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1 The Supersymmetry Algebra

Supersymmetry is an extension of the Poincare algegebra which relates states or fields
of different spin. By now it has ample applications in particle physics, quantum field
theories, string theory, mathematics, stastical mechanics, solid state physics and many
more.1

1.1 Review of Poincare Algebra

Let xµ, µ = 0, . . . , 3, be the coordinates of Minkowski space M1,3 with metric

(ηµν) = diag(−1, 1, 1, 1) . (1.1)

Lorentz transformations are rotations in M1,3 and thus correspond to the group O(1, 3)

xµ → xµ′ = Λµ
νx

ν . (1.2)

ds2 = ηµνdx
µdxν is invariant for

ηµνΛ
µ
ρΛν

σ = ηρσ , or in matrix form ΛTηΛ = η . (1.3)

This generalizes the familiar orthogonal transformation OTO = 1 of O(4).

Λ depends on 4 · 4− (4 · 4)s = 16− 10 = 6 parameters. ΛR := Λi
j, i, j = 1, 2, 3 satisfies

ΛT
RΛR = 1 corresponding to the O(3) subgroup of three-dimensional space rotations. ΛR

depends on 3 rotation angles. ΛB := Λ0
j corresponds to Lorentz boosts depending on 3

boost velocities.

One expands Λ infinitesimally near the identity as

Λ = 1− i
2
ω[µν]L

[µν] + . . . , (1.4)

where ω[µν] are the 6 parameters of the transformation. The L[µν] are the generators of
the Lie algebra SO(1, 3) which satisfy

[Lµν , Lρσ] = −i
(
ηνρLµσ − ηµρLνσ − ηνσLµρ + ηµσLνρ

)
. (1.5)

The Poincare group includes in addition the (constant) translations

xµ → xµ′ = Λµ
νx

ν + aµ , (1.6)

generated by the momentum operator Pµ = −i∂µ. The algebra of the Lorentz generators
(1.5) is augmented by

[Pµ, Pν ] = 0 , [Pµ, Lνρ] = i(ηµνPρ − ηµρPν) . (1.7)

The Poincare group has two Casimir operators PµP
µ andWµW

µ whereWµ = εµνρσL
νρP σ

is the Pauli-Lubanski vector. Both commute with Pµ, Lµν . Thus the representations can
be characterized by the eigenvalues of P 2 and W 2, i.e., the mass m and the spin s.

1Textbooks of supersymmetry and supergravity include [1–5]. For review lectures see, for example,
[7–9] .
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1.2 Representations of the Lorentz Group

First of all the Lorentz group has (n,m) tensor representations with tensor which trans-
form according to

T µ1···µn
ν1···νm → T ′µ1···µn

ν1···νm = Λµ1
ρ1
· · ·Λµn

ρn T
ρ1···ρn
σ1···σm Λσ1

ν1
· · ·Λσm

νm . (1.8)

In addition all SO(n,m) groups also have spinor representations.2 They are constructed
from Dirac matrices γµ satisfying the Clifford/Dirac algebra3

{γµ, γν} = −2ηµν . (1.9)

From the γµ one constructs the operators

Sµν := − i
4

[γµ, γν ] , (1.10)

which satisfy (1.5) and thus are generators of (the spinor representations of) SO(1, 3).

The γ matrices are unique (up to equivalence transformations) and a convenient choice
in the following is the chiral representation

γµ =

(
0 σµ

σ̄µ 0

)
, where σµ = (−1, σi) , σ̄µ = (−1,−σi) . (1.11)

Here σi are the Pauli matrices which satisfy σiσj = δij1 + iεijkσk. Inserted into (1.10)
one finds

Sµν = i

(
σµν 0
0 σ̄µν

)
, where σµν = 1

4
(σµσ̄ν − σν σ̄µ) , σ̄µν = 1

4
(σ̄µσν − σ̄νσµ) .

(1.12)
For the boosts and rotations one has explicitly

S0i = i
2

(
σi 0
0 −σi

)
, Sij = 1

2
εijk
(
σk 0
0 −σk

)
. (1.13)

Since they are block-diagonal the smallest spinor representation is the two-dimensional
Weyl spinor. In the Van der Waerden notation one decomposes a four-component Dirac
spinor ΨD as

ΨD =

(
χα
ψ̄α̇

)
, α, α̇ = 1, 2 , (1.14)

where χα and ψ̄α̇ are two independent two-component complex Weyl spinors. The dotted
and undotted spinors transform differently under the Lorentz group. Concretely one has

δχα = 1
2
ωµν(σ

µν)βαχβ = 1
2
(ω0iσ

i + iωijε
ijkσk)χ ,

δψ̄α̇ = 1
2
ωµν(σ̄

µν)α̇
β̇
ψ̄β̇ = 1

2
(−ω0iσ

i + iωijε
ijkσk)ψ̄ ,

(1.15)

where we used (1.12) and (1.13). These transformation laws are often referred to as (1
2
, 0)

and (0, 1
2
) representations respectively. Note that the two spinors transforms identically

under the rotation subgroup while they transform with opposite sign under the boosts.

2They are two-valued in SO(n,m) but single valued in the double cover denoted by Spin(n,m).
3Here we use the somewhat unconventional convention of [5].
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The spinor indices are raised and lowered using the Lorentz-invariant ε-tensor

ψα = εαβψβ , ψα = εαβψ
β , (1.16)

where
ε21 = −ε12 = 1, ε11 = ε22 = 0, εαγε

γβ = δβα .

For dotted indices the analogous equations hold. One can check that σµ carries the indices
σµαα̇ and σ̄µαα̇ = εα̇β̇εαβσµ

ββ̇
. Complex conjugation interchanges the two representations,

i.e., (χα)∗ = χ̄α̇.

1.3 Supersymmetry Algebra

The supersymmetry algebra is an extension of the Poincare algebra. One augments the
Poincare algebra by a fermionic generator Qα which transforms as a Weyl spinor of the
Lorentz group. Haag, Lopuszanski and Sohnius showed that the following algebra is the
only extension compatibly with the requirements of a QFT [5,6]

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ , {Qα, Qβ} = 0 = {Q̄α̇, Q̄β̇} ,

[Q̄α̇, Pµ] = 0 = [Qα, Pµ] ,

[Qα, L
µν ] = 1

2
(σµν)βαQβ , [Q̄α̇, L

µν ] = 1
2

(σ̄µν)β̇α̇Q̄β̇ .

(1.17)

The only further generalization which we will discuss later on is the possibility of having
N supersymmetric generators QI

α, I = 1, . . . , N – a situation which is referred to as
N -extended supersymmetry.

Eq. (1.17) implies
[P 2, Qα] = 0 , [W 2, Qα] 6= 0 , (1.18)

and thus the representations of (1.17) are labelled by the mass m but not by the spin s.
From (1.17) one can further show that for any finite-dimensional representations the
number of bosonic states nB and fermionic states nF coincides and one has

Tr
(
(−)NF

)
= nB − nF = 0 . (1.19)

Here the fermion number operator (−)NF is defined by

(−)NF |B〉 = |B〉 , (−)NF |F 〉 = −|F 〉 , (1.20)

where |B〉 (|F 〉) denotes any bosonic (fermionic) state. Due to (1.20) and the fermionic
nature of Qα one has (−)NFQα = −Qα(−)NF .

The cyclicity of the trace then implies

Tr
(
(−)NF {Qα, Q̄α̇}

)
= Tr

(
−Qα(−)NF Q̄α̇ +Qα(−)NF Q̄α̇

)
= 0 . (1.21)

Inserting (1.17) yields

Tr
(

(−)NF 2σµ
αβ̇
Pµ

)
= 2σµ

αβ̇
PµTr

(
(−)NF

)
= 0 , (1.22)

where in the first step the trace was evaluated for fixed Pµ. This proves (1.19).

As for the Poincare group, the representations (supermultiplets) of the algebra (1.17)
are distinct for different values of the Casimir operator P 2.
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2 Representations of the supersymmetry algebra and

the Chiral Multiplet

In this lecture we discuss the representations of the supersymmetry algebra (1.17).

2.1 Massive representations

For massive representations (P 2 = −m2, m > 0) one goes to the rest frame Pµ =
(−m, 0, 0, 0) such that the superalgebra (1.17) becomes

{Qα, Q̄β̇} = 2mδαβ̇ , {Qα, Qβ} = 0 = {Q̄α̇, Q̄β̇} . (2.1)

Then one defines the operators

aα :=
1√
2m

Qα , (aα)† :=
1√
2m

Q̄α̇ (2.2)

such that (2.1) becomes

{aα, (aβ)†} = δαβ̇ {aα, aβ} = 0 = {a†α̇, a
†
β̇
} . (2.3)

This is the algebra of two fermionic harmonic oscillators and thus its representations
can be constructed as in quantum mechanics. One defines a “ground state” (Clifford
vacuum) |0〉 by the condition

aα|0〉 = 0 , (2.4)

and constructs the multiplet by acting with a†α

|0〉 , (aα)†|0〉 , (a1)†(a2)†|0〉 . (2.5)

By acting with the spin operator L2 one determines that the first and the last state have
spin s = 0 while the two other states have s = 1/2. We therefore have nB = nF = 2 and
this representation is called the chiral multiplet.

Other multiplets can be constructed in a similar way if one also assigns spin to the
Clifford vacuum. In this case one finds the multiplet

|s〉 , (aα)†|s〉 , (a1)†(a2)†|s〉 , (2.6)

corresponding to the spins (s, s± 1
2
, s) and the multiplicities 2s+ 1, 2(s± 1

2
) + 1, 2s+ 1.

Thus altogether one has nB = nF = 4s + 2. The different multiplets are summarized in
Table 2.1.

Since P 2 commutes with Q it also is a Casimir operator of the supersymmetry algebra.
Therefore all members of a supermultiplet have the same mass and in particular bosonic
states are mass degenerate with fermionic states

mB = mF ∀ states . (2.7)

Hence, supersymmetry has to be broken, if realized in nature.
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Spin |0〉 |1
2
〉 |1〉 |3

2
〉

0 2 1
1
2

1 2 1
1 1 2 1
3
2

1 2
2 1

nB = nF 2 4 6 8
chiral vector spin 3

2
spin 2

multiplet multiplet multiplet multiplet

Table 2.1: Massive N = 1 multiplets.

2.2 Massless representations

For massless representations one goes again to a light-like frame, Pµ = (−E, 0, 0, E).
Inserted into (1.17) one obtains

{Qα, Q̄β̇} = 2E(−σ0 + σ1)αβ̇ = 2E

(
1 0
0 0

)
, {Qα, Qβ} = 0 = {Q̄α̇, Q̄β̇} . (2.8)

We see that the algebra is trivial for Q2. Inserting

a :=
1√
2E

Q1 , a† :=
1√
2E

Q̄1 , (2.9)

into (11.11) one arrives at

{a, a†} = 1 , {a, a} = 0 = {a†, a†} , (2.10)

which is the algebra of a single fermionic oscillator. In the massless case the representa-
tions are labeled by the helicity λ and a multiplet has only the two states

|λ〉 , a†|λ〉 , (2.11)

corresponding to the helicities λ, λ + 1
2
. However, due to the CPT theorem of quantum

field theories a massless particle with helicity corresponds to two states with helicities
±λ. Therefore in quantum field theoretic applications one has to double the multiplets
(2.11) appropriately. The relevant massless multiplets are summarized in Table 2.2.

2.3 The chiral multiplet in QFTs

The chiral multiplet has in the massive and massless case two states with spin/helicity
zero and two states with spin/helicity 1/2. In a QFT this can be realized as a complex
scalar φ(x) and a Weyl fermion χα(x). However, with χ being complex it has initially
(off-shell) four degrees of freedom (d.o.f.) and only after using the equation of motion
(the Weyl equation) it carries two d.o.f. on-shell.

The next step is to find the supersymmetry transformation of the chiral multiplet. To
this end we define

δξ := ξαQα + ξ̄α̇Q̄
α̇ , (2.12)
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λ |0〉 | − 1
2
〉 |1

2
〉 | − 1〉 |1〉 | − 3

2
〉 |3

2
〉 | − 2〉

−2 1
−3

2
1 1

−1 1 1
−1

2
1 1

0 1 1
+1

2
1 1

+1 1 1
+3

2
1 1

+2 1
nB = nF 2 2 2 2

chiral vector gravitino graviton
multiplet multiplet multiplet multiplet

Table 2.2: The massless multiplets for N = 1.

where the parameters of the transformation ξα are constant, complex anti-commuting
Grassmann parameters obeying

ξαξβ = −ξβξα . (2.13)

The supersymmetry algebra (1.17) implies

[δη, δξ] = −2i(ησµξ̄ − ξσµη̄)∂µ . (2.14)

One demands that (2.14) holds on all fields of a supermultiplet. For the chiral multiplet
this is satisfied for

δξφ =
√

2ξαχα , δξχα = i
√

2σµαα̇ξ̄
α̇∂µφ , (2.15)

if the equation of motion σ̄µ∂µχ = 0 holds.

This set of transformation can be promoted to an off-shell realization by introducing
an auxiliary complex scalar field F (x) and the transformations

δξφ =
√

2ξχ ,

δξχ =
√

2ξF + i
√

2σµξ̄∂µφ ,

δξF = i
√

2ξ̄σ̄µ∂µχ ,

(2.16)

which satisfy (2.14) without using any equation of motion. Note that F = 0 demands
σ̄µ∂µχ = 0 and the transformation reduce to the previous case. Thus the off-shell chiral
multiplet reads (

φ(x), χα(x), F (x)
)
, (2.17)

and has nB = nF = 4.

The supersymmetric Lagrangian for the kinetic terms of the chiral multiplet is found
to be

Lkin = −∂µφ∂µφ̄− iχ̄σµ∂µχ+ FF̄ . (2.18)
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One can check δξLkin = ∂µj
µ such that the action is invariant for appropriate boundary

conditions of the fields. The equations of motion derived from Lkin read

�φ = 0 , σ̄µ∂µχ = 0 , F = 0 . (2.19)

We see that the equations of motion is purely algebraic which is the characteristic feature
of auxiliary fields in supersymmetric theories.

One can add mass terms as

Lm = −1
2
m
(
χχ+ χ̄χ̄+ 2φF + 2φ̄F̄

)
. (2.20)

Lkin + Lm now have the equations of motion

�φ+mF̄ = 0 , σ̄µ∂µχ+mχ̄ = 0 , F +mφ̄ = 0 . (2.21)

Again the equation of motion for F is algebraic and thus can be inserted into the first
equation yielding the familiar Klein-Gordon equation (�−m2)φ = 0.

Finally, the most general renormalizable Lagrangian for nc chiral multiplets reads

L =− ∂µφi∂µφ̄i − iχ̄iσ̄µ∂µχi + F iF̄ i

− 1
2
Wijχ

iχj − 1
2
W̄ijχ̄

iχ̄j + F iWi + F̄ iW̄i ,
(2.22)

where i, j = 1, . . . , nc. Wi and Wij in (2.22) are the first and second derivatives of the su-
perpotential W (φ), which is a holomorphic function of the fields φi, and in renormalizable
theories constrained to be at most cubic

W (φ) = 1
2
mijφ

iφj + 1
3
Yijkφ

iφjφk ,

Wi ≡
∂W

∂φi
= mijφ

j + Yijkφ
jφk ,

Wij ≡
∂2W

∂φi∂φj
= mij + 2Yijkφ

k .

(2.23)

mij is the mass matrix while Yijk are the Yukawa couplings.4 Eliminating the auxiliary
fields F i by

δL
δF̄ i

= F i + W̄ i = 0 , (2.24)

and inserted back into (2.22) yields

L =− ∂µφi∂µφ̄i − iχ̄iσ̄µ∂µχi − 1
2
Wijχ

iχj − 1
2
W̄ijχ̄

iχ̄j − V (φ, φ̄) , (2.25)

where V is the scalar potential given by

V (φ, φ̄) = FiF̄i = WiW̄i . (2.26)

4Of course both couplings are constrained by any symmetry (e.g. gauge symmetry) the theory under
consideration might have.
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3 Superspace and the Chiral Multiplet

3.1 Basic set-up

The coordinates of superspace are (xµ, θα, θ̄α̇) where θα, θ̄α̇ are Grassmann coordinates
which satisfy

θαθβ = −θβθα = −1
2
εαβθ2 , θαθβθγ = 0 . (3.1)

Superfields are functions on superspace and due to (3.1) have an expansion

f(x, θ, θ̄) =f(x) + θαχα(x) + θ̄α̇ρ̄
α̇(x) + θ2m(x) + θ̄2n(x) + θασµαα̇θ̄

α̇Aµ

+ θ2θ̄α̇λ̄
α̇(x) + θ̄2θαψα(x) + θ2θ̄2d(x) .

(3.2)

We see that the following ordinary complex fields are combined into a superfield

s = 0 : f(x),m(x), n(x), d(x) , nB = 8

s = 1
2

: χα(x), ρ̄α̇(x), λ̄α̇(x), ψα(x) , nF = 16

s = 1 : Aµ , nB = 8

(3.3)

Note that due to (3.1) sums and products of superfields are again superfields

f1(x, θ, θ̄) + f2(x, θ, θ̄) = f3(x, θ, θ̄) , f1(x, θ, θ̄)f2(x, θ, θ̄) = f4(x, θ, θ̄) . (3.4)

In this formalism supersymmetry transformations are translations in superspace. Recall
that a finite translation in Minkowski space is generated by

G(a) := ei(−a
µPµ) . (3.5)

The generalization in superspace is defined to be

G(a, η̄,η) := ei(−a
µPµ+ηQ+η̄Q̄) . (3.6)

The product of two transformations can be computed with help of the Hausdorff-formula
eAeB = eA+B+ 1

2
[A,B]+...

G(b, ξ, ξ̄)G(a, η, η̄) = G
(
a+ b− i(ξση̄ − ησξ̄), ξ + η, ξ̄ + η̄

)
(3.7)

By acting infinitesimally on a superfield one determines Q, Q̄ as differential operators

G(0, ξ, ξ̄)f(x, θ, θ̄) = (1 + iξQ+ ξ̄Q̄)f +O(ξ2) = f(x− i(ξσθ̄ − θσξ̄), θ + ξ, θ̄ + ξ̄)

= f(x, θ, θ̄)− i(ξσµθ̄ − θσµξ̄)∂µf + +ξα∂αf + ξ̄α̇∂
α̇f +O(ξ2) ,

(3.8)
where

∂α =
∂

∂θα
= −εαβ∂β . (3.9)

From (3.8) one finds a representation for Q, Q̄ in terms of differential operators

Qα = ∂α − iσµαα̇θ̄α̇∂µ , Q̄α̇ = −∂α̇ + iθβσµβα̇∂µ , (3.10)

11



and checks
{Qα, Q̄β̇} = 2iσµ

αβ̇
∂µ , {Qα, Qβ} = 0 = {Q̄α̇, Q̄β̇} . (3.11)

Note that for left multiplication that we used above the sign of Pµ changed. For right
multiplication one finds the representation

Dα = ∂α + iσµαα̇θ̄
α̇∂µ , D̄α̇ = −∂α̇ − iθβσµβα̇∂µ , (3.12)

which satisfy

{Dα, D̄β̇} = −2iσµ
αβ̇
∂µ , {Dα, Dβ} = 0 = {D̄α̇, D̄β̇} . (3.13)

Whichever representation one uses, the respective “other” differential operators represent
covariant derivatives on superspace as they satisfy

{Dα, Qβ} = {Dα, Q̄β} = {D̄α̇, Qβ} = {D̄α̇, Q̄β̇} = 0 . (3.14)

Supersymmetry transformations can be systematically computed by

δξf(x, θ, θ̄) =δξf(x) + θαδξχα(x) + θ̄α̇δξρ̄
α̇(x) + . . .+ θ2θ̄2δξd(x)

=(ξQ+ ξ̄Q̄)f(x, θ, θ̄)
(3.15)

In particular one finds that the highest component d(x) of any superfield always trans-
forms as a total divergence.

