 1; �

1

+ �

2

+ �

3

= 1: (4:16)

The orbifold can have many twisted sectors, each characterized by a di�erent

set of rotation angles (�

1

; �

2

; �

3

) and hence by di�erent U(1)

3

charges, but the
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charges of all the 27's in a given twisted sector are the same. Also, by applying

T

�

F

as given in eq. (4.11) to 	

+

tw

given in (4.15) to obtain the vertices for the

twisted moduli, one can check that those moduli are indeed charged under H.

Now we are ready to calculate the various metrics (in the orbifold limit),

starting with the K�ahler function for the three untwisted (1,1) moduli N

A

. We

begin by noting that the charges Q

�

for the three associated 27 �elds are all

unequal (cf. eq. (4.14)). Hence the moduli space is a direct product, and

K(N;N ) = K

1

(N

1

; N

�

1

) +K

2

(N

2

; N

�

2

) +K

3

(N

3

; N

�

3

): (4:17)

The superscript on K labels the di�erent charge sectors as in eq. (4.5); each

sector happens to contain only one �eld in this case. The curvature equation

(3.37) can now be applied to each �eld N

A

separately. Since the only nonzero

Yukawa coupling involving at least two untwisted 27's is W

123

(as can be seen

just from H-charge conservation, eq. (4.12)), the term in (3.37) involving W

AAe

vanishes, leaving

R

A

�

AA

�

A

= 2�

2

g

A

�

A

g

A

�

A

; A = 1; 2; 3: (4:18)

Thus each untwisted modulus spans a one-dimensional K�ahler manifold of con-

stant Riemannian curvature; that space is SU(1; 1)=U(1)

[41]

whose K�ahler func-

tion is given by

K

A

= ��

�2

log

�

N

A

+N

�

A

�

: (4:19)

(up to �eld rede�nitions and K�ahler transforms). The full untwisted moduli space

is (SU(1; 1)=U(1))

3

, with metric

g

A

�

B

= �

�2

�

A

�

B

� (N

A

+N

�

A

)

�2

; A;B = 1; 2; 3: (4:20)

This space is a restricted K�ahler manifold | the total untwisted K�ahler function
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(4.5) can be written as

K(N;N ) = ��

�2

log Y (N;N ) ; where Y (N;N) =

3

Y

A=1

(N

A

+N

�

A

) (4:21)

is derived from the holomorphic function

[27]

F(N) = N

1

N

2

N

3

.

?

The result (4.21)

has previously been obtained via several di�erent approaches | by truncating

the N = 1 supergravity Lagrangian in ten dimensions,

[20]

by using the symmetries

of the orbifold S-matrix generating functional,

[21]

by direct computation,

[23]

and

by combining the N = 2 supergravity/type II approach with a Peccei-Quinn

symmetry.

[27]

From eq. (3.40) we see that the one nonvanishing untwisted 27

3

term in the superpotential must be a constant, W

123

= �

�3

@

1

@

2

@

3

F = �

�3

. This

is an example of the strong consistency constraints on the solutions of (3.37)

when the matter �elds carry charge under an extra gauge symmetry.

The metric g

d�e

(N;N) for the twisted (1,1) moduli C

d

can also be obtained

by integrating (3.37). There are two types of twisted moduli to consider. The

�rst type is accompanied by a 27 �eld with charge Q

�

= (�

1

; �

2

; �

3

) with all three

�

i

> 0. In this case eqs. (4.16) and (4.12) show that W

Adx

= 0 for any choice of

(1,1) index x. Thus eq. (3.37) again simpli�es, to

R

d�eA

�

B

= �

2

g

A

�

B

g

d�e

; (A;B = 1; 2; 3; d; e are twisted indices): (4:22)

Using formula (4.20), eq. (4.22) can be integrated to give

g

d�e

= �

�2

�

d�e

�

3

Y

A=1

(N

A

+N

�

A

)

�1

: (4:23)

? The constant-curvature metric on

�

SU (1; 1)=U (1)

�

3

is often written as g

A

�

B

= �

�2

�

A

�

B

�

(1 � N

A

N

�

A

)

�2

(no sum on A), which di�ers from formula (4.20) by a holomorphic re-

de�nition of untwisted moduli �elds N

A

. The K�ahler function that generates this metric

| K = ��

�2

log

Q

A

(1 � N

A

N

�

A

) | does not appear to be of the restricted type. We

chose to de�ne �elds N

A

in a way that leads to formula (4.21) precisely to show that

�

SU (1; 1)=U (1)

�

3

is a restricted K�ahler manifold.
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Another way to get this result is by expanding F in powers of C

d

[42]

:

F = N

1

N

2

N

3

+

1

4

X

d

(C

d

)

2

+ � � � : (4:24)

The key point is that because W

Add

0

= 0, the O((C

d

)

2

) term in F must be inde-

pendent of N

A

. (It can then be put into the above form by a linear transformation

of the C's.) From this F one obtains

K(N;C) = � �

�2

log Y (N;C); Y (N;C) = Y (N) + C

d

C

�

d

+ � � � ; (4:25)

which in turn gives eq. (4.23). One can also easily calculate the O(C

2

C

2

) terms

in K(N;C) in this way, using formul� (3.37) and known expressions

[43]

for the

Yukawa couplings of three twisted 27 �elds, though we will not do so here.

The second type of twisted moduli is accompanied by a 27 �eld where one

of the �'s in (4.16) vanishes, say �

3

= 0, so that the 27 charges are Q

�

=

(�

1

; 1 � �

1

; 0). Now there can be nonzero Yukawa couplings of the form W

3dd

0

,

where Q

3

= (0; 0; 1) and Q

�

0

= (1 � �

1

; �

1

; 0). The W

3dd

0

will complicate eq.

(4.22) when A;B = 3. However, all twisted moduli C

d

of this type actually

preserve one of the two extra U(1)'s, namely the U(1) generated by J

1

+ J

2

�

2J

3

: C

d

is a linear conbination of two �elds with charge vectors (��

1

; �

1

; 0) and

(1 � �

1

;�1 + �

1

; 0), which are both orthogonal to J

1

+ J

2

� 2J

3

. Furthermore,

under this extra U(1) the charge (+1) of the 27 �elds accompanying N

1

, N

2

and

C

d

di�ers from the charge (�2) of the 27 accompanying N

3

. Thus we can use the

extra U(1) preserved by the C

d

to argue that the K�ahler function K(N

1

; N

2

; C

d

)

is independent of N

3

. In particular, g

d�e

is independent of N

3

, so we need only

study R

d�eA

�

B

for A;B = 1; 2. But for A;B = 1; 2 the Yukawa couplings W

Add

0

do

vanish, so eq. (4.22) holds, and integration of it with respect to N

1

and N

2

gives

g

d�e

= �

�2

�

d�e

�

2

Y

A=1

(N

A

+N

�

A

)

�1

(4:26)

in place of formula (4.23).
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Finally, we use eq. (4.7) to compute the matter metrics. For the three un-

twisted 27 �elds, with U(1)

3

charges given by (4.14), and using also the K�ahler

functions from (4.19), we get

G

A

�

B

= g

A

�

B

�exp(��

2

K

A

) = �

�2

�

A

�

B

�(N

A

+N

�

A

)

�1

: A;B = 1; 2; 3 (4:27)

This result agrees with ref. [20] | the latter result for K(N

A

; A

A

) is obtained by

truncating ten-dimensional supergravity and is valid to all orders in the 27 �elds;

our result only gives the O(A

2

) terms. For the twisted 27 �elds, the charges are

given by (4.16) and the twisted moduli metrics by eqs. (4.23) and (4.26), yielding

G

d�e

= g

d�e

�

3

Y

A=1

(N

A

+N

�

A

)

�

A

= �

�2

�

d�e

�

8

<

:

Q

3

A=1

(N

A

+N

�

A

)

�

A

�1

; if all �

A

> 0 ;

Q

2

A=1

(N

A

+N

�

A

)

�

A

�1

; if �

3

= 0.

