# The Homogenous Lorentz Group 

Thomas Wening

February 3, 2016

## Contents

1 Proper Lorentz Transforms 1
2 Four Vectors 2
3 Basic Properties of the Transformations 3
4 Connection to $S L(2, \mathbb{C}) \quad 5$
5 Generators of $\mathcal{L}_{+}^{\uparrow} \quad 7$
6 Summary 9

## 1 Proper Lorentz Transforms

Before we get started let us revise the Lorentz transformation between two equally oriented inertial systems moving with velocity $v$ along the $x^{1}$-axis. Here $x^{\prime}=\left(x^{00}, x^{11}, x^{\prime 2}, x^{\prime 3}\right), x=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ are the space-time coordinates of our inertial systems. With $x^{0}:=c t$ can write such transformation in coordinates:

$$
\begin{align*}
& x^{0}=\gamma x^{0}-\beta \gamma x^{1},  \tag{1}\\
& x^{1}=-\beta \gamma x^{0}+\gamma x^{1},  \tag{2}\\
& x^{\prime 2}=x^{2}, \\
& x^{3}=x^{3},
\end{align*}
$$

where $\beta:=v / c$ and $\gamma:=1 / \sqrt{1-\beta^{2}}$.
Easily, we see that this translates perfectly into matrix operations:

$$
\left(\begin{array}{l}
x^{\prime 0}  \tag{3}\\
x^{\prime 1} \\
x^{\prime 2} \\
x^{\prime 3}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right) .
$$

We go a step further and define the 'angle'

$$
\begin{equation*}
\Psi:=\cosh ^{-1} \gamma \tag{4}
\end{equation*}
$$

Then we have $\gamma=\cosh \Psi$ and $\beta=\tanh \Psi$, which turns our transformation matrix into

$$
\left(\begin{array}{cccc}
\cosh \Psi & -\sinh \Psi & 0 & 0  \tag{5}\\
-\sinh \Psi & \cosh \Psi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

This reminds us very much of a rotation in $\mathbb{R}^{3}$ through an angle $\theta$ about the $x^{3}$-axis:

$$
\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0  \tag{6}\\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

There are a few differences however. First of all, there is a difference in signs. Moreover, the rotation matrix contains sin, cos, while the matrix of our Lorentz transformation contains $\sinh$ and $\cosh$. Yet, the different signs cause their determinants to be the same. For the rotation matrix it is 1 ; for our Lorentz transformation matrix it is also $(\cosh \Psi)^{2}-(\sinh \Psi)^{2}=1$.

## 2 Four Vectors

In special relativity we work in the 4-dimensional Minkwoski space denoted as $\mathbb{M}$, which is an $\mathbb{R}$-vector space with a pseudo scalar product $\langle\cdot, \cdot\rangle_{\mathbb{M}}$. The latter is different from the Euclidean scalar product. For convenience we will simply write $\langle\cdot, \cdot\rangle$ instead of $\langle\cdot, \cdot\rangle_{\mathbb{M}}$. Its elements are called four vectors $x^{\mu}=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$. In physics we choose $x^{0}=c t$ with the speed of light c and the spatial coordinates $\vec{x}=\left(x^{1}, x^{2}, x^{3}\right)$. While we might be tempted to identify Minkowski space with the 4 -dimensional $\mathbb{R}^{4}$, its structure is inherently different from that of Euklidean space.

Convention: In this presentation we are using the Einstein sum convention. Over the same indices appearing multiple times, each as a sub- and a superscript, a summation is carried out, e.g. $a_{j, k}^{i} b_{j}:=\sum_{i} a_{j, k}^{i} b_{i}$.

