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1 Introduction to string theory

1.1 Basic assumptions

The basic idea of string theory is to replace a point-like particle by an extended object

– a string which can be open or closed (Fig. 1.1). One then develops a quantum theory

of strings. In order to do so one needs to define time t and energy H . Therefore one

assumes that the strings move in a D-dimensional space-time R1,D−1 with Minkowskian

signature (1, D − 1) (Fig. 1.2). The symmetry of this space-time is the Poincare group

and thus t, H , mass m and spin s are defined by the representation theory. The drawback

however is that the space-time background has to be assumed from the beginning. With

this preliminaries one can define (perturbative) string theory as the quantum theory of

extended objects (strings).

Figure 1.1: point-like particles are replaced by strings.

Figure 1.2: String moving in space-time background.

1.2 The string action

Let us denote the coordinates of the string by XM . It is a map from the worldsheet Σ

(with coordinates (τ, σ)) into the target space R1,D−1

XM(σα) : Σ→ R1,D−1 , M = 0, . . .D − 1, σα = (τ, σ), α = 0, 1 , 0 ≤ σ < l .

(1.1)

The Nambu-Goto action is

SNG = −T
∫

Σ

dA , (1.2)
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where A denotes the area of Σ (measured in coordinates of R1,D−1). T is the tension of

the string with units of energy/unit volume.

The line element of R1,D−1 is

ds2 = −ηMNdx
M(σα)dxM(σα) = −Gαβdσ

αdσβ , (1.3)

where Gαβ is the induced metric on Σ given by

Gαβ = ηMN
∂XM

∂σα
∂XN

∂σβ
. (1.4)

In terms of the metric the area A is given by

A =
√

− detGαβ dσdτ . (1.5)

XM and σα have dimension of length or inverse mass of R1,D−1. As a consequence Gαβ

is dimensionless and the tension T has dimension (length)−2 =(mass)2. One defines

T ≡ 1

2πα′ , ls ≡ 2π
√
α′ , Ms ≡

1√
α′

. (1.6)

α′ is called the Regge slope, ls the string length and Ms the string (mass) scale.

In addition to Gαβ one defines the intrinsic metric hαβ(τ, σ) on Σ. In terms of h one

can rewrite the Nambu-Goto action as the Polyakov action

SP = −T
2

∫

Σ

d2σ
√
− det hhαβ∂αX

M∂βX
NηMN . (1.7)

hαβ acts here as a Lagrange multiplier as its kinetic term is topological

1
4π

∫

Σ

d2σ
√
− det hR(h) = χ(Σ) = 2− 2g , (1.8)

where R(h) is the Riemann scalar and g the genus of Σ. The equation of motion

δSP

δhαβ
= 0 (1.9)

yields SNG. The advantage of using SP instead of SNG is that it corresponds to the

standard action of D scalar fields in a two-dimensional (2d) field theory.

SP has the following symmetries:

1. D-dimensional Poincare invariance

XM → XM ′ = ΛM
NX

N + aM , (1.10)

where Λ ∈ SO(1, D − 1) and aM parameterizes translations. As a consequence

energy, momentum and angular momentum E, PM , LMN are conserved.
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2. Reparametrizations of Σ

σα → σα′(σα) . (1.11)

As a consequence the energy-momentum tensor T αβ of the 2d field theory is (co-

variantly) conserved DαT
αβ = 0.

3. Local Weyl invariance

hαβ → ew(σα)hαβ. (1.12)

As a consequence T αα = 0.

The symmetries 2. and 3. have three local parameters and as a consequence hαβ has no

degrees of freedom (dof). Thus SP is a conformal field theory (CFT) on Σ. Its Weyl

anomaly corresponds to the Liouville mode.

The equation of motion in the gauge hαβ = diag(−1, 1) reads

�XM = h+−∂+∂−X
M = 0 , (1.13)

where

∂± = 1
2
(∂τ ± ∂σ) , σ± = τ ± σ . (1.14)

The solution reads

XM = XM
L (σ+) +XM

R (σ−) . (1.15)

The boundary conditions of the closed string are

XM(τ, σ) = XM(τ, σ + l) (1.16)

so that XM can be expanded in Eigenfunctions of a circle

XM
L,R = 1

2
xM0 + πα′

l
pM0 + i

√

α′

2

∑

n 6=0

1
n
αML,Rne

−i 2π
l
nσ± . (1.17)

1.3 Quantization and excitation spectrum

The next step is to canonically quantize the string by replacing

XM → X̂M , ΠM =
∂L
∂ẊM

→ Π̂M (1.18)

and imposing

[Π̂M(τ, σ), X̂N(τ, σ′)] = −iδ(σ − σ′)ηMN , [Π̂M , Π̂N ] = 0 = [X̂M , X̂N ] . (1.19)

Due to the signature of η the construction of a positive definite Fock space is problematic.

One finds that it requires D = 26 which coincides with an anomaly-free Weyl invariance.1

1More precisely, one need 26 scalar fields which, however, do not all have to be interpreted as space-

time coordinates.
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By applying creation opertors on the Fock vacuum one finds an infite tower of states

with masses

M2 = nMs , n ∈ {−1, 0, 1, 1, . . .} . (1.20)

There is a unique state for n = −1 called the tachyon and a graviton G(MN), an anti-

symmetric tensor B[MN ] and a dilaton φ for n = 0. This situation can be improved by

requiring supersymmetry in the 2d field theory on Σ. Redoing the Fock-space analysis on

finds D = 10 and for a specific projection (GSO-projection) no tachyon.

In two space-time dimensions the superalgebra splits on the light cone into what is

called (p, q)-supersymmetry where p denotes the left-moving supercharges and q the right-

moving supercharges (see Appendix A for more details). For D = 10 and (1, 1) super-

symmetry on Σ one has two inequivalent theories termed type IIA and type IIB. Both

are N = 2 space-time supersymmetric, type IIA is non-chiral while type IIB is chiral.

For D = 10 and (0, 1) supersymmetry on Σ there are three inequivalent theories termed

type I, heterotic SO(32) and heterotic E8 ×E8. Type I includes closed and open strings

and all three are N = 1 space-time supersymmetric.

In Table 1.1 we list the massless spectrum of type II string theories in R1,9 in the Neveu-

Schwarz-Neveu-Schwarz (NS-NS), the Ramond-Ramond (R-R) and Neveu-Schwarz-Ramond

(NS-R) sector while in Table 1.2 we display it for type I and heterotic strings. The Cp
are antisymmetric tensors in p indices or equivalently the coefficents of a p-form and AM
denotes a gauge boson. ΨM± is the gravitino where ± indicates the 10d chirality and λ

is the dilatino.

Type IIA Type IIB

NS-NS G(MN), B[MN ], φ

R-R C1, C3 l, C2, C
∗
4

NS-R ΨM+,ΨM−, λ+, λ− Ψ1,2
M+, λ

1,2
−

Table 1.1: Massless spectrum of type II strings.

Type I, Heterotic

NS GMN , B[MN ], φ, AaM ∈ G = SO(32), E8 × E8

NS-R ΨM+, λ−, λ
a
−

Table 1.2: Massless spectrum of heterotic and type I strings.

1.4 Interactions

The fundamental string interaction is depicted in Fig. 1.3. The strength of this inter-
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Figure 1.3: Fundamental string vertex.

action is measured by the dimensionless string coupling gs which is proportional to the

background value of the dilaton φ via gs = e〈φ〉.

From the fundamental vertex one constructs all scattering amplitudes. As an example

the four-point amplitude is depicted in in Fig. 1.4.

+ + . . .

Figure 1.4: Four-point amplitude.

The gs-dependence of the amplitude is

A =
∞∑

n=0

A(n)g2+2n
s +O(e−g

−2
s ) . (1.21)

Remarks:

1. Interactions are introduced via “Feynman-diagrams” and corresponds to a sum over

all worldsheet topologies. However, the object which leads to the expansion (1.21) is

not known or in other words there is no analog of the action functional/path integral

known. As a consequence even a formal definition of the theory is not available.

2. The graphs are “smeared” versions of the standard Feynman-diagrams in a quantum

field theory which is the origin of the UV-finiteness of A.

3. For gs < 1 a perturbative evaluation of A is sensible.

4. In the limit ls → 0 one obtains the amplitudes of a QFT coupled to classical rela-

tivity.
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2 The low energy effective action of string theory

2.1 The S-matrix approach

In field theories with light (L) and heavy (H) fields, i.e. with mL ≪ mH , one defines for

p≪ mH a low energy effective action formally by

e−i
R

Leff (L) =

∫

DH e−i
R

L(L,h) . (2.1)

In string theory there is no analog of the path integral but one can do the same procedure

at the level of the S-matrix as depicted in Fig. 2.1

L L

=

L L

L

L

L

L

+

L L

L L

L

H

L

L

L

+
L

L

L

L

L

L

+ t and u channels

+ t and u channels

p2 ≪M2
string

=

For p2 ≪M2
string one obtains the amplitudes of an effective field theory.