(4:28)

4.3. Tensor Product Examples.

Another application of our results is to the exactly solvable versions of Calabi-

Yau compacti�cations discussed by Gepner,

[4]

which are constructed by taking the

tensor product of a number of minimal c < 3, N = 2 superconformal theories.

Each component theory has its own U(1) current J

i

, and so the tensor product

theory has an extra U(1)

n

gauge symmetry if there are n + 1 components |

the sum of all n + 1 currents, J �

P

i

J

i

, generates the U(1) contained in E

6

,

not an extra U(1) factor. (In some cases there may be a few additional gauge

bosons.) The tensor product theory describes a particular point in the moduli

space of a Calabi-Yau manifold; at that point the four-dimensional gauge sym-

metry is enhanced. Some of the additional gauge bosons may remain massless on

subspaces of the moduli space that pass through the tensor product point (and
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have positive dimensions); the geometry of such subspaces can be studied along

the same lines as the orbifold examples just discussed.

Vertex operators 	

�

of the product theory are made of products of world-

sheet �elds of each c

i

< 3 component. For each component �eld the U(1) charge

q

i

and the conformal weight h

i

obey 2h

i

� jq

i

j, assuming the conventional N = 2

normalization of the currents, J

i

(z)J

j

(w) �

c

i

3

�

ij

�(z�w)

�2

. Hence, the only way

to assemble 	

�

with h �

P

i

h

i

=

1

2

and q �

P

i

q

i

= �1 is to have q

i

= �2h

i

for

each i; that is, 	

�

are products of lower members of (anti) chiral multiplets of

each of the n + 1 left-moving N = 2 superalgebras. The U(1)

n+1

charge vectors

of matter �elds generated by these 	

�

can be written as Q = (q

1

; : : : ; q

n+1

). To

obtain moduli vertices �

�

we act with T

�

F

�

P

i

T

�

Fi

on 	

�

; as a result, moduli

are linear combinations of �elds with charge vectors

(q

1

; : : : ; q

i

� 1; : : : ; q

n+1

) for all i such that q

i

6= 0: (4:29)

The sign here is `�' for the (1,1) moduli and `+' for the (1,2) moduli; the reason

why we do not apply T

�

Fi

to 	

�

when q

i

= 0 is that in this case the i

th

factor in

	

�

is the unit operator. Since

P

i

q

i

= �1, eq. (4.29) veri�es that all moduli are

neutral with respect to J �

P

i

J

i

which generates the U(1) � E

6

; in addition,

whenever some q

i

= 0, the modulus is also neutral with respect to the currents

J

i

�

c

i

9

J , which are orthogonal to J and hence generate abelian gauge factors

outside of E

6

.

If a modulus N

A

is to be completely neutral with respect to the entire H =

U(1)

n

, the charge vector Q

�

of the accompanying matter �eld should have the

form (0; : : : ;�1; : : : ; 0) (cf. eqs. (4.14) for untwisted matter �elds in the orbifold

case). Alas, in any N = 2 world-sheet theory all chiral primary �elds have

jqj = 2h � c=3; hence, if all components have c

i

< 3 then no modulus �eld is

totally neutral and the full U(1)

n


E

6


E

8

enhanced gauge symmetry exists only

at the tensor product point in the moduli space. On the other hand, subgroups
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of H generated by currents fJ

i

�

c

i

9

Jg

i2I

with jIj < n are preserved by the

moduli accompanying matter �elds that have q

i

= 0 for all i 2 I. Note however

that all 27 (27) �elds of this kind have the same charges �c

i

=9 (+c

i

=9) with

respect to all unbroken subgroups. Therefore, eq. (4.5) does not require that the

space of neutral moduli factorize into a direct product (except into (1,1) and

(1,2) moduli, if the neutral moduli include moduli of both kinds). This behavior

is quite di�erent from the orbifold examples of the previous subsection.

As a particular example let us consider the tensor product of �ve copies of

the k = 3, c =

9

5

element of the c < 3 discrete series

[4]

; this theory leads to

101 27 matter �elds and one 27 �eld. The 27 �eld has U(1)

5

charge vector

Q = (

1

5

;

1

5

;

1

5

;

1

5

;

1

5

), so the one (1,1) modulus of this (2,2) vacuum breaks all

four U(1) factors outside E

6


 E

8

. Note that a large expectation value of this

modulus turns this model of Gepner into a large-radius Calabi-Yau vacuum (with

the internal manifold being a quintic surface in CP

4

) which indeed does not have

an enlarged gauge group. On the other hand, if one of the 101 (1,2) moduli is

given an expectation value, it will preserve an extra U(1) group in 20 of the 101

cases, an extra U(1)

2

in 60 of the cases, and an extra U(1)

3

in 20 of the cases;

the full H = U(1)

4

exists only at the tensor product point. This behavior follows

from the U(1)

5

charges of the matter �elds which are summarized in the following

table:

one 27 �eld has charge Q =

�

1

5

;

1

5

;

1

5

;

1

5

;

1

5

�

;

one 27 �eld has charge Q =

�

�1

5

;

�1

5

;

�1

5

;

�1

5

;

�1

5

�

;

20 27 �elds have charge Q =

�

�2

5

;

�1

5

;

�1

5

;

�1

5

; 0

�

;

30 27 �elds have charge Q =

�

�2

5

:

�2

5

;

�1

5

; 0; 0

�

;

30 27 �elds have charge Q =

�

�3

5

;

�1

5

;

�1

5

; 0; 0

�

;

20 27 �elds have charge Q =

�

�3

5

;

�2

5

; 0; 0; 0

�

;

(4:30)

all charges here are given modulo permutations of the �ve components. We would

also like to know the maximal set of moduli preserving a given subgroup of U(1)

4

.

For example, while there are 20 moduli each preserving three extra gauge factors
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(the moduli accompanying 27 �elds in the last row of table (4.30)), only two

moduli preserve the particular U(1)

3

subgroup generated by J

1

�

1

5

J , J

2

�

1

5

J

and J

3

�

1

5

J ; the charges of the two accompanying 27 �elds are

Q

1

= (0; 0; 0;

�3

5

;

�2

5

); Q

2

= (0; 0; 0;

�2

5

;

�3

5

): (4:31)

Similarly, the U(1)

2

subgroup generated by e.g. J

1

�

1

5

J and J

2

�

1

5

J persists on

a subspace of twelve (complex) dimensions, while a forty-dimensional subspace

preserves the single U(1) generated by J

1

�

1

5

J .

