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1 Intro

Until now a couple of Lie groups, such as SU(2), SU(3) and SO(4), have been covered.
Their representations have been used to extract their algebra, then their irreducible repre-
sentations have been found by the use of different methods - lowering and raising operators,
use of characters, explicit tensor representations and Young tableaux.

For the general treatment of Lie algebras an extension of the already treated methods by
the names of Cartan and Weyl will be used. The generators will be split, into a set of {H}
which is commutating among its elements and therefore can be assigned eigenvalues and a
rest {E} containing raising and lowering operators. Now the Lie groups may be classified
by split and commutation relations which will total up to the determination of simple roots
with special lengths and scalar products. The properties can be presented with either the
Cartan matrix or the Dynkin diagram in the end.

In the end there are four regular infinite series of Lie algebras and five irregular algebras that
are not part of either series. All of them can be treated with the method of lowering and
raising operators. These methods can as well be applied to more complicated Lie algebras.

2 The Adjoint Representation and the Killing Form

Definition 2.1. A Lie algebra of dimension d is specified by a set of d generators Ti closed
under commutation:

[Tα, Tβ ] = ifγ
αβTγ (1)

The Lie product [A,B] does not have to be a commutator of operators or matrices but a
skew-symmetric mapping from L× L onto L with the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (2)

Above is trivially satisfied by [A,B] being a commutator.
The Poisson bracket of Hamiltonian classical mechanics is an example of a Lie product which
is not defined as a commutator:

[A,B]PB :=
∑
σ

(
∂A

∂qα

∂B

∂pα
− ∂A

∂pα

δB

∂qα
) (3)

The algebra being dealt with here is a vector space and the Lie product has to be consistent
with its addition:

[λ1A+ λ2B,C] = λ1[A,C] + λ2[B,C] (4)
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Definition 2.2. The Lie algebras commutation with a fixed generator maps the generators
onto themselves, creating a new representation of dimension d. This is called the adjoint
representation A.

By setting a fixed Tα for formula (1) its second element is mapped onto a linear combi-
nation of the generators, giving a representation whose structure constants are the matrix
representatives of the generators:

(DA(Tα))
γ
β = ifγ

αβ (5)

Now f is obviously anti-symmetric in alpha and beta but lacks any symmetries for gamma.

This is where the Killing form comes into play. It can be used to lower the unwelcome
index and create a completely anti-symmetric f.

Definition 2.3. The Killing form, Tr(AB), is the trace of the product of the matrices
representing A and B in the adjoint representation:

(A,B) := Tr(DA(A)DA(B)) (6)

Definition 2.4. By applying the Killing form to the generators one gets the cartan metric:

gαβ := TrA(TαTβ) = −fδ
αγf

γ
βδ (7)

Using gδγ to lower the last index on fδ
αβ one receives an fαβγ = fδ

αβgδγ that is completely
antisymmetric in α , β and γ.

With TrA([Tα, Tβ ], Tγ ]) one finds that fαβγ = fγαβ = −fαγβ etc. is true:

TrA([Tα, Tβ ], Tγ ]) = ifδ
αβTrA(TδTγ) = ifαβγ (8)

And by taking the cyclic property of the trace into account:

Tr([A,B]C) = Tr([B.C]A) = Tr([C,A]B) (9)

There are Lie algebras that contain subalgebras with elements that may generate a subgroup
of the group generated by L. To get a subgroup there either has to be an invariant subalgebra
or an ideal.

Definition 2.5. An ideal is a subspace I such that all commutators involving I lie within
it.

[I, L] ⊂ I (10)

Lie algebras can be expressed as a direct sum of simple Lie algebras. A simple Lie algebra
is one that does not contain any proper ideals. (A semi-simple one doesn’t contain any
Abelian ideals.)

The Cartan metric can tell whether a Lie algebra is semi-simple, which is true if det(g) ̸= 0
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or equivalently (A,X) = 0∀X ∈ L → A = 0.

If L contains an ideal, to get to a direct sum, the following is done and repeated until
only a direct sum of simple Lie algebras is left:

First take P , defined as the orthogonal complement to I with respect to the Killing form:

(I, P ) = 0 (11)

and then, since this is a subalgebra, I is an ideal and the trace owns cyclic properties:

([P, P ]I) = ([P, I]P ) = (IP ) = 0 (12)

([P, I]I) = ([I, I]P ] = [IP ] = 0 proves to be orthogonal to every element within the given
algebra and the Killing form is non-degenerate and therefore [P, I] is zero.

Obviously L can be written as L = I ⊕ P . Now the process will be repeated with P if
it is not already simple.