We can define a pseudo scalar product in $\mathbb{M}$ :

$$
\begin{equation*}
\langle x, y\rangle=x^{0} y^{0}-\left(x^{1} y^{1}+x^{2} y^{2}+x^{3} y^{3}\right) \tag{7}
\end{equation*}
$$

Moreover, we distinct between covariant and controvariant vectors. If $x^{\mu}=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ is a covariant vector, then $x_{\mu}=\left(x^{0},-x^{1},-x^{2},-x^{3}\right)$ is its corresponding controvariant vector. The only difference is the different sign in the spatial coordinates. The time coordinate however is left
unchanged. Now we can introduce the pseudo metric tensor $g^{\mu \nu}, g_{\mu \nu}$ (from now on simply 'metric tensor'). We define its covariant form as

$$
g^{\mu \nu}=g_{\mu \nu}:= \begin{cases}1 & , \mu=\nu=0  \tag{8}\\ -1 & , 1 \leq \mu=\nu \leq 3 \\ 0 & , \mu \neq \nu\end{cases}
$$

If not otherwise noted $\mu, \nu$ run from 0 to 3 . Furthermore, the metric tensor has following important properties:

- $g^{\mu \nu} x_{\mu}=x^{\nu}$,
- $g_{\mu \nu} x^{\mu}=x_{\nu}$.

So basically, the metric tensor switches indices and turns a covariant into a controvariant, or a controvariant into a covariant vector. We will be using these properties later on.

In fact, we can identify vectors and even scalars with tensors. We call a tensor with n distinct indices a tensor of $n$-th order. Thus, a scalar is a $0^{\text {th }}$-order tensor, a vector a $1^{\text {st }}$-order tensor. The highest order we will deal with in this presentation are $2^{n d}$-order tensors. There are 3 types of them, classified by the position of their indices:

- covariant tensors $\Lambda^{\mu \nu}$,
- controvariant tensors $\Lambda_{\mu \nu}$,
- and mixed tensors $\Lambda^{\mu}{ }_{\nu}, \Lambda_{\nu}{ }^{\mu}$.

With the aid of this definition we can redefine the scalar product in a more useful manner:

$$
\begin{equation*}
\langle x, y\rangle:=x^{\mu} g_{\mu \nu} y^{\nu}=x^{\mu} y_{\mu} \tag{9}
\end{equation*}
$$

If we identify the diagonal matrix $g:=\operatorname{diag}(1,-1,-1,-1)$ with the metric tensor, the corresponding vector notation becomes $\langle x, y\rangle=x^{T} g y$. Now it becomes clear why this is not a real scalar product: The matrix g corresponding to this bilinear form is indefinite.

## 3 Basic Properties of the Transformations

The general homogenous Lorentz transformations are mappings of $\mathbb{M}$ onto itself. They are linear mappings preserving the Minkowski norm $\|x\|:=\sqrt{\langle x, x\rangle}$ of four vectors. Like all linear mappings they can be represented by a quadratic matrix $\Lambda$. Thus, the transformation in coordinate form is defined by

$$
\begin{equation*}
x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu} . \tag{10}
\end{equation*}
$$

The homogenous Lorentz transformations conserve the pseudo norm induced by the scalar product. Let $x^{\prime}:=\Lambda x$, then

$$
\begin{align*}
x^{2}=x^{T} g x & =(\Lambda x)^{T} g(\Lambda x)  \tag{11}\\
& =x^{T} \Lambda^{T} g \Lambda x  \tag{12}\\
& \stackrel{!}{=} x^{T} g x  \tag{13}\\
& =x^{2} \tag{14}
\end{align*}
$$

Hence, we can conclude that $\Lambda^{T} g \Lambda=g$, which gives us

$$
\begin{equation*}
\Lambda^{T} g \Lambda=g \Rightarrow \operatorname{det}\left(\Lambda^{T} \Lambda\right)=(\operatorname{det} \Lambda)^{2}=1 \tag{15}
\end{equation*}
$$

So we find $\operatorname{det} \Lambda= \pm 1$. This means that $\Lambda \in G l_{4}(\mathbb{R})$ is an invertible 4 x 4 matrix.

Now, let $\mathcal{L}:=\left\{\Lambda \in G l_{4}\left(\mathbb{R} \mid \Lambda^{T} g \Lambda=g\right\}\right.$ be the set of all homogenous Lorentz transformations. Then $\mathcal{L}$ is a group.