Since the only (1,1) modulus does not preserve the enhanced gauge symmetry,

let us concentrate on the (1,2) moduli and the 27 matter �elds. At the tensor

product point, the U(1)

4


 E

6

charge conservation restricts the 27

3

Yukawa

couplings in a manner similar to eq. (4.12) for the 27

3

couplings in the orbifold

case:

W

abc

= 0 unless Q

�

+Q

�

+Q




= (

�3

5

;

�3

5

;

�3

5

;

�3

5

;

�3

5

): (4:32)

(Equation (4.32) follows from (4.9) after correcting for the non-canonical nor-

malization of the currents J

i

.) The �rst three components (plus the sum of the

last two) of this constraint remain valid on the two-dimensional subspace that

preserves the U(1)

3

subgroup discussed above. This information su�ces to show

that W

ABC

= W

ABx

= 0, where A;B;C are indices for the two U(1)

3

-neutral

�elds N

A

, with 27 charges given by eq. (4.31), and x is the index for any of the

99 remaining (1,2) moduli C

x

. The vanishing of these Yukawa couplings means

that eq. (3.37) for the N

A

becomes

R

A

�

CB

�

D

= �

2

(g

A

�

C

g

B

�

D

+ g

A

�

D

g

B

�

C

) ; (4:33)

with A;B;C;D = 1; 2. The neutral moduli space is thus a constant-Riemannian-

curvature K�ahler manifold. Such manifolds are coset spaces; the m-dimensional
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manifold whose Riemann tensor is given by (4.33) is SU(m; 1)=(SU(m)
U(1)),

[41]

with metric

�

2

g

A

�

B

=

�

A

�

B

1�N

C

N

C

+

N

A

N

�

B

(1 �N

C

N

C

)

2

; (4:34)

A;B;C = 1; 2; : : : ;m.

?

In the present case m = 2.

The metric for the 99 charged (1,2) moduli, as a function of N

1

and N

2

,

is block-diagonal according to the U(1)

3

charges of the 27's, as discussed in

subsection 4.1; there are 44 blocks altogether, including the neutral block. Of

the 43 charged blocks, 19 contain �elds C

x

for which W

Axz

= 0 for all �elds N

A

and C

z

(these 19 blocks happen to contain 63 of the 99 �elds). The metric for

these �elds obeys the same eq. (4.22) as the metric for the twisted moduli in the

orbifold example, and the solution here is

g

x�y

= �

�2

�

x�y

� (1�N

C

N

C

)

�1

: (4:35)

The metric for the remaining 36 moduli (contained in 24 blocks) is not so easily

found, because the relevant Yukawa couplings are not forbidden by H-charge

conservation. As usual, the matter-�eld metrics are given in terms of the moduli

metrics by eq. (4.7).

Similar analysis can be applied to the twelve-dimensional subspace spanned

by the (1,2) moduli that preserve the U(1)

2

group generated by J

1

�

1

5

J and J

2

�

1

5

J . As in the previous case, Yukawa couplings of the form W

ABC

and W

ABx

all

vanish, which again means that the neutral subspace | now SU(12; 1)=(SU(12)


U(1)) | has a constant-curvature metric given by eq. (4.34), with m = 12. The

remaining 89 (1,2) moduli split into 14 blocks according to the U(1)

2

charges of

the matter �elds; unfortunately, none of those blocks can be handled as easily as

the twisted orbifold moduli.

? The space SU (m; 1)=(SU (m)
U (1)) is a restricted K�ahler manifold

[25]

: The holomorphic

function F(N ) = �

1

4

�

1 +

P

(N

C

)

2

�

leads to a K�ahler function K(N;N ) = ��

�2

log(1�

N

C

N

C

) and metric (4.34).
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5. Conclusions

We would like to conclude this article with a discussion of two particularly

important classes of (2,2) vacua of the heterotic string: the Calabi-Yau vacua,

and the vacua in which E

6

is broken via the Hosotani-Witten mechanism. First,

however, let us brie
y summarize our results. This paper focused on the subclass

of classical four-dimensional vacua of the heterotic string that exhibit N = 1

space-time supersymmetry and E

6


 E

8

gauge group. We derived various iden-

tities among tree-level string scattering amplitudes of the moduli and the 27

and 27 matter �elds using the left-moving N = 2 superconformal algebra. By

demanding that the low-energy e�ective �eld theory gives rise to the same S-

matrix identities, we were able to relate various pieces of the e�ective action to

each other. We con�rmed that the metric for (1,1) and (1,2) moduli is locally

a direct product of two restricted K�ahler manifolds, as can also be understood

from type II superstring arguments.

[24;27]

Each factor is completely determined by

the 27

3

and 27

3

terms in the superpotential for the corresponding matter �elds.

We also determined the metric for the matter �elds, which is needed to establish

the precise relation between the 27

3

and 27

3

terms and the moduli metric, as

well as to properly normalize the physical Yukawa couplings. Unlike the moduli

metric, the metric for the matter �elds depends on both (1,1) and (1,2) moduli.

Finally, we showed how one can often solve exactly for the moduli and matter-

�eld metrics on subspaces of the moduli space where the four-dimensional gauge

group is enhanced beyond E

6


 E

8

.

Despite our repeated use of the terms \(1,1) moduli" and \(1,2) moduli", in

the foregoing we never assumed that the four-dimensional (2,2) vacua described

Calabi-Yau compacti�cations of the ten-dimensional heterotic string. On the

other hand, Calabi-Yau compacti�cations certainly provide a large class of (2,2)

vacua, and recent work

[4;6]

suggests that they may exhaust the (2,2) vacua with

spacetime supersymmetry and E

6


 E

8

gauge symmetry. It is therefore of in-
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terest to see what implications the general (2,2) results have for the Calabi-Yau

case. First of all, one of the (1,1) moduli of a Calabi-Yau manifold represents

its overall radius.

y

In the large-radius limit where this (1,1) modulus has a large

expectation value, the world-sheet theory describing the Calabi-Yau vacuum is a

weakly coupled sigma model. In this region of the moduli space (often called the

\�eld-theory limit" as well as the large-radius limit), a Kaluza-Klein treatment

of the ten-dimensional e�ective �eld theory for the heterotic string provides a

good approximation to the four-dimensional e�ective theory. Expressions for the

Yukawa couplings and K�ahler functions in this approximation are known, and can

be checked against the relations between them described in this article. These

relations can then be used to extend some of the large-radius Calabi-Yau results

to smaller radius, as has also been pointed out in ref. [28].

In the in�nite radius limit, the 27

3

Yukawa coupling are purely topological,

i.e. they do not depend on any of the moduli, and the (1,1) moduli space appears

to be a restricted K�ahler manifold with a cubic F

1

=

1

6

W

abc

M

a

M

b

M

c

.