3 The Cartan Basis of a Lie Algebra

A Lie algebra is determined by its structure constants but this doesn’t work the other way,
since one may change the basis vectors to a set created from linear combinations of old ones
which wwould result in a change of the commutation relations.

One may take for example the SU(2) algebra:

[Ji, Jj ] = iηijkJk (13)

By use of J3 and J± = J1 ± iJ2 one receives:

[J3, J±] = ±J± and [J+, J−] = 2J3 (14)

Definition 3.1. Now the generalized method behind this is the Cartan presentation of
commutation relations. One looks for a maximal set of commutating generators. This set
{Hi}, i = 1...r will be the basis for the Cartan subalgebra.

Definition 3.2. The number of generators is called rank r of an algebra.

Definition 3.3. The weight of the Hi are their eigenvalues, which are used for labeling
states of representations.

One part of the commutation relations now may look like this:

[Hi,Hj ] = 0 (15)

For the remaining d− r generators one wants to take linear combinations {Eα} so that:

[Hi, Eα] ∝ Eα (16)

3



For that, eigenvalues need to be found:

det(Cαβ − λgαβ) = 0 (17)

Here Cαβ equals iflαβ for particular fixed i. Assuming that the algebra was cast in such
a way that all fs are real, C is purely imaginary and antisymmetric. Thus it is Hermitian
with real eigenvalues, with r being zero and d− r non-zero.
Cartans theorem says that those non-zero eigenvalues are non-degenerate:

[Hi, Eα] = (α)iEα (18)

In the following we’ll have a look at all possible Hi. For a start with use of the Jacobi
identity there is:

[Hi, [Hj , Eα]] = [Hj , [Hi, Eα]]− [Eα, [Hi,Hj ]] (19)

From the above one may conclude that:

[Hi, [Hj , Eα]] = (α)i[Hj , Eα] (20)

Thus [Hj , Eα] is eigenvector of the adjoint action of Hi and the respective eigenvalue is (α)i.
A proportionality with Eα is obvious due to the eigenvectors being degenerate:

[Hj , Eα] = (α)jEα (21)

Definition 3.4. The r-dimensional vectors this results in are called roots of the Lie algebra
while the eigenvectors are called root vectors (or step operators).

4 Properties of the Roots and Root Vectors

The commutation relations between the Eα will now be examined.
With use of the Jacobi identity and (21):

[Hi, [Eα, Eβ ]] = −[Eα, [Eβ ,Hi]]− [Eβ , [Hi, Eα]] = (α+ β)i[Eα, Eβ ] (22)

So [Eα, Eβ ] is a root vector too, with root α + β unless α + β = 0 or [Eα, Eβ ] = 0. If
α + β = 0 one can see that [Eα, Eβ ] = 0 commutes with each Hi and therefore belongs to
the Cartan subalgebra:

[Eα, E−α] = λiHiand[Eα, Eβ ] = NαβEα+βfor(β ̸= −α (23)

with Nαβ = 0 if α+ β is not a root.

We assumed that if α is a root, −α is a root as well which can easily be shown.

Because of the form of the commutators in the Cartan basis, scalar products of the {Hi}
and the products of have simple properties:
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TrA([[Hj , Eα]Hi]) = −TrA([[Hj ,Hi]Eα]) = 0 (24)

because Hj and Hi commute, but:
(Hi, Eα) = 0 (25)

For α+ β ̸= 0 one can see that (Eα, Eβ) in the same way. As contrast (Eα, E−α) now must
be non-zero for a simple Lie algebra with a non-degenerate metric. Normalized one may get:

(Eα, E−α) = 1 (26)

With the Killing form being non-degenerate and considering that (Hi, Eα) = 0 also is block
diagonal in the basis of Hi and Eα the sub-matrix [Hi,Hj ] must also be non-degenerate and
consequently with a convenient transformation of the Cartan subalgebra may be regarded
as:

(Hi,Hj) = δij (27)

Moving forward to the scalar product of this with Hj and keeping Hi’s orthogonally in mind
the result is:

([Eα, E−α], Hj) = λj (28)

When using the cyclic properties of the trace one can see that λj = (α)j :

([Eα, E−α],Hj) = ([Hj , Eα], E−α) = (α)j(Eα, E−α) = (α)j (29)

So the commutators and scalar products of the generators in Cartan-Weyl basis are:

[Hi,Hj ] = 0
[Hi, Eα] = (α)iEα

[Eα, E−α] = (α)iHi

[Eα, Eβ ] = NαβEα+β α+ β ̸= 0

(Hi,Hj) = δij
(Hi, Eα) = 0
(Eα, E−α) = 1
(Eα, Eβ) = 0

(30)