3.2 Chiral Multiplet

We already observed that a general superfield f(x, θ, θ̄) has nB = nF = 16 which is too
large for the multiplets we have constructed in the previous section. One can reduce the
number of degrees of freedom by imposing algebraic supersymmetric constraints. For a
chiral multiplet this constraint reads

D̄α̇Φ = 0 = DαΦ̄ . (3.16)

They are supersymmetric since D anticommutes with Q. Furthermore, the solution of
this constraint in terms of the components of f(x, θ, θ̄) are the algebraic equations

ρ = ψ = n = 0 , Aµ = i∂µf , λα̇ = − i
2
∂µχ

βσµβα̇ , d = 1
4
�f . (3.17)

Or if one renames f = φ, χ→
√

2χ,m = F

Φ(x, θ, θ̄) = φ(x) +
√

2θχ(x) + θ2F (x) + θσµθ̄∂µφ(x)

− i√
2
θ2∂µχ(x)σµθ̄ + 1

4
θ2θ̄2�φ(x) .

(3.18)

The field redefinition yµ := xµ + iθσµθ̄ removes the θ̄ dependence and yields

Φ(y, θ) = φ(y) +
√

2θχ(y) + θ2F (y) . (3.19)

12



Now one can work out the supersymmetry transformation law

δφ = (ξQ+ ξ̄Q̄)Φ
∣∣
θ=θ̄=0

= . . . =
√

2ξχ

δχ = 1√
2

(ξQ+ ξ̄Q̄)Φ
∣∣
θ

= . . . =
√

2ξF + i
√

2σµξ̄∂µφ ,

δξF = (ξQ+ ξ̄Q̄)Φ
∣∣
θ2

= . . . = i
√

2ξ̄σ̄µ∂µχ ,

(3.20)

which indeed coincides with (2.16).

The supersymmetric action is constructed by choosing appropriate highest components
of superfields or rather products of superfields. Note that due to (3.16)

D̄α̇Φn = nΦn−1D̄α̇Φ = 0 , D̄α̇W (Φ) =
∂W

∂Φ
D̄α̇Φ = 0 . (3.21)

Thus the θ2 component of W transforms as a total divergence. One finds

W (φ+
√

2θχ+ θ2F )
∣∣∣
θ2

= ∂W |θ=θ̄=0 F + 1
2
∂2W

∣∣
θ=θ̄=0

χχ (3.22)

or for nc chiral multiplets Φi, i = 1, . . . , nc

W (Φi)
∣∣
θ2

= Wi(φ)F i + 1
2
Wij(φ)χiχj , (3.23)

where Wi(φ),Wij(φ) are defined in (2.23).

The kinetic terms arise from ΦΦ̄ which is not chiral and thus one has to take the θ2θ̄2

component
ΦΦ̄
∣∣
θ2θ̄2

= −∂µφ∂µφ̄+ FF̄ − iχ̄/σχ . (3.24)

Thus altogether we have

L = ΦΦ̄
∣∣
θ2θ̄2

+ W (Φi)
∣∣
θ2

+ W̄ (Φ̄i)
∣∣
θ̄2
. (3.25)

3.3 Berezin integration

There is an alternative way to display this result. One defines an integral for Grassmann
variables by ∫

dθ = 0 ,

∫
θdθ = 1 , (3.26)

such that for f(θ) = f(A+ θχ) one finds∫
f(θ)dθ = χ ,

∫
f(θ)θdθ = A . (3.27)

This can be generalized to θα, θ̄α̇ by defining the measures

d2θ := −1
4
dθαdθβεαβ , d2θ̄ := −1

4
dθα̇dθβ̇ε

α̇β̇ , d4θ := d2θd2θ̄ . (3.28)

with ∫
θ2d2θ = 1 =

∫
θ̄2d2θ̄ =

∫
θ2θ̄2d2θd2θ̄ . (3.29)

In this notation the Lagrangian (3.25) reads

L =

∫
ΦΦ̄d4θ +

∫
W (Φi)d2θ +

∫
W̄ (Φ̄i)d2θ̄ . (3.30)
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3.4 R-symmetry

The supersymmetry algebra (1.17) has an U(1) auter automorphism (called R-symmetry)
which transforms Q as

Q→ Q′ = e−iαQ , Q̄→ Q̄′ = eiαQ̄ , α ∈ R . (3.31)

This implies that the members of supermultiplet transform differently and one has the
R-charges for the chiral multiplet

R(Φi) = R(φi) = qi , R(χi) = qi − 1 , R(F i) = qi − 2 , R(θ) = 1 . (3.32)

The kinetic terms are automatically invariant but the interactions might break this sym-
metry. R(θ) = 1 implies R(d2θ) = −2, R(d4θ) = 0 and thus one needs R(W ) = 2 which
indeed constrains the interactions.
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4 Super Yang-Mills Theories

In Table 2.2 we saw that the massless vector multiplet contains the states |λ = ±1〉 and
|λ = ±1〉. In a QFT they correspond to a gauge boson Aµ(x) and a Weyl fermion λα(x)
termed gaugino. Off-shell the gauge boson and the gaugino have nB = nF = 4.

A massless Aµ has a gauge invariance which removes one degree of freedom

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µΛ(x) . (4.1)

Therefore we expect a real scalar auxiliary field D(x) to complete the off-shell massless
vector multiplet. The gauge invariant field strengh is defined by

Fµν := ∂µAν − ∂νAµ . (4.2)

4.1 The Vector Multiplet in Superspace

In the previous lecture we discussed the general superfield f(x, θ, θ̄) in (3.2) which has
nB = nF = 16. The vector multiplet V satisfies the constraint V = V †, has nB = nF = 8
and a θ-expansion

V (x, θ, θ̄) =f(x) + iθαχα(x)− iθ̄α̇χ̄α̇(x) + i
2
θ2m(x)− i

2
θ̄2m̄(x)− θασµαα̇θ̄α̇Aµ

+ iθ2θ̄α̇λ̄
α̇(x)− iθ̄2θαλα(x) + 1

2
θ2θ̄2d(x) ,

(4.3)

where the convention compared to (3.2) was slightly changed for later convenience. The
bosonic fields of V are the real f, d, Aµ and the complex m while the fermions are χ, λ.

Since the massless vector has a gauge invariance we need to implement this at the level
of superfields. We will see that the right transformation (for the Abelian case) is

V → V ′ = V + Λ + Λ̄ , (4.4)

where Λ is a chiral multiplet (i.e. D̄α̇Λ = 0 = DαΛ̄) . Let us denote the component of Λ
by (Λ, ψ, F ) and one computes

V + Λ + Λ̄ =f + (Λ + Λ̄) + θ(iχ+
√

2ψ)− θ̄(iχ̄−
√

2ψ̄)

+ 1
2
θ2(im+ 2F ) + 1

2
θ̄2(−m̄+ 2F̄ )− θασµαα̇θ̄α̇(Aµ − i∂µ(Λ− Λ̄)

+ iθ2θ̄(λ̄+ 1√
2
σ̄µ∂µψ − iθ2θ̄(λ− 1√

2
σµ∂µψ̄ + 1

2
θ2θ̄2(d+ 1

4
�(Λ + Λ̄)) .

(4.5)
This shows that f, χ,m and the longitudinal component of Aµ are nB = nF = 4 gauge
degrees of freedom. Finally one performs the field redefinition

λ→ λ+ i
2
σµ∂µχ̄ , d→ D + 1

2
�f , (4.6)

such that the gauge transformation of the physical components (Aµ, λ,D) become

δAµ = −i∂µ(Λ− Λ̄) , δλ = 0 , δD = 0 . (4.7)
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With the help of the gauge invariance (4.5) one can gauge fix to the (non-supersymmetric)
Wess-Zumino (WZ) gauge and set f = χ = m = 0. Then one has

V =− θασµαα̇θ̄α̇Aµ + iθ2θ̄λ̄− iθ2θ̄λ+ 1
2
θ2θ̄2D ,

V 2 =− 1
2
θ2θ̄2AµA

µ ,

V 3 =0 .

(4.8)

The gauge invariant field strength is defined as

Wα := −1
4
D̄2DαV , W̄α̇ := −1

4
D2D̄α̇V , (4.9)

and one checks that under the gauge transformation (4.4)

W ′
α = Wα − 1

4
D̄2Dα(Λ + Λ̄)− 1

4
D2D̄α̇(Λ + Λ̄) = Wα (4.10)

due to the chiral property of Λ. One also has

D̄α̇Wβ = 0 = DβW̄α̇ , (4.11)

and an expansion

Wα = −iλα + (δβαD − i
2
(σµσ̄ν)βαFµν)θβ + θ2σµ∂µλ̄ . (4.12)

The supersymmetry transformations can be found from the generic transformation
rules given in section 3 to be

δξAµ = −iλ̄σ̄µξ + iξ̄σ̄µλ ,

δξλ = iξD + σµνξFµν ,

δξD = −ξσµ∂µλ̄− (∂µλ) σ̄µξ̄ .

(4.13)

The Lagrangian in terms of superfields is

L = 1
4
WαW

α|θ2 + 1
4
W̄ α̇W̄α̇

∣∣
θ̄2

= 1
4

∫
d2θWαW

α + 1
4

∫
d2θ̄ W̄ α̇W̄α̇

= −1
4
FµνF

µν − iλ̄/∂λ+ 1
2
D2 .

(4.14)

It is possible to add a supersymmetric and gauge invariant Fayet-Iliopoulos (FI) term

LFI = ξFI

∫
d4θV = ξFID . (4.15)

Due to
∫
d4θ(Λ + Λ̄) = 0 it is gauge invariant. The equation of motion for D in this case

becomes D = −ξFI .
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4.2 Non-Abelian vector multiplets

In non-Abelian gauge theories Aµ carries the adjoint representation of the gauge group G,
i.e., Aµ = AaµT

a where T a are the generators of G obeying

[T a, T b] = ifabcT c , Tr (T aT b) = k δab , k > 0 , a, b, c = 1, . . . , nv = dim(ad(G)) .
(4.16)

The generators of G commute with the supersymmetry generators, i.e. [T a, Q] = 0, so
that all members of any supermultiplet carry the same representation of G. Therefore
the entire superfield V carries the adjoint representation, i.e. V = V aT a.

The non-Abelian field strength is defined by

Fµν := ∂µA
a
ν − ∂νAaµ + i

2
[Aµ, Aν ] ≡ F a

µνT
a ,

F a
µν := ∂µA

a
ν − ∂νAaµ − 1

2
fabcAbµA

c
ν .

(4.17)

The (unitary) gauge transformation read

Aµ → A′µ = U †AµU − U †∂µU ,

Fµν → F ′µν = U †FµνU ,
(4.18)

for U †U = 1.

The superspace generalization is

Wα := −1
4
D̄2e−VDαe

V = W a
αT

a , (4.19)

with a gauge transformation

eV → eV
′
= e−iΛ̄eV eiΛ , Wα → W ′

α = e−iΛWαe
iΛ , (4.20)

where Λ = ΛaT a.

The non-Abelian Lagrangian then reads

L =
τ

16k

∫
d2θTrWαW

α +
τ̄

16k

∫
d2θ̄Tr W̄ α̇W̄α̇

= − 1
4g2
F a
µνF

µν a − θ
32π2F

a
µνF̃

µν a − i
g2
λ̄a /Dλa + 1

2g2
DaDa .

(4.21)

where
Dµλ

a = ∂µλ
a − fabcAbµλc , F̃ µν a := 1

2
εµνρσF a

ρσ , (4.22)

and we introduced the complex coupling constant

τ := g−2 + i θ
8π2 . (4.23)

The equation of motion for D reads

Da = 0 . (4.24)

For a non-Abelian gauge group a FI-term cannot be added as it is not gauge invariant.
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5 Super YM Theories coupled to matter and the

MSSM

5.1 Coupling to matter

Chiral multiplets can carry a reprensentation r of the gauge group G. In this case one
has nc chiral multiplets Φi = (φi, χi, F i), i = 1, . . . , nc = dim(r) transforming as

Φ→ Φ′ = e−iΛΦ , Φ̄→ Φ̄′ = Φ̄eiΛ̄ , Λ = ΛaT ar , (5.1)

where T ar are the generators of G in representation r. Gauge invariance then requires
changing the kinetic term of the chiral multiplets as follows

Φ̄Φ→ Φ̄eV Φ , (5.2)

which indeed is consistent with (4.20). The gauge invariant non-Abelian Lagrangian then
reads

L =
τ

16k

∫
d2θTrWαW

α +
τ̄

16k

∫
d2θ̄Tr W̄ α̇W̄α̇

+

∫
d4θ Φ̄eV Φ +

∫
d2θW (Φ) +

∫
d2θ̄ W̄ (Φ̄) .

(5.3)

After the rescaling V → 2gV it reads in components

L =− 1
4
F a
µνF

µν a − iλ̄a /Dλa + 1
2
DaDa −Dµφ

iDµφ̄i − iχ̄i /Dχi + F iF̄ i

+ i
√

2 g
(
φ̄iT aijχ

jλa − φiT aijλ̄aχ̄j
)

+ gDaφ̄iT aijφ
j

− 1
2
Wijχ

iχj − 1
2
W̄ijχ̄

iχ̄j + F iWi + F̄ iW̄i ,

(5.4)

where Wi and Wij are defined in (2.23) and the covariant derivatives are defined in (4.22)
and as

Dµφ
i = ∂µφ

i + igAaµT
ai
jφ

j , Dµχ
i = ∂µχ

i + igφaµT
ai
jχ

j . (5.5)

L is invariant under the combined supersymmetry transformations

δξφ
i =
√

2ξχi ,

δξχ
i =
√

2ξF i + i
√

2σµξ̄Dµφ
i ,

δξF
i = i
√

2ξ̄σ̄µDµχ
i ,

δξv
a
µ = −iλ̄aσ̄µξ + iξ̄σ̄µλa ,

δξλ
a = iξDa + σµνξF a

µν ,

δξD
a = −ξσµDµλ̄

a − (Dµλ
a) σ̄µξ̄ .

(5.6)

The additional terms compared to (2.16) and (2.15) are enforced by gauge invariance.

The auxiliary fields F i, Da can be eliminated by their algebraic equations of motions

δL
δDa

= Da + gφ̄iT aijφ
j = 0 ,

δL
δF̄ i

= F i + W̄ i = 0 . (5.7)
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Inserted into the Lagrangian (5.4) then yields

L =− 1
4
F a
µνF

µν a − i
2
εµνρσF a

µνF
a
ρσ − iλ̄a /Dλa −DµıiDµφ̄i − iχ̄i /Dχi

+ i
√

2 g
(
φ̄iT aijχ

jλa − φiT aijλ̄aχ̄j
)
− 1

2
Wijχ

iχj − 1
2
W̄ijχ̄

iχ̄j − V (φ, φ̄) ,
(5.8)

where V is the scalar potential given by

V (φ, φ̄) = WiW̄i + 1
2
g2
(
φ̄iT aijφ

j
) (
φ̄kT aklφ

l
)

= FiF̄i + 1
2
DaDa . (5.9)

Before we continue let us make the following remarks:

• V is positive semi-definite V ≥ 0.

• V is not the most general scalar potential, i.e. there is no independent λ(φφ̄)2

coupling. Instead the quartic scalar couplings arise from Y 2 in the F -term or g2 in
the D-term. In the SSM this properties leads to a light Higgs boson.

• V depends only on g,mij, Yijk with no additional new parameters being introduced.

• There is a “new” Yukawa coupling proportional to gφ̄χλ.

5.2 The minimal supersymmetric Standard Model (MSSM)

The basic idea of the supersymmetric Standard Model (MSSM) is to promote each field
of the Standard Model (SM) to an appropriate supermultiplet. In particular the quarks,
leptons and Higgs reside in chiral multiplets while the gauge bosons are members of vector
multiplets. Since the gauge generators commute with the Q’s, the supermultiplets have
to carry the same representations as their SM-components. The gauge group of the SM
is G = SU(3)× SU(2)× U(1)Y which is spontaneously broken to G = SU(3)× U(1)em.

5.2.1 The Spectrum

The spectrum of the MSSM is summarized in Table 5.1.

Before we turn to the Lagrangian let us note that two Higgs doublets (i.e. an extended
Higgs sector) are necessary. This is imposed on the theory by supersymmetry as gauge
invariance of the superpotential otherwise cannot be achieved. Alternatively, the absence
of a gauge anomaly leads to the same conclusion as the Higgs multiplets contain two new
chiral fermions which have to be in vector-like representations of the gauge group.

Let us also summarize the new fields in the spectrum. For s = 0 these are the squarks
q̃, ũ, d̃ and the sleptons l̃, ẽ, ν̃. For s = 1/2 these are the Higgsinos h̃u, h̃d and the gauginos
G̃, W̃ , B̃. They will often be regrouped into the four neutralinos h̃0

u, h̃
0
d, γ̃

0, Z̃ (where γ̃0, Z̃
are called photino and Zino) and the four charginos h̃+

u , h̃
−
d , W̃

±.
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SM fields SU(3)×SU(2)×U(1)Y U(1)em supermultiplet F B

quarks qIL=

(
uIL
dIL

)
(3,2,1

6
)

(
2
3

−1
3

)
QI
L=

(
U I
L

DI
L

)
qIL q̃IL

uIR (3̄, 1,−2
3
) −2

3
U I
R uIR ũIR

dIR (3̄, 1,−1
3
) −1

3
DI
R dIR d̃IR

leptons lIL=

(
νIL
eIL

)
(1,2,−1

2
)

(
0
−1

)
LIL=

(
N I
L

EI
L

)
lIL l̃IL

eIR (1,1,1) 1 EI
R eIR ẽIR

νIR (1,1,0) 0 N I
R νIR ν̃IR

Higgs

(
h+
u

h0
u

)
(1,2,1

2
)

(
1
0

)
Hu=

(
H+
u

H0
u

) (
h̃+
u

h̃0
u

) (
h+
u

h0
u

)
(1,2,−1

2
)

(
0
−1

)
Hd=

(
H0
d

H−d

) (
h̃0
d

h̃−d

) (
h0
d

h−d

)
gauge G (8,1,0) 0 G G̃ G

bosons W (1,3,0) (0,±1) W W̃ W

B (1,1,0) 0 B B̃ B

Table 5.1: Particle content of the supersymmetric Standard Model. The column below
‘F’ (‘B’) denotes the fermionic (bosonic) content of the model. The index I = 1, 2, 3
labels the three families of the SM.