## Proof

Let $\Lambda_{1}, \Lambda_{2}$ be in $\mathcal{L}$. We define $\Lambda_{3}:=\Lambda_{1} \Lambda_{2}$. Then $\Lambda_{3}$ is another homogenous Lorentz transformation since

$$
\begin{equation*}
\Lambda_{3}^{T} g \Lambda_{3}=\Lambda_{2}^{T} \Lambda_{1}^{T} g \Lambda_{1} \Lambda_{2}=\Lambda_{2}^{T} g \Lambda_{2}=g \tag{16}
\end{equation*}
$$

Moreover, the product of any $\Lambda_{i} \in \mathcal{L}$ is associative since matrix multiplication is associative. The identity element is the unit matrix $\mathbb{E}_{4}$. Since $\operatorname{det} \Lambda \neq 0$ there is an inverse element $\Lambda^{-1} \in \mathcal{L}$ for each $\Lambda \in \mathcal{L}$.

Let us go back to the scalar product in $\mathbb{M}$. First we contemplate the component with $\sigma=\rho=0$ in $\Lambda^{\mu}{ }_{\sigma} g_{\mu \nu} \Lambda_{\rho}^{\nu}=g_{\rho \sigma}$.

We find, that

$$
\begin{align*}
g_{\mu \nu} \Lambda_{0}^{\mu} \Lambda_{0}^{\nu} & =g_{00}\left(\Lambda_{0}^{0}\right)^{2}+\sum_{\mu, \nu=1}^{3} g_{\mu \nu} \Lambda_{0}^{\mu} \Lambda_{0}^{\nu}  \tag{17}\\
& =g_{00}\left(\Lambda_{0}^{0}\right)^{2}-\sum_{\nu=1}^{3}\left(\Lambda_{0}^{\nu}\right)^{2} \tag{18}
\end{align*}
$$

This yields $1 \leq\left(\Lambda_{0}^{0}\right)^{2} \Leftrightarrow \Lambda_{0}^{0} \geq 1 \vee \Lambda_{0}^{0} \leq-1$. Combined with the fact that $\operatorname{det} \Lambda= \pm 1$, this implies that $\mathcal{L}$ is not a connected group. It is made up of four disjoint sets which we call components. Moreover, there are three discrete transformations in $\mathcal{L}$ :

- the identity $I d$,
- space inversion $I_{S}$,
- time inversion $I_{T}$,
- and space-time inversion $I_{S T}=I_{S} \circ I_{T}=I_{T} \circ I_{S}=-I d$.

| symbol | $\Lambda_{0}^{0}$ | $\operatorname{det} \Lambda$ | discrete transformation |
| :---: | :---: | :---: | :---: |
| $\mathcal{L}_{+}^{\uparrow}$ | $\geq+1$ | +1 | $I d$ |
| $\mathcal{L}_{-}^{\uparrow}$ | $\geq+1$ | -1 | $I_{S}$ |
| $\mathcal{L}_{+}^{\downarrow}$ | $\leq-1$ | +1 | $I_{T}$ |
| $\mathcal{L}_{-}^{\downarrow}$ | $\leq-1$ | -1 | $-I d$ |

Table 1: The different components of $\mathcal{L}$ and their properties
The space-time inversion $I_{S T}$ is really just a composition of the first two inversions. The set $\left\{I d, I_{S}, I_{T} I_{S T}\right\} \subset \mathcal{L}$ is an Abelian subgroup of the Lorentz group. Table 1 gives us an oversight over the four components of $\mathcal{L}$.

Of all the components only the proper orthochronous Lorentz group $\mathcal{L}_{+}^{\uparrow}$ is a subgroup of $\mathcal{L}$. The other components can be identified with left cosets of the corresponding discrete transformation and $\mathcal{L}_{+}^{\uparrow}$. Moreover, the union of $\mathcal{L}_{+}^{\uparrow}$ with any of the other components forms a subgroup of $\mathcal{L}$. From now on, we will restrict our discussion to the proper orthochronous Lorentz group $\mathcal{L}_{+}^{\uparrow}$. Because its parameter space is not bound.