[18;19]

For

Calabi-Yau manifolds of �nite size, (some of) the Yukawa couplings receive cor-

rections that are non-perturbative in the overall radius

[12]

; thus F

1

is no longer

purely cubic, and the metric for the (1,1) moduli receives non-perturbative correc-

tions too. (Actually, the corrections are required to be non-perturbative | i.e.,

exponentially suppressed in the large radius limit | only when the manifold is

smooth and its curvature is everywhere small compared to 1=�

0

.) For Calabi-Yau

compacti�cation on manifolds that are not large, the �eld theory limit no longer

can be expected to provide a good approximation to F

1

; nevertheless, even in

this case F

1

| whatever it might be | determines both the metric for the (1,1)

moduli and the 27

3

Yukawa couplings

[28]

: eqs. (3.40) and (3.41) are valid for all

y We do not know at present how to identify this modulus in an arbitrary (2,2) vacuum,

although for many particular exactly solvable (2,2) vacua it is readily identi�ed; such an

identi�cation in the general case would be an important step in establishing that all (2,2)

vacua are in fact Calabi-Yau compacti�cations.

[44]
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(2,2) vacua. Moreover, since F

1

(M

a

) is a holomorphic function, knowledge of its

large-radius limit provides some constraints on its overall behavior.

For the (1,2) moduli the situation is quite di�erent. Neither 27

3

Yukawa

couplings nor the metric for the (1,2) moduli depends on any of the (1,1) moduli,

including the overall radius of the manifold. Therefore, all results obtained in

the �eld theory limit for the 27

3

couplings and for the (1,2) moduli metric

[19]

are

exactly valid for all sizes of the manifold.

[28]

The precise correspondence between

the (1,2) moduli metric obtained in ref. [19] and the metric found in this paper

can be established by introducing homogeneous coordinates on the (1,2) moduli

space as explained in ref. [45].

The di�erence in the large-radius behaviors of the (1,1) and (1,2) moduli

metrics is due to the identi�cation of the overall radius of a manifold as one of

its (1,1) moduli. (The approximate Peccei-Quinn symmetry for the radius mode

also plays a rôle, constraining the form of the radius-dependence of the (1,1)

moduli metric.) In fact, equations (3.37) for the curvature of the moduli space

in terms of the Yukawa couplings are completely symmetric under simultaneous

interchange of 27's and 27's, and of (1,1) and (1,2) moduli. This symmetry is

related to the ambiguity in the relative sign of the left-moving U(1) current J(z)

and the right-moving current

�

J(�z): if we change the sign of J(z), then 	

+

�

$ 	

�

�

and �

+

�

$ �

�

�

. (Similarly, if we change the sign of

�

J(�z) while keeping the sign

of J(z), then 	

+

�

$ 	

+

��

, etc.) This ambiguity makes it di�cult to identify, at

a generic point in the moduli space of a putative Calabi-Yau compacti�cation,

which modes are the (1,1) moduli and which the (1,2) moduli. It is conceivable

that in some cases both assignments could be \correct"; i.e. that the same (2,2)

vacuum could be interpreted as compacti�cation on a Calabi-Yau manifoldM

with Hodge numbers h

1;1

= N

1

, h

1;2

= N

2

, and also on another manifoldM

0

with h

0

1;1

= N

2

, h

0

1;2

= N

1

. At present we have no convincing examples of this

phenomenon, however.
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The (2,2) vacua we have been discussing are not the most phenomenologically

promising heterotic string vacua; one generally prefers a smaller four-dimensional

gauge group than E

6

. One way to achieve this is to give Planck-scale expectation

values to certain components of 27's and 27's in a (2,2) vacuum, in a way that

is consistent with the classical string equations of motion and spacetime super-

symmetry, i.e. that retains a (0,2) superconformal symmetry.

[32;46]

(This has the

Calabi-Yau interpretation of deforming the vector bundle that describes the em-

bedding of the spin connection into the gauge group.

[32]

) Because the left-moving

N = 2 algebra is broken in these vacua, the techniques used in this article limit

one to studying the (0,2) vacua perturbatively in the 27 and 27 expectation val-

ues, and only up to fourth order with the amplitudes explicitly discussed here.

(There are of course also N = 2 Ward identities relating higher-point scattering

amplitudes for moduli and matter �elds, which we have not examined in detail

but which might prove useful in this context.)

Another mechanism of gauge symmetry breaking, which is discrete rather

than continuous, and which is more amenable to our analysis, is the Hosotani-

Witten mechanism.

[8]

Here a Calabi-Yau manifoldM is modded out by a discrete

symmetry group H, and a set of Wilson lines are chosen for the quotient manifold

M=H| homomorphisms from H into E

6


E

8

. The new four-dimensional gauge

group is the subgroup of E

6


 E

8

that commutes with this image of H. Note

that H does not have to act freely on M| in this case M=H is singular, and

the \Wilson line" description is not entirely accurate, but we will use it anyway.

The same procedure may be applied directly to a (2,2)-superconformal world-

sheet theory with a discrete symmetry (or to a connected family of such (2,2)

theories), regardless of whether or not there is a Calabi-Yau interpretation of

the corresponding string vacuum. From the point of view of the conformal �eld

theory, the procedure can be described as an orbifold twist

[3]

by H. (For a

very clear, detailed discussion of Wilson lines from the conformal-�eld-theory

perspective, see ref. [47].)
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As pointed out in ref. [47], the (twisted) conformal �eld theory describing

Wilson lines on M=H still possesses N = (2; 2) supersymmetry, although the

charge quantization of the left-moving superalgebra may be spoiled | twisted

states may have fractional charges with respect to J(z). The spectrum of the

twisted theory consists of an untwisted sector containing the H-invariant states

of the original theory, plus various twisted sectors. However, in most cases the

twisted sectors do not contain any moduli | by which we mean �elds of type

�

�

, as in eq. (2.12). (The only twisted sectors in which moduli can appear are

those where the twist element h 2 H has �xed points and is not accompanied by a

Wilson line.) Only the moduli preserve the left-movingN = 2 algebra when given

an expectation value; hence the (2,2) Wilson-line vacua are parametrized solely

by expectation values for the H-invariant moduli of the untwisted theory. By

analogy with the orbifold examples of section 4.2, we shall denote these untwisted

moduli by N

a

.

We are interested in the K�ahler function K(N

a

) for the Wilson-line theory,

plus the N

a

-dependence of the metrics for the various matter �elds | any mass-

less supermultiplets transforming nontrivially under the surviving subgroup of

E

6

. Even though the twisted sectors do not typically contain moduli, they may

still contain matter �elds. (For compacti�cations on su�ciently large Calabi-Yau

manifolds this can only happen for twists with �xed pionts.) Because the twisted

matter �elds are not related to any moduli (their vertices are not constructed

from �elds of the type 	

�

), we cannot say anything in general about their met-

ric. Henceforth we concentrate on the untwisted moduli and matter �elds.

In general, �elds in the untwisted sector of a twisted conformal �eld theory

(here, the Wilson-line theory onM=H) have exactly the same scattering ampli-

tudes at string tree-level as they do in the original, untwisted theory (here, the

theory on M). Furthermore, it would appear that the vertex operators for the

untwisted moduli and matter �elds are related to each other exactly as before, us-
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ing the N = 2 algebra and the free fermions �

p̂

for the 10 components of the 27's

and 27's (eqs. (2.12), (2.8)), etc. Then we could apply all of our previous results.

The only subtlety is that the vertex operator relations are no longer invariant

under H, because the Wilson lines break E

6

. In other words, some H-invariant

matter �elds are related to H-noninvariant moduli, and H-invariant moduli are

generally related to both H-invariant and H-noninvariant matter �elds.

