Problem 6.1

Consider the matrix

$$
\mathcal{N}=\frac{1}{\tau_{2}}\left(\begin{array}{cc}
|\tau|^{2} & \tau_{1} \\
\tau_{1} & 1
\end{array}\right) \quad \text { for } \quad \tau=\tau_{1}+i \tau_{2}
$$

a) Show that

$$
\tau \rightarrow \frac{a \tau+b}{c \tau+d} \quad \text { with } \quad a d-b c=1
$$

corresponds to

$$
\mathcal{N} \rightarrow \mathcal{N}^{\prime}=\Lambda \mathcal{N} \Lambda^{T} \quad \text { for } \quad \Lambda=\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)
$$

b) Show

$$
\mathcal{L}=\frac{1}{8} \operatorname{Tr}\left(\partial_{\mu} \mathcal{N}^{-1}\right) \partial^{\mu} \mathcal{N}=-G_{\tau \bar{\tau}} \partial_{\mu} \tau \partial^{\mu} \bar{\tau}
$$

and determine the metric $G_{\tau \bar{\tau}}$.
c) Give the Kähler potential for $G_{\tau \bar{\tau}}$.

Hint: : See problem 5.1.

Problem 6.2

a) Determine the decomposition of the massless $N=8$ gravitational multiplet in terms of massless $N=4$ multiplets.
b) Do an analogous decomposition in terms of massless $N=2$ and $N=1$ multiplets.