The method (called the S-matrix approach) can be systematically used to construct

Leff =
∞∑

n=0

(
p2

M2
s

)n

L(n)
eff . (2.2)

n = 0 corresponds to the potential and Yukawa-interactions while n = 1 give the standard

kinetic terms. In pratice one uses symmetries to simplify the analysis.

2.2 Type IIA supergravity in D = 10

We consider now type IIA supergravity in D = 10. The multiplet contains

GMN
(35)

, BMN
(28)

, φ
(1)

, CM
(8)

, C[MNP ]
(56)

︸ ︷︷ ︸

(128)

, ΨMα
(56)

, ΨMα̇
(56)

, λα
(8)
, λα̇

(8)
︸ ︷︷ ︸

(128)

, (2.3)
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where we indicated the number of d.o.f. in brackets. The bosonic Lagrangian has the form

LIIA = LNS + LRR + LCS , (2.4)

where in the string frame

LNS = 1
2κ̃2 e

−2φ
(
R + 4∂µφ∂

µφ− 1
2
|H3|2

)
, κ̃2 = (4π2α′)4

4π
= l8s

4π

LRR =− 1
8κ̃2

(
1
2
|F2|2 + 1

4!
|F̂4|2

)

LCS =− 1
4κ̃2 B2 ∧ F4 ∧ F4 ,

(2.5)

and F2 = dC1, H3 = dB2, F4 = dC3, F̂4 = F4 − C1 ∧H3.

The IIA theory has two local supersymmetries of opposite chirality. In addition there

three independent gauge symmetries related to the various p-forms present. They are

(i) δC1 = dΛ0 , δC3 = Λ0H3 , δF2 = δF̂4 = 0 , (2.6)

(ii) δB2 = dΛ1 , δH3 = 0 , (2.7)

(iii) δC3 = dΛ2 , δF̂4 = 0 , (2.8)

with parameters Λ0,Λ1,Λ2. Note that the theory contains no charged fermions.

2.3 Type IIB supergravity

The multiplet contains

GMN
(35)

, B1
MN

(28)

, B2
MN

(28)

, φ
(1)

, l
(1)
, CM

(1)
, C∗

MNPQ
(35)

︸ ︷︷ ︸

(128)

, Ψ1
Mα

(56)

, Ψ2
Mα

(56)

, λ1
α̇

(8)

, λ2
α̇

(8)
︸ ︷︷ ︸

(128)

, (2.9)

where the four-form has a self-dual field strength

F5 = dC∗
4 = F̃5 , where F̃M1,...,M5 = ǫM1,...,M10F

M6,...,M10 . (2.10)

This theory has no Lorentz invariant action but only field equations due to the self-

duality constraint. One can give the action without imposing the constraint and include

it on the field equation by hand. One has

LIIB = LNS + LRR + LCS , (2.11)

where LNS is as in (2.5) while

LRR =− 1
4κ̃2

(
1
2
|F1|2 − 1

3!
|F̂3|2 + 1

2·5! |F̂5|2
)

,

LCS =− 1
4κ̃2 C4 ∧H3 ∧ F3 ,

(2.12)
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with

F̂3 = dC2 − lH3 , F̂5 = dC4 + 1
2
B2 ∧ F3 − 1

2
C2 ∧H3 . (2.13)

The type IIB theory has two supersymmetries of the same chirality. The p-form gauge

symmetries are

δC4 = dΛ3 , δB2 = dΛB
1 , δC2 = dΛC

1 , δC4 = −1
2
ΛB

1 ∧F3 + 1
2
ΛC

1 ∧H3 . (2.14)

The type IIB theory also has SL(2,R) symmetry which is visible in the Einstein frame.

Defining
GE
MN = e−φGMN , τ = l + ie−φ ,

Mij =
1

Im τ

( |τ |2 −Re τ

−Re τ 1

)

, F i
3 =

(
H3

F3

)

, i = 1, 2
(2.15)

the Einstein frame Lagrangian reads

LIIB =
1

2κ2
10

(

RE − 1
2

∂Mτ∂
Mτ

(Im τ)2
− 1

2
Mij

(
F i
MNF

j MN
)
− 1

2·5! |F̂5|2 − 1
4
ǫijC4 ∧ F i

3 ∧ F j
3

)

.

(2.16)

In the Einstein frame one can check the SL(2,R) symmetry acting as

τ → τ ′ =
aτ + b

cτ + d
, a, b, c, d ∈ R , ad− bc = 1 ,

M → M ′ = (Λ−1)TMΛ−1 , Λ =

(
d c

b a

)

,

F i
3 → F ′ i

3 = Λi
jF

j
3 .

(2.17)

2.4 Heterotic and type I

The effective actions of these two string theories are very similar. The massless multiplets

are the gravitational multiplet containing

GMN
(35)

, BMN
(28)

, φ
(1)

︸ ︷︷ ︸

(64)

, ΨMα
(56)

, λα̇
(8)

︸ ︷︷ ︸

(64)

, (2.18)

and the vector multiplet featureing

AM
(8)

, χα
(8)

, (2.19)

Now non-Abelian gauge symmetries are possible. The Lagrangian is

Lhet/I = LNS + Lv het/I , (2.20)
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where LNS is again given by

LNS = 1
2κ̃2 e

−2φ
(

R + 4∂Mφ∂
Mφ− |Ĥ3|2

)

, (2.21)

but now with
Ĥ3 = dB2 − 1

4
α′(ΩYM − ΩYM) ,

ΩYM = Tr
(
A1 ∧ dA1 − 2i

3
A1 ∧ A1 ∧ A1

)
,

ΩL = Tr
(
ω1 ∧ dω1 + 2

3
ω1 ∧ ω1 ∧ ω1

)
.

(2.22)

ΩYM is the Yang-Mills Chern-Simons term which obeys dΩYM = F2 ∧ F2 while ΩL is the

Lorentz Chern-Simons term which obeys dΩL = R2 ∧ R2. This implies

dĤ3 = −1
4
α′(TrF ∧ F − TrR ∧R) . (2.23)

The kinetic term for the vector multiplet Lvhet/I reads

heterotic : Lvhet/I = − 1
2g̃210

e−2φTr
(
FMNF

MN
)
,

type I : Lvhet/I = − 1
2g̃210

e−φTr
(
FMNF

MN
)
,

(2.24)

where
κ̃2

g̃210
= 1

4
α′ . (2.25)

The theory has one local supersymmetry and the two-form gauge symmetries δB2 = dΛ1

together with the gauge invariance

δA1 = dΛ + i[A1,Λ] , δΩYM = dTr (Λ ∧ F ) , δB2 = 1
4
α′ Tr(Λ ∧ F ) , (2.26)

and an analogous symmetry for ΩL. The theory is anomaly free for E8 × E8, SO(32).
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3 Calabi-Yau compactifications

In the way we discussed the quantization of string theory in section 1 we need ten scalar

fields XM ,M = 0, . . . , 9 on the worldsheet Σ. These scalar fields are interpreted as

the coordinates of a target space which is identified as our space-time. However, the

choice of the global symmetry in the target space is not fixed by the consistency of the

quantization. In sections 1 and 2 we discussed R1,9 with a Lorentz symmetry SO(1, 9) as

an instructive example but this is by no means necessary. Instead we can have a target

space R1,d−1 × Y10−d with symmetry group SO(1, d − 1) × SO(10 − d) where Y10−d is a

compact (10− d)-dimensional manifold. Such backgrounds are commonly referred to as

compactifications of R1,9 and have been prominently discussed in Kaluza-Klein theories [9].

In string theory there is an additional consistency condition in that the background has

to be a SCFT on the worldsheet. This can be satisfied by choosing Y10−d to be Ricci-flat

or by turning on appropriate background values (background flux) of other fields such

that

Ric(Y10−d) = 0 , or Ric(Y10−d) + background flux = 0 . (3.1)

In fact it is possible to abandon the concept of a geometrical background altogether

and have instead R1,d−1 × SCFT where SCFT denotes an appropriate two-dimensional

SCFT which plays the role of the (10 − d) compact dimension but does not admit any

geometricl interpretation in terms of some target manifold.2 This state of affairs is another

manifestation of the fact that currently we do not understand how in string theory the

space-time background the string moves in is choosen.