[30]

For example, we can still calculate the K�ahler function K(N

a

) for the H-

invariant moduli in terms of Yukawa couplings using eqs. (3.37); we just have

to remember that the Yukawa couplings W

abc

(N) and W

lmn

(N) that appear in

these equations are for 27's and 27's in the untwisted theory, and not all of

their 27 E

6

components will survive the H projection. (The corresponding cubic

superpotential couplings of the surviving E

6

components may in fact vanish by

gauge invariance.) Once we have determined K(N),

?

and hence the metric for

the H-invariant moduli N , we can use eqs. (3.36) to �nd the metric for the H-

invariant matter �elds that are related to the N . The remaining matter �elds are

related to H-noninvariant moduli, and so to calculate the metric for these matter

�elds one �rst calculates the metric for H-noninvariant moduli as a function of

the N . As with K(N), this can be done in terms of the 27

3

and 27

3

couplings in

the untwisted theory using eqs. (3.37); the only di�erence is that more of these

Yukawa couplings come into play.

Thus our general results for (2,2) vacua with E

6


 E

8

gauge symmetry also

provide useful information about metrics in the more realistic vacua with Wilson

lines. Greater use of this information can be made in speci�c models by taking

advantage of various discrete and enhanced gauge symmetries; work along these

lines is in progress.

? A potential additional (technical) subtlety is that it may not be possible to solve (3.37)

using the restricted K�ahler ansatz (3.41) forK(N ), basically because there is no guarantee

that the �elds M

a

appearing in (3.41) have to be eigenstates of the action of H.
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APPENDIX A

This appendix contains an alternative derivation of eqs. (3.38) and of the in-

dependence of the 27

3

superpotential terms from the (1,2) moduli and of the 27

3

terms from the (1,1) moduli.

[37]

This time we do not make any use of the Riemann

tensor; instead, we consider scattering amplitudes A(M

A

1

; : : : ;M

A

n

; A

�

; A




; A

�

)

and A(M

A

1

; : : : ;M

A

n

; A

�

; A

�

; A

�

) that involve three matter super�elds and sev-

eral moduli super�elds, all of the same chirality. In terms of ordinary �elds, two

of the n+3 �elds involved are fermions while the other n+1 �elds are scalars; by

supersymmetry, it does not matter which two �elds are fermionic. Na��vely, these

amplitudes are proportional to derivatives of the Yukawa couplings; however, in

general coordinate systems, the correct �eld-theoretical expressions are:

A

FT

(M

A

1

; : : : ;M

A

n

; A

b

; A

c

; A

d

) = ie

�

2

(K

2

�3K

1

)=2

r

A

1

� � �r

A

n

�

e

2�

2

K

1

W

bcd

�

;

A

FT

(M

A

1

; : : : ;M

A

n

; A

l

; A

m

; A

n

) = ie

�

2

(K

1

�3K

2

)=2

r

A

1

� � �r

A

n

�

e

2�

2

K

2

W

lmn

�

:

(A:1)

We shall derive eqs. (A.1) later in this appendix. Before we do that, we shall

show that in string theory the amplitudes on the left hand side of eqs. (A.1)

either vanish or are totally symmetric in all their n+ 3 indices.

Let us start with the case of three 27 matter �elds and n (1,1) moduli. The

heterotic string amplitude for this process is given by

A(A

�

1

; A

�

2

; A

�

3

;M

a

4

; : : : ;M

a

n+3

) = U

�

4

a

4

� � �U

�

n+3

a

n+3

� (A:2)

� jJ(z

1;2;3

)j

2

Z

C

n

d

2

z

4

� � � d

2

z

n+3

E(z

i

; �z

i

)�




(i�	

+

)

1

� (i�	

+

)

2

�	

��

3

� �

+

4

� � � � � �

+

n+3

�

;
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where (i�	

+

)

1

is a short hand notation for i�(z

1

)	

+

�

1

(z

1

; �z

1

), etc. The operator

	

��

3

here | i.e., 	

��

�

3

(z

3

; �z

3

) | is a vertex operator for the SO(10) singlet �eld

inside the 27 multiplet A

�

3

.

y

This operator has conformal weight h = 1 and the

U(1) charge q = �2 and thus is a lower component of a chiral multiplet of the

left-moving N = 2 superalgebra. Hence, the operator product of 	

��

(z) with

T

�

F

(w) is non-singular when w ! z, while the operator product expansion of

T

+

F

(w) �	

��

(z) starts with a simple pole O((w � z)

�1

). Therefore,

h�

1

� �

2

i �




	

+

1

�	

+

2

�	

��

3

� �

+

4

� � � � � �

+

n+3

�

=

1

z
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I

z

4

dw

2�i

w � z

2

z
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�




	

+
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�	

+
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� 2T

�
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�	

+

4
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� � � � � �

+

n+3

�

= h�

2

� �

4

i �




�

+

1

�	

+

2

�	

��

3

�	

+

4

� �

+

5

� � � � � �

+

n+3

�

;

(A:3)

which means that we can interchange vertex operators i�	

+

and �

+

in the

correlator in (A.2). Since the E factor in (A.2) and the integral itself (including

the Jacobian jJ j

2

) are symmetric under permutation z

1

$ z

4

, we obtain

U

�

1

a

1

� A(A

�

1

; A

�

2

; A

�

3

;M

a

4

;M

a

5

; : : : ;M

a

n+3

) (A:4)

= U

�

4

a

4

� A(M

a

1

; A

�

2

; A

�

3

; A

�

4

;M

a

5

; : : : ;M

a

n+3

):

Now, if we de�ne moduli and matter �elds such that V

�

a

= �

�

a

, then the U ma-

trix is proportional to the unit matrix and eq. (A.4) implies that the amplitude

A(A

a

1

; A

a

2

; A

a

3

;M

a

4

; : : : ;M

a

n+3

) is totally symmetric with respect to its n+3 in-

dices a

1

; : : : ; a

n+3

. Similarly, the amplitudeA(A

m

1

; A

m

2

; A

m

3

;M

m

4

; : : : ;M

m

n+3

)

y Two of the n+ 3 vertex operators here correspond to space-time fermions and thus have

right-moving quantum numbers very di�erent from the n+1 scalar vertices. However, the

left-moving quantum numbers do not distinguish between di�erent members of the same

space-time supermultiplet. Since it is the left-moving quantum numbers that are relevant

to our arguments, our notations do not indicate which �elds and vertices are fermionic.
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is also totally symmetric in m

1

; : : : ;m

n+3

. In view of eqs. (A.1), this symmetry

immediately implies eqs. (3.38).

Next consider the string amplitude that involves three 27 �elds and n > 0

(1,2) moduli. In this case we have

A(A

�

; A

�

; A




;M
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; : : : ;M

m
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� 2T

+

F

(w) �	

�

4

� �

�

5

� � � � � �

�

n+3

�

= 0;

(A:5)

because operator products of T

+

F

with �

�

or with 	

+

are non-singular, and the

single pole in the operator product expansion of T

+

F

(w) � 	

��

3

is cancelled by

the factor w � z

3

in the numerator. The same argument shows that the string

amplitude involving three 27 matter �elds and n > 0 (1,1) moduli �elds vanishes

too. Finally, the amplitudes that involve three matter �elds and both (1,1) and

(1,2) moduli involve correlators of the types




	

+

	

+

	

��

� �

+

� � ��

+

� �

�

� � ��

�

�

and




	

�

	

�

	

++

� �

�

� � ��

�

� �

+

� � ��

+

�

. Arguments similar to (A.5) show that

these correlators are total world-sheet derivatives. Consequently, the amplitudes

involving these correlators vanish at zero momentum. Therefore, at zero momen-

tum, all string amplitudes involving three matter �elds and several moduli �elds

of the same chirality vanish, unless all moduli accompanying three 27 �elds are

of the (1,1) type or all moduli accompanying three 27 �elds are of the (1,2) type.