5.2.2 The Lagrangian

The Lagrangian for the supersymmetric Standard Model has to be of the form (5.8) with
gauge group G = SU(3) × SU(2) × U(1)Y . This specifies the covariant derivatives in
(5.5) appropriately. The superpotential (2.23) has to be chosen such that the Lagrangian
of the non-supersymmetric Standard Model is contained. This is achieved by

W =
3∑

I,J=1

(
(Yu)IJHuQ

I
LU

J
R + (Yd)IJHdQ

I
LD

J
R + (Yl)IJHdL

I
LE

J
R +mIJN

I
RN

J
R

)
+ µHuHd ,

(5.10)
where (Yu)IJ , (Yd)IJ , (Yl)IJ are the measured Yukawa couplings of the SM, µ a Higgs-
mass parameter and mIJ a possible mixing matrix of the right handed neutrinos. Now
we see more explicitly that a huh̄u Higgs mass term as in the SM is incompatible with
the holomorphicity of W . This forces the presence of a second Higgs doublet hd in the
complex conjugate representation of SU(2)× U(1).

From Table 5.1 we see that in terms of quantum numbers there is no distinction be-
tween the chiral superfields LL and Hd. This in turn leads to additional gauge invariant
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couplings which are possible in W . These are

∆W = aHuLL + b LLQLDR + cDRDRUR + dLLLLER , (5.11)

which, however, violate baryon or lepton number conservation and thus easily lead to
unacceptable physical consequences (for example fast proton decay). Such couplings can
be excluded by imposing a discrete R-parity. Particles of the Standard Model (including
both Higgs doublets) are assigned R-charge 1 while all new supersymmetric particles are
assigned R-charge −1. This eliminates all terms in (5.11) while the superpotential given
in (5.10) is left invariant. An immediate consequence of this additional symmetry is the
fact that the lightest supersymmetric particle (often denoted by the ‘LSP’) is necessarily
stable and thus a candidate for WIMP dark matter. However, one should stress that
R-parity is not a phenomenological necessity. Viable models with broken R-parity can
be constructed and they also can have some phenomenological appeal.

Another extension of the SSM (often called the NMSSM) adds an additional singlet
chiral multiplet S with couplings

WNMSSM = 1
2
µSS

2 + 1
6
YSS

3 + λSSHuHd +WSSM . (5.12)
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6 Spontaneous Supersymmetry Breaking

6.1 Order parameters of supersymmetry breaking

Recall that in a theory with a spontaneously broken symmetry the action of the theory
is invariant under the symmetry transformation but its ground state or background is
not. Here we consider backgrounds which preserve four-dimensional Lorentz invariance
and minimize the potential V . In supersymmetric theories we have generically

〈δfermion〉 ∼ 〈boson〉 , 〈δboson〉 ∼ 〈fermion〉 = 0 , (6.1)

where the second transformation always vanishes in a Lorentz-invariant background.
Therefore we see that the Lorentz-scalar part of 〈δfermion〉 is the order parameter of
supersymmetry breaking. For super Yang-Mills theories we have

〈δχiα〉 =
√

2ξα〈F i〉 , 〈δλaα〉 = iξα〈Da〉 , (6.2)

where all additional terms vanish in a Lorentz-invariant background. We see that we can
have spontaneous supersymmetry breaking if and only if

〈F i〉 6= 0 (F−term breaking) , and/or 〈Da〉 6= 0 (D−term breaking) , (6.3)

i.e. 〈F i〉 and 〈Da〉 are the order parameters of supersymmetry breaking in that non-
vanishing F - or D-terms signal spontaneous supersymmetry breaking.

Let us determine the minimum of the scalar potential (2.26)

V = FiF̄i + 1
2
DaDa ≥ 0 . (6.4)

Its first derivative reads

∂jV = Fi∂jF̄i + (∂jD
a)Da = W̄iWij + (∂jD

a)Da = 0 . (6.5)

We immediately see that the minimum of V is at

〈Fi〉 = 〈F̄i〉 = 〈Da〉 = 〈V 〉 = 0 . (6.6)

Conversely, 〈V 〉 = 0 implies that supersymmetry is unbroken while 〈V 〉 6= 0 implies that
supersymmetry is broken.

6.2 Models for spontaneous supersymmetry breaking

Let us now discuss models for spontaneous supersymmetry breaking. The idea is to add
fields to the spectrum with couplings such that supersymmetry is spontaneously broken.
Concretely one needs to forbid solutions with 〈Fi〉 = 〈Da〉 = 0 which is surprisingly
difficult to arrange. Let us start with F-term breaking.
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6.2.1 F-term breaking

In the O’Raifeartaigh model [?] one introduces three chiral superfields Φ0,Φ1,Φ2 and the
following superpotential:

W = λφ0 +mφ1φ2 + Y φ0φ
2
1 , m2 > 2λY . (6.7)

The algebraic equations for the F -terms are:

F0 =
∂W

∂φ0
= λ+ Y φ2

1 ,

F1 =
∂W

∂φ1
= mφ2 + 2Y φ0φ1 ,

F2 =
∂W

∂φ2
= mφ1 .

(6.8)

〈F0〉 = 0 = 〈F2〉 has no solution and thus supersymmetry must be broken.

The scalar potential reads

V =
∣∣λ+ Y φ2

1

∣∣2 + |mφ2 + 2Y φ0φ1|2 + |mφ1|2 . (6.9)

It is minimized by 〈φ1〉 = 0 = 〈φ2〉, 〈φ0〉 arbitrary, such that 〈F1〉 = 0 = 〈F2〉 and
〈F0〉 6= 0. The mass spectrum of the 6 real bosons and the 3 Weyl fermions is found to
be

bosons : (0, 0,m2,m2,m2 ± 2Y λ) ,

fermions : (0,m,m) .
(6.10)

We observe a mass splitting of the boson-fermion mass degeneracy but a sum rule still
holds

StrM2 :=
∑
s

(−)2s(2s+ 1)TrM2
s = TrM2

0 − 2TrM2
1/2 = 4m2 − 4m2 = 0 . (6.11)

(In section 6.3.2 we will derive the general form of the sum rule and show its validity.)

Phenomenologically the sum rule (6.11) is problematic for the supersymmetric Stan-
dard Model. Since none of the supersymmetric partners has been observed yet, they must
be heavier than the particles of the Standard Model. Close inspection of (6.11) shows
that this cannot be arranged within a spontaneously broken supersymmetric Standard
Model. Nevertheless let us continue and discuss D-term breaking.

6.2.2 D-term breaking

We already discussed the possibility of adding a Fayet-Iliopoulos term to the supersym-
metry Lagrangian for any U(1) factor in the gauge group. Let us therefore consider a
U(1) vector multiplet and one charged chiral multiplet with vanishing W = 0 but the
additional FI coupling (4.15). In this case the D-term and the potential read

D = −(gφ̄φ+ ξFI) , V = 1
2
D2 = 1

2

(
gφ̄φ+ ξFI

)2
. (6.12)
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We need to distinguish the cases gξFI < 0 and gξFI > 0. For gξFI < 0 the minimum is
at 〈φ̄φ〉 = −ξFI/g with 〈D〉 = 0 = 〈V 〉. Thus the U(1) gauge symmetry is spontaneously
broken but supersymmetry is intact. For gξFI > 0 the condition 〈D〉 = 0 has no solution.
The minimum is at 〈φ〉 = 0 with 〈V 〉 = ξ2

FI/2, 〈D〉 = −ξFI . In this case the U(1) is
unbroken but supersymmetry is broken. Thus the vector multiplet remains massless, the
chiral fermion remains massless as W = 0 and only φ receives a mass

m2
φ = 〈∂φ∂φ̄V 〉 = −2ξFIg . (6.13)

In this case we have the sum rule

StrM2 = m2
φ = −2gD . (6.14)

6.3 General considerations

6.3.1 Fermion mass matrix and Goldstone’s theorem for supersymmetry

Let us start by computing the generic fermion mass matrix including the case where the
scalar fields φi have a non-trivial background value 〈φi〉 6= 0. It arises from the following
terms of the Lagrangian (5.8)

LM1/2
= −1

2
Wijχ

iχj + 1
2
W̄ijχ̄

iχ̄j + i
√

2g
(
φ̄iT aijχ

jλa − λ̄aT aijφiχ̄j
)
. (6.15)

These terms can be arranged in matrix form

LM1/2
= −1

2

(
χi, λa

)
M1/2

(
χj

λb

)
+ h.c. , (6.16)

for

M1/2 =

(
Wij i

√
2∂iD

a

i
√

2∂jD
b 0

)∣∣∣∣
min(V )

, (6.17)

where ∂iD
a = −gφ̄jT aji. Similarly

M̄1/2 =

(
W̄ij −i

√
2∂̄iD

a

−i
√

2∂̄jD
b 0

)∣∣∣∣
min(V )

. (6.18)

Note that for 〈φi〉 = 0 only Wij = mij survives in M1/2. For later use we compute

TrM1/2M̄1/2 =
(
WijW̄ji + 4∂iD

a∂̄iD
a
)∣∣

min(V )
. (6.19)

Goldstone’s theorem implies that any spontaneously broken global symmetry leads to
a massless state in the spectrum. This also holds for supersymmetry where the broken
generator is a Weyl spinor and thus there has to be an massless Goldstone fermion.
Indeed for arbitrary background values, M1/2 always has a zero eigenvalue corresponding
to the Goldstone fermion. This can be seen by identifying the corresponding null vector.
Consider

M1/2

(
W̄j
−i√

2
Da

)
=

(
WijW̄j + (∂jD

a)Da

i
√

2(∂jD
b)W̄j

)
=

(
0
0

)
, (6.20)
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where in the first equation we used (6.18). In the second equation the upper component
vanishes due to (6.5) while the lower component vanishes due to gauge invariance of W .
Gauge invariance indeed implies

δW = Wiδφ
i = iαaWi (T

a)ij φ
j = iαaWi∂īD

a = 0 . (6.21)

This proves Goldstones theorem for supersymmetry. Phenomenologically, however, the
presence of a massless Goldstone fermion poses a problem for the SSM as no massless
fermion has been observed yet. This already hints at the super Higgs effect where the
Goldstone fermion is “eaten” by the gauge field of local supersymmetry, the gravitino.

6.3.2 Mass sum rules and the supertrace

In order to determine the scalar mass matrix we need to consider the second derivatives
of V . From (2.26) we find

∂jV = WijW̄i + (∂jD
a)Da ,

∂j∂kV = WijkW̄i + (∂jD
a)(∂kD

a)

∂j ∂̄kV = WijW̄ik + (∂j ∂̄kD
a)Da + (∂jD

a)(∂̄kD
a) ,

(6.22)

where
Da = −gφ̄iT aijφj − ξFIδaU(1) , ∂jD

a = −gφ̄iT aij ,

∂̄iD
a = −gT aijφj , ∂j ∂̄kD

a = −gT akj .
(6.23)

The scalar masses can also be written in matrix form

V = 1
2

(
φ̄i, φj

)
M2

0

(
φk

φ̄l

)
(6.24)

for

M2
0 =

(
∂̄i∂kV ∂̄i∂̄lV
∂j∂kV ∂j ∂̄lV

)∣∣∣∣
min(V )

. (6.25)

Note that for 〈φi〉 = 0, M2
0 is block diagonal with m2

ij appearing in the diagonal. The
trace is

TrM2
0 = 2

(
WijW̄ji + (∂i∂̄iD

a)Da + (∂iD
a)(∂̄iD

a)
)∣∣

min
. (6.26)

Finally, the mass matrix of the gauge bosons arises from

LM1 = −Dµφ̄
iDµφi = −1

2
M2

IbA
I
µA

b µ + . . . , (6.27)

with
M2

Ib = 2g2φ̄jT IjkT
b
klφ

l = 2(∂kD
a)(∂̄kD

b) , (6.28)

where we used

Dµφ
i = ∂µφ

i + igAaµT
a
ijφ

j , Dµφ̄
i = ∂µφ

i − igAaµT aijφ̄j . (6.29)

Note that for 〈φi〉 = 0 all gauge bosons are massless.
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One defines the supertrace of the mass matrices by

StrM2 :=
1∑
s=0

(−)2s(2s+ 1)TrM2
s . (6.30)

For the case at hand we find from (6.19), (6.26), (6.28)

StrM2 =TrM2
0 − 2TrM1/2 + 3TrM2

1

=2(WijW̄ji + (∂i∂̄iD
a)Da + (∂iD

a)(∂̄iD
a))

− 2(WijW̄ji + 4∂iD
a∂̄iD

a) + 6(∂iD
a)(∂̄iD

a)

=2(∂i∂̄iD
a)Da = −2g (TrT a)Da .

(6.31)

For a non-Abelian gauge group the generators are traceless while for an Abelian (U(1))
gauge group the trace is proportional to the sum of the U(1) charges q. Thus we have
altogether

StrM2 = −2g (TrT a)Da =

{
0 for non-Abelian G
−2g (

∑
q)DU(1) for G = U(1)

. (6.32)

However, for
∑
q 6= 0 the theory has a gravitational anomaly and thus cannot be coupled

to gravity.
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7 Non-renormalizable couplings

In this lecture we consider supersymmetric theories as effective theories below some (cut-
off) scale M . Such effective theories are non-renormalizable and therefore we have to
generalize the considerations so far. In particular the following three generalizations will
be important:

1. The superpotential W (φ) will be an arbitrary holomorphic function and no longer
contraint to be cubic.

2. The gauge couplings will be field dependent τ → τ(φ).

3. The kinetic term of the scalar fields will have the form of an interacting σ-model.

Let us start with the latter.

7.1 Non-linear σ-models

The renormalizable kinetic term for n scalar fields given by

L = −δij ∂µφi∂µφj , i, j = 1, . . . , n , (7.1)

can be generalized as
L = −Gij(φ) ∂µφ

i∂µφj , (7.2)

where Gij(φ) is a symmetric, positive and invertible matrix depending on φi. A theory
with the Lagrangian (7.2) is called non-linear σ-model which, due to the φ dependence
of Gī, is non-renormalizable.

The scalar fields φi can be interpreted as coordinate of an n-dimensional Riemannian
target spaceM and Gī as its metric. Indeed an arbitrary field redefinition φi → φi ′(φj)
implies

∂µφ
i → ∂µφ

i ′ =
∂φi ′

∂φj
∂µφ

j . (7.3)

L is invariant if Gī transforms inversely, i.e.,

Gij → G′ij =
∂φk

∂φi ′
∂φl

∂φj ′
Gkl , (7.4)

which is precisely the transformation of the metric on M. The scalar fields can thus be
viewed as the map

φi(x) : M4 →M , (7.5)

where M4 is the Minkowski space and M a Riemannian target space.

Let us also recall that the metric has an expansion in Riemann normal coordinates.
For φi = φi0 + δφi one has

Gij = δij +M−2Rijkl(φ0)δφkδφl +O((δφ)3) , (7.6)

where we have chosen Gij(φ0) = δij and Rijkl is the curvature tensor on M. We also in-
cluded the cut-off scale M which is necessary due to the mass dimensions [φi] = 1, [Gij] =
0. This M -dependence is another way to see the non-renormalizability of the non-linear
σ-model. For complex scalar fields M is a complex manifold.
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7.2 Couplings of neutral chiral multiplet

Let return to supersymmetric theories and first discuss the couplings of chiral multiplets.
As we already said, W is no longer constrained to be cubic and the kinetic term φiφ̄j is
replaced by an arbitrary real function K(φi, φ̄̄) where now one conventionally also puts
a “bar” over the index of the anti-holomorphic scalar φ̄̄.

The couplings are determined most easily in superspace where the non-renormalizable
Lagrangian replacing (3.30) reads

L =

∫
d4θ K(Φi, Φ̄i) +

∫
d2θW (Φi) +

∫
d2θ̄ W̄ (Φ̄i) . (7.7)

Note that K is not uniquely defined but only up to so called Kähler transformations as
for K(Φ, Φ̄)→ K(Φ, Φ̄) + f(Φi) + f̄(Φ̄i) one has∫

K(Φi, Φ̄i)d4θ →
∫
K(Φi, Φ̄i) +

∫
f(Φi)d4θ +

∫
f̄(Φ̄i)d4θ̄ =

∫
K(Φi, Φ̄i) , (7.8)

where we used
∫
f(Φi)d4θ = 0 =

∫
f̄(Φ̄i)d4θ = 0.

In components the Lagrangian (7.7) is found to be (generalizing (2.25))

L = −Gī(φ, φ̄) ∂µφ
i∂µφ̄̄ − iGīχ̄

̄σ̄µDµχ
i − V (φ, φ̄)

− 1
2
(∇i∂jW )χiχj − 1

2
(∇ī∂̄W ) χ̄īχ̄̄ +Rīkl̄χ

iχkχ̄̄χ̄l̄ .
(7.9)

The σ-model metric Gī(φ, φ̄) is related to K by

Gī =
∂

∂φi
∂

∂φ̄̄
K(φ, φ̄) , (7.10)

which is the metric on a Kähler manifold with K being the Kähler potential. Supersym-
metry forces the fermions χi to transform as vectors under the coordinate change (7.3)
and thus its covariant derivative reads

Dµχ
i := ∂µχ

i + Γijk ∂µφ
jχk , (7.11)

where the Christoffel symbols on a Kähler manifold read

Γijk = Gil̄∂jGl̄k , (7.12)

with Γk̄ī̄ being the only other non-vanishing one. Rīkl̄ is the Riemann curvature tensor
which on a Kähler manifold reads

Rīkl̄ = Gml̄∂̄Γ
m
ik . (7.13)

Furthermore, the generalized Yukawa couplings are given by

∇i∂jW = ∂i∂jW − Γkij∂kW . (7.14)

Finally, the scalar potential is given by

V = Gij̄∂iW∂̄W̄ . (7.15)
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7.3 Couplings of vector multiplets – gauged σ-models

For vector multiplets the non-renormalizable generalization of (4.21) is

L = 1
16

∫
d2θ τab(φ)W a

αW
b α + h.c.

= −1
4
ReτabF

a
µνF

µν b − 1
4
ImτabF

a
µνF

µν b − iReτabλ̄
a /Dλb + 1

2
ReτabD

aDb ,

(7.16)

where τab(φ) is holomorphic and called the gauge kinetic function. We thus see that the
gauge couplings and the θ-angles became field dependent

g−2
ab = Reτab ,

θab
8π2

= Imτab . (7.17)

Note that for a simple gauge group one has τab = δabτ(φ).

Coupling chiral multiplets is not straightforward. Gauge invariance of the non-linear
σ-model (7.2) requires the metric Gī to admit (non-Abelian) isometries. In particular
one needs that the metric is invariant (i.e. δΛGī = 0) under the gauge transformation

δΛφ
i = Λa(x) kai(φ) , δΛφ̄

ī = Λa(x) k̄ai(φ̄) , (7.18)

where Λa(x) is the gauge parameter and kai(φ) are Killing vector fields.5

Demanding δΛGij̄ = 0 results in the Killing equations

∇ik̄
a
j +∇j k̄

a
i = 0 , ∇ik

a
j̄ + ∇̄j̄ k̄

a
i = 0 , (7.19)

where
k̄aj (φ, φ̄) := Gjī(φ, φ̄) k̄āi(φ̄) , kā (φ, φ̄) := Ḡi(φ, φ̄) kai(φ) . (7.20)

The solution of the first equation in (7.19) is an (anti-) holomorphic Killing vector field
k̄ī = k̄ī(φ̄) as promised. The solution of the second equation locally reads

kā = Gj̄i k
ai = −i∂P

a

∂φ̄j̄
, k̄ai = Gij̄ k̄

ā = −i∂P
a

∂φi
, (7.21)

where the P a are real and called moment maps or Killing prepotentials. They are unique
up to holomorphic terms which in particular include the Fayet-Iliopoulos terms. The
relation (7.21) can also be inverted leading to

P a = i
(
k̄ā∂̄K − r̄a(φ)

)
= −i

(
kai∂iK − ra(φ)

)
, (7.22)

where ra(φ) contains the FI-terms ra = δaU(1)ξFI .