The Ricci-flat compact manifolds have been studied in mathematics. They consist of:

• Tori T (10−d) which are even flat in that also the Riemann-tensor vanishes,

• four-dimensional K3-surfaces (they correspond to d = 6),

• Calabi-Yau threefolds which are complex three-dimensional manifolds corresponding

to d = 4.3

In the following we will concentrate on d = 4 and thus Calabi-Yau threefolds which we

denote by Y3.

3.1 Calabi-Yau manifolds

There are different equivalent definitions of Calabi-Yau manifolds. From [2] we take:

2Fermionic construction or asymmetric orbifold are prominent examples of this situation.
3Calabi-Yau n-folds exist for any n but for the application discussed here only n = 3, 4 will be relevant.
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Definition: A Calabi-Yau n-fold is a complex n-dimensional compact Kähler manifold

with a metric of holonomy H = SU(n) (or H ⊂ SU(n)).

This implies the following properties:

1. The metric is Ricci-flat.

2. The first Cern class vanishes c1(Yn) = 0.

3. Precisely one covariantly constant spinor η exist for H = SU(n) or at least one for

H ⊂ SU(n).

4. Yn has a unique holomorphic nowhere vanishing and covariantly constant (n, 0)-

form Ω.

(For more details see Appendix B.)

3.2 Supersymmetry in Calabi-Yau compactifications

If we consider a background R1,d−1 × Y10−d instead of R1,9 the Lorentz group SO(1, 9)

decomposes as

SO(1, 9)→ SO(1, d− 1)× SO(10− d) . (3.2)

The spinor representation 16 of SO(1, 9) decomposes accordingly

16→ (2
1

2
(d−2), 2(4−d

2
)) + (2

1

2
(d−2)′, 2(4−d

2
)′) ,

16′ → (2
1

2
(d−2), 2(4−d

2
)′) + (2

1

2
(d−2)′, 2(4−d

2
)) ,

(3.3)

where ′ denotes the inequivalent Weyl representation. For d = 4 one has SO(1, 9) →
SO(1, 3)× SO(6) and

16→ (2, 4) + (2̄, 4̄) . (3.4)

In particular the supercharge Q ∈ 16 decomposes into

Q→ QI
α , Q̄

I
α̇ , α, α̇ = 1, 2, I = 1, . . . , 4 . (3.5)

On a flat background T 6 all supercharges exist and thus one obtains N = 4 supercharges

in d = 4 from one supercharge in d = 10. On curved Calabi-Yau backgrounds one has to

make sure that the supercharges are globally defined spinors. On K3 there are two such

spinors corresponding to eight well defined supercharges while on Y3 there is one such

spinor corresponding to four supercharges or N = 1. The situation is depicted in Fig. 3.1.

Constructing the effective low energy action one can use two different approaches. It is

again possible to compute the massless spectrum of the theory directly in string theory

and then use the S-matrix approach in R1,d−1 to compute Leff . Alternatively one can

perform a Kaluza-Klein reduction which we turn to now.
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Figure 3.1: Calabi-Yau compactifications of the 10-dimensional string theories. The solid

line (−) denotes toroidal compactification, the dashed line (−−) denotes K3 compactifi-

cations and the dotted line (· · · ) denotes Y3 compactifications. Whenever two compact-

ifications (two lines) terminate in the same point, the two string theories are related by

a perturbative duality. (A line crossing a circle is purely accidental and has no physical

significance.)
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3.3 Kaluza-Klein formalism

The massless wave equations in R1,9 read

�φ = 0 , iγMDMψ = 0 . (3.6)

The corresponding wave equations in R1,d−1 × Y10−d then read

(�1,d−1 + ∆y)φ(x, y) = 0 , i(γµDµ + γmDm)ψ(x, y) = 0 , (3.7)

where xµ are the coordinates of R1,d−1 while ym are the coordinates of Y10−d. Both fields

can be expanded in terms of Eigenfunctions of the wave-operators on Y10−d

φ =
∑

n

φ(n)(x) θ(n)(y) , ψ =
∑

n

ψ(n)(x)χ(n)(y) , (3.8)

where

∆yθ
(n) = m

2(n)
φ θ(n) , iγmDmχ

(n) = m
(n)
ψ χ(n) (3.9)

Inserted into (3.7) yields

(�1,d−1 +m2(n))φ(n)(x) = 0 , i(γµDµ +m(n))ψ(n)(x) = 0 . (3.10)

The scale of m is related to the Kaluza-Klein scale lKK via

m ∼ l−1
KK , V10−d ∼ l10−dKK , (3.11)

where V denotes the volume of Y10−d. From (3.10) we see that the massless modes

correspond to the zero modes of the wave operator on Y10−d. For Calabi-Yau manifolds

these zero modes are in one-to-one correspondence with the harmonic forms on Y which in

turn are in one-to-one correspondence with elements of the Dolbeault cohomology groups

H(p,q)(Y ) defined as

H(p,q)(Y ) :=
closed (p, q)-forms

exact (p, q)-forms
. (3.12)

Here (p, q) denotes the number of holomorphic and anti-holomorphic differentials of the

harmonic forms. The dimensions of H(p,q)(Y ) are called Hodge numbers and denoted as

hp,q = dimHp,q(Y ). They are conventionally arranged in a Hodge diamond which on a

Calabi-Yau manifold simplifies as follows

h(0,0)

h(1,0) h(0,1)

h(2,0) h(1,1) h(0,2)

h(3,0) h(2,1) h(1,2) h(0,3)

h(3,1) h(2,2) h(1,3)

h(3,2) h(2,3)

h(3,3)

=

1

0 0

0 h(1,1) 0

1 h(1,2) h(1,2) 1

0 h(1,1) 0

0 0

1

.

(3.13)
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Or in other words the h(p,q) satisfy

h(1,0) = h(0,1) = h(2,0) = h(0,2) = h(3,1) = h(1,3) = h(3,2) = h(2,3) = 0 , (3.14)

h(0,0) = h(3,0) = h(0,3) = h(3,3) = 1 , h(2,1) = h(1,2) , h(1,1) = h(2,2) .

We see that h(1,1) and h(1,2) are the only non-trivial, i.e. arbitrary Hodge numbers on a

Calabi-Yau threefold.

The deformations of the Calabi-Yau metric gi̄, i, ̄ = 1, . . . , 3 which do not disturb the

Calabi-Yau condition correspond to moduli scalars in the low energy effective action.

They naturally split into deformations of the complex structure δgij and deformations

of the Kähler form δgi̄. The latter are in one to one correspondence with the harmonic

(1, 1)-forms and thus can be expanded as

δgi̄ = ivα(x)ωαi̄ , α = 1, . . . , h(1,1) , (3.15)

where ωa are harmonic (1, 1)-forms on Y which form a basis of H(1,1)(Y ). The va denote

h(1,1) moduli which in the effective action appear as scalar fields. Similarly the defor-

mations of the complex structure are parameterized by complex moduli zk which are in

one-to-one correspondence with harmonic (1, 2)-forms via

δgij =
i

||Ω||2 z̄
a(x)χ̄aīı̄ Ω

ı̄̄
j , a = 1, . . . , h(1,2) , (3.16)

where Ω is the holomorphic (3,0)-form, χ̄k denotes a basis of H(1,2) and we abbreviate

||Ω||2 ≡ 1
3!

ΩijkΩ̄
ijk.

17



4 Calabi-Yau compactifications of the heterotic string

Let us recall that the massless spectrum of the heterotic string in R1,9 contains a grav-

itational multiplet consisting of the ten-dimensional metric GMN ,M,N = 0, . . . 9, an

antisymmetric two-tensor BMN , the dilaton φ, a left-handed Majorana-Weyl gravitino

ψM and a right handed Majorana-Weyl fermion, the dilatino λ. Additionally, we have

a Yang-Mills vector multiplet which features a gauge boson AaM and a gaugino χa, both

transforming in the adjoint representation of either E8×E8 or SO(32). The corresponding

action was discussed in Section 2.4.

4.1 The four-dimensional spectrum

Let us first discuss the massless spectrum of the compactified theory in the background

R1,3×Y3 where Y3 is a Calabi-Yau manifold. The metric GMN decomposes into the metric

gµν , µ, ν = 0, . . . , 3 of R1,3 and the h(1,1) + 2h(1,2) geometric moduli vα, za discussed in the

previous section (cf. in (3.15),(3.16)). The component gµi has no zero modes as there are

no harmonic one-forms on Y3 (cf. (3.13)). Similarly, BMN decomposes into Bµν and h(1,1)

scalar moduli bα (cf. (B.21)).