This is the theorem of Distler and Greene.

[37]

Now let us go back to the �eld theory and derive eqs. (A.1). First con-

sider amplitudes A(M

A

1

; : : : ;M

A

n

; A

�

; A




; A

�

) in rigidly supersymmetric �eld

theory (no gravity). For n = 0, this amplitude is just the Yukawa coupling:

A(A

�

; A




; A

�

) = iW

�
�

. For n = 1, four Feynman diagrams contribute to
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(A:6)

The contribution of the �rst diagram is momentum independent; for the other

three three diagrams, the kinematical factors associated with the sigma-model

vertex (�) and with the matter-�eld propagator connecting it to the superpoten-

tial vertex (�) cancel each other, leaving only a momentum independent factor

�1. Together the four diagrams yield:

A(M
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; A

�

; A
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(A:7)

where �

�

A�

= G

��
;A

G

�
�

.

For n > 1 the number of Feynman diagrams grows rapidly. However, all tree

diagrams contributing to A(M; : : : ;M;A;A;A) have the following structure:
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(A:8)

There is one superpotential vertex (�) | the root of the tree, there are zero

to n sigma-model vertices (�), and all lines are directed downward, from the

external �elds (top ends of tree branches) toward the root. Each sigma-model

vertex (�) has several incoming lines and one outgoing, and the kinematic �ik

2
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factor of the vertex precisely cancels (apart from the minus sign) the �i=k

2

factor

of the outgoing propagator. Therefore, all amplitudes A(M; : : : ;M;A;A;A) are

independent of the particle momenta.

To compute the moduli dependence of the amplitudes we use recursion: All

Feynman diagrams of the (n + 1)-moduli amplitude can be obtained from n-

moduli diagrams by either attaching the (n + 1)

st

external modulus line to an

existing vertex or by inserting a new sigma-model vertex (to which the new ex-

ternal line is attached) into an existing internal or external line (cf. diagrams

(A.6)). As far as non-kinematic factors are concerned, attaching a new mod-

ulus line to an existing vertex calls for taking a derivative of that vertex with

respect to M

A

: g

C

�

D;B

1

���B

m

7! g
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A
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m

A
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W
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1

���B

m

7!W

��
;B

1

���B

m

A

. The same happens when an internal line is split:
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�
�;A

G

�

�

�

= @

A
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�

�

�

and ditto for a modulus propagator g

C

�

D

. In-

serting a new vertex into an external line yields a factor �G

��
;A

G

�
�

� ��

�

A�

, or

��

D

AC

in case of an external modulus line. Therefore, in rigidly supersymmetric

�eld theory we have
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�
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(A:9)

Now consider gravitational corrections to eq. (A.9). Gravity itself does not

contribute to scattering amplitudes A(M; : : : ;M;A;A;A) because it is impos-

sible to draw a tree-level Feynman diagram for such an amplitude that con-

tains a graviton (or gravitino) propagator. However, in a consistent super-

gravity theory, the Yukawa couplings are e

�

2

^

K=2

W

�
�

rather than W

�
�

, and

the sigma-model vertices involving fermion lines are slightly di�erent from their

purely bosonic counterparts: A vertex with two fermionic lines � and

�

� yields

e

��

2

^

K=4

@

A

� � � @

B

�

e

�

2

^

K=4

G

�

�

�

�

instead of @

A

� � � @

B

G

�

�

�

(see ref. [15]). Two of the

�elds in (M; : : : ;M;A;A;A) are fermions; hence each tree-level Feynman diagram
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contributing to this amplitude has two continuous fermionic lines connecting ex-

ternal fermions to the Yukawa vertex at the root of the tree (� on diagram (A.8)).

Therefore, the combined e�ect of gravitational corrections is to replace eq. (A.9)

with

A(M

A

1

; : : : ;M

A

n

; A
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; A
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) = ie
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: (A:10)

Note that under a K�ahler transform

^

K 7! K � � � �, W 7! e

�

2

�

W , the

amplitude (A.10) changes its phase by �

2

Im�; this behavior is common to all su-

pergravity amplitudes that involve two fermionic partners of holomorphic scalars.

In coordinates corresponding to V � 1, W

abc

is just W

��


�

�

�=a;�=b;
=c

; how-

ever, covariant derivatives r

A

act di�erently on W

abc

and on W

��


since the

metrics for the moduli and for the matter �elds are di�erent. Speci�cally, given

eqs. (3.36) relating those metrics, we have �

�

A


= �

b

Ac

�

�

b=�;c=


+ �
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, and for any tensor X
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that has three matter indices (and an

arbitrary number of moduli indices),r
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bcd
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.

Therefore, eq. (A.10) becomes the �rst equation in (A.1); the second equation

(A.1) is completely analogous to the �rst.

We would like to conclude this appendix with a comment that there are two

ways to use the result of ref. [37] about string amplitudes involving 27 matter

�elds and (1,2) moduli to prove that the 27

3

superpotential terms do not depend

on the (1,2) moduli. (We do it because ref. [37] contains only the string arguments

for vanishing of mixed amplitudes and treats the implication of this vanishing for

the superpotential as if it was obvious.) One way is to use eqs. (A.1); notice

however that these equations rely on formul� (3.36) which relate moduli and

matter metrics to each other: Without the U factors, there would be no eqs. (A.1).

The other possibility is to use eq. (A.10) which is based on nothing but general

N = 1 supergravity. If we write the K�ahler function of the entire �eld space in

holo-normal form, then at the origin of the coordinate system the right hand side
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of eq. (A.10) reduces to ordinary derivatives of W

��


(cf. Appendix B). Since the

27

3

Yukawa couplings must be holomorphic function of all moduli, the theorem

of ref. [37] implies that these couplings indeed depend only on the (1,1) moduli.

Of course once this result is obtained, it remains valid for all coordinate systems

on the moduli spaces, not just those that allow for a holo-normal form of the

K�ahler function.