In order to construct a gauge invariant Lagrangian one also needs the covariant deriva-
tives. They are given by

Dµφ
i = ∂µφ

i − Aaµkai(φ) , Dµχ
i = ∂µχ

i + Γijk ∂µφ
jχk − Aaµ∂kkaiχk . (7.23)

5Consistency requires that the ka i(φ) are holomorphic functions of the φi and we will see shortly
that this also results from the solution of the Killing equation.
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Together with (7.18) gauge invariance requires that kai(φ) carry a representation of the
gauge group G. One defines

ka := kai
∂

∂φi
, k̄a = k̄āi

∂

∂φ̄ī
, (7.24)

and shows [
ka, kb

]
= −fabc kc ,

[
k̄a, k̄b

]
= −fabc k̄c ,

[
ka, k̄b

]
= 0 , (7.25)

where fabc are the structure constants of G.

Let us check the renormalizable limit. Using again dimensional analysis reveals that
[φ] = [Aµ] = 1 implies [kai] = 1, [K] = 2. Thus expanding kai, K for small φ yields

kai = iT a ijφ
̄ +O(φ3) , K = δij̄φ

iφ̄̄ +O(φ3) . (7.26)

Inserted into (7.22) then yields

P a = −φ̄īT aījφ
j +O(φ3) , (7.27)

which indeed shows that the Killing prepotentials P a are related to the D-terms at lowest
order.

Let us now give the final Lagrangian

L = 1
4
ReτabF

a
µνF

µν b − 1
4
ImτabF

a
µνF

µν b − iReτabλ̄
a /Dλb

−Gī(φ, φ̄)Dµφ
iDµφ̄̄ − iGīχ̄

̄σ̄µDµχ
i

+
√

2 kai χ
iλa +

√
2 k̄aī χ̄

iλ̄a

− 1
2
(∇i∂jW )χiχj − 1

2
(∇ī∂̄W ) χ̄īχ̄̄

+Rīkl̄χ
iχkχ̄̄χ̄l̄ − V (φ, φ̄) .

(7.28)

where

V = Gij̄∂iW∂̄W̄ + 1
2

Reτ−1
ab P

aP b , (7.29)

and P a = ReτabDb. We see that altogether L is determined by the couplings K(φ, φ̄),
W (φ), τ(φ) and the Killing prepotentials P a(φ, φ̄).
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8 N = 1 Supergravity

8.1 General Relativity and the vierbein formalism

Let us first recall a few facts about General Relativity. It can be viewed as a (semi-)
classical field theory for a spin 2 field, the metric gµν(x) which is a symmetric tensor field
on an arbitrary (pseudo-) Riemannian manifold. Its Lagrangian is given by

LEH = − 1
2κ2

√
−g
(
R + Λ

)
+ Lmat , (8.1)

where κ2 = 8πM−2
Pl , g = det gµν , R is the Ricci-scalar, Λ is the cosmological constant and

Lmat contains the couplings to matter and gauge fields. The equations of motion derived
from the action are the Einstein equations

Rµν − 1
2
gµν
(
R + Λ

)
= κTµν , (8.2)

where Rµν is the Ricci tensor while Tµν is the energy-momentum tensor defined as

T µν =
1√
−g

∂Lmatter

∂gµν
. (8.3)

The matter couplings summarized in Lmat are obtained from the corresponding flat-
space version by replacing ηµν → gµν and multiplication by

√
−g. For a scalar field it

reads
Lmat = −

√
−g gµν∂µφ∂νφ , (8.4)

for a gauge field one has
Lmat = −1

4

√
−g gµνgκρFµκFνρ (8.5)

In order to couple fermions on needs the vierbein formalism where one defines the 4×4
matrix, the vierbein, eaµ(x) by

gµν(x) = emµ (x) ηmn e
n
ν (x) , µ, ν = 0, . . . , 3 , m, n = 0, . . . , 3 . (8.6)

At each space-time point xµ it erects a local Lorentz-frame. Note that (8.6) is invaraint
under the local Lorentz transformation

emµ → em ′µ = Λm
n e

n
µ , (8.7)

where Λ is the rotation matrix defined in (1.2). Finally, the inverse vierbeins are defined
by

emµ e
ν
m = δνµ , eµne

m
µ = δmn . (8.8)

With the help of the vierbein one can give the Weyl action for a spin-1/2 fermion χ as

L = −ie χ̄σ̄meµmDµχ , (8.9)

where e = det(emµ ) =
√
−g and σm are the Pauli matrices as defined in (1.11). The

covariant derivative is given by

Dµχ = ∂µχ+ ωµmnσ
mnχ , (8.10)
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where ω = ω(e, ∂e) is the spin connection and σmn is defined in (1.12).

Demanding metric compatibilty, i.e.

Dµgνρ = ∂µgνρ − Γκµνgκρ − Γκµρgκν = 0 ,

Dµe
m
ν = ∂µe

m
ν − Γρµνe

m
ρ + enνω

m
µn = 0 ,

(8.11)

expresses Γ = Γ(g, ∂g) and

ωµνρ = ωmµne
n
νe
κ
mgκρ = −1

2

(
eρm(∂µe

m
ν − ∂νemµ ) + eνm(∂ρe

m
µ − ∂µemρ )− eµm(∂νe

m
ρ − ∂ρemν )

)
.

(8.12)
One also has the relation

Γρµνe
m
ρ = ∂µe

m
ν + enνω

m
µn . (8.13)

With the help of the vierbein one defines for m vector field vµ

vm := eµmvµ , (8.14)

and the covariant derivatives

Dµvν = ∂µvν − Γρµνvρ , Dµv
ν = ∂µv

ν + vρΓνµρ ,

Dµvm = ∂µvm − ω n
µm vn , Dµv

m = ∂µv
m + vnω m

µn ,
(8.15)

The mction (8.1) hms two sets of invmrimnces. Firstly there are the general coordinate
transformations

xµ → x ′µ = xµ − aµ(x) , (8.16)

which leads to the infinitesimal transformations of vector fields vµ

δvµ = −aρ∂ρvµ − (∂µa
ρ) vρ . (8.17)

In addition there are local Lorentz transformations for vector fields which are defined in
the local tangent space and which carry m-type indices

δvm = vnLn
m(x) , δvm = −Lmn(x) vn . (8.18)

(Note that in the notation of (1.4) we abbreviated Ln
m ≡ − i

2
ω[µν](L

[µν])n
m.) Thus the

vierbein itself transforms accordingly as

δemµ = −aρ∂ρemµ − (∂µa
ρ) emρ + enµLn

m , (8.19)

while ω transforms as

δωµm
n = −aρ∂ρωµmn − (∂µa

ρ)ωρm
n + ωµm

cLc
n − Lmcωµcn − ∂µLmn . (8.20)

Note that ω transforms as a connection of local Lorentz transformations.
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8.2 Pure supergravity

The goal now is to supersymmetrize General Relativity. From lecture 2 (Table 2.2)
we know that we need a spin – or rather helicity-3/2 field, the gravitino ψµα in the
gravitational multiplet.

Before the invention of supersymmetry there was a no-go theorem stating that a mass-
less spin-3/2 field cannot be consistently coupled in an interacting QFT. Let us briefly
review this argument. In fact any massless field with s ≥ 1 has to couple to a conserved
current since as a consequence there is a local gauge invariance which removes possible
ghost-like excitations and renders the Hilbert space positive definite. Concretely for s = 1
one has

L = −1
4
FµνF

µν + Aµj
µ , (8.21)

with the equation of motion
∂µF

µν = jµ . (8.22)

Taking the derivative one obtains ∂µj
µ = 0 which implies that L is gauge invariant

and the ghost-like excitations of Aµ can be removed. Similarly, taking the derivative
of (8.2) implies DµT

µν = 0 or in flat space ∂µT
µν = 0. Here the local symmetry is

reparametrization invariance. For s = 3/2 no appropriate local symmetry was known
before supersymmetry and in fact Coleman and Mandula showed that it cannot exist and
at the same time be compatible with the axioms of a QFT [10]. Of course there was the
hidden assumption in their argument that all symmetry generators are bosonic charges
which is not the case for supersymmetry. Thus ψµ has to couple to the supercurrent, i.e.
the generator of the supersymmetry transformation and it has to be a local invariance.

The kinetic term for ψµ (also known as the Rarita-Schwinger field strength) is given by

Lψ = e
κ2 ψ̄κσ̄

[κσµσ̄ν]Dµψν , (8.23)

where the covariant derivative includes appropriate connections and we defined σρ :=
emρ σm. Together LEH(Λ = 0) +Lψ are invariant under the local supersymmetry transfor-
mations6

δξe
m
µ = i

(
ψµσ

mξ̄(x)− ξ(x)σmψ̄µ
)
, δξψµ = −Dµξ(x) . (8.24)

Note that ξ(x) is a local parameter and ψµ transforms like a gauge field or a connection
that is inhomogenously.

Let us close this lecture by counting degrees of freedom. Off-shell eaµ has 6 = 16−4−6
degrees of freedom (4 are removed by coordinate invariance and 6 by local Lorentz in-
variance) while ψµ has 12 = 16 − 4 degrees of freedom (4 are removed by local super-
symmetry). There are various off-shell multiplets with different auxiliary field structure.
In the following we concentrate on the old minimal multiplet with six auxiliary fields, a
real bµ and a complex M . Altogether the off-shell multiplet is

(gµν , ψµα, bµ,M) , with d.o.f. : (6, 12, 4, 2) . (8.25)

Including the auxiliary fields the Lagrangin reads

L = − e
2κ2

(
R + ψ̄κσ̄

[κσµσ̄ν]Dµψν +MM̄ + bµbµ
)
. (8.26)

6He we only discuss pure supergravity in Minkowskian background and return to the issue of the
cosmological constant in the next section.
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In this case the equation of motion for the auxiliary fields is

bµ = 0 , M = 0 . (8.27)
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9 Coupling of N = 1 Supergravity to super Yang-

Mills with matter

In this lecture we discuss the couplings of chiral and vector multiplets to N = 1 super-
gravity. Since theories including gravity are non-renormalizability we can use the results
of Section 7 with the cut-off scale being the Planck scale, i.e. M = MPl.

There are basically three approaches to construct the action:

1. via superspace [5].

In this case one promotes the vierbein enµ(x) to a full superfield EN
Π (x, θ, θ̄), N =

(n, α, α̇),Π = µ, α, α̇, where the underline variables contain a vielbein. This step
introduces too many d.o.f. and it is necessary to impose covariant constraint on
torsion and curvature.

2. One constructs the couplings of superconformal supergravity and then gauge fixes
to Poincare supergravity [3].

3. One constructs the action for linearized gravity and then systematically adds higher
order terms to Lagrangian and transformation laws [4].

The resulting action is given in Appendix G of [5]. In the following we focus on selected
terms of this action.

9.1 The bosonic Lagrangian

Let us first focus on the bosonic terms as they also fix all fermionic couplings by super-
symmetry. They read

L = e
2κ2 R− 1

4
Reτab(φ)F a

µνF
b µν − 1

4
Imτab(φ)F aF̃ b

−Gij̄Dµφ
iDµφ̄j̄ − V (φ, φ̄) + fermionic terms ,

(9.1)

where the covariant derivatives are exactly as in (7.23) and the metric continues to be
Kähler and given by (7.10). The scalar potential V is given by

V = eκ
2K
(
DiWGij̄Dj̄W̄ − 3κ2|W |2

)
+ 1

2
ReτabP

aP b (9.2)

where

DiW :=
∂W

∂φi
+ κ2

(
∂K

∂φi

)
W ,

P a = − i
2
(kai∂iK − k̄aj̄∂j̄K)− Imra .

(9.3)

As in Section 7 the couplings in L of (9.1) are determined by the three functions
K(φ, φ̄),W (φ), f(φ) and the choice of P a. In the flat limit κ → 0 the potential reduces
to the V given in (5.9).
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The Lagrangian (9.1) has a modified Kähler invariance under which the couplings
transform accordingly

K → K + f(φ) + f(φ̄) , W → We−κ
2f , (9.4)

which leave the metric Gij̄ and the potential V invariant.7

One can combine K and W into an invariant combination G = κ2K + lnκ6|W |2 and
in terms of G the potential takes the form

V = κ−4eG
(
GiG

īḠ − 3
)
. (9.5)

In this formulation it appears that W can be redefined into K. However, the definition
of G is problematic for 〈W 〉 = 0. In fact the physical meaning of W are its zeros and
poles.

The fermions also transform under Kähler transformations as can be seen from their
covariant derivatives

Dµχ
i = ∂µχ+ χiωµ + ΓijkDµφ

jχk − gAaµ∂jkaiχj −Kµχ
i − i

2
gAaµP

aχi ,

Dµλ
a = ∂µλ

a + λaωµ +−gfabcAbµλc +Kµλ
a + i

2
gAbµP

bλa ,

Dµψν = ∂µψν + ψνωµ + +Kµψν + i
2
gAbµP

bψnu ,

(9.6)

where

Kµ := 1
4
(Ki∂µφ

i −Kī∂µφ̄
ī) . (9.7)

Kµ is called the composite Kähler connection as it transforms under Kähler transforma-
tions as

Kµ → Kµ + i
2
∂µImf . (9.8)

Accordingly the fermions transform as

ψµ → ψµ e
− i

2
Imf , λ→ λ e−

i
2

Imf , χ→ χ e
i
2

Imf . (9.9)

So far the Kähler transformations (9.4) were a mere redundancy of the couplings but
not a symmetry. However, it can happen that under a gauge transformation K does
transform as in (9.4). In this case one has

δK = Λa(ra + r̄a) ,

δW = −ΛaraW ,

δχi = Λa∂jk
aiχj + i

2
ΛaImraχ ,

δλa = fabcΛbλc − i
2
ΛbImrbλa ,

δψµ = − i
2
ΛaImrbψµ .

(9.10)

We see that in this case the fermions have an additional coupling to the gauge field which
is often referred to as gauging the R-symmetry.

7P a is invariant after an appropriate shift of ra.
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10 Spontaneous supersymmetry breaking in super-

gravity

As in section 6 the order parameters of spontaneous supersymmetry breaking are the
scalar parts of the fermionic supersymmetry transformations. In supergravity they are
given by

δξχ
i ∼ F iξ , δξλ

a ∼ gDaξ , δξψµ ∼ Dµξ + ie
1
2
κ2KWσµξ̄ , (10.1)

where

F i = e
1
2
κ2KGij̄D̄j̄W̄ = eG/2Gij̄Gj̄ . (10.2)

We see that, as before, 〈F i〉 and 〈Da〉 are the order parameters of supersymmetry break-
ing.8 For 〈F i〉 = 〈Da〉 = 0, the potential evaluated at the minimum is

〈V 〉 = −3κ2〈eκ2K |W |2〉 ≤ 0 . (10.3)

〈V 〉 plays the role of a cosmological constant and for 〈W 〉 = 〈V 〉 = 0 one has a Minkowski
background M4. For 〈W 〉 6= 0 follows 〈V 〉 < 0, i.e. one has an AdS4-background. Note
that a dS-background is incompatible with unbroken supersymmetry.

10.1 F-term breaking

Let us focus on F-term breaking in a Minkowski background M4 (and set κ = 1 most of
the time). In this case we have

〈eG/2Gij̄Gj̄〉 6= 0 , 〈Gij̄GiGj̄〉 = 3 . (10.4)

The non-derivative couplings of the gravitino read

−eG/2
(
ψµσ

µνψν + i√
2
Giχ

iσµψ̄µ + 1
2
(∇iGj +GiGj)χ

iχj + h.c.
)
. (10.5)

These terms can be diagonalized by the redefinition

ψ̃µ = ψµ +
√

2
3m3/2

∂µη + i
√

2
6
σµη̄ , (10.6)

for η := Giχ
i. Inserted into (10.5) one obtains

m3/2(ψ̃µσ
µνψ̃ν) + 1

2
mijχ

iχj + h.c. , (10.7)

where

m2
3/2 = κ−2e〈G〉 = κ4〈eκ2K |W |2〉 , mij = 〈∇iGj + 1

3
GiGj〉m3/2 . (10.8)

One can show that the mass matrix mij of the chiral fermions always has a zero eigenvalue
corresponding to the Goldstone fermion (GF). Indeed, using the minimization condition
of the potential and (10.4) one shows mijG

j = 0 and thus η is indeed the GF. One can

8For 〈F i〉 = 〈Da〉 = 0 one can always find 〈δξψµ〉 = 0 which determines a Minkowski or AdS-
background.
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further show that η also disappears from the kinetic terms and thus η is “eaten” by the
massive gravitino and becomes its “longitudinal” d.o.f..

Let us turn to the bosonic mass matrices. In terms of G = K + ln |W |2 they read

M2
ī = 〈(DiGkD̄̄G

k −Rīkl̄G
kGl̄ +Gī)e

G〉 ,

M2
ij = 〈(GkDiDjGk +DiGj +DjGi)e

G〉 .
(10.9)

The sum rule (6.32) is modified and now reads

StrM2 =

3/2∑
s=0

(−)2s(2s+ 1) TrM2
J = 2(nc − 1)m2

3/2 − 2〈RīG
iGj̄〉m2

3/2 . (10.10)

The new terms arise due to the massive gravitino and as a consequence it becomes
possible to have all scalar partners of the SM fermions heavy.

In AdS4 similar formulas exist but they are more complicated as the cosmological
explicitly contributes.

10.2 The Polonyi model

After these generalities let us come to a concrete realization of supersymmetry breaking.
As in global supersymmetry the basic idea is to add a “hidden sector” which is responsible
for the supersymmetry breaking. That is one adds

W = WMSSM +Whidden (10.11)

such that

〈F̄ ı̄〉 = 〈eκ2K/2Gı̄jDjWhidden〉 6= 0 . (10.12)

The simplest concrete W is the Polonyi model where one singlet φ is added with the
following couplings

W = M2
s (φ+ β) , Ms, β ∈ R ,

K = φφ̄+KMSSM , Gφφ̄ = ∂φ∂φ̄K = 1 .
(10.13)

Computing
DφW = ∂φW + κ2KφW = m2 + κ2φ̄m2

s (φ+ β) , (10.14)

one see that DφW = 0 has no solution for κβ < 2. Minimizing V and tuning 〈V 〉 = 0 by
choosing β appropriately one finds

κβ = ±(2−
√

3) , 〈φ〉 = ±(
√

3− 1) ,

〈DφW 〉 =
√

3m2
se

(2−
√

3) , 〈W 〉 = ±κ−1m2
s .