For the fermions let us recall the decomposition of the 16 spinor representation discussed

in Section 3.2. For the group decomposition

SO(1, 9))→ SO(1, 3)× SO(6)→ SO(1, 3)× SU(3)× U(1) (4.1)

one has

16→ (2, 4) + (2̄, 4̄)→ (2, 1) + (2, 3) + (2̄, 1) + (2̄, 3̄) . (4.2)

Therefore the 10-dimensional gravitino ψM decomposes into ψµ ∈ (2, 1) and ψm ∈ (2, 3)

The latter is a spin-1/2 fermion in the (3+ 3̄)×3 ∼ 6+ 3̄+8+1. Since there is non zero

mode corresponding to the 3̄ we are left with the 6 and the (8 + 1). Finally the dilatino

λ ∈ 16 decomposes into (2, 1) + (2̄, 1).

These bosons and fermions combine into the following 4d N = 1 multiplets:

gravity: (gµν , ψµ)

dilaton: (φ,Bµν , λ)

h1,1 Kähler structure moduli: (tα, ψα) ∈ (8 + 1) of SU(3)

h1,2 complex structure moduli: (za, ψa) ∈ 6 of SU(3)

For the vector multiplets the identification of the zero modes is more subtle due to

(2.22). On a Calabi-Yau one has

∫

Y3

dĤ3 = −1
4
α′
∫

Y3

(TrF ∧ F − TrR ∧ R) = 0 . (4.3)
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Since
∫

Y3
TrR ∧R 6= 0 one needs a non-trivial gauge bundle on Y3. The simplest solution

(called the standard embedding) is to impose

TrF ∧ F = TrR ∧ R , Ĥ3 = 0 . (4.4)

In terms of the gauge fields is says A = ω or in other words the gauge connection is equal

to the spin connection. The latter is an element of SU(3) ⊂ SO(6) and thus one has to

break the ten-dimensional heterotic gauge groups as

E8 × E8 → E8 × E6 × SU(3) , SO(32)→ SO(26)× U(1)× SU(3) , (4.5)

and identify the SU(3) factor with the spin connection. Let us focus on E8 × E8 where

the adjoint representation of E8 decomposes under E6 × SU(3) as

248→ (27, 3) + (2̄7, 3̄) + (78, 1) + (1, 8) . (4.6)

Correspondingly the gauge field decomposes AaM → (Aaµ, A
a
m) with each field possibly in

the representation (4.6). However, for Aaµ only the (78, 1) + (1, 8) survive as zero mode

on Y3 as there are no one-forms. The (78, 1) is identified with the E6 gauge field while

the (1, 8) is identified with the spin connection and therefore does not contribute to the

low energy spectrum.4 For Aam on the other hand the (78, 1) + (1, 8) cannot appear,

again because there are no one-forms on Y3. In this case the (27, 3)+ (2̄7, 3̄) can appear.

Using again (3 + 3̄) × 3 ∼ 6 + 3̄ + 8 + 1 one finds 2h1,227 + 2h1,12̄7 scalar fields. λa

has a similar decomposition and thus ten-dimensional vector multiplet decomposes into

4d N = 1 multipletsshown in Table 4.1.5

vector: (Aaµ, λ
a) ∈ (78, 248) of E6 ×E8

chiral matter: h1,2 families (Aa, ψa) ∈ 27

h1,1 families (Aα, ψα) ∈ 2̄7

Table 4.1: Massless heterotic spectrum

4.2 The low energy effective action

The low energy effective action of the compactification is a 4d N = 1 supergravity whose

bosonic Lagrangian reads

L =− 1
2κ2R − 1

4
g−2
ab F

a
µνF

µνb + 1
32π2 Θab ǫ

µνρσF a
µνF

b
ρσ

−GAB̄

(
Φ, Φ̄

)
DµΦ

ADµΦ̄B̄ − V
(
Φ, Φ̄

)
,

(4.7)

4If one considers deformation which do not preserve A = ω but do respect supersymmetry one finds

that these defomations do give rise to chiral multiplets termed bundle moduli.
5Note that there is a slight clash in the notation. The index a is used to denote the adjoint represen-

tation of the gauge group and also counts the number of (1, 2)-forms.
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where κ2 = 8πM−2
P l , R is the Einstein-Hilbert-term and we have collectively denotes all

scalar fields as ΦA. The Lagrangian (D.1) is characterized by four functionsK(Φ, Φ̄), f(Φ),

W (Φ) and Da. K is the Kähler potential which determines the sigma-model metric by

GAB̄ = ∂A∂B̄K . (4.8)

The (inverse) gauge couplings and the Θ-angle combine into the holomorphic gauge kinetic

function

fab = g−2
ab + i

8π2 Θab . (4.9)

The potential is given by

V = eκ
2K
[

(DAW )G−1AB̄
(
DB̄W̄

)
− 3κ2|W |2

]

+ 1
2
g−1
ab D

aDb , (4.10)

where W is the holomorphic superpotential and

DAW :=
∂W

∂ΦA
+ κ2

(
∂K

∂ΦA

)

W . (4.11)

The D-term is given by

Da = −i(∂AK)kaA + ξδaU(1) , (4.12)

where kaA denotes a Killing vector and ξ is the Fayet-Illiopoulos (FI) parameter. (For

further details, see Appendix C.) Finally the covariant derivatives are

DµΦ
A = ∂µΦ

A − Aaµ kAa (Φ) . (4.13)

Inserting the KK-expansion discussed in section 4.1 into (2.21) and (2.24), performing

appropriate field redefinitions one computes the function K,W, f to be

K = − ln(S + S̄) +Kks(t, t̄) +Kcs(z, z̄) +Km(A, Ā, t, t̄, z, z̄) , (4.14)

where S = e−2φ+ ia is the complexified dilaton with a being the dual of Bµν . For Kks, Kcs

one finds (cf. (B.27), (B.30))

Kks(t, t̄) =− ln idαβγ(t− t̄)α(t− t̄)β(t− t̄)γ ,

Kcs(z, z̄) =− ln
[

− i
∫

Y

Ω ∧ Ω̄
]

,
(4.15)

while Km(A, Ā, t, t̄, z, z̄) is only known at leading order in A. The moduli dependence of

the matter metric reads

Gmαβ̄(A, Ā, t, t̄, z, z̄)|A=Ā=0 = ∂Aα∂Āβ̄Km(A, Ā, t, t̄, z, z̄)|A=Ā=0 = e
1
3
(Kcs−Kks)Gαβ̄ ,

Gmab̄(A, Ā, t, t̄, z, z̄)|A=Ā=0 = ∂Aa∂Āb̄Km(A, Ā, t, t̄, z, z̄)|A=Ā=0 = e−
1
3
(Kcs−Kks)Gab̄ ,

(4.16)
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where Gαβ̄ and Gab̄ denote the metrics derived via (4.8) from Kks, Kcs in (4.15).

The K given in (4.14)–(4.16) is only its tree level contribution. K is corrected at any

order in perturbation theory and also non-perturbatively. Generically, little is known

about these corrections.

The gauge kinetic function turns out be universal at the tree level and given by the

complexified dilaton6

fab = Sδab . (4.17)

f receives perturbative correction at one-loop but not beyond and non-perturbative cor-

rection.

The superpotential reads

W = Yabc(z)A
aAbAc + Yαβγ(t)A

αAβAγ +O(A4) , (4.18)

where we suppress the gauge indices. The Yukawa couplings are the third derivative of

the holomorphic prepotential F defined in Appendix B

Yabc = ∂za∂zb∂zcFcs(z) , Yαβγ = ∂tα∂tβ∂tγFks(t) . (4.19)

Note that W does not depend on S at all and the Yukawa couplings do not depend on

both types of moduli. The superpotential does not receive any perturbative correction

and is only corrected non-perturbatively.

The (supersymmetric) minima of the potential V are the solutions of

DAW = 0 = Da . (4.20)

For the case at hand the minimum is degenerate with 〈A〉 = 0 and 〈S〉, 〈tα〉, 〈za〉 undeter-

mined. This is consistent with the notion that they are moduli of Calabi-Yau manifolds.

The Yukawa couplings are field dependent and thus could be dynamically determined.

However, as they depend only on moduli fields they remain free parameters at least in

perturbation theory.

6Strictly speaking different factors of the gauge group can have different normalizations labelled by

an integer k called the Kac-Moody level of the SCFT [7].
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5 Supersymmtry breaking and gaugino condensation

5.1 Supersymmetry breaking in supergravity

In any supersymmetric theory bosons (B) transform into fermions (F )

δB ∼ F , δF ∼ B . (5.1)

If the vacuum (the background) is maximally symmetric (ie. preserves the Lorentz-group

SO(1, d − 1)) one needs 〈F 〉 = 0 while scalar fields can have a non-trivial background

value 〈Bs=0〉 6= 0. Therefore 〈δB〉 = 0 has to holds while 〈δF 〉|s=0 can be non-zero. In

this case it signals spontaneous supersymmetry breaking or in other words 〈δF 〉|s=0 is the

order parameter of supersymmetry breaking.