APPENDIX B

In this appendix we construct coordinate systems on the two moduli spaces

for which the Yukawa couplings can be written in the form (3.40). As a �rst

step, let us show that for any K�ahler manifold one can perform a combination

of a K�ahler transform and a holomorphic coordinate transform that will put the

K�ahler function into a holo-normal form K =

P

i

'

i

�'

i

+O('

2

�'

2

). Let us choose

an arbitrary point on the manifold and let f�

i

g be some complex coordinates

that are regular in its neighborhood; without loss of generality we may assume

that all �

i

vanish at the chosen point. K(�;

�

�) is an analytic function, so we can

expand it into a power series in �

i

and

�

�

�{

. Segregating terms that are at most

linear in either holomorphic or anti-holomorphic coordinates, we write
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); (B:1)

where �(�) sums all purely holomorphic terms in K and C

�{

(�) �

�

�

�|

sums all

terms that are linear in

�

� but carry second or higher powers of the holomorphic

coordinates �

i

. Now let us perform a K�ahler transform K(�;

�

�) 7! K

0

(�;

�

�) =

K +�(�)+�(

�

�) and de�ne new holomorphic coordinates '

i

� �

i
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i�|

(0) �C

�|

(�)

(this transform is clearly non-degenerate since C

�|

(�) = O(�
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)); then we have

K

0

('; �') = g

i�|

(0) � '

i
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�|

+ O('

2

�'

2

) : (B:2)

This expression forK

0

can now be put into the desired form by a linear rede�nition

of coordinates f'

i

g that will turn the matrix g

i�|

into a unit matrix.
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In the coordinates f'

i

g, K

0

;i

1

���i

n

(0) = 0 as well as g

i�|;k

1

���k

n

(0) = 0 (and ditto

for the anti-holomorphic derivatives of K

0

and g

i�|

). It follows that at the point of

expansion the Kristo�el symbols �

i

jk

vanish together with all their holomorphic

derivatives (and �

�{

�|

�

k

vanish with all their anti-holomorphic derivatives). This is

the strongest normality requirement achievable in a general K�ahler geometry by

means of a holomorphic coordinate transform; for lack of a better term, we call

coordinate systems obeying this requirement \holo-normal". We also call K�ahler

functions K \holo-normal" when they are expressed in terms of holo-normal

coordinates and have no harmonic terms. Note that a coordinate system for a

K�ahler manifold can only be holonormal at some isolated points on the manifold;

unless the manifold is 
at, no coordinate system is holo-normal everywhere.

Now consider the (1,1) moduli space. Let us write its K�ahler function K

1

in a holo-normal form. Then at the point M =

~

0, K

;a

1

���a

n

= 0 and �

a

bc

vanish

with all their holomorphic derivatives; therefore, taking holomorphic covariant

derivatives of the �rst eq. (3.39) yields for any n � 0:

r

a

1

� � � r

a

n

r

b

r

c

r

d

Z

1

= �

3

@

a

1

� � � @

a

n

W

bcd

at M =

~

0: (B:3)

If we now de�ne a manifestly holomorphic function

F

1

(M

a

) �

1

X

n=3

1

n!

r

a

1

� � �r

a

n

Z

1

j

M=

~

0

�M

a

1

� � �M

a

n

; (B:4)

thenW

bcd;a

1

���a

n

= �

�3

F

1;bcda

1

���a

n

atM =

~

0, for any n � 0. Since the 27

3

Yukawa

couplings are holomorphic functions of the (1,1) moduli, it follows that W

bcd

and

F

1

obey the �rst eq. (3.40) throughout the (1,1) moduli space (despite the fact

that the coordinate system we used to construct F

1

is holo-normal only at one

point). Similarly, if we write K

2

in a holo-normal form, then we can construct

an F

2

that obeys the second eq. (3.40) throughout the (1,2) moduli space.
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APPENDIX C

In this appendix we discuss moduli of the (2,2) vacua of the type II superstring

and compare them to moduli of the same vacua of the heterotic string. First, a

point of terminology: for the type II superstring we shall restrict the term moduli

to scalars coming from the Neveu-Schwarz (NS) sectors of both left-moving and

right-moving world-sheet theories; Ramond-Ramond scalars may be moduli in

the sense of having a 
at potential, but we shall not discuss them here. With

this restriction in mind, N = (2; 2) superconformal world-sheet theories lead to

essentially the same moduli scalars for the type II superstring as for the heterotic

string

[12;24]

; the purpose of this appendix is to make this correspondence precise.

At zero space-timemomentum, type II vertex operators of massless scalars are

world-sheet �elds �(z; �z) of conformal dimension (h;

�

h) = (1; 1) that are upper

components of both left-moving and right-moving N = (1; 1) supermultiplets.

For (2,2) vacua with integral U(1) charges q and �q, such upper-component world-

sheet �elds are the same �

+

�

, �

�

�

, �

�

��

and �

+

��

that appear in moduli vertices of

the heterotic string. However, at non-zero momenta there is a di�erence: From

the left-moving point of view, the type II moduli vertices are

V

�

(z; �z) = exp

�

i

p

2�

0

k �X(z; �z)

�

�

�

�

�

(z; �z) + i

q

�

0

2

k �  (z)�	

�

�

; (C:1)

where  

i

, i = 0; 1; 2; 3 are right-moving superpartners of the bosonic �elds X

i

responsible for the four space-time coordinates, while the heterotic moduli ver-

tices are simply e

i

p

2�

0

k�X

�

�

. From the right-moving point of view, both type II

and heterotic vertex operators for massless scalars have a structure that mir-

rors eq. (C.1). However, throughout this article we were able to ignore this

right-moving structure of the heterotic vertex operators �

�

and 	

�

because it

completely commutes with the left-moving superalgebra (2.7). Since it is the left-

moving quantum numbers of the type II moduli vertices that distinguish them
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from their analogues for the heterotic string, we shall continue to ignore the right-

moving quantum numbers of �

�

and 	

�

in this appendix, except for the last

paragraph.

Now consider correlators of type II moduli vertices (C.1). Using the fact that

 

i

(z) are free left-moving world-sheet fermions and hence

D

 

i

1

�  

j

2

E

= �

ij

=z

12

,

we conclude from (C.1) that




V

�

1

� � � V

�

n

�

= E �

�




�

�

1

� � ��

�

n

�

+

1

2

X

i6=j

�

0

k

i

� k

j

2z

ij

D

�

�

1

� � �	

�

i

� � �	

�

j

� � ��

�

n

E

+

1

8

X

distinct

i;j;k;l

�

02

(k

i

� k

j

)(k

k

� k

l

)

4z

ij

z

kl

�

�

D

�

�

1

� � �	

�

i

� � �	

�

j

� � �	

�

k

� � �	

�

l

� � ��

�

n

E

+ � � �

�

;

(C:2)

where E was de�ned in formula (3.13) and

D

�

�

1

� � �	

�

i

� � �	

�

j

� � ��

�

n

E

is actually

�

D

�

�

1

� � �	

�

j

� � �	

�

i

� � ��

�

n

E

when i > j, etc. All correlators on the right hand

side appear in heterotic string formul� for scattering of moduli and matter �elds

(cf. eqs. (3.12), (3.17) and (3.22)). Therefore, type II amplitudes for moduli

scattering are related to the heterotic amplitudes via

A

II

(M

a

1

; : : : ;M

a

n

) = A

H

(M

a

1

; : : : ;M

a

n

)

+

X

i6=j

�

0

(k

i

� k

j

)

4

U

�

i

a

i

U

�

j

a

j

� A

H

(M

a

1

; : : : ; A

�

i

p̂

; : : : ; A

�

j

p̂

; : : : ;M

a

n

)

+

X

distinct

i;j;k;l

�

02

(k

i

� k

j

)(k

k

� k

l

)

32

U

�

i

a

i

U

�

j

a

j

U

�

k

a

k

U

�

l

a

l

�

�A

H

(M

a

1

; : : : ; A

�

i

p̂

; : : : ; A

�

j

p̂

; : : : ; A

�

k

q̂

; : : : ; A

�

l

q̂

; : : : ;M

a

n

)

+ � � � (C:3)
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(as usual, no sum over the SO(10) vector indices p̂ 6= q̂), where by abuse of

notations we ignore the di�erence between holomorphic and anti-holomorphic

�elds as well as the di�erence between (1,1) and (1,2) moduli and 27 and 27

matter �elds.