(10.15)
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10.3 Generic gravity mediation

In this section we want to identify the effect of supersymmetry breaking in the observable
(MSSM) sector following [11]. We distinguish the observable charged matter fields QI

from neutral (hidden) scalars T i and assume 〈QI〉 = 0. Then we expand their Kähler
potential in a power series in QI as

K = κ−2K̂(T, T̄ ) + ZĪJ(T, T̄ ) Q̄ĪQ̄ +
(

1
2
HIJ(T, T̄ )QIQ̄ + c.c.

)
+ · · · , (10.16)

where we neglect terms of order O(Q3). In this notation the superpotential is given by

W (T,Q) = Wobs(T,Q) +Whidden(T ) , (10.17)

with
Wobs(T,Q) = 1

2
mIJ(T )QIQ̄ + 1

3
YIJL(T )QIQJQK + · · · (10.18)

For Whidden(T ) we make the following assumption:

1. some 〈F i〉 6= 0,

2. all 〈T i〉 fixed,

3. 〈V 〉 = 0,

4. m3/2 �MPl.

With these assumption one can compute the leading order effect in the limit MPl →∞
with m3/2 fixed. One finds that the (canonically normalized) gaugino masses are given
by

m̃ = 1
2
F i∂i log g−2 + 1

16π2 bm3/2 , (10.19)

where b is the one-loop coefficient of the β-function and the second term is know as a
contribution from anomaly mediation [12]. The potential reads

V = 1
4
g2
(
Q̄ĪZĪJT

aQJ
)2

+ ∂IŴZIJ̄ ∂̄J̄
ˆ̄W

+ m2
IJ̄Q

IQ̄J̄ +
(

1
3
AIJLQ

IQJQL + 1
2
BIJQ

IQJ + c.c.
)
.

(10.20)

The first line is the scalar potential of an effective theory with unbroken rigid supersym-
metry while the second line is comprised of the soft supersymmetry-breaking terms. Ŵ
is given by

Ŵ (Q) = 1
2
µ̂IJQ

IQJ + 1
3
ŶIJLQ

IQJQL, (10.21)

where
µ̂IJ := eK̂/2mIJ +m3/2HIJ − F̄ j̄ ∂̄j̄HIJ ,

ŶIJL := eK̂/2 YIJL .
(10.22)

The coefficients of the soft terms in the second line of (10.20) are as follows:

m2
IJ̄ = m2

3/2ZIJ̄ − F iF̄ j̄Rij̄IJ̄ ,

AIJL = F iDiŶIJL ,

BIJ = F iDiµ̂IJ − m3/2µ̂IJ ,
(10.23)
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where
Rij̄IJ̄ = ∂i∂̄j̄ZIJ̄ − ΓNiIZNL̄Γ̄L̄j̄J̄ , ΓNiI = ZNJ̄∂iZIJ̄ ,

DiŶIJL = ∂iŶIJL + 1
2
K̂iŶIJL − ΓNi(I ŶJL)N ,

Diµ̂IJ = ∂iµ̂IJ + 1
2
K̂i µ̂IJ − ΓNi(I µ̂J)N .

(10.24)

Notice that all quantities appearing in eqs. (10.19), (10.22) and (10.23) are covariant with
respect to the supersymmetric reparametrization of matter and moduli fields as well as
covariant under Kähler transformations.

According to eq. (10.23), m2
ĪJ
∼ m2

3/2, AIJL ∼ m3/2ŶIJL, and BIJ ∼ m3/2m̂IJ ; nev-

ertheless, the soft terms are generally not universal, i.e. AIJL 6= const · m3/2ŶIJL and
m2
IJ̄
6= const · m2

3/2ZIJ̄ , even at the tree level. In the context of the MSSM, this non-
universality means that the absence of flavor-changing neutral currents is not an auto-
matic feature of supergravity but a non-trivial constraint that has to be satisfied by a
fully realistic theory.

Phenomenological viability of the MSSM imposes yet another requirement: The super-
symmetric mass term µ for the two Higgs doublets should be comparable in magnitude
with the non-supersymmetric mass terms. Equation (10.22) displays mIJ and HIJ as two
independent sources of m̂IJ . The contribution of a non-vanishing HIJ to m̂ is automati-
cally of order m3/2, without any fine-tuning. This fact is known as the Giudice-Masiero
mechanism [13].

10.4 Soft Breaking of Supersymmetry

As we have seen in section 6 models with spontaneously broken supersymmetry are
phenomenologically not acceptable. For example the mass formula (6.32), generally valid
in such cases, forbids that all supersymmetric particles acquire masses large enough to
make them invisible in present experiments. One way to overcome those difficulties is to
allow explicit supersymmetry breaking.

A special case of explicit breaking is so called soft supersymmetry breaking where the
added terms do not introduce quadratic divergences into the theory and thus stabilizes
the Higgs mass and the weak scale.

One possibility to identify the soft breaking terms is to investigate the divergence
structure of the effective potential [14]. Consider a quantum field theory of a scalar field
φ in the presence of an external source J . The generating functional for the Green’s
functions is given by

e−iE[J ] =

∫
Dφ exp

[
i

∫
d4x(L[φ(x)] + J(x)φ(x))

]
. (10.25)

The effective action Γ(φcl) is defined by the Legendre transformation

Γ(φcl) = −E[J ]−
∫
d4xJ(x)φcl(x) , (10.26)
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where φcl = − δE[J ]
δJ(x)

. Γ(φcl) can be expanded in powers of momentum; in position space
this expansion takes the form

Γ(φcl) =

∫
d4x[−Veff (φcl)−

1

2
(∂mφcl)(∂

mφcl)Z(φcl) + . . . ] . (10.27)

The term without derivatives is called the effective potential Veff (φcl). It can be calcu-
lated in a perturbation theory of ~:

Veff (φcl) = V (0)(φcl) + ~V (1)(φcl) + . . . (10.28)

where V (0)(φcl) is the tree level and V (1)(φcl) the one-loop contribution. In a theory with
scalars, fermions and vector bosons the one-loop contribution takes the form [15]

V (1) ∼
∫
d4k Str ln(k2 +M2) =

∑
s

(−1)2s(2s+ 1) Tr

∫
d4k ln(k2 +M2

s ) , (10.29)

where M2
s is the matrix of second derivatives of L|k=0 at zero momentum for scalars

(s = 0), fermions (s = 1/2) and vector bosons (s = 1).9 The UV divergences of (10.29)
can be displayed by expanding the integrand in powers of large k. This leads to

V (1) ∼ Str1

∫
d4k

(2π)4
ln k2 + StrM2

∫
d4k

(2π)4
k−2 + . . . . (10.30)

If a UV-cutoff Λ is introduced the first term in (10.30) is O(Λ4 ln Λ). Its coefficient
Str1 = nB − nF vanishes in theories with a supersymmetric spectrum of particles. The
second term in (10.30) is O(Λ2) and determines the presence of quadratic divergences at
one-loop level. Therefore quadratic divergences are absent if

StrM2 = 0 . (10.31)

More precisely, one can also tolerate a constant StrM2 since this would correspond to
a shift of the zero point energy which, without coupling to gravity, is undetermined. In
theories with exact or spontaneously broken supersymmetry (10.31) is fulfilled whenever
the trace-anomaly vanishes as we learned in (6.32).10

The soft supersymmetry breaking terms are defined as those non-supersymmetric terms
that can be added to a supersymmetric Lagrangian without spoiling StrM2 = const.. One
finds the following possibilities [14]:

• Holomorphic terms of the scalars proportional to φ2, φ3 and the corresponding
complex conjugates.11

• Mass terms for the scalars proportional to φ̄φ. (They only contribute a constant,
field independent piece in StrM2).

9M2
s is not necessarily evaluated at the minimum of Veff . Rather it is a function of the scalar fields

in the theory. The mass matrix is obtained from M2
s by inserting the vacuum expectation values of the

scalar fields.
10Indeed, theories with a non-vanishing D-term have been shown to produce a quadratic divergence

at one-loop [16].
11Higher powers of φ are forbidden since they generate quadratic divergences at the 2-loop level [14].
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• Gaugino mass terms.

Thus the most general Lagrangian with softly broken supersymmetry takes the form

L = Lsusy + Lsoft , (10.32)

where Lsusy is of the form (5.4) and

Lsoft = −m2
ijφ

iφ̄j − (Bijφ
iφj + Aijkφ

iφjφk + h.c.)− 1
2
m̃abλ

aλb + h.c. . (10.33)

m2
ij and Bij are mass matrices for the scalars, Aijk are trilinear couplings (often called

‘A-terms’) and m̃ab is a mass matrix for the gauginos. As we have seen in the previous
section these terms precisely appear in spontaneously broken supergravity (c.f. (10.20)).

We see that many new parameters are introduced which are only constrained by gauge
invariance. For the SSM (with R-parity) one has

Lsoft = −
(

(Au)IJhuq̃
I
Lũ

J
R + (Ad)IJhdq̃

I
Ld̃

J
R + (Ae)IJhdl̃

I
Lẽ

J
R +Bhuhd + h.c.

)
−

∑
all scalars

m2
ijφ

iφ̄j −
(

1
2

3∑
(a)=1

m̃(a)(λλ)(a) + h.c.
)
, (10.34)

where the index (a) runs over the three factors in the SM gauge group. Obviously a
huge number of new parameters is introduced via Lsoft. The parameters of Lsusy are the
Yukawa couplings Y and the parameter µ in the Higgs potential. The Yukawa couplings
are determined experimentally already in the non-supersymmetric Standard Model. In
the softly broken supersymmetric Standard Model the parameter space is enlarged by(

µ, (au)IJ , (ad)IJ , (ae)IJ , b,m
2
ij, m̃(a)

)
. (10.35)

Not all of these parameters can be arbitrary but quite a number of them are experimen-
tally constrained.

Within this much larger parameter space it is possible to overcome several of the
problems encountered in the supersymmetric Standard Model. For example, the super-
symmetric particles can now easily be heavy (due to the arbitrariness of the mass terms
m2
ij) and therefore out of reach of present experiments. Furthermore, the Higgs potential

is changed and vacua with spontaneous electroweak symmetry breaking can be arranged.

However, the soft breaking terms introduce their own set of difficulties. For generic
values of the parameters (10.35) the contribution to flavor-changing neutral currents is
unacceptably large, additional (and forbidden) sources of CP-violation occur and finally
the absence of vacua which break the U(1)em and/or SU(3) is no longer automatic. It is
beyond the scope of these lectures to review all of these aspects in detail.
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11 N-extended Supersymmetries

11.1 Supersymmetry Algebra

Let us consider the generalized situation of N supercharges QI
α, I = 1, . . . , N . In this

case the superalgebra reads

{QI
α, Q̄

J
β̇
} = 2σµ

αβ̇
Pµδ

IJ , {QI
α, Q

J
β} = 2εαβZ

IJ , {Q̄α̇, Q̄β̇} = 2εα̇β̇Z̄
IJ , (11.1)

where the commutations relations for each of the QI with the generators of the Poincare
group Lµν , Pµ are as in (1.17). The Jacobi-identity requires that Z commutes with all
generators [Z,Q] = [Z, P ] = [Z,L] = 0 and thus these are (Lorentz-invariant) central
charges of the algebra.

Furthermore (11.1) is left invariant by an U(N) automorphism which rotates the
charges according to

QI → Q ′I = QJ UJ
I , Q̄I → Q̄′I = U †IJ Q̄

J ,

ZIJ → Z ′IJ = U I
K Z

KL UL
J ,

(11.2)

where UU † = 11. One can use this freedom to bring Z into “normal-form”, i.e., into 2×2
antisymmetric block-matrices leaving N/2 physical real central charges:12

ZIJ =


0 −Z1

Z1 0
0 −Z2

Z2 0
. . .

 . (11.3)

11.2 Representations of extended supersymmetry

For massive representation with Pµ = (−m, 0, 0, 0), the superalgebra becomes

{QΣ
α , Q̄

Π
β̇
} = 2mδαβ̇δ

ΣΠ , {QΣ
α , Q

Π
β } = 2εαβZ

ΣΠ , {Q̄Σ
α̇ , Q̄

Π
β̇
} = 2εα̇β̇Z̄

ΣΠ . (11.4)

Let us start with N = 2 and define

aα =
1√
2

(Q1
α + εαβ(Q2

β)†) , bα =
1√
2

(Q1
α − εαβ(Q2

β)†) . (11.5)

Inserted into (11.4) one obtains

{aα, a†β} = 2δαβ(m+ Z) , {bα, b†β} = 2δαβ(m− Z) , (11.6)

with all other anticommutators vanishing. Positivity of the quantum mechanical Hilbert
space requires

m ≥ Z . (11.7)

This constraint is known as the Bogolmoni-Prasad-Sommerfield (BPS) bound.

12For N odd there is a single zero in the bottom right corner.
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11.2.1 N = 2,m > Z

From (11.6) we see that for m > Z there are 4 (= 2N) fermionic creation operators a†α, b
†
β.

Let us combine these four operators as A† := (a†α, b
†
β) and construct the representations

by acting with A† on the spin-s Clifford vacuum |s〉 which is annihilated by A, i.e.

A|s〉 = 0 . (11.8)

The states with there multiplicities are given in Table 11.1. We see that the total number

states spin multiplicity
|s〉 s 2s+ 1

A|s〉 s± 1
2

4(2s+ 1)

AA|s〉 s, s± 1 6(2s+ 1)

AAA|s〉 s± 1
2

4(2s+ 1)

AAAA|s〉 s 2s+ 1

Table 11.1: Massive N = 2 states.

of states is 16(2s+ 1) while the spins range from s+ 1, . . . , s− 1.

The different multiplets are summarized in Table 11.2.

Spin |0〉 |1
2
〉 |1〉

0 5 4 1
1
2

4 6 4
1 1 4 6
3
2

1 4
2 1

nB = nF 8 16 32
long vector spin 3

2
spin 2

multiplet multiplet multiplet

Table 11.2: Massive N = 2 multiplets.

11.2.2 N even, m > Zr

In this case one follows the same construction as for N = 2. The total number of states
of a multiplet is given by

n = (2s+ 1)
2N∑
k=0

(
2N

k

)
= 22N(2s+ 1) , (11.9)

where (2s + 1) is the multiplicity of |s〉. The number of bosonic and fermionic states
therefore is

nB = 22N−1(2s+ 1) = nF , (11.10)
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and the different spins occurring in the multiplet are (s + N
2
, . . . , s − N

2
). The N = 4

massive graviton multiplet is given in Table 11.3.

Spin |0〉
0 42
1
2

48
1 27
3
2

8
2 1

nB = nF 128 = 27

Table 11.3: Massive N = 4 graviton multiplet.

11.2.3 N = 2,m = Z

Let us now turn to the situation where the mass m saturates the BPS bound in (11.6),
i.e., m = Z. In this case the N = 2 fermionic creation operators b†α decouple and we are
left only with the a†α or in other words with an “N/2 situation”. The number of states
in a multiplet is only half, i.e., n = 2N(2s+ 1). The N = 2 BPS multiplets coincide with
the massive N = 1 multiplets given in Table 2.1. We repeat them in adapted form in
Table 11.4. Note that in N = 2 supersymmetry there are two distinct vector multiplets.
A “short” BPS multiplet with a total of 8 states and a “long” non-BPS multiplet with a
total of 16 states.13

Spin |0〉 |1
2
〉 |1〉 |3

2
〉

0 2 1
1
2

1 2 1
1 1 2 1
3
2

1 2
2 1

nB = nF 2 4 6 8
half-hyper short vector spin 3

2
BPS spin 2 BPS

multiplet multiplet multiplet multiplet

Table 11.4: N = 2 BPS multiplets.

11.2.4 N arbitrary, m = Zi

For N > 2 there can be N/2 distinct central charges Zi, i = 1, . . . , N/2 and the multiplet
structure depends on how many BPS bounds are saturated. In the generic case one
has m > Zi, ∀ i and we discussed this in 11.2.1 and 11.2.2. Then one can have the
situation that r < N/2 BPS bounds are saturated, i.e., m = Zi,∀ i = 1, . . . , r. In

13Half-hypermultiplets in complex representation of the gauge group G are inconsistent. However,
they appear to be possible in pseudo-real representations of G [17,18].
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this case the representation theory coincides with a theory with N − r supercharges.
Finally, all BPS charges might be saturated m = Zi,∀ i and then one encounters the
representations of N/2 supersymmetry. The importance of the BPS bound comes the
fact that it only depends on the algebra and therefore is expected to hold after including
quantum corrections.

11.3 massless representation

Finally, let us turn to massless representations where again a light-like frame with mo-
mentum Pµ = (−E, 0, 0, E) is chosen. The superalgebra becomes

{QΣ
α , Q̄

Π
β̇
} = 2E(−σ0 + σ1)αβ̇ δ

ΣΠ = 2E

(
1 0
0 0

)
αβ̇

δIΠ ,

{QΣ
α , Q

Π
β } = 0 = {Q̄Σ

α̇ , Q̄
Π
β̇
} .

(11.11)

Thus we have the same situation as in the BPS case with all charges saturated, namely
N fermionic creation operators (QΠ

1 )†. For multiplets which are in accord with the CPT
theorem we thus have for the number of states in a multiplet

n = 2N ×
{

1 if the multiplet is CPT complete
2 if the CPT conjugate has to be added

(11.12)

The massless multiplets for N = 2, 4, 8 are given in Tables 11.5,11.6,11.7, respectively.

λ | − 1
2
〉 | − 1〉 |0〉 −|3

2
〉 |1

2
〉 | − 2〉 |1〉

−2 1
−3

2
1 2

−1 1 2 1
−1

2
1 2 1

0 2 1 1
+1

2
1 2 1

+1 1 2 1
+3

2
1 2

+2 1
nB = nF 2 4 4 4

half-hyper vector gravitino graviton
multiplet multiplet multiplet multiplet

Table 11.5: The massless multiplets for N = 2.

We see that for N ≥ 4 no matter multiplets exists and for N = 8 there is a unique
massless multiplet incorporating all helicities λ = 0, . . . ,±2. For N > 8 one necessarily
has states with |λ| > 2 in the spectrum which is believed to be inconsistent in a Minkowski
background. Therefore one confines the attention to N ≤ 8.
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λ | − 1〉 | − 3
2
〉 | − 1

2
〉 | − 2〉 |0〉

−2 1
−3

2
1 4

−1 1 4 6
−1

2
4 6 1 4

0 6 4 4 1 1
+1

2
4 1 6 4

+1 1 4 6
+3

2
1 4

+2 1
nB = nF 8 16 16

vector gravitino graviton
multiplet multiplet multiplet

Table 11.6: The massless multiplets for N = 4.