## 4 Connection to $S L(2, \mathbb{C})$

We want to show the relation of $\mathcal{L}_{+}^{\uparrow}$ to $S L(2, \mathbb{C})$. In doing so, we use the Pauli matrices:

$$
\sigma_{1}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}:=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

With the 2x2-identity matrix $E_{2}=: \sigma_{0}$ we define a controvariant 4-tupel

$$
\sigma_{\mu}:=\left(\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3},\right)=\left(\sigma_{0}, \vec{\sigma}\right) .
$$

It is important to keep in mind that this is now not a 4 -tupel of numbers, but a 4 -tupel of matrices. We define another such controvariant 4 -tupel

$$
\begin{equation*}
\underline{\sigma}_{\mu}:=\sigma^{\mu}=\left(\sigma_{0},-\vec{\sigma}\right) . \tag{19}
\end{equation*}
$$

With these definitions, we associate to each $x^{\mu}$ a hermitian 2x2-matrix

$$
X=\sigma_{\mu} x^{\mu}=\left(\begin{array}{cc}
x^{0}+x^{3} & x^{1}-i x^{2}  \tag{20}\\
x^{1}+i x^{3} & x^{0}-x^{3}
\end{array}\right) .
$$

This means that $X \in \operatorname{Mat}_{2}(\mathbb{C})$ is self-adjoined, i.e. $\bar{X}=X^{T}$. First we show that

$$
\begin{equation*}
\operatorname{Tr}\left(\underline{\sigma}_{\mu} \sigma_{\nu}\right)=2 g_{\mu \nu} \tag{21}
\end{equation*}
$$

## Proof

We need following property of the Pauli matrices:

$$
\begin{equation*}
\sigma_{\mu} \sigma_{\nu}=\delta_{\mu \nu} \sigma_{0}+i \cdot \epsilon_{\mu \nu \rho} \sigma_{\rho} \tag{22}
\end{equation*}
$$

With the definitions of the controvariant 4-tupels and the properties of the Pauli matrices we now find, that

$$
\begin{align*}
\mu=\nu=0 & \Rightarrow \operatorname{Tr}\left(\sigma_{0} \sigma_{0}\right)=2  \tag{23}\\
\mu=0,1 \leq \nu \leq 3 & \Rightarrow \operatorname{Tr}\left(\underline{\sigma}_{0} \sigma_{\nu}\right)=\operatorname{Tr}\left(\sigma_{\nu}\right)=0  \tag{24}\\
1 \leq \mu \leq 3, \nu=0 & \Rightarrow \operatorname{Tr}\left(\underline{\sigma}_{0} \sigma_{\nu}\right)=-\operatorname{Tr}\left(\sigma_{\mu}\right)=0  \tag{25}\\
1 \leq \mu=\nu \leq 3 & \Rightarrow \operatorname{Tr}\left(\underline{\sigma}_{0} \sigma_{\nu}\right)=-\operatorname{Tr}\left(\delta_{\mu \mu} \sigma_{0}\right)=-2  \tag{26}\\
1 \leq \mu, \nu \leq 3, \mu \neq \nu & \Rightarrow \operatorname{Tr}\left(\underline{\sigma}_{0} \sigma_{\nu}\right)=-i \cdot \epsilon_{\mu \nu \rho} \cdot \operatorname{Tr}\left(\sigma_{\rho}\right)=0 . \tag{27}
\end{align*}
$$

Hence, this yields $\operatorname{Tr}\left(\underline{\sigma}_{\mu} \sigma_{\nu}\right)=2 g_{\mu \nu}$. Using this, we find the equation

$$
\begin{aligned}
\operatorname{Tr}\left(\underline{\sigma}^{\mu} X\right) & =\operatorname{Tr}\left(\underline{\sigma}^{\mu} \sigma_{\nu} x^{\nu}\right) \\
& =\operatorname{Tr}\left(g^{\mu \rho} \underline{\sigma}_{\rho} \sigma_{\nu} x^{\nu}\right) \\
& =g^{\mu \rho} x^{\nu} \cdot \operatorname{Tr}\left(\underline{\sigma}_{\rho} \sigma_{\nu}\right. \\
& =g^{\mu \rho} 2 \cdot g_{\rho \nu} x^{\nu} \\
& =2 g^{\mu \rho} x_{\rho} \\
& =2 x^{\mu}
\end{aligned}
$$