The low-energy behavior of various amplitudes in (C.3) may be obtained

from the Feynman rules of the e�ective four-dimensional �eld theory. All tree-

level diagrams that involve at most two external matter �elds scale as O(k

2

)

under uniform rescaling of all particle momenta; this happens because all vertices

in those diagrams yield O(k

2

) factors. (The total number of vertices in a tree

diagram exceeds the number of internal lines by one.) Consequently, amplitudes

A(M; : : : ;M) and A(A;A;M; : : : ;M) behave likeO(k

2

) (cf. eqs. (3.5) and (3.6)).

Diagrams with four external matter lines may contain an O(k

0

) scalar potential

vertex or two O(k

1

) gauge vertices; hence, the leading behaviour of amplitudes

A(A;A;A;A;M; : : : ;M) is O(k

0

) (cf. eq. (3.11)). Feynman diagrams with more

than four external matter lines can be analyzed in the same way. Leaving details

as an exercise to the reader, we can state the general result as follows: The leading

low-energy behavior of scattering amplitudes involving 2m > 0 matter scalars

and an arbitrary number of moduli scalars is O(k

4�2m

). On the other hand,

all heterotic amplitudes involving 2m > 0 matter scalars appear in eq. (C.3)

multiplied by factors of the order k

2m

. Therefore,

A

II

(M

a

1

; : : : ;M

a

n

) = A

H

(M

a

1

; : : : ;M

a

n

) +O(k

4

); (C:4)

while the leading behavior of the two amplitudes themselves is O(k

2

). The result

(C.4) is well-known to a few people | it is implicit in ref. 24 for example | but

it does not seem to have been explicitly presented in the literature.

At the tree level of the superstring theory, scattering of particles coming

from the Neveu-Schwarz sector cannot involve Ramond particles as intermediate

states. Therefore, tree-level scattering of the type II moduli | which come from
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the NS{NS sector | does not depend on interactions that involve fermions or

Ramond-Ramond bosons. The only couplings that do a�ect the type II ampli-

tudes A

II

(M; : : : ;M) are couplings of moduli �elds to each other and to gravity.

The same is true for moduli scattering in the heterotic case, albeit for a dif-

ferent reason. Hence, the implication of eq. (C.4) for the low-energy e�ective

Lagrangian is that all two-derivative interactions between moduli scalars are the

same for the heterotic string and the type II superstring compacti�ed on the same

(2,2) vacuum;

[24]

on the other hand, higher-derivative interactions of moduli may

di�er. In particular, the geometry of the moduli space in both string theories

is the same direct product of the same two restricted K�ahler manifolds

?

(the

geometry is determined by the two-derivative kinetic terms in the e�ective La-

grangian). However, higher-derivative interactions of moduli need not respect

this direct product structure and may depend on both kinds of moduli.

Usually the O(k

4

) di�erence between heterotic and type II amplitudes for

moduli scattering does not vanish. For example, compare the heterotic four-

(1,1)-moduli amplitude (3.26) to its type II counterpart:

A

II

(M

a

;M

b

;M

�c

;M

�

d

) =

�

0

s

4

U

�

a

U

�

b

U

�


�c

U

�

�

�

d

� A

H

(A

�

p̂

; A

�

p̂

; A

�


q̂

; A

�

�

q̂

): (C:5)

(This formula can be derived by substituting eqs. (3.26) and (3.19) into (C.3).)

On the other hand, when a heterotic amplitude vanishes exactly, its type II coun-

terpart often does so too. For example, the heterotic amplitudeA

H

(M

a

;M

b

;M

�m

;M

�n

)

vanishes exactly as an integral of the world-sheet correlator




�

+

�

+

�

+

�

+

�

, which

vanishes by eq. (3.28). In the type II case we have the correlator




V

+

V

+

V

+

V

+

�

,

which is equal to E �




�

+

�

+

�

+

�

+

�

because all other terms in (C.2) vanish by

the U(1) charge conservation (one cannot have 	

+

's without an equal number of

? In the type IIA case, the (1,1) moduli, the dilaton/axion and their Ramond-Ramond

superpartners together span a quaternionic manifold that is not K�ahler; however, the

(1,1) moduli themselves span a restricted K�ahler manifold.

[24;27]

In the type IIB case, the

same happens to the (1,2) moduli instead of the (1,1) moduli.
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�

's). Hence, A

II

(M

a

;M

b

;M

�m

;M

�n

) = A

H

(M

a

;M

b

;M

�m

;M

�n

) = 0. Similarly,

the type II amplitude A

II

(M

a

;M

b

;M

�m

;M

�

d

) vanishes because
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1

� V
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2

� V

+

3

� V

�

4

�

= E �

n
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+

2

� �

+

3

�	

�

4

�

o

= E � f 0 � 0 � 0 � 0 g = 0;

(C:6)

the second equality here follows from eqs. (3.29) and (3.21). It is easy to generalize

eqs. (3.28), (3.29) and (C.6) to the case of an arbitrary number of moduli vertices:




V

+

1

� � �V

+

n

�

= E �




�

+

1
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+

n

�

= 0;




V

+

1
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+

n�1

� V

�

n

�

= E �




�

+

1
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+

n�1

� �

�

n

�

+ 0 = 0;

(C:7)

and all type II or heterotic amplitudes involving these correlators (or their com-

plex conjugates) vanish identically.

We derived eqs. (C.7) using only the left-moving N = 2 superalgebra (2.7).

Exactly analogous arguments based on the right-moving N = 2 superalgebra

show that for all n:

D

^

V

+

1
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^

V

+

n

E

=

D

^

V

+

1
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^

V

+

n�1

�

^

V

�

n

E

=

D

^

V

�

1
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^

V

�

n�1

�

^

V

+

n

E

=

D

^

V

�

1
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^

V

�

n

E

= 0;

(C:8)

where

^

V

�

are the right-moving analogues of the V

�

. From the right-moving

point of view, massless scalar vertices are of the type

^

V

+

or

^

V

�

according to

whether the space-time �eld is holomorphic or anti-holomorphic. Therefore, for

all scattering processes that involve arbitrary numbers of massless scalar �elds

but no �elds of other kinds, the (on-shell) amplitudes vanish identically unless

at least two of the �elds are holomorphic and at least two are anti-holomorphic.

This result is valid not just for the type II superstring, but for the heterotic

string as well, and the scalar �elds involved may be moduli, 27 or 27 matter
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�elds or non-moduli singlets; in fact, it is valid for all space-time supersymmetric

(0,2) vacua of the heterotic string for all massless scalar �elds the theory may

possess. From the e�ective-�eld-theory point of view this rule is a consequence of

space-time supersymmetry; what eqs. (C.8) really tell us is that higher-derivative

interactions which follow from the string theory do behave in the same way.
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