In d = 4, N = 1 theories the supersymmetry transformations of the fermions read

chiral fermions : δχA ∼ FAǫ ,

gauginos : δλa ∼ gDaǫ ,

gravitino : δψµ ∼ Dµǫ+ ie
1
2
κ2KWσµǭ ,

(5.2)

where FA ∼ e
1
2
κ2KGAB̄D̄B̄W̄ with W being the superpotential. Thus 〈FA〉 and 〈Da〉 are

the order parameters of supersymmetry breaking.7

Unbroken supersymmetry thus corresponds to 〈FA〉 = 〈Da〉 = 0 which when inserted

into (4.10) yields

〈V 〉 = −3κ2〈eκ2K |W |2〉 ≤ 0 . (5.3)

〈V 〉 plays the role of a cosmological constant and for 〈W 〉 = 〈V 〉 = 0 one has a Minkowski

background. For 〈W 〉 6= 0 follows 〈V 〉 < 0, i.e. one has an AdS-background. Note that a

dS-background is incompatible with unbroken supersymmetry.

Broken supersymmetry corresponds to 〈FA〉 6= 0 and/or 〈Da〉 6= 0. In the following we

concentrate on F -term breaking (ie. 〈Da〉 = 0). If in addition the cosmological constant

vanishes, ie. 〈V 〉 = 0, one needs (cf. (4.10))

〈|DW |2〉 = 3κ2〈|W |2〉 . (5.4)

In this case one defines the gravitino mass

m2
3/2 := κ4〈eκ2K |W |2〉 (5.5)

as the scale of supersymmetry breaking.

7For 〈FA〉 = 〈Da〉 = 0 one can always find 〈δψµ〉 = 0 which determines a Minkowski or AdS-

background.
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5.2 Supersymmetry breaking in String Theory

At the string tree-level supersymmetry is unbroken by construction and the cosmological

constant vanishes. Indeed, the superpotential given in (4.18) obeys 〈DW 〉 = 〈W 〉 = 0.

Thus supersymmetry can only be broken by quantum corrections.

As we recalled in the previous section the Lagrangian is characterized by the couplings

K,W and f which do receive perturbative and non-perturbative quantum corrections.

K is corrected at all orders while the holomorphicity of W (Φ) and f(Φ) lead to two

perturbative non-renormalization theorems: W (Φ) receives no perturbative corrections [?]

while f(Φ) is only corrected at one-loop order but has no further perturbative corrections

[?]. Altogether one has

K =
∞∑

n=0

K(n) +K(np) ,

W = W (0) +W (np) ,

f = f (0) + f (1) + f (np) ,

(5.6)

where the superscript (np) indicates possible non-perturbative corrections. These cor-

rection are in general non-universal and depend on the background under consideration.

What is universal is the dilaton dependence of the couplings. As we discussed in the

previous section W (0) is independent on the dilaton, f (0) = S and K(0) = − ln(S +

S̄) + K(0)(Φ, Φ̄) where Φ collectively denotes all other fields. f (1) is independet of the

dilaton but can depend on Φ. The perturbative expansion in K is in fact an expansion

in (S + S̄)−1. Finally the non-perturbative corrections generically behave as e−S.8 So

altogether we have in the heterotic string

K = − ln(S + S̄) +K(0)(Φ, Φ̄) +
∞∑

n=1

K̂(n)(Φ, Φ̄)

(S + S̄)n
+K(np)(e−S,Φ, Φ̄) ,

W = W (0)(Φ) +W (np)(e−S,Φ) ,

f = S + f (1)(Φ) + f (np)(e−S,Φ) ,

(5.7)

It is not possible to induce supersymmetry breaking perturbatively. This can be seen

as follows

〈DAW 〉 = 〈∂AW + (∂AK)W 〉 = 〈DAW
(0)〉+ 〈(∂AKcorr)W (0)〉 = 0 , (5.8)

where in the last step we used that the first term vanish as supersymmetry is unbroken at

the tree level while the second vanishes due to 〈W (0)〉 = 0. Thus supersymmetry can only

be broken by non-perturbative effects which has the additional advantage that it might

generate a hierarchy m3/2 ≪MPl.

8Exceptions to this rule will be discussed in section ??.
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5.3 Non-perturbative effects in string theory

So far we only constructed string theories perturbatively as an expansion in topologies

of the worldsheet. Therefore it is difficult to say something about the non-perturbative

properties of the theory.9 What has been done is to study the non-perturbative effects of

effective field theory which certainly also are part of string theory and then assume that

they dominate over ‘stringy’ non-perturbative contributions.

The prime example of a field-theoretic non-perturbative effect in supersymmetric the-

ories is gaugino condensation. One considers a “hidden sector” with an asymptotically

free supersymmetric gauge theory which is weakly coupled at MPl.
10 The E8 pure gauge

theory of the Standard Embedding is a perfect example of this situation. The gauge

couplings are scale dependent and in any QFT evolve according to

g−2(µ) = g−2(MPl)−
b

8π2
ln
MPl

µ
+ ∆ , µ < MPl , (5.9)

where b is the one-loop coefficient of the β-function given by

b = 11
3
T (G)− 2

3

∑

r

nWF
r
T (r) + 1

6

∑

r

nS
r
T (r)

bN=1 = 3T (G)−
∑

r

nC
r
T (r)

(5.10)

where nWF
r

(nS
r
) counts the number of Weyl fermions (real scalars) in the representation r

and we defined the indices of the gauge group according to

T (r) δab ≡ Trr(T
aT b) , T (G) ≡ T (adjoint of G) . (5.11)

In the second line of (5.10) we gave b for an N = 1 supersymmetric theory with nC
r

counting the number of chiral multiplets. ∆ in (5.9) denotes the IR-finite threshold

corrections which arise from integrating out heavy states with masses O(MPl).

An asymptotically free gauge theory has b > 0 and becomes strong at the scale Λ where

g−2(µ = Λ) = 0. Inserted into (5.9) this determines Λ to be

Λ = MPl e
− 8π2

b
(g−2(MPl)+∆) < MPl . (5.12)

Thus a hierarchy Λ
MPl
≪ 1 is generated if g and/or b are small.

An effective theory below Λ in terms of gauge singlet has been derived in refs. [?,?,?].

One finds a superpotential

W (Φ) ∼ Λ3
s(Φ) with Λs(Φ) = MPl e

− 8π2

b
f(Φ) , (5.13)

9We will discuss them in later in the context of string dualities.
10A hidden sector is defined by the absence of renormalizable couplings with the observable sector.
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where f(Φ) is the gauge kinetic function. For the heterotic string one has

f = S + f (1)(Φ) + f (np)(Φ) , (5.14)

where f (1)(Φ) is independent of the dilaton. Comparing with the notation in (5.9) we

identify

g−2(MPl) = Re f (0) = ReS , ∆ = Re f (1) . (5.15)

The potential derived from (5.13) reads

V ∼ |Λ|
6

M2
Pl

. (5.16)

Its S-dependent part is depicted in Fig. 5.1 and shows the “dilaton problem” [?]. It is a

“run-away” potential with a minimum at 〈ReS〉 → ∞.

Re S

V

Figure 5.1: The “run-away” of the dilaton potential

This generic problem of all heterotic string vacua is surprisingly difficult to get around.

One suggestion are the so called race-track scenarios [?, ?]. One considers two (or more)

hidden asymptotically free gauge theories with gauge groups Ghidden = ×aGa.
11 Each

Ga has a different one-loop corrections f (1) so that the condensation scale for each group

factor reads

Λa = MPl e
− 8π2

ba
(S+f

(1)
a ). (5.17)

The resulting potential at leading order is

V ≈ 1

M2
Pl

∣
∣Λ3

1 + Λ3
2

∣
∣
2

(5.18)

with a minimum at |Λ1| = |Λ2|. Inserting (5.17) one obtains

〈ReS〉 ≈ b1b2
b1 − b2

(

f
(1)
1

b1
− f

(2)
2

b2

)

, (5.19)

11This cannot occur in the Standard Embedding but in generalizations one can break the hidden E8.
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where we need b1 > b2,
f
(1)
1

b1
>

f
(2)
2

b2
for consistency.

