Problem Set 5 Introduction to Supersymmetry and Supergravity WS 15/16

Problem 5.1

Consider an N = 1 supergravity with $n_c + 1$ chiral multiplets $T, \phi^i, i = 1, ..., n_c$ and a Kähler potential

$$K = -3 \ln Y$$
, where $Y \equiv (T + \overline{T} - \phi^i \delta_{i\bar{j}} \overline{\phi}^{\bar{j}})$, $\kappa = 1$

- a) Compute all components of the metric.
- b) Show

$$K_I G^{I\bar{J}} K_{\bar{J}} = 3$$

where I runs over all $n_c + 1$ chiral fields.

Hint: For $G^{I\bar{J}}$ use the Ansatz

$$G^{I\bar{J}} = \frac{Y}{3} \begin{pmatrix} X & Z\phi^i \\ Z\bar{\phi}^{\bar{j}} & \delta^{i\bar{j}} \end{pmatrix} ,$$

and determine X, Z.

c) Compute V in this theory for W = constant.

Problem 5.2

Consider a globally supersymmetric N = 2 field theory with gauge group G = SU(2) and prepotential $F = \frac{i}{2} \sum_{a=1}^{3} z^a z^a$.

- a) Compute the metric, the covariant derivative $D_{\mu}z^{a}$ and the scalar potential V.
- b) Show $\langle V \rangle = 0$ for $\langle z^3 \rangle$ arbitrary and $\langle z^1 \rangle = \langle z^2 \rangle = 0$.
- c) Compute the mass matrix of the gauge bosons in this background. What is the unbroken gauge group?
- d) Compute the mass of the three scalar fields z^a .