λ | − 2〉
-2 1
-3

2
8

-1 28
-1

2
56

0 70
+1

2
56

+1 28
+3

2
8

+2 1

Table 11.7: Massless multiplet for N = 8

12 QFTs with global N = 2 supersymmetry

12.1 The N = 2 action for vector multiplets

The massless vector multiplet consists in one vector Aµ, two fermions λΣ
α (Σ = 1, 2) and

a complex scalars z. For nv vector multiplets we use the notation
(
Aaµ, λ

Σ a
α , za

)
with

a = 1, . . . , nv. All members of the multiplet transform in the adjoint representation of
some gauge group G. In terms of N = 1 multiplets, we have the decomposition:(

Aaµ, λ
Σ a
α , za

)
→
(
Aaµ, λ

1a
µ

)
⊕
(
λ2a
α , z

a
)
, (12.1)

where the first multiplet is the N = 1 vector multiplet while the second is a N = 1 chiral
multiplet. The bosonic Lagrangian is

L =− 1
4
(ImF )ab(z, z̄)F a

µνF
bµν − 1

4
(ReF )ab(z, z̄)F a

µνF
µνb

−Gab̄(z, z̄)Dµz
aDµz̄b − V (z, z̄) ,

(12.2)

where due to supersymmetry the couplings are now interrelated. In particular the gauge
kinetic function Fab and the σ-model metric Gab̄ are both expressed in terms of one
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holomorphic prepotential F (z).14 Concretely, Gab̄ is again Kähler but with a specific
Kähler potential

K = i
(
F̄az

a − Faz̄a
)
, Fa = ∂aF (z) (12.3)

such that
Gab̄ = ∂a∂b̄K = 2ImFab . (12.4)

Manifolds with this property have been termed rigid special Kähler manifolds.

The gauge kinetic functions are also determined by the second derivative of F according
to

Fab = ∂a∂bF (z) . (12.5)

Note that the physical requirement of properly propagating fields imposes Im (Fab) > 0.

The scalars za transform in the adjoint representation of G and thus the covariant
derivatives are given by

Dµz
a = ∂µz

a − vbµkba (z) . (12.6)

As in N = 1 the Killing vectors kba are expressed in terms of Killing prepotentials P a

according to

kbā(z, z̄) = Gāck
bc (z) = −i∂āP b(z, z̄) , k̄ba(z, z̄) = Gac̄k̄

bc̄ (z̄) = i∂aP
b(z, z̄) . (12.7)

In N = 2 no superpotential is possible and the potential is entirely determined by the
Killing vectors

V = Gab̄k
a
c̄ k̄

b̄
dz̄
c̄zd . (12.8)

For renormalizable theories one finds

F = i
4
zaza , K = δab̄z

az̄b̄ , Gab̄ = δab̄ , kab = ifabczc . (12.9)

Thus the potential is quartic and reads

V ∼ δad̄f
abcfdefzbz̄czez̄f ∼ Tr [z, z̄]2 ≥ 0 , (12.10)

where in the second step we defined z = zaT a, z̄ = z̄aT a.

Due to the semi-positivity of V its minimum is at 〈V 〉 = 0 which holds for example at
the origin of field space 〈za〉 = 0. However, there is a moduli space of solutions spanned
by the directions which point along the Cartan subalgebra of G. For z = zâT â where
T â are the generators of the Cartan subalgebra which obey [T â, T b̂] = 0, the potential
remains zero but the gauge group is broken G→ U(1)rankG. This moduli space is called
the Coulomb branch of the theory.

12.2 Hypermultiplets

A hypermultiplet consists of two half-hypermultiplets and thus contains four real scalars
qu and two Weyl fermions χi. It can also be viewed as the product of two chiral multiplets.
The ungauged bosonic Lagrangian reads

L = −1
2
Guv∂µq

u∂µqv , (12.11)

14Note that compared to N = 1 the notation changed as the gauge kinetic function is now called Fab
and the role of real and imaginary part have been interchanged.

48



where Guv is a metric on a Hyperkähler manifold. This is related to the fact that the four
scalars can be combinded into complex fields in three different ways. This corresponds
to the fact that three complex structures Jx, x = 1, 2, 3 exist. Therefore let us make a
brief excursion into (almost) complex structures and Hyperkähler manifolds.

12.2.1 Almost complex structures

An almost complex structure J maps the tangent space T (M) of a manifold M to itself

J : T (M)→ T (M) , qu → Juv q
v , u = 1, . . . , dimM , (12.12)

where qu are tangent vectors. J obeys

Juv J
v
w = −δuw ⇔ J2 = −1 . (12.13)

Therefore J has eigenvalues ±i and T (M) splits into two subspaces T = T+ ⊕ T−. This
in turn can be used to define complex vectors φi = qi+ + iqi− where q± ∈ T±.

If J exits complex vectors can be defined locally. However, there is an obstruction to
do this globally on a manifold which is called the Nijenhuis-tensor N . It is defined by

Nw
uv := Jru(∂rJ

w
v − ∂vJwr )− (u↔ v) . (12.14)

If Nw
uv = 0 global complex coordinates exist, J is called a complex structure and the

manifold M is called complex. If Nw
uv 6= 0 global complex coordinates do not exist, J is

called an almost complex structure and the manifold M is called almost complex.

If the metric G in M satisfies

JuvGvwJ
w
r = Gur ⇔ JGJT = G , (12.15)

it is called a hermitian metric. One defines the fundamental two-form K

K := Kuvdq
udqv , where Kuv := GuwJ

w
v = −Kvu (12.16)

If J is covariantly constant w.r.t. a hermitian metric, i.e.

∇wJ
u
v = 0 (12.17)

then M is complex and Kähler. In this case K is closed, i.e. dK = 0.

On a Hyperkähler manifold three covariantly constant complex structures Jx, x = 1, 2, 3
exist and they obey

JxJy = −δxy1 + iεxyzJz , (12.18)

The metric is hermitian w.r.t. all three complex structures and thus we have

∇Jx = 0 ⇔ dKx = 0 ∀x . (12.19)

Hyperkähler manifolds are Ricci-flat.
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12.2.2 Isometries on Hyperkähler manifolds

Under an isometry the scalars transform as

δqu = Λakau . (12.20)

As they are isometries on a Kähler manifold they obey kau = ∂uP
a. However they should

leave all three Kählerforms invariant which in turn implies that are tri-holomorphic in
that they obey

Kx
uvk

av = ∂uP
ax , (12.21)

i.e. we have three Killing prepotentials P x. In addition the Killing vectors obey the Lie
algebra (7.25). For Kähler manifolds with Killing vectors that obey (7.21) this implies
the equivariance condition

kiaGij̄ k̄
j̄
b − k

i
bGij̄ k̄

j̄
a = ifabcPc . (12.22)

Analogously, for Hyperkähler manifolds one has

kuaK
x
uvk

v
b = fabcP

x
c . (12.23)

The bosonic Lagrangian now reads

L = −1
2
GuvDµq

uDµqv − V , (12.24)

where
Dµq

u = ∂µq
u − Aaµ kau(q) ,

V = (Gab̄k
a
c̄ k̄

b̄
d + 4Guvk

u
dk

v
c )z

dz̄c̄ +Gab̄
∑
x

P x
a P

x
b ≥ 0

(12.25)
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13 N = 2 Supergravity coupled to SYM and charged

matter

The massless multiplets for N = 2 are given in Table 11.5. The gravitational multiplet
contains the metric gµν , two gravitini ψΣ=1,2

µ and a vector A0
µ called the graviphoton,

i.e. together (gµν , ψ
Σ
µ , A

0
µ). The vector multiplet

(
Aaµ, λ

Σa, za
)

with a = 1, . . . , nv and
the hypermultiplet (χi, qu) , i = 1, . . . , 2nH , u = 1, . . . , 4nH were already discussed in the
previous section.

The bosonic Lagrangian in reads

L =− 1
2
R− 1

4
Im (N )AB F

A
µνF

Bµν − 1
4
Re (N )AB F

A
µνF

B
ρσε

µνρσ

−Gab̄(z, z̄)Dµz
aDµz̄b −Guv(q)Dµq

uDµqv − V (z, z̄, q) ,
(13.1)

where A = 0, . . . , nv also labels the graviphoton. The scalar field space is locally the
product

M =M2nv
v,SK ×M

4nh
h,QK , (13.2)

whereM2nv
v,SK is a 2nv-dimensional special Kähler manifold whileM4nh

h,QK is a 4nh-dimensional
quaternionic-Kähler manifold. Let us discuss both geometries in turn [?, 3].

13.1 Special Kähler geometry

A special Kähler manifold is a Kähler manifold where the Kähler potential is of the
specific form

K = − ln i
(
Z̄AFA(Z)− ZAF̄A(Z̄)

)
, (13.3)

with

FA :=
∂F

∂ZA
and ZAFA = 2F , (13.4)

i.e. F (Z) is homogeneous of degree 2 in the coordinates ZA. The physical scalar fields
za are defined as the projective coordinates za = Za

Z0 . Using the homogeneity of F (Z) we
can define a F(za) via F (ZA) = i(Z0)2F(za). In terms of F the Kähler potential reads

K = − ln
(
2(F + F̄)−

(
Fa − F̄a

)
(za − z̄a)

)
− ln |Z0|2 , (13.5)

where the last terms can be removed by a Kähler transformations. Indeed, the rescalings
ZA → ZAe−f(z), FA → FAe

−f(z) induce a Kähler transformation of the form K → K +
f (z) + f̄ (z) and can be used to set Z0 = 1. The choice of coordinates ZA = (1, za) are
called special coordinates.

There also is again an invariant symplectic form of K given by

K = − ln i
(
V †ΩV

)
, with Ω =

(
0 1
−1 0

)
, V =

(
FA
ZB

)
. (13.6)

The symplectic section V transforms according to

V → V ′ = SV , (13.7)
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with S being an element of Sp(2nv + 2,R) obeying

STΩS = Ω . (13.8)

The gauge kinetic matrix N is given by:

NAB = F̄AB −
(ImF )AC Z

C (ImF )BDZ
D

ZC (Im)CD Z
D

, (13.9)

where the second term is due to the graviphoton. Finally, the covariant derivatives read

Dµz
a = ∂µz

a − ABµ kBa(z) , (13.10)

where the holomorphic Killing vectors kBa(z) can again be expressed in terms of Killing
prepotential PB

0 by
kBā = Gābk

Bb = i∂āP
B
0 . (13.11)

Finally, if one decouples gravity the geometry reduces to the geometry discussed in
Section 12.

13.2 Quaternionic-Kähler geometry

For nh hypermultiplets one has 4nh real scalars qu, u = 1, . . . , 4nh which span the 4nh-
dimensional target space M4nh

h,QK . In supergravity it is not a Hyperkähler manifold bur
rather a quaternionic-Kähler manifold. This means that again three almost complex
structures (Jx)vu, x = 1, 2, 3 which satisfy (12.18) exist. The metric Guv is again Hermitian
with respect to all three of them

(Jx)vuGvw(Jx)ws = Gus . (13.12)

Other than for Hyperkähler manifolds they are covariantly constant with respect to an
SU(2) connection ω in that they obey

∇w(Jx)vu + εxyzωyw(Jz)vu = 0 , (13.13)

instead of (12.19) For each Jx there is again an associated two-form Kx with coefficients
Kx
uv = Guw(Jx)wv which now obey

dKx + εxyzwy ∧Kz = 0 . (13.14)

Note that Hyper-Kähler manifold are Ricci-flat while quaternionic-Kähler manifold are
Einstein manifolds.

The qu can be charged with respect to an Abelian or non-Abelian gauge group. This
requires the couplings to vector multiplet via the covariant derivatives

Dµq
u = ∂µq

u − AAµkuA(q) , (13.15)

where the Killing vectors kuA(q) can be expressed in terms of Killing prepotential P x
A by

kuAK
x
uv = −DvP

x
A = −(∂νP

x
A + εxyzwyvP

z
A) . (13.16)
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The equivariance condition now reads

kuAK
x
uvk

v
B = fABCP

x
C + εxyzP y

AP
z
B . (13.17)

Fianlly, the potential is given by

V = eK
(
Gab̄k

a
Ak̄

b̄
BZ

AZ̄B + 4Guvk
u
Ak

v
BZ

AZ̄B +
(
Gab̄(∂aZ

A)(∂̄b̄Z̄
B)− 3ZAZ̄B

)
P x
AP

x
B

)
.

(13.18)

Before we continue let us mention one caveat. The situation discussed here only features
multiplets which are charged with respect to electric gauge bosons but not their magnetic
duals. In string theory it is sometimes convenient to go to a different symplectic basis
and includes magnetic charges. This can be done via the embedding tensor formalism [?].
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14 Seiberg-Witten theory

14.1 Preliminaries

In section 12.1 we discussed the couplings of the vector multiplets in global N = 2
field theories. We noted that their Lagrangian is entirely determined by a holomorphic
prepotential F (z). The scalar fields pointing in the direction of the Cartan subalgebra
z = zâT â where T â are the generators of the Cartan subalgebra are flat directions of the
potential and span what is called the moduli space of the theory.

So far we did not discuss any quantum corrections. The one loop corrections to the
gauge coupling reads

g−2(µ) = g−2
0 (ΛUV ) +

b

8π2
ln

ΛUV

µ
, (14.1)

where g0 is the bare coupling defined at some UV-scale ΛUV and b is the one-loop coef-
ficient of the β-function. If G is asymptotically free there also is an IR-scale ΛIR where
the gauge coupling becomes infinite. For SU(2) and 〈z3〉 > ΛIR the logarithmic running
stops and the gauge coupling stays constant below 〈z3〉. For large 〈z3〉 one has a classical
U(1) theory at all scales while for small 〈z3〉 classically a gauge enhancement to SU(2)
occurs. The question Seiberg and Witten addressed is to what extent this perturbative
picture holds non-perturbatively [19].15

Concretely they determined the prepotential F exactly, i.e. including all non-perturbative
corrections. The generic form of F was known to be of the form [21]

F (a) = 1
2
τ0a

2 + i
π
a2 ln

a2

Λ2
UV

+
a

2πi

∞∑
l=1

cl

(
ΛUV

a

)4l

, (14.2)

where for simplicity one denotes a = z3. The first two terms are perturbative but due
to the non-renormalization theorem there is no further perturbative correction and only
a sum of non-perturbative contributions. Note that the perturbative part of F is not
single valued due to the ln a2 term.

The holomorphic gauge coupling is defined as

τ(a) = 1
π
θ(a) + 8πig−2(a) =

∂2F

∂a2
= τ0 + 2i

π
ln
a2

Λ2
+ . . . . (14.3)

Since Imτ also determines the σ-model metric we need to have Imτ > 0. However since
Imτ is harmonic it can have no minimum unless it is constant and thus turns negative
somewhere on the moduli space. This in turn implies that τ(a) is only locally and for
large a well defined but the global description of the moduli space should be different.
On the other hand the physics properties of a theory should not depend on a specific
parameterization.

The resolution of this apparent paradox is that only the equation of motion have to
be well defined while the action might not be. For the case at hand it turns out that for
small a the theory is better described in terms of a dual gauge theory. Let us therefore
pause and discuss the electric-magnetic duality.

15For a review of Seiberg-Witten theory see, for example, [20].
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14.2 Electric-magnetic duality

For a U(1) gauge theory the e.o.m. and the Bianchi identity reads

∂µFµν = 0 , εµνρσ∂νFρσ = 0 . (14.4)

In terms of the dual field strength F̃ µν = − i
2
εµνρσFρσ one has

εµνρσ∂νF̃ρσ = 0 , ∂µF̃µν = 0 , (14.5)

i.e. e.o.m. and B.I. are interchanged. For field dependent gauge couplings one has

∂µ(g−2(a)Fµν + i
8π2 θ(a)F̃µν) = 0 , εµνρσ∂νFρσ = 0 . (14.6)

It is convenient to define the self-dual and anti self-dual combinations

F±µν := 1
2
(Fµν ± F̃µν) , (14.7)

and
G−µν := τF−µν , G+

µν := τ̄F+
µν . (14.8)

In terms of these quantities e.o.m. and B.I. are equivalent to

∂µImF−µν = 0 , ∂µImG−µν = 0 . (14.9)

In terms of these quantities the electromagnetic duality can be expressed as a SL(2,R)
transformation (

G−µν
F−µν

)
→
(
G′−µν
F ′−µν

)
= S

(
G−µν
F−µν

)
, τ → τ ′ =

aτ + b

cτ + d
, (14.10)

where

S =

(
a b
c d

)
, ad− bc = 1 , a, b, c, d ∈ R . (14.11)

At the same time one needs to transform(
aD
a

)
→
(
a′D
a′

)
= S

(
aD
a

)
, where aD :=

∂F

∂a
. (14.12)

14.3 The Seiberg-Witten solution

For the case at hand we have for the perturbative terms(
aD
a

)
=

(
2i
π

√
u ln u

Λ2√
u

)
, (14.13)

where u = a2. The transformation u→ u′ = e2πiu induces(
a′D
a′

)
= M∞

(
aD
a

)
, where M∞ =

(
−1 4
0 −1

)
. (14.14)

55



Seiberg and Witten suggested that a global description of the moduli space exists with
two singularities at u = ±Λ2 where magnetically charged states (a monopole and a dyon)
become massless and a perturbative description in terms of the dual gauge theory exits.16

Consistency requires that the mondromy matrices M obey

M+Λ2M−Λ2 = M∞ . (14.15)

For a dyon of magnetic charge g and electric charge q the monodromy matrix is

M (g,q) =

(
1 + qg q2

−g2 1− gq

)
. (14.16)

One can check that (14.15) is satisfied for a monopole of charge (1, 0) and a dyon of
charge (1,−2).

The next step is find a(u), aD(u) that display the required monodomies. This is a
version of the Riemann-Hilbert problem and there are two basic strategies:

1. determine a(u), aD(u) as a solution of a singular so called Picard-Fuchs differential
equation.

2. express a(u), aD(u) as period integrals of an auxiliary spectral surface.

Seiberg and Witten chose the second route and due to the SL(2) considered a torus as
the auxiliary spectral surface. One finds

τ(u) =
ωD
ω

, ωD =
∂aD
∂u

=

∮
β

ω , ω =
∂a

∂u
=

∮
α

ω , (14.17)

where ω is a certain one-form on the torus and (α, β) are the two cycles of the torus.
Further discussions about the solution are beyond the scope of these lecture and we refer
to the literature [19,20].

16The Seiberg-Witten proposal was later on verfied by explicit instanton computations. See [20] for a
list of references.
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15 N = 4 and N = 8 Supergravity

For supergravities with N ≥ 4 the scalar field space M is a coset space of the form
M = G/H where G is a non-compact Lie group and H its maximal compact subgroup.
Therefore let us first discuss such σ-models in general [22].

15.1 σ-models on coset spaces G/H

In order to describe such σ-models we introduce an n× n G-valued matrix V and assign
the transformation law

δGV = ΛV , δGV−1 = −V−1Λ , (15.1)

where Λ is the constant parameter of the transformation with values in the Lie algebra
of G which in the following we denote as Lie(G). H is a subgroup of G and V transforms
under H according to

δHV = −Vh(x) , δHV−1 = h(x)V−1 , (15.2)

where h(x) is a space-time dependent parameter (local parameter) with values in Lie(H).
It is convenient to define the current

Jµ := V−1∂µV ∈ Lie(G) . (15.3)

One readily determines its transformation law to be

δGJµ = 0 , δHJµ = −∂µh+ [h, Jµ] . (15.4)

Next one decomposes Jµ as

Jµ := Qµ + Pµ , with Qµ ∈ Lie(H) , Pµ ∈ (Lie(H))T , (15.5)

where (Lie(H))T is the orthogonal compliment of H in G. With this assignment one can
read off their transformation properties from (15.4) to be

δHQµ = −∂µh+ [h,Qµ] , δHPµ = [h, Pµ] . (15.6)

We see that Qµ transforms as a composite H-connection while Pµ transforms as a tensor
of H.