An additional constraint arises from the fact that the tree level gauge coupling of the

heterotic string is universal (cf. (4.17)) in that 〈ReS〉 determines its value for the hidden

and observable sector simultaneously. In the observable sector a reasonable estimate for

the the size of 〈ReS〉 is given by the GUT value

〈ReS〉 ∼ αGUT

4π
∼ 23

4π
⇒ 〈ReS〉 ∼ O(2) . (5.20)

We can also estimate the size of ∆ = Re f (1). It arises from integrating out heavy

modes with masses mH of order O(MGUT) or O(MPl) and thus can be estimated as

∆ ∼ O( b
8π

ln mh

MPl
) ∼ O( b

8π
). Thus f

b
∼ O( 1

8π2 ) ∼ 1
100

. Therefore, for generic b we have

〈ReS〉 ∼ b

8π2
, (5.21)

and thus need b ∼ O(100) to achieve (5.20). (Note bE8 = 90.)

Let us now estimate the scale of the possible supersymmetry breaking. Inserting (5.13)

into (5.5) we have

m3/2 ≈
Λ3

M2
Pl

, (5.22)

so that for Λ ∼ 1013 − 1014GeV one obtains m3/2 ∼ 101 − 103GeV which is the ‘desired’

mass scale for low energy supersymmetry. For a Λ in that range we need b ≈ 22, ie.

a small b. We see that there is a tension between low energy supersymmetry and a

phenomenological preferable gauge couplings.

One way out is to fine-tune the denominator in (5.19) such that the prefactor is large.

This however, cannot be done at will as the rank of the hidden gauge group is bounded.

For the Standard Embedding we have rk(E8) = 8 while for non-standard heterotic com-

pactification one has the bound12

rk(Ghid) ≤ 22 . (5.23)

For a hidden gauge group Ghid = SU(8) × SU(9) one finds that both constraints are

satisfied, ie. Λ ∼ 1014GeV and 〈ReS〉 ∼ 2. It is possible to further improve on this by

having matter in the hidden sector. In this case the prefactor in (5.19) can be fine-tuned

more easily.

Nevertheless, the racetrack scenarios have two remaining problems:

1. a negative cosmological constant, and

2. 〈F S〉 = 0, ie. supersymmetry is unbroken.

12The right moving central charge is cR = 26 and the rank of the Standard Model gauge group subtracts

cR(SM) = 4.
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This can be further improved by noting that in string theory f (1) is in general moduli-

dependent and thus one has

W (S,Φ) = M3
Pl e

− 24π2

b
(S+f(1)(Φ)). (5.24)

In addition this opens up the possibility of stabilizing the moduli at the same time. The

computation of f (1)(Φ) can be done via an appropriate string loop diagram where heavy

states with moduli dependent masses m = m(Φ) contribute to f (1)(Φ)). Alternatively one

can use the holomorphic anomaly (cf. Appendix C) to infer f (1)(Φ)). However the results

depend on the background under consideration and no generic analysis or statement is

possible. For specific background (orbifolds) the dependence on the untwistd moduli t is

known. Minimization of the potential leads to

〈FS〉 = 0 , 〈S〉 fixed , 〈Ft〉 6= 0 , 〈t〉 fixed , 〈V 〉 < 0 . (5.25)

Let us briefly summarize the lessons of this section:

• Gaugino condensation does induce a non-perturbative potential V (S,Φ) for the

dilaton S and the moduli Φ.

• The perturbatively flat directions can be lifted and vacuum expectation values 〈S〉 >
1 and 〈Φ〉 can be generated.

• Supersymmetry can be broken by an F -term in the moduli direction 〈FΦ〉 6= 0.

• The cosmological constant is generically negative 〈V 〉 < 0
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6 D-branes in type II Calabi-Yau compactifications

6.1 D-branes

If one includes open strings into string theory one needs to specify their boundary condi-

tions (BC). One can have:

• Neumann BC

∂σX
µ(σ, τ)|σ=0,l = 0 , µ = 0, . . . , p . (6.1)

• Dirichlet BC

X i(σ, τ)|σ=0,l = X i
0 , i = p+ 1, . . . , q . (6.2)

• mixed DN-BC

X i(σ, τ)|σ=0, = X i
0 , ∂σX

1(σ, τ)|σ=l = 0 . (6.3)

This implies that that Dirichlet BC define a hyperplane where the string ends (see fig. 6.1).

Figure 6.1: D-branes

The quantization proceeds as for the closed string with the BC taken into account. The

D-Branes can be viewed as dynamical objects of string theory with excitations related

to the attached open strings. In D = 10 the massless open string excitations are N = 1

vector multiplets in the adjoint of SO(32). On a Dp-brane one has a U(1) vector multiplet

while on a stack of N Dp-branes one has a vector multiplet in the adjoint of U(N). Note

that the gauge theory is localized on the D-brane.

The D-brane action contains two pieces

S = SDBI + SCS . (6.4)

SDBI is a generalization of the Nambu-Goto action termed Dirac-Born-Infeld (DBI) action

and is given by

SDBI = −µp
∫

Wp+1

dxp+1e−φ
√

− det(P [G+B]− 2πα′F ) (6.5)
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with a tension µp = (2π)−p(α′)−
1
2
(p+1). (Note that the physical tension includes the back-

ground value of the dilaton and thus is given by µphys = g−1
s µp.) Wp+1 is the worldsheet

of the brane and P denotes the pullback

P [G]µν = Gµν +Gµi∂νx
i + ∂µx

iGiν + ∂µx
i∂νx

jGij . (6.6)

Finally F is the field strength of the U(1) gauge boson.

The second term in (6.4) SCS is the Chern-Simons action given by

SCS = µp

∫

Wp+1

(

P
[∑

q

Cq
]
∧ e(2πα′F−B2) ∧ Â(R)

)

p+1

, (6.7)

where Cq are the RR gauge potential and the A-roof polynomial reads

Â(R) = 1− 1

24(8π2)
TrR2 + . . . . (6.8)

Expanding SCS for B2 = 0 one obtains

SCS = µp

∫

Wp+1

Cp+1 + 2πα′
∫

Wp+1

Cp−1 ∧ TrF

+ 1
2

∫

Wp+1

Cp−3 ∧ TrF 2 − 1

24(8π2)

∫

Wp+1

Cp−3 ∧ TrR2 + . . . .

(6.9)

Remarks:

• D-branes carry RR-charge

Qe =

∫

S8−p

∗Fp+2 = . . . = µp ,

Qm =

∫

Sp+2

Fp+2 = . . . = µ6−p ,

(6.10)

which satisfy a Dirac quantization condition

QeQm = 2πn , n ∈ Z . (6.11)

• D-branes are BPS states and preserve half of the supercharges.

• D-branes are non-perturbative states in the sense that µphys ∼ g−1
s

• type IIA has p = even Dbranes, type IIA has p = odd Dbranes, type I has p = 1, 5

and the heterotic string has no D-branes.
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D-branes also arise as (static) solitonic (ie. non-perturbative) solutions of the low energy

effective supergravity. The solutions reads

ds2 = (Z(r))−1/2ηµνdx
µdxν + (Z(r))1/2dxmdxm ,

e2φ = (Z(r))
1
2
(3−p) ,

Z(r) = 1 +
ρ7−p

r7−p , r =
∑

m

(xm)2 , ρ7−p ∼ gsN ,

F8−p =
N

r8−pd(vol)S8−p
= ∗Fp+2 ,

∫

S8−p

F8−p = N .

(6.12)

Here N is the number of D-branes and x0, . . . , xp are the coordinates along the brane

while xp+1, . . . , x9 are the coordinates transverse to the brane.

The solution has the following properties:

• It is Lorentz-invariant on the brane.

• It is rotationally invariant in the transverse space.

• For r →∞ one obtains flat R1,9.

• For small r one has a throat of size gsN .

• It can be shown that these p-brane solutions are the supergravity approximation of

string-theoretic D-branes.

6.2 Orientfolds

Since D-branes have RR-charge it seems at first problematic to have them on a compact

manifold. One way out are orientifolds. The string background is modded out by an

isometry ΩG which includes worldsheet parity Ω which acts as Ω : σ → l−σ. An example

is that IIB/Ω = type I. We see that the projection removes half of the supercharges.

It is also possible to project within the same theory by including a space-time isometry

G which includes an involution σ∗. For example, on S1 σ∗ : X9 → −X9. σ∗ has two

fix-points at X9 = 0, πR. They define eight-dimensional O8-planes.

Calabi-Yau manifolds can only have discrete isometries which then act on the coordi-

nates. Consistency requires

IIA : σ∗(Ω3) = Ω̄3 , σ∗(J) = −J .