5 Quantization of Roots

Roots are r-dimensional vectors with components (α)i as defined before. Thus scalar prod-
ucts may be defined:

α× β := (α)i(β)i
andαH := (α)Hi

(31)
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Here an application of our topic will be presented: For a start define:

Hα :=
2

α2
αH (32)

The Hα are linear combinations of the Hi which means that they commute:

[Hα,Hβ ] = 0 (33)

Looking at the commutators in the Cartan-Weyl basis one can see that

[Hα, Eβ ] =
2αβ

α2
Eβ (34)

while

[Eα, E−α] =
1

2
α2Hα (35)

For the first of those we have the special cases [Hα, 2E−α] = ±2E±α By comparing this to
the commutation relations of the SU(2) generators one will find that each α will give an
SU(2) algebra which will be called Sα here and their identifications being:

J3 =
1

2
Hα, J± = (2/α2)

1
2E±α (36)

These equations explains the step operators involved. The eigenvalues of J3 are half-integral,
hence the ones belonging to Hα will be integral. Other step operators, for example Eβ on
Hα will result in a step of 2αβ/α2 which leads us to:

2αβ

α2
= n = integer (37)

with a limitation that can be shown by use of the Schwartz inequality:

(
2αβ

α2
)(
2βα

β2
) ≤ 4 (38)

Now the angle between two vectors α and β shall be defined as:

cosθ =
αβ

|α||β|
(39)

which leads to another limitation: n1n2 ≤ 4 and cosθ = 1
2 (n1n2)

1
2 .

Since these n must be relatively positive one needs a condition for positive definiteness:
0 ≤ n2 ≤ n1 and in the same way 0 ≤ θ ≤ 2/π and in the same way . n1 may not be equal
to 4 as that would lead to a contradiction. The existing possibilities are:

a) n1 = 0 ⇒ n2 = 0 corresponding to θ = π/2
b) n1 = n2 = 1 corresponding to θ = π/3 and |α| = |α|
c) n1 = 2, n2 = 1 corresponding to θ = π/4 and |β| =

√
2|α|

d) n1 = 3, n2 = 1 corresponding to θ = π/6 and |β| =
√
3|α|

(40)
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Figure 1: First roots

The roots may be generated into complete sets.E±β interacting with Eα will generate a
beta-root-string through α which will extend from α+ pβ to α− qβ in general.
One wants root vectors from the basis of an irreducible representation of Sβ of dimension
2j + 1 that correlate with the given string. At the ends of the string one has eigenvalues of
1
2Hβ that are ±j. So:

jEα+pβ = [ 12Hβ , Eα+pβ ] =
(α+pβ)β

β2 Eα+pβ

and j = (α+pβ)β
β2 ,−j = (α−qβ)β

β2

(41)

with the end result:
q+p=2j
q − p = 2αβ/β2 = n2

(42)

One sees that: if p = 0 the multiplicity is 2j +1 = q+1 = n2 +1 and same with the second
string. With these roots one can extend the set of roots to a full one, also including the
negative ones.

Figure 2: Extended roots

The symmetry in the complete diagrams is obvious. It is a consequence of the Weyl reflec-
tions which may be explained through the SU(2) groups related to each root. The Sα group
is given with the raising and lowering operators J± = E±α/|α| which may be used to define
the operator J2 := (J+ − J−)/2i. One of its properties is:

eiπJ2J3e
−i2 = −J3 (43)

or:
eiπJ2αHJ3e

−i2 = −αH (44)
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On vH this lacks any effect when the vector v is orthogonal to α since

[vH,E±α] = vH and
eiπJ2αHJ3e

−i2 = vH (45)

So one finds that any general linear combination xH of the H’s is transformed to σα(x)H
while

σα(x) = x− 2xα

α2
α (46)

One sees the decomposition of x into its components perpendicular and parallel to . The
Weyl reflection of a root is also a root:

σα(β) = β − 2βα

α2
α (47)

One defines:
[xH,Eβ ] = xβEβ (48)

which is for arbitrary x and its transform is:

[σ(x)H, Ẽβ ] = xβẼβ (49)

while Ẽβ = exp(iπJ2)Eβexp(−iπJ2). The scalar product xβ is invariant under Weyl reflec-
tions:

xβ = σα(x)σα(β) (50)

One defines:
y := σα(x) (51)

Now above equation now says:

[yH, Ẽβ ] = yσα(β)Ẽβ (52)

Therefore σα(β) must be a root with the root vector Ẽβ

The final consequence is that for two distinct roots alpha and beta:{
αβ < 0 ⇒ α+ β is a root

αβ > 0α− β is a root
(53)
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