If G is non-compact (as it is in extended supergravity) it is not straightforward to
construct a Lagrangian. L ∼ Tr JµJ

µ is not postive as the trace involves the indefinite
Cartan metric. L ∼ TrQµQ

µ is positive but not gauge invariant. Instead

L = TrPµP
µ = TrV−1(DµV)V−1DµV , (15.7)

where DµV = ∂µV − VQ is positive and gauge invariant if H is the maximal compact
subgroup of G.

An important quantity is the positive, H-invariant matrix

N := VVT , (15.8)
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with transformation law

δGN = ΛN +NΛT , δHN = 0 . (15.9)

As we will see shortlyN parametrizes the inverse gauge couplings but also the Lagrangian
L can be expressed in terms of the N as

L = Tr ∂µN∂µN−1, (15.10)

The physical scalars parametrize the coset, i.e. there is a “unitray gauge” where

V = eφ
âT â , â = 1, . . . , dim(Lie(G))− dim(Lie(H)) , (15.11)

with T â being the non-compact generators.

15.2 N = 4 global supersymmetry

The massless multiplets in N = 4 supergravity are recorded in Table 11.6. The only mul-
tiplet with possibly renormalizable interactions is the vector multiplet. Its field content
is (Aaµ, λ

aΣ, φa[ΣΠ]) with Σ,Π = 1, . . . , 4. Apart from the vector we have four gaugini in
the 4 of the R-symmetry group U(4) and six scalars in the 6 of U(4). All reside in the
adjoint representation of some gauge group G0 and their bosonic Lagrangian is given by

L =− 1
4g2
F a
µνF

aµν −Dµφ
iaDµφia − V (φ) , (15.12)

where a = 1, . . . , nv and for simplicity we label the six scalars by the index i = 1, . . . , 6.
The potential takes the form

V ∼
∑
ij

Tr [φi, φj]2 , for φi ≡ φiaT a . (15.13)

Remarks:

• The σ-model metric for the scalars is flat and the gauge kinetic function is constant.

• It is a conformal theory with a vanishing β function to all orders.

• It is a finite theory.

15.3 N = 4 Supergravity

The N = 4 gravitational multiplet is given in Table 11.6 and has the field content
(gµν , ψ

Σ
µ , A

[ΣΠ]
µ , χΣ, τ). Apart from the graviton it contains a 4 of gravitini, a 6 of

graviphotons , a 4 of spin-1/2 fermions and a complex scalar τ .

The Lagrangian is of the form

L =− 1

2
R− 1

4
ImτNABFA

µνF
µνA − 1

4
ReτηABF

A
µνF̃

µνA

− Tr ∂µN∂µN−1 − 1
4
(Imτ)−2∂µτ∂

µτ̄ ,

(15.14)
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where A,B = 1, . . . , nv + 6, ηAB is the flat metric of SO(6, nv), and N is an SO(6, nv)
valued matrix and the coset representative of the scalar field space

M =
SO (6, nv)

SO (6)× SO (nv)
× SU(1, 1)

U(1)
. (15.15)

The first component of the product is spanned by the scalars of the vector multiplet and
represented by N as in (15.8) while the second component is spanned by τ .

This Lagrangian can be gauged for a gauge group G0 which is a compact subgroup of
G = SO(6, nv)× SU(1, 1). In this case a potential appears which is of the form

V (φ) = 1
9
|A2(φ, τ)|2 + 1

2
|A2a(φ, τ)|2 − 1

3
|A1(φ, τ)|2 , (15.16)

where the matrices A1,2,2a are again the scalar parts of the fermion variations

δψΣ
µ ∼ AΣ

1Πε
Π + . . . , Σ,Π = 1, . . . , 4 ,

δχΣ ∼ AΣ
2Πε

Π + . . . ,

δλΣ
a ∼ AΣ

2aΠε
Π + . . . .

(15.17)

The explicit form of the A’s together with the entire N = 4 Lagrangian can be found, for
example, in [23]. As in N = 2, the A’s depend on the Killing vectors of M and vanish
in the ungauged theory.

15.4 N = 8 Supergravity

For N = 8 there only is the gravitational multiplet which we listed in Table 11.7. It has
the field content

(gµν , ψ
Σ
µ , A

[ΣΠ]
µ , χ[ΣΠΛ], φ[ΣΠΛΩ]) , (15.18)

residing in the U(8) representations (1,8,28,56,70). The scalar field space turns out to
be

M =
E7(7)

SU(8)
, (15.19)

where E7(7) is a non-compact version of E7 where the number of non-compact generators
minus the number of compact generators (which is also called the character of the algebra)
is equal to the rank (= 7) of E7 [3]. For this version of E7, SU(8) is the maximal
compact subgroup and the dimension ofM is indeed dimM = dim(E7,7)−dim(SU(8)) =
133− 63 = 70.

The Lagrangian is of the form

L = −1
2
R− 1

4
NABFA

µνF
µνA − Tr ∂µN∂µN−1 + . . . (15.20)

where A,B = 1, . . . , 28, and N is an E7(7) valued matrix and the coset representative of
the scalar field space M given in (15.19).

It has been a questions which subgroups of E7(7) can be gauged. For a partial answer
see, for example, [24].
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16 Supersymmetry in arbitrary dimensions

16.1 Spinor representations of SO(1, D − 1)

The spinor representations of SO(1, D − 1) are constructed from Dirac matrices γM

satisfying the Clifford/Dirac algebra

{γM , γN} = 2ηMN , M,N = 0, . . . , D − 1 . (16.1)

Then the operators
ΣMN := 1

4
[γM , γN ] (16.2)

satisfy the SO(1, D−1) algebra and thus are generator of (the spinor representations of)
SO(1, D − 1).

Concretely let us consider SO(1, D − 1) for D even.17 We choose D = 2k + 2, k =
0, 1, 2, . . . and define

γ0± := 1
2

(
±γ0 + γ1

)
,

γa± := 1
2

(
γ2a ± iγ2a+1

)
, a = 1, . . . , k ,

γA± :=
(
γ0±, γa±

)
, A = 0, . . . , k .

(16.3)

Inserting these definitions into (17.18), one obtains the relations

{γA+, γB−} = δAB , {γA±, γB±} = 0 . (16.4)

This corresponds to the algebra of k + 1 fermionic creation and annihilation operators
(oscillators). One can construct the Dirac representation from the a Clifford vacuum |Ω〉
defined by

γA−|Ω〉 = 0 , ∀A . (16.5)

The states are constructed by acting with γA+ in all possible ways on |Ω〉 using
(
γA+

)2
=

0. The (complex) dimension of the Dirac representation thus is

n = dimC (Dirac rep.) =
k+1∑
i=0

(
k + 1

i

)
= 2k+1 . (16.6)

For D = 4 we have k = 1 and thus n = 22 = 4. For D = 2 we have k = 0 and thus
n = 2. Let us exemplary construct the matrix representation for D = 2 explicitly. The
only non-zero matrices are γ0+ and γ0− with

γ0+|Ω〉 = |1〉 , γ0−|1〉 = |Ω〉 . (16.7)

Therefore we can read off the matrix representation

γ0+ =

(
0 1
0 0

)
, γ0− =

(
0 0
1 0

)
, (16.8)

17Here we follow Appendix B of Vol II of [25].
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and thus according to (16.3)

γ0 =

(
0 1
−1 0

)
, γ1 =

(
0 1
1 0

)
. (16.9)

The construction for arbitrary k can be obtained similarly [25].

It is possible to define a ‘generalized γ5’ by

γD+1 := ikγ0γ1 . . . γD−1 , (16.10)

satisfying
{γD+1, γ

M} = 0 ,
[
γD+1,Σ

MN
]

= 0 , (γD+1)2 = 1 . (16.11)

Then one can define two projection operators, 1 ± γD+1, that split the Dirac represen-
tation into two Weyl representations with eigenvalues ±1. The dimension of the Weyl
representation thus is

dimC (Weyl rep.) = 2k . (16.12)

One can check that
(
γM
)∗

and
(
−γM

)∗
both satisfy the Dirac algebra (17.18). Since

the previous construction was unique both have to be similar to γM itself. Indeed one
defines

B1 := γ3 · · · γD−1 , B2 := γD+1B1 , (16.13)

and shows

B1γ
MB−1

1 = (−1)k
(
γM
)∗
, B2γ

MB−1
2 = (−1)k+1

(
γM
)∗
. (16.14)

i.e., for any k a similarity transformation exists. Furthermore

B1,2γD+1B
−1
1,2 = (−1)k (γD+1)∗ , (16.15)

so that for k even, i.e., D = 2, 6, 10, . . . , the Weyl representation is its own conjugate
(s.c.), while for k odd, i.e., D = 4, 8, . . . , the Weyl representations are conjugate to each
other (c.c.). From

B1,2ΣMNB−1
1,2 = −

(
ΣMN

)∗
(16.16)

it follows that both ψ and B−1ψ∗ obey the same Lorentz transformation law, i.e.,

δψ = iωMNΣMNψ , δB−1ψ∗ = iωMNΣMNB−1ψ∗ . (16.17)

Thus one can impose a Majorana condition and define the Majorana Spinor ψ being a
Dirac spinor but with the additional requirement (reality condition)

ψ∗ = Bψ . (16.18)

Thus the dimension of the Majorana representation is

dimC (Majorana rep.) = 2k , or dimR (Majorana rep.) = 2k+1 . (16.19)

From (16.18) we find
ψ = B∗ψ∗ = B∗Bψ , (16.20)
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and thus
BB∗ = 1 . (16.21)

From the definition (16.13) one computes

B1B
∗
1 = (−1)

k
2

(k+1) ⇒ k = 0, 3, 7, . . . (D = 2, 8, . . . ) , (16.22)

B2B
∗
2 = (−1)

k
2

(k−1) ⇒ k = 1, 4, 8, . . . (D = 4, 10, . . . ) . (16.23)

A Majorana-Weyl (MW) representation is only possible if the Weyl representation
is self-conjugated, i.e., k is even, and hence, for k = 0, 4, 8, . . . (D = 2, 10, . . . ). Its
dimension is

dimR (MW) = 2k . (16.24)

For D odd and D = 2k + 1 there are no Weyl representation and a Majorana repre-
sentation is possible only in D = 1, 3, 9, 11, . . . . Its dimension is

dimR (Majorana rep.) = 2k . (16.25)

In this case the dimension of the Dirac representation is

dimR (Dirac rep.) = 2k+1 . (16.26)

All the possible representations are summarized in Table 16.1.

D k Majorana Weyl M-W dimR

2 0 X s.c. X 1
3 1 X - - 2
4 1 X c.c. - 4
5 2 - - - 8
6 2 - s.c. - 8
7 3 - - - 16
8 3 X c.c. - 16
9 4 X - - 16
10 4 X s.c. X 16
11 5 X - - 32
12 5 X c.c. - 64

Table 16.1: Spinor representations for 2 ≤ D ≤ 12.

16.2 Supersymmetry algebra

The supersymmetry algebra is an extension of the Poincare algebra. In arbitrary space-
time dimensions D it depends on the spinor representations of SO (1, D − 1). Schemati-
cally it reads

{QI , Q̄J} ∼ γMPMδ
IJ , {QI , QJ} ∼ ZIJ ,[

LMN , Q
I
]
∼ ΣMNQ

I ,
[
PM , Q

I
]

= 0 ,
(16.27)
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where M = 0, . . . , D − 1. QI is a spinor in the smallest spinor representation listed in
Table 16.1. The Jacobi-identity requires that ZIJ commutes with all generators and this
is a central element of the algebra. Positivity requires the BPS-bound

M ≥ |Z| . (16.28)

For arbitrary D it is more convenient to counts real supercharges (which we denote by
q) instead of the number of spinor representations. For example, N = 1 in D = 4 has
q = 4 real supercharges, or in general q = 4N for arbitrary N in D = 4. For this notation
the various supersymmetric theories for 4 ≤ D ≤ 12 and 4 ≤ q ≤ 32 are displayed in
Table 16.2.18

HHH
HHHD

q
4 8 . . . 16 . . . 24 . . . 32 64

4 ×
(N=1)

◦
(N=2)

◦ ◦
(N=4)

◦ ◦ ◦ ◦
(N=8)

5 × ◦ ◦ ◦
6 ×

(1,0)
◦

(1,1)
◦

(2,0)
◦ ◦ ◦

(2,2)

7 × ◦
8 × ◦
9 × ◦
10 ×

I
◦

IIA
◦

IIB

11 ×
12 ×

Table 16.2: Table of supersymmetric theories. “×” denotes the theories with the minimal
number of supersymmtries.

Most of the entries in Table 16.2 are self-explanatory. However note that in D = 6 the
supercharge Q is self-conjugate and two independent Weyl representations of opposite
chirality, denoted 8 and 8′, of SO(1, 5) exist. For the theory denoted by (1, 1) the two
supercharges transform as Q1 ∈ 8, Q2 ∈ 8′ and thus the theory is non-chiral while the
(2,0) theory has Q1 ∈ 8, Q2 ∈ 8 and therefore is chiral.

In D = 10 also two Majorana-Weyl representations of opposite chirality 16,16′ exist.
Type IIA is non-chiral with Q1 ∈ 16, Q2 ∈ 16′ while type IIB is chiral with Q1 ∈ 16,
Q2 ∈ 16.

In D = 2 the Lorentz group is SO(1, 1) and the supercharges Q are real one-dimensional
Majorana-Weyl spinors. The type (p, q) superalgebra in two dimensions reads

{QIL
L , Q

JL
L } = δILJL P− , IL, JL = 1, . . . , p ,

{QIR
R , Q

JR
R } = δIRJR P+ , IR, JR = 1, . . . , q ,

{QIL
L , Q

IR
R } = ZILIR .

(16.29)

18For q = 64 one goes beyond N = 8 and thus has higher spin fields in the massless multiplet. For these
theories one does not have a consistent interacting quantum field theory in a Minkowski background.
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17 Kaluza-Klein Compactification

17.1 S1-compactification

The basic idea of Kaluza-Klein theory is to formulate gauge symmetries as space-time
symmetries of a higher-dimensional space-time. The simplest example is the compactifi-
cation on a circle S1, i.e. the space-time background is the five-dimensional space-time

R1,3 × S1 , (17.1)

with coordinates

xM = (xµ, y) , M = 0, ..., 4 , µ = 0, ..., 3 . (17.2)

y is the periodic coordinate of the circle, i.e. y = y+ 2πR with R being the radius of the
circle. Thus a scalar field Φ(xM) in this background satisfies

Φ(xµ, y + 2πR) = Φ(xµ, y) , (17.3)

and therefore can be expanded in terms of Eigenfunctions of S1 as

Φ(xM) =
∞∑

n=−∞

φ(n)(xµ) einy/R . (17.4)

If Φ satisfies the massless Klein-Gordon equation one has

�5Φ := ηMN∂M∂NΦ = (ηµν∂µ∂ν + ∂y
2)Φ =

∑
n

(
�4φ

(n) −m2
(n)φ

(n)
)
einy/R = 0 , (17.5)

so that each Fourier mode φ(n) satisfies

�4φ
(n) −m2

nφ
(n) = 0 , m2

(n) = n2/R2 . (17.6)

From an R1,3 perspective the φ(n) form an infinite tower of massive scalar fields called
the Kaluza-Klein tower.

One can estimate the size of S1 by experimentally testing the validity of the two 1
r

potentials:

VCoulomb ∼
e

r
, confirmed for r > 10−18m ,

VNewton ∼
m

r
, confirmed for r > 10−4m .

(17.7)

Therefore, generically we need to choose R < 10−18m so that the extra dimensions are
not visible.19

In any case the SM modes should be found among the massless (zero) modes, i.e. for
n = 0. In this case Φ has no y dependence Φ(xµ, y)→ φ(0)(xµ).

19However there is an exception pioneered by Rubakov and Shaposhnikov [26]. Whenever the gauge
theory is localized on a three-dimensional hyperplane inside a higher dimensional space-time then a large
R with R < 10−4m is allowed. In string theory this scenario is realized by D-branes [25].
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One includes gravity by considering and reducing the higher-dimensional Einstein-
Hilbert action

S =
−1

2κ2
5

∫
d5x
√
−g(5)R(5) , (17.8)

where R(5) is the five-dimensional Ricci scalar. One expands the five-dimensional metric
around an SO(1, 3) invariant background with some fluctuation δgMN . A convenient
parametrization is

gMN =

(
gµν + r2AµAν r2Aµ

r2Aν r2

)
= 〈gMN〉+ δgMN , 〈gMN〉 =

(
ηµν 0
0 < r2 >

)
(17.9)

and one obtains after Weyl rescaling

S =

∫
d4x
√
g̃(4)

(
−1

2κ2
4

R̃(4) − 1
4
r2F̃µF̃

µν − ∂µr∂
µr

κ2
4r

2

)
, (17.10)

where

κ−2
4 =

2πR

κ2
5

, F̃µν = ∂µÃν − ∂νÃµ , Ãµ = κ4Aµ . (17.11)

This shows that the five-dimensional Einstein-Hilbert action decomposes into the four-
dimensional Einstein-Hilbert action, a U(1) gauge theory plus a neutral scalar without
potential. The local U(1) gauge transformation arises from general coordinate invariance
of the five-dimensional theory y → y − ξ(xµ).

17.2 Generalization

As a first generalization consider a spacetime of the form:

M4 × T d (17.12)

where T d is a d-dimensional torus. As in (17.9) the metric is parametrized as

gMN =

(
gµν + gmnA

m
µ A

n
ν gnpA

p
µ

gnpA
p
ν gmn

)
, m, n = 1, ..., d . (17.13)

For a 4-dimensional perspective we have

zero modes spin multiplicity
gµν 2 1
Apµ 1 d
gmn 0 1

2
d(d+ 1)

.

The isometries of T d read ym → ym − ξm(x) and induce

Amµ → Amµ − ∂µξm , (17.14)

corresponding to a [U(1)]d gauge theory. The action of the zero modes after the KK
reduction and Weyl rescaling takes the form

S =

∫
d4x
√
−g̃(4)

( 1

2κ2
4

R̃(4) + gmnF̃
m
µνF̃

nµν − (∂µgmn)(∂µgmn) + (∂µ ln det g)(∂µ ln det g
)
.

(17.15)
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Note that again there is no potential and the σ-model target space is the coset

M =
GL(d)

SO(d)
. (17.16)

One can consider more general Kaluza-Klein theories in that one takes a space-time
background of arbitrary dimension and includes a compact d-dimensional manifold Xd

as follows
R(1,D−1) ×Xd , (17.17)

whereXd is a d-dimensional compact Riemannian manifold. Following the same procedue
as just outlined one derives an effective theory in R(1,D−1) for the massless modes. This
includes the metric, a set of gauge bosons and a set of scalars. Any isometry of Xd

then appears in R(1,D−1) as a gauge symmetry. It can be non-Abelian if Xd admits non-
Abelian isometries which, for example, a group manifold Xd = G/H has.20 The problem
with such compactifications is that generically they are not flat and the Ricci-scalar of
Xd induces a large cosmological constant.