Moreover, the determinant of $X$ is

$$
\begin{align*}
\operatorname{det} X & =\left|\begin{array}{cc}
x^{0}+x^{3} & x^{1}-i x^{2} \\
x^{1}+i x^{3} & x^{0}-x^{3}
\end{array}\right| \\
& =\left(x^{0}\right)^{2}-\left(x^{3}\right)^{2}-\left(\left(x^{1}-i x^{2}\right)\left(x^{1}+i x 2\right)\right) \\
& =\left(x^{0}\right)^{2}-\vec{x}^{2}=x^{2} \tag{28}
\end{align*}
$$

Given a unimodular complex matrix $T \in\left\{A \in G l_{2}(\mathbb{C}) \mid \operatorname{det} A=1\right\}$ we transform the matrix $X$ :

$$
\begin{equation*}
X^{\prime}=T X T^{\dagger} \tag{29}
\end{equation*}
$$

Clearly, since the determinants of $T, T^{\dagger}$ equal 1 , the Minkowski norm is conserved under such transformation. Hence, X corresponds to a Lorentz transformation $\Lambda$.

## 5 Generators of $\mathcal{L}_{+}^{\uparrow}$

Since pure rotations do not affect the $x^{0}$-coordinate, one can extend the generators of $S O(3)$ by a null row and column for it:

$$
X_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0  \tag{30}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & i & 0
\end{array}\right), X_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & i \\
0 & 0 & 0 & 0 \\
0 & -i & 0 & 0
\end{array}\right), X_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -i & 0 \\
0 & i & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

. At last, we have to find the corresponding generator for the Lorentz boost

$$
B_{1}=\left(\begin{array}{cccc}
\cosh \Psi & -\sinh \Psi & 0 & 0  \tag{31}\\
-\sinh \Psi & \cosh \Psi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

It is obtained by taking the derivative of $B_{1}$ at $\Psi=0$ :

$$
\left.i \frac{d B_{1}(\Psi)}{d \Psi}\right|_{\Psi=0}=\left(\begin{array}{llll}
0 & i & 0 & 0  \tag{32}\\
i & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=: Y_{1} .
$$

The $Y_{2}, Y_{3}$ for Lorentz boosts along the $x^{2}-, x^{3}$-axes are found in an analogous fashion. The commutators of these generators are

- $\left[X_{i}, X_{j}\right]=i \epsilon_{i j k} X_{k}$,
- $\left[X_{i}, Y_{j}\right]=i \epsilon_{i j k} Y_{k}$,
- $\left[Y_{i}, Y_{j}\right]=-i \epsilon_{i j k} Y_{k}$.

The first equation shows clearly that the spatial rotations $\left\{X_{1}, X_{2}, X_{3}\right\}$ form the subalgebra $S O(3)$. The second equation shows us that the tripel $\left(Y_{1}, Y_{2}, Y_{3}\right)$ transforms just like a vector under spatial rotations. The last equation shows that the Lorentz boosts $\left\{Y_{1}, Y_{2}, Y_{3}\right\}$ do not form a subalgebra, i.e. they do not close in on themselves.

The commutation relations are further simplified by defining the linear combinations

$$
\begin{equation*}
\vec{X}^{ \pm}:=\frac{1}{2}(\vec{X} \pm i \vec{Y}), \tag{33}
\end{equation*}
$$

where $\vec{X}:=\left(X_{1}, X_{2}, X_{3}\right)$, and $\vec{Y}:=\left(Y_{1}, Y_{2}, Y_{3}\right)$. Using this, we acquire the commutations

- $\left[X_{i}^{+}, X_{j}^{+}\right]=i \epsilon_{j i k} X_{k}^{+}$,
- $\left[X_{i}^{-}, X_{j}^{-}\right]=i \epsilon_{j i k} X_{k}^{-}$,
- $\left[X_{i}^{+}, X_{j}^{-}\right]=0$.