IIB : σ∗(Ω3) = ±Ω3 , σ∗(J) = J .
(6.13)
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By using a local representation

Ω3 ∼ dz1 ∧ dz2 ∧ dz3 , J ∼
∑

i

dzi ∧ dz̄i , (6.14)

we can infer that for IIA and zi = xi + iyi

σ∗(yi) = −yi , σ∗(xi) = xi . (6.15)

This fixes three coordinates and defines O6 orientifold planes. For type IIB the plus-

sign in (6.13) fixes no or two coordinates corresponding to O9 and O5 orientifold planes,

respectively, while the minus-sign in (6.13) fixes one or three coordinates corresponding

to O7 and O3 orientifold planes, respectively. If we assume that the orientifold planes fill

space-time R1,3 we have

O3 → point in Y3 ,

O5 → wraps 2-cycle in Y3 ,

O5 → wraps 3-cycle in Y3 ,

O5 → wraps 4-cycle in Y3 .

If a Calabi-Yau manifold admits an involution the cohomology groups split according

to

H(p,q) = H
(p,q)
+ ⊕H(p,q)

− , h(p,q) = h
(p,q)
+ + h

(p,q)
− , (6.16)

whereH
(p,q)
+ contains even forms under σ∗ andH

(p,q)
− contains odd forms. As a consequence

of (6.13) one has

IIB : h
(3,0)
± = h

(0,3)
± = 1 , h

(3,0)
∓ = h

(0,3)
∓ = 0 ,

h
(0,0)
+ = h

(3,3)
+ = 1 , h

(0,0)
− = h

(3,3)
− = 0 ,

IIA : h
(1,1)
± = h

(2,2)
∓ , h

(0,0)
− = h

(3,3)
+ = 0 , h

(0,0)
+ = h

(3,3)
− = 1 ,

h3
+ = h3

− = h(2,1) + 1 ,

(6.17)

From worldsheet description of the uncompactified 10d theory one also finds

IIB : σ∗φ = φ ,

σ∗g = g ,

σ∗B2 = −B2 ,

σ∗l = ∓l ,
σ∗C2 = ±C2 ,

σ∗C4 = ∓C4 .

IIA : σ∗φ = φ ,

σ∗g = g ,

σ∗B2 = −B2 ,

σ∗C1 = −C1 ,

σ∗C3 = C3 .

(6.18)
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Performing a KK-reduction keeping only the even (invariant) modes one obtains in type

IIB the expansions

IIB : O3/O7 O5/O9

J = v · ω(1,1)
+ v · ω(1,1)

+

δgij = z · χ(1,2)
− z · χ(1,2)

+

B2 = b · ω(1,1)
− b · ω(1,1)

−
C2 = c · ω(1,1)

− b · ω(1,1)
+

C4 = D2 · ω(1,1)
+ + v1 · χ(1,2)

+ D2 · ω(1,1)
− + v1 · χ(1,2)

−

(6.19)

This results in the spectrum given in Tables 6.1 and 6.2. For type IIA a similar analysis

can be found in the literature [6].

gravity multiplet 1 gµν

vector multiplets h
(2,1)
+ V

chiral multiplets

h
(2,1)
− z

1 (φ, l)

h
(1,1)
− (b, c)

chiral/linear multiplets h
(1,1)
+ (v, ρ)

Table 6.1: N = 1 spectrum of O3/O7-orientifold compactification.

gravity multiplet 1 gµν

vector multiplets h
(2,1)
− V

chiral multiplets

h
(2,1)
+ z

h
(1,1)
+ (v, c)

chiral/linear

multiplets

h
(1,1)
− (b, ρ)

1 (φ, C2)

Table 6.2: N = 1 spectrum of O5/O9-orientifold compactification.
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6.3 D-branes on Calabi-Yau manifolds

The worldsheet analysis of modding out by orientation reversal Ω on the worldsheet shows

that O-planes carry no physical degree of freedom but do carry tension and RR-charge.

In that sense they can be viewed as a topological defect. A consistency condition (tadpole

cancellation) implies

QOp = −2p−4QDp , (6.20)

where Q denotes the RR-charge. Therefore consistent theories can be constructed by

adding D-branes and O-planes simultaneously. One commonly requires that the D-branes

and O-planes preserve a common N = 1 supersymmetry. This BPS-condition translates

into geometric conditions on the Calabi-Yau manifold.

In type IIA space-time filling D6-branes wrap a three-cycle Σ3. If N = 1 supersymmetry

is preserved this three-cycle has to be special Lagrangian. This demands

J |Σ3 = 0 = Im Ω3|Σ3 , (6.21)

with the volume of the cycle given by

vol(Σ3) =

∫

Σ3

Re Ω3 . (6.22)

This volume is minimal expressing the supersymmetry condition. Submanifolds where

the volume is computed by the integral of a closed, non-degenerate p-form are called

calibrated submanifolds.

In type IIB space-time filling D5/D7 branes wrap holomorphic two- and four-cycles Σ2,4.

Their volume is

vol(Σp) =

∫

Σp

J
p
2 . (6.23)

6.4 D-brane model building

Including D-branes it is possible to construct backgrounds which include (generalizations)

of the MSSM within type II string theory. This “model building” is vast field which cannot

possible be reviewed here. Let us just assemble a few facts/remarks and point the reader

to the literature for further detaiils [6].

• IIA

Many explicit model building is done for toroidal orientifold constructions. Gener-

ically one finds a gauge group G =
∏

a U(Na) with (chiral) matter in the bifunda-

mental (Na, N̄b) whenever the cycles intersect.
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• IIB

To construct realistic (chiral) models a background gauge flux has to be turned on

on the D-branes. Therefore we discuss it in some later lecture. As an intermediate

step one often discusses/constructs local model where the D-branes configuration is

such that the MSSM or some generalization thereof is realized. In a second step this

is embedded into a globally consistent Calabi-Yau compactification. This can be

achieved by placing the D-branes at collapsed cycles (singularities) and then blow

up the singularity.

• In both cases the gauge coupling is given by

g−2
a ∼ vol(Σa) 6= ReS . (6.24)

Therefore the problem met in heterotic compactifications of generating the hierarchy

m3/2 ≪ MPl and at the same time having a consistent g−2
GUT is absent in D-brane

models. However, these models have no gauge unification build in and are much

less predictive.
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7 Flux compactifications

7.1 General discussion

As we already discussed, string theories do have gauge potential Cp−1 with a field strength

Fp = dCp−1. It turns out that under certain condition the Fp can have non-trivial back-

ground values – called background fluxes. One demands that they obey the Bianchi

identity and satisfy the equations of motion, i.e.

dFp = 0 , d∗Fp = 0 . (7.1)

Here we only consider fluxes that do not break the four-dimensional Lorentz symmetry.

Therefore, on R1,3 only F4 can have a background flux which has been considered as

a source for the cosmological constant [13, 14].13 On the Calabi-Yau manifold Y3 (7.1)

implies that Fp can be expanded in terms of harmonic forms ωIp

Fp = eI ω
I
p , ωp ∈ Hp(Y ) , (7.2)

where the coefficients eI (often called flux parameters) have to be constant. Integrating

(7.2) over a dual p-cycle γIp yields
∫

γJ
p ∈Y

Fp = eI

∫

γJ
p ∈Y

ωIp = eJ , (7.3)

where in the second step we used the duality of the p-cycle.

Before we proceed let us make a few remarks:

• By itself eJ 6= 0 is inconsistent on a compact manifold. However, as we will see,

if localized sources such as D-branes/O-planes are present it is possible to turn on

background fluxes on the Calabi-Yau manifold.

• The eI have to obey a Dirac-type quantization condition and thus are discrete

parameters in string theory. However in the low energy/large volume approximation

they appear as continuous parameters which deform the low energy supergravity.

• If one keeps the eI as small perturbations the light spectrum does not change and

they turn the low energy supergravity into a gauged or massive supergravity where

the fluxes eI appear as additional gauge couplings, mass parameters or FI-terms.

Furthermore, a potential is generated which potentially lifts the vacuum degeneracy

of string theory and can stabilize moduli and spontaneously break supersymmetry.

• The background fluxes eI introduce many new discrete parameters into string theory.

This enlarges the number of consistent vacua or background tremendously and is

called the landscape of string vacua.

13We return to this mechanism in section ??.
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7.2 The no-go theorem

Starting from an Ansatz for a warped space-time

ds2 = e2A(y)ds2
R1,3

(x) + ds2
Y3

(y) , (7.4)

where A(y) is called the warp-factor, the Einstein equations imply

R + 1
2
e2A(y)(−T µµ + +Tmm + Tloc) = 2e−2A(y)∇2

y e
2A(y) , (7.5)

where we also included the possibilty of localized sources (D-branes and O-planes) which

contribute to the energy momentum tensor Tloc. For flux background one can show T ∼ F 2

and −T µµ + Tmm > 0 while Tloc can be negative. Therefore integrating (7.5) yields
∫

Y3

e2A(y)(R + 1
2
e2A(y)(−T µµ + Tmm + Tloc)) = 2

∫

Y3

∇2
ye

2A(y) = 0 , (7.6)

where the first term is proportional to the cosmological constant. In the absence of

localized sources the second is always positive and thus one can have at best an AdS-

background but no Minkowski or de Sitter background is consistent. This is the no-go

theorem formulated in refs. [11, 12]. However, once localized sources and in particular

O-planes are present Minkowski or de Sitter background can appear [15].

7.3 Supersymmetry in flux background

As we already noted the amount of unbroken supersymmetry can be obtained from in-

specting the fermionic transformation laws. For type II they read [10]

δΨM = DMǫ+ 1
4
γNPHMNP +

1

16

∑

n

1
n!
γP1...PnFP1...PnγMPnǫ+ . . . ,

δλ = (γM∂Mφ+ 1
2
γMNPHMNP )ǫ+

1

8
eφ
∑

n

(−1)n(5− n)γP1...PnFP1...PnPnǫ+ . . . ,

(7.7)

where P, Pn are projection operators which can be found in [10].

Before we discuss flux backgrounds let us review the situation for vanishing fluxes, i.e.

for 〈Fp〉 = 〈H〉 = 〈∂φ〉 = 0. In this case the dilatino variation in (7.7) automatically

obeys 〈δλ〉 = 0 while the gravitino variation collapses to 〈δΨM〉 = 〈DMǫ〉. Unbroken

supersymmetry thus implies in this case 〈DMǫ〉 = 0 and as a consequence

[DM , DN ]ǫ = RMNPQγ
PQǫ = 0 , (7.8)

where we omit the 〈·〉 henceforth. Approprite contraction and using properties of the

γ-matrices one arrives at [2]

Rµνγ
νǫ = 0 , Rmnγ

nǫ = 0 . (7.9)
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The first equation implies that among the maximally symmetric backgrounds (AdS, dS,

Minkowski) with Rµν ∼ Λgµν only a Minkowski background with Λ = 0 can preserve

supersymmetry. In this case ǫ is a constant supersymmetry parameter. The second

equation in (7.9) implies that Y6 has to be Ricci-flat consistent with our discussion in

section 3.

In case some of the fluxes are non-vanishing one has two basic options:

1. One imposes 〈δΨM〉 = 〈δλ〉 = 0 for some supercharges. In this case generically the

geometry has to backreact and has to be deformed away from Calabi-Yau manifolds.

2. One allows 〈δΨM〉 = 〈δλ〉 6= 0 but insists that a spinor ǫ (or equivalent a super-

charges) is globally well defined on Y6. In this case one obtains backgrounds with

spontaneously broken supersymmetry. We will return to this case in the next sec-

tion.

There is ine exception to option 1 in type IIB. Defining

G3 := F̂3 − τH3 = F3 − ie−φH3 , (7.10)

with τ = l + ie−φ, F̂3 = F3 + lH3 and imposing

∗G3 = iG3 , G(0,3) = 0 , F5µνρσm = ǫµνρσ∂mA , (7.11)

one finds 〈δΨM〉 = 〈δλ〉 = 0. Consistency of the Einstein equation requires D-branes and

O-planes to be present and to obey the tadpole cancellation condition

ND3 − 1
4
NO3 + 1

(2π)4α′

∫

Y3

H3 ∧ F3 = 0 . (7.12)

7.4 The low energy effective action for type II Calabi-Yau com-

pactification with background fluxes

The KK-reduction in the NS sector uses again (B.16) and (B.22). The NS three-form flux

is implemented by

H3 = mNSAαA − eNS
B βB , (7.13)

where (αA, β
B) is a real, symplectic basis of H3(Y ) satisfying (B.29). In the RR-sector

we need to distinguish between type IIA and type IIB.

7.4.1 Type IIA

For the RR gauge potential C1, C3 one uses

C1 = A0
µ(x)dx

µ , C3 = Aαµ(x)dx
µωα + ξA(x)αA − ξ̃B(x) βB , (7.14)
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where α = 1, . . . , h(1,1), A = 0, . . . , h(2,1). Here ξA, ξ̃B are four-dimensional scalars while

A0, Aα are vector fields. Without orientifold projection the fields assemble into N = 2

multiplets as summarized in table 7.1. The scalar geometry is unchanged and of the form

discussed in (D.11).

gravity multiplet 1 (gµν , A
0)

vector multiplets h(1,1) (Aα, tα)

hypermultiplets h(2,1) (za, ξa, ξ̃a)

tensor multiplet 1 (B2, φ, ξ
0, ξ̃0)

Table 7.1: Bosonic components of N = 2 multiplets for type IIA compactified on a

Calabi-Yau threefold

The RR-fluxes are implemented by

F2 = −mRRαωα , F4 = eRR
α ω̃α , (7.15)

where ω̃α are harmonic (2, 2)-forms which form a basis of H(2,2)(Y ) dual to the (1, 1)-forms

ωα in that ∫

Y3

ωα ∧ ω̃β = δβα . (7.16)

The effect of the fluxes in the effective action can be seen by inspecting

|F2|2 ∼ (∂µAν − ∂νAµ)2 +mRRαmRR β̄gαβ̄ (7.17)

and
F̂4 = dC3 − 1

2
B2 ∧ F2 − 1

2
H3 ∧ A1

= (∂µAν −Bµνm
RRα)ωαdxµdxν − Bµν∂ρAσdx

µdxνdxρdxσ

+ (Dµξ
AαA −Dµξ̃Bβ

B) dxµ + Re tαmRRβdαβγω̃
γ ,

(7.18)

where

Dµξ
A = ∂µξ

A −mNSAA0
µ , Dµξ̃B = ∂µξ̃B − eNS

B A0
µ . (7.19)

We see that terms contributing to the scalar potential are generated, ξA, ξ̃B become

charged with charges given by the fluxes and Bµν becomes massive via Stueckelberg

mechanism. The full effective Lagrangian is discussed in [16]

7.4.2 Type IIB

In type IIB the RR gauge potentials C2, C4 are KK expanded as
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C2 = C0
µν(x)dx

µdxν + ξα(x)ωα ,

C4 = Cα
µν(x)dx

µdxν ∧ ωα + ξ̃α(x) ω̃α + AAµ (x)dxµ ∧ αA + ÃµA(x)dxµ ∧ βA .
(7.20)

The self-duality condition of F5 eliminates half of the degrees of freedom in C4 and one

conventionally chooses to eliminate Cα
µν and the magnetic vector ÃµA in favor of ξ̃α and

AAµ . Altogether these fields assemble into N = 2 multiplets which are summarized in

Table 7.2. The scalar geometry is again unchanged and of the form discussed in (D.11).

gravity multiplet 1 (gµν , A
0)

vector multiplets h(2,1) (Aa, za)

hypermultiplets h(1,1) (vα, bα, ξα, ξ̃α)

double-tensor multiplet 1 (B2, C
0
2 , φ, l)

Table 7.2: Bosonic componets of N = 2 multiplets for Type IIB compactified on a Calabi-

Yau manifold

The RR fluxes are implemented by

F3 = mRR A(τ)αA − eRR
A (τ) βA , (7.21)

which can be combined with (7.13) to give

G3 = mI(τ)αI − eI(τ) βI , (7.22)

where

eI(τ) = eRR
I − τ eNS

I , mI(τ) = mRR I − τ mNS I . (7.23)

and G3 ≡ F3 − τH3, τ = l + ie−φ. Inserted into the effective action one finds again a

potential, charged scalars and massive two-forms [16].
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8 Moduli stabilization and supersymmetry breaking

by fluxes

In lecture 6 we discussed type II compactifications on Calabi-Yau manifolds with D-branes

and O-planes which lead to N = 1 unbroken supersymmetry in d = 4 with undetermined

moduli. In the previous section (Section 7) we discussed that turning on background fluxes

in N = 2 Calabi-Yau compactifications does generate a scalar potential. In this lecture

we consider fluxes in Calabi-Yau orientifold compactification and discuss the properties

of the resulting backgrounds.

8.1 Leff for Calabi-Yau orientifold compactification with D-branes

Concretely let us focus on type IIB Calabi-Yau compactification with D3-branes and O3-

planes. (Other cases are discussed in [6, 10].) The light spectrum contains charged chiral

multiplets arising as excitation from the D3-branes and chiral multiplets arsing from the

bulk. The latter are given in Table 6.1. Let us set h
(1,1)
− = 0 for simplicity or in other

words freeze the scalars arising from the KK-expansion of B2 and C2. In this case the

Kähler potential is found to be

K = − ln(τ − τ̄ ) +Kks(t, t̄) +Kcs(z, z̄) +Km(A, Ā, t, t̄, z, z̄) , (8.1)

where τ is the complexified type II dilaton and Km(A, Ā, t, t̄, z, z̄) the Kähler potential