17.3 Supersymmetry in Kaluza Klein theories

Let us first include fermions into Kaluza-Klein theories and consider the massless Dirac
equation in the background (17.17)

iγMDMΨ(x, y) = (iγµDµ + iγmDm)Ψ = 0 , (17.18)

where γ denotes Dirac matrices and xµ, µ = 0, ..., D−1 are coordinates on R(1,D−1) while
ym,m = 1, ..., d are coordinates on Xd. One expands

Ψ(x, y) =
∑
n

ψn(x) ηn(y) , with iγmDmηn = mnηn , (17.19)

(no sum on n in the last term). The ηn are called Killing spinors and at level n there can
be more than one of them. Inserted into (17.18) implies

(iγµDµ +mn)ψn(x) = 0 , (17.20)

with mn = 0 corresponding to the massless (zero) modes.

As an aside let us remark that the Atiah-Hirzebruch index theorem states that if Xd

has continuous isometries, the (character-valued) index of the Dirac operators vanishes

index( /D(X)) = nL − nR = 0 , (17.21)

where nL/R counts the left-handed/right-handed zero modes of D. This has an imme-
diate application to Kaluza-Klein theories as gauge theories which arise from higher-
dimensional backgrounds (17.17) necessarily need an Xd with continuous isometries.
Therefore, a chiral spectrum in R(1,D−1) cannot be generated by compactifications on a
smooth manifold unless it was already chiral before the compactification [27].

20One can also replace R(1,D−1) by an anti de Sitter or de Sitter background.
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For the supercharges one makes the Ansatz

Q(x, y) =
∑

Σ

QΣ(x) ηΣ(y) , (17.22)

where QΣ(x) are a spinors on R1,D−1 and ηΣ(y) are spinors on Xd. One further requires:

1. The ηΣ are normalizable, i.e. ||ηΣ|| = 1 which implies that the ηΣ are nowhere
vanishing on Xd.

2. The ηΣ should be globally well-defined which implies that they are singlets of the
structure group.21

The existence of globally well-defined ηΣ imply a reduction of the structure group and
Xd is called a manifold with the G-structure [28]. G is a subgroup of GL(d,R), i.e.
G ⊂ GL(d,R) which leaves η invariant.

As an example let us choose D = 4, d = 6 in which case the Lorentz group SO(1, 9)
decomposes as

SO(1, 9)→ SO(1, 3)× SO(6) . (17.23)

The spinor representation 16 of SO(1, 9) decomposes accordingly

16→ (2,4) + (2̄, 4̄) . (17.24)

If one demands a specific number of supercharges in R(1,3) the structure group is fixed
and the class of manifolds determined.

Let us consider the following examples [28]:

1. X6 = T 6 or a torus fibration. In this case one has an identity structure with four
ηΣ ∈ 4 of SO(6) which correspond to four supercharges.

2. X6 with SU(2) structure. In this case two ηΣ exist corresponding to two super-
charges.

3. X6 with SU(3) structure. In this case one η exists corresponding to one super-
charge.

An additional requirement one can impose is that the η is covariantly constant (w.r.t.
the Levi-Civita or spin connection)

/Dη = 0 . (17.25)

In this case the following properties hold:

1. Hol(Xd) ⊂ SU(d
2
),

2. Rnm(Xd) = 0,

3. c1(Xd) = 0.

21This is the group acting on the frame bundle.
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This implies that Xd is a Calabi-Yau manifold.

Let us briefly discuss the implications for supersymmetry. The supersymmetry trans-
formation of the gravitino ΨM is schematically given by

δΨM = DMξ +
∑
p

apγ · Fp ξ + . . . (17.26)

where ξ is the parameter of the supersymmetry transformation, ap are some constants
and γ · Fp denotes appropriate contractions of the p-form field strength present in the
theory. Expanding ξ(x, y) = ξ(x)η(y) as in (17.22) we find in the background (17.17)

〈δΨµ〉 = 0 , 〈δΨm〉 ∼ Dmη +
∑
p

apγ · 〈Fp〉η . (17.27)

We see that depending on the 〈Fp〉 and Dmη, supersymmetry can be intact or sponta-
neously broken. In standard Calabi-Yau compactifications one has 〈Fp〉 = 0 = Dmη and
supersymmetry is preserved.
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18 Supergravities with q = 32 supercharges

18.1 Counting degrees of freedom in D dimernsions

The most economic way to count on-shell degrees of freedom for massless fields is to go
a light-like frame pM = (−E,E, 0, . . .). In D space-time dimensions this choice is left
invariant by the little group SO(D − 2) and the massles modes fall into representations
of this group.22 The on-shell degrees of freedom for the various fields are recorded in
Table 18.1.23

fields on-shell d.o.f.
scalar φ 1

spin-1/2 fermion χ 1
2

dim(spinor rep.)

gauge boson AM D − 2

gravitino ψM
1
2
(D − 3) dim(spinor rep.)

graviton gMN
1
2
(D − 2)(D − 1)− 1

p-form A[M1M2...Mp]

(
D−2
p

)
Table 18.1: Counting degrees of freedom (d.o.f.).

18.2 D = 11 Supergravity

InD = 11 the massless multiplet contains the metric gMN with 44 d.o.f., an antisymmetric
3-index tensor AMNP with 84 d.o.f. and a gravitino ΨM with 128 d.o.f.. The action is

S = 1
2

∫
d11x
√
−g
(
R− 1

2
|F4|2

)
− 1

6

∫
A3 ∧ F4 ∧ F4 + (fermionic interactions) , (18.1)

where F4 = dA3 is the field strength of the three from and we abbreviate

|Fp|2 =
1

p!
FM1,...Mp F

M1,...,Mp . (18.2)

L has diffeomorphism invariance and local supersymmetry by construction. In addition
there is gauge invariance related to the three-form

δA3 = dΛ2 , δF4 = 0 , δΨ = 0 , (18.3)

where Λ2 is a 2-form and dF4 = 0.

22For massive representations one goes to the rest frame pM = (−m, 0, 0, . . .) and in this case the little
group is SO(D − 1).

23A counting using gauge invariance and the equation of motions can be found for example in [29].
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18.3 Compactification on S1: Type II A supergravity in D = 10

Compactifying D = 11 supergravity on an S1 yields the spectrum

gMN → gµν , gµ10 ∼ Aµ , g10,10 ∼ φ ,

AMNP → Aµνρ , Aµν10 ∼ Bµν ,

ΨM → (Ψµ,α,Ψµ α̇) , (Ψ10α ∼ λα,Ψ10 α̇ ∼ λα̇) .

(18.4)

Altogether the D = 10 gravitational multiplet thus contains

Gµν
(35)

, Bµν
(28)

, φ
(1)

, Aµ
(8)

, A[µνρ]

(56)︸ ︷︷ ︸
(128)

, Ψµα
(56)

, Ψµα̇
(56)

, λα
(8)
, λα̇

(8)︸ ︷︷ ︸
(128)

,
(18.5)

where we indicated the number of d.o.f. in brackets.

Performing the KK-reduction one obtains

S11 =

∫
S′

dy

∫
d10xL11 =

∫
d10xLII A , (18.6)

where one only keep the lowest KK modes after the compactification (no y-dependence).
The type IIA actions is

SIIA = 1
2

∫
d10x

√
−g
(
e−φ

(
R + 4∂µφ∂

µφ− 1
2
|H3|2

)
− 1

4
(|F2|2 + |F̂4|2)

)
− 1

4

∫
d10xB2 ∧ F4 ∧ F4 + (fermionic interactions) ,

(18.7)

where F2 = dA1, H3 = dB2, F4 = dA3 and F̂4 = F4 − A1 ∧H3.

The IIA theory has two local supersymmetries of opposite chirality. In addition there
three independent gauge symmetries related to the various p-forms present. They are

(i) δA1 = dΛ0 , δA3 = Λ0H3 , (18.8)

(ii) δB2 = dΛ1 , δH3 = 0 , (18.9)

(iii) δA3 = dΛ2 , (18.10)

with parameters Λ0,Λ1,Λ2. Note that the theory contains no charged fermions.

18.4 Kaluza-Klein reduction on T d

Reducing eleven-dimensional supergravity on T d one has a space-time backgroundMD=11−d×
T d. The bosonic spectrum of the gravitational multiplet is

gMN →


gµν
gµi , i = 1, . . . , d → d graviphotons
gij → 1

2
d(d+ 1) scalars

AMNP →


Aµνρ
Aµνi → d two-forms Bµν

Aµij → 1
2
d(d− 1) graviphotons

Aijk →
(
d
3

)
scalars

(18.11)
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Altogether the gravitational multiplet in 11− d dimensions contains the bosonic compo-
nents

gµν , A[µνρ], dBµν ,
1
2
d(d+ 1)Aµ,

1
6
d(d2 + 5)φ . (18.12)

In order to understand the scalar field spaceM we need to pause and discuss Poincare-
duality in D space-time dimensions. Consider a p-form Bp = BM1...Mpdx

M1∧ . . . dxMp . Its
field strength is Hp+1 = dBp and one has a gauge invariance Bp → Bp + dΛp−1. Poincare
duality related

Hp+1 ' H̃D−p−1 . (18.13)

For example in D = 4 a two form B2 is dual to a scalar while in D = 3 a vector A1 is dual
to a scalar. In even dimension for can impose a self-duality condition on a p+ 1 = D/2-
form. For example, in D = 4 a self-dualty condition can be imposed on a a one-form A1

or rather its field strength F2 = F̃2.

The scalar fields arise from the metric gMN and from the three-Form A[MNP ]. Together
they form the scalar manifold

M =
Ed,d
H

, (18.14)

where the groups Ed,d, H are given in Table 18.2.

As we already said the scalars arise from the metric gMN and the three-form A[MNP ].
For 3 ≤ d ≤ 6 dim(M) is the sum number of scalar fields 1

6
d(d2 + 5) given in (18.12).

For D = 4, d = 7 however, there are 7 additional scalars from the duality B2 ∼ φ so that
the total number is 70. For D = 3, d = 8 there are 36 additional scalars from the duality
A1 ∼ φ so that the total number is 128.

d Ed,d H dim(G/H)
1 SO(1, 1) 1 1
2 GL(2) SO(2) 3
3 SL(2)× SL(3) SO(2)× SO(3) 7
4 SL(5) SO(5) 14
5 SO(5, 5) SO(5)× SO(5) 25
6 E6,6 USp(8) 42
7 E7,7 SU(8) 70
8 E8,8 SO(16) 128

Table 18.2: Scalar coset for q = 32.
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19 Supergravities with q = 16 supercharges

19.1 Type I supergravity in D = 10

In this supergravity there are two multiplets. The gravitational multiplet contains

gMN
(35)

, BMN
(28)

, φ
(1)︸ ︷︷ ︸

(64)

, ΨMα
(56)

, λα̇
(8)︸ ︷︷ ︸

(64)

,
(19.1)

while the vector multiplets features

AM
(8)

, χα
(8)

. (19.2)

Now non-Abelian gauge symmetries are possible in that the vector multiplet can trans-
form in the adjoint representation of some non-Abelian gauge group G. The Lagrangian
is

S = 1
2

∫
d2x
√
−ge−2φ

(
R + 4∂Mφ∂

Mφ− |Ĥ3|2
)

+ Tr
(
FMNF

MN
)

+ . . . , (19.3)

where
Ĥ3 := dB2 − ω3 , ω3 := Tr

(
A ∧ dA+ 2

3
A ∧ A ∧ A

)
. (19.4)

ω3 is the Yang-Mills Chern-Simons term which obeys dω3 = F2 ∧ F2.

The theory is general coordinate invariant and has one local supersymmetry and asso-
ciated with B2 there is a two-form gauge invariance

δB2 = dΛ1 , (19.5)

where Λ1 is a one-form parameter.

The non-Abelian gauge invariance transforms δA = dΛ + [A,Λ] but from (19.4) we
infer that also ω3 transforms and as a consequence B2 has to transform in order to keep
Ĥ3 invariant. Altogether one finds

δA = dΛ + [A,Λ] , δω3 = Tr d(ΛdA) , δB2 = Tr (ΛdA) . (19.6)

Type I supergravity is chiral in and generically anomalous [?]. The anomaly can only
be cancelled for two gauge groups E8 × E8 and SO(32).

19.2 Compactification of type I on T d

Compactifying D = 10 Type I supergravity on T d yields the bosonic spectrum

gMN →


gµν
gµi , i = 1, . . . , d → d graviphotons
gij → 1

2
d(d+ 1) scalars

BMN →


Bµν

Bµi → d graviphotons
Bij → 1

2
d(d− 1) scalars

AaM →
{
Aaµ gauge boson in adjoint representation
Aai → d scalars in adjoint representation

(19.7)
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Altogether the gravitational and vector multiplet in 10 − d dimensions contains the
bosonic components

gravitational multiplet : (gµν , Bµν , dAµ, φ) ,

vector multiplet : (Aµ, d φ) .
(19.8)

Thus in 10− d dimensions there is one gravitational multiplet and (d + nv) vector mul-
tiplets. The d(d+ nv) + 1 scalars parameterize the coset

M =


SO(d,d+nv)

SO(d)×SO(d+nv)
× R+ for d ≤ 5

SO(6,6+nv)
SO(6)×SO(6+nv)

× SU(1,1)
U(1)

for d = 6

SO(8,8+nv)
SO(8)×SO(8+nv)

for d = 7

, (19.9)

where the second factor is the dilaton for d ≤ 5 and the dilaton plus the dual of Bµν for
d = 6. For d = 7 also all 14 + nv vector fields are dualized to scalars.
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20 Chiral supergravities and supergravities with q =

8 supercharges

20.1 Type II B supergravity

In type IIB supergravity there is again only one massless multiplet, the gravitational
multiplet, which contains the fields

gMN
(35)

, B1
MN

(28)

, B2
MN

(28)

, φ
(1)

, l
(1)
, AM

(1)
, A∗MNPQ

(35)︸ ︷︷ ︸
(128)

, Ψ1
Mα

(56)

, Ψ2
Mα

(56)

, λ1
α̇

(8)

, λ2
α̇

(8)︸ ︷︷ ︸
(128)

,

(20.1)

where the four-form has a self-dual field strength

F5 = dA∗4 = F̃5 , with F̃M1,...,M5 = εM1,...,M10F
M6,...,M10 . (20.2)

This theory has no Lorentz invariant action but only field equations due to the self-
duality constraint. One can give the action without imposing the constraint and include
it on the field equation by hand. In this case the action reads

S = 1
2

∫
d10x

√
−g
(
R + 1

2

∂Mτ∂
Mτ

(Im τ)2
− 1

2
MijF

i
MNPF

j MNP − 1
2
|F̂5|2

)
− 1

4
εij

∫
d10xA4 ∧ F i

3 ∧ F
j
3 ,

(20.3)

where

τ = l + ie−φ , Mij =
1

Im τ

(
|τ |2 −Re τ
−Re τ 1

)
,

F i
3 =

(
dB1

2

dB2
2

)
, F̂5 = dA4 + 1

2
εijB

i
2dBj

2 .

(20.4)

The type IIB theory has two supersymmetries of the same chirality. There are two
p-form gauge symmetries

(i) δA4 = dΛ3 ,

(ii) δBi
2 = dΛi

1 , δA4 = −1
2
εijΛ

i
1dBj

2 ,
(20.5)

where Λ3 (Λ1) is a parameter three-form (one-form). Finally there also is an SL(L,R)
symmetry acting as

τ → τ ′ =
aτ + b

cτ + d
, a, b, c, d ∈ R , ad− bc = 1 ,

M →M ′ = (Λ−1)TMΛ−1 , Λ =

(
d c
b a

)
,

F i
3 → F ′ i3 = Λi

jF
j
3 .

(20.6)
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20.2 (2, 0) supergravity in D = 6

This is a supergravity in D = 6 with two supercharges of the same chirality. The
gravitational multiplet contains

gMN
(9)

, B+ a=1,...5
MN

(5×3=15)

, Ψi=1,2
Mα

(2×12=24)

. (20.7)

The only other massless multiplet is a tensor multiplet with field content

B−MN
(3)

, φa=1,...5

(5)

, χi=1,2

(2×4=8)

. (20.8)

Recall that in D = 6 a two-form is Poincare dual to a two-form B2 ' B̃2 and thus one
can impose a self- or anti-self duality condition on B2. Five self-dual B+

2 are part of
the gravitional multiplet while the tensor multiplets contain the anti-selfdual B−2 . As a
consequencet there is again no Lorentz-invariant action and the theory is defined via its
field equations. The scalar field space turns out to be

M =
SO(5, nT )

SO(5)× SO(nT )
, (20.9)

where nT counts the number of tensor multiplets. The theory is anomaly free only for
nT = 21. Note that the theory contains no gauge fields at all.

20.3 (1, 0) supergravity in D = 6

This is also a chiral supergravity in D = 6 as it has one chiral supercharge. The massless
multiplets are

gravitational multiplet : GMN
(9)

, B+
MN
(3)

, ΨMα
(12)

,

tensor multiplet : B−MN
(3)

, φ
(1)

, χ
(4)

,

vector multiplet : AaM
(4)

, λa
(4)

,

hypermultiplet : qu=1,...,4

(4)

, χ
(4)

,

(20.10)

where the vector multiplet is in the adjoint representation of some gauge group G while
the hypermultiplets can be in any representation.

The scalar field space turns out to be

M =
SO(1, nT )

SO(nT )
×
{
MHK for global supersymmetry
MQK for local supersymmetry

, (20.11)

where the second component is spanned by the scalars in the hypermultiplets.

Remarks:

1. A Lorentz-invariant action only exits for nT = 1.
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2. The hypermultiplets are exactly as in D = 4, N = 2 (and in D = 5, N = 2).

3. As in D = 4, N = 1 the vector multiplets have no scalars.

4. The theory is anomaly free only for nh − nv + 29nT = 273.

20.4 q = 8 (N = 2) supergravity in D = 5

This theory can be constructed from the (1, 0) theory in D = 6 by KK-reduction. In
D = 4 a two-form is Poincare dual to a vector B2 ' A1 and thus one can dualize an
entire tensor multiplet to a vector multiplet.24

The massless multiplets are

gravitational multiplet : gµν
(5)

, A0
µ

(3)

, Ψµ
(8)

,

tensor multiplet : B−µν
(3)

, φ
(1)

, χ
(4)

,

vector multiplet : Aaµ
(3)

, φa

(1)

, λa
(4)

,

hypermultiplet : qu=1,...,4

(4)

, χ
(4)

,

(20.12)

where the vector multiplet is again in the adjoint representation of some gauge group G
while tensor- and hypermultiplets can be in any representation.

The scalar field space turns out to be

M =MSR ×
{
MHK for global supersymmetry
MQK for local supersymmetry

, (20.13)

whereMSR denotes a “very special” real manifold spanned by the scalars in tensor- and
vector multiplets while the second component is again spanned by the scalars in the
hypermultiplets.

Let us briefly describe the geometry of the very special real manifold MSR. Its co-
ordinates are the real scalar fields φa, a = 1, . . . nv + nT from both tensor- and vector
multiplets. They are the soltion of a cubic constraint

cABCh
A(φ)hB(φ)hC(φ) = 1 , A,B,C = 0, . . . , nv + nT , (20.14)

where the constant, symmetric tensor cABC specifies the theory. The metric is obtained
by

Gab = −3(∂ah
A)(∂bh

B)cABCh
C . (20.15)

More details can be found in [3].

24There is a caveat in that the vector multiplet has to be in the adjoint representation of G while the
tensor multiplet can be in any representation r of G.
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