We see that the first two equations close in on themselves. They form two independent $S U(2)$ algebras. Further, we note that there is a big similarity to the $S O(4)$ in this respect. Howoever, these equations here are complex equations. The commutation relations for $S O(4)$ on the other hand are real equations. Both are locally isomorphic to one another.

The irreducible representations $j_{1}, j_{2}$ of the first and second $S O(2)$ respectively can now be enumerated. Each has $2 j_{1,2}+1$ degrees of freedom. $\mathcal{L}_{+}^{\uparrow}$ is not compact. Hence, its irreducible representations cannot be unitary. We want to discuss some examples.

- The trivial representation is $(0,0)$.
- The Weyl representations $\left(0, \frac{1}{2}\right),\left(\frac{1}{2}, 0\right)$ are the lowest dimensional irreducible representations with two degrees of freedom.
- The Dirac representation $\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$ is used in quantum electrodynamics to describe the electron. It acts on 4 -component spinors.
- The representation $\left(\frac{1}{2}, \frac{1}{2}\right)$ corresponds to the defining representation of $\mathcal{L}_{+}^{\uparrow}$. Of course, it has four degrees of freedom.
- The representation $(1,0) \oplus(0,1)$ with 6 degrees of freedom is carried by antisymmetric tensors $F_{\mu \nu}$. In electrodynamics the six independent components can be identified with the electrical and magnetic field components.


## 6 Summary

Let us resume the core aspects of this presentation.

- The Minkowski space $\mathbb{M}$ is a 4 -dimensional $\mathbb{R}$-vector space with the pseudo scalar product $\langle x, y\rangle:=x^{\mu} g_{\mu \nu} y^{\nu}$.
- The Lorentz transformations are all endomorphisms of $\mathbb{M}$ onto itself that leave the Minkowski norm $\|x\|:=\sqrt{\langle x, x\rangle}$ invariant, their absolute determinant is 1 .
- The Lorentz group $\mathcal{L}$ is the set of all such transformations. It is not connected and consists of 4 disjoint sets called components.
- The proper orthochronous Lorentz group $\mathcal{L}_{+}^{\uparrow}$ is the only component that is also a subgroup of $\mathcal{L}$. Its elements $\Lambda$ have the properties $\operatorname{det} \Lambda=$ $+1, \Lambda^{0}{ }_{0} \leq+1$ and its discrete transformation is $I d=g^{\mu \nu}$.
- In $S L(2, \mathbb{C})$ we can define a hermitian 2 x2-matrix $X:=\sigma_{\mu} x^{\mu}$, which is invariant under transformation $X^{\prime}=T X T^{\dagger}$ with a unimodular matrix $T$. It corresponds to a Lorentz transformation $\Lambda \in \mathcal{L}_{+}^{\uparrow}$.
- The generators of $\mathcal{L}_{+}^{\uparrow}$ are the generators $X_{1,2,3}$ of spatial rotations with an additional null row and column for the $x^{0}$-coordinate. The generators of the Lorentz boosts $Y_{j}$ along the $x^{j}$-axis ( $\mathrm{j}=1,2,3$ ) are obtained by taking the derivative $Y_{j}:=i d B_{j}(\Psi) /\left.d \Psi\right|_{\Psi=0}$ at $\Psi=0$.
- The Lie algebra of $\mathcal{L}_{+}^{\uparrow}$ is

$$
\left[X_{i}^{+}, X_{j}^{+}\right]=i \epsilon_{i j k} X_{k}^{+}, \quad\left[X_{i}^{-}, X_{j}^{-}\right]=i \epsilon_{i j k} X_{k}^{-}, \quad\left[X_{i}^{+}, X_{j}^{-}\right]=0,
$$

where $\vec{X}^{ \pm}:=\frac{1}{2}(\vec{X} \pm i \vec{Y})$.

## Literatur

- H.F. Jones: Groups, representations and Physics. Adam Hilger Ldt., 1990, S.198-208
- G. Costa, G. Fogli: Symmetries and Group Theory in Particle Physics - An Introduction to Space-time and Internal Symmetries. SpringerVerlag, 2012, S.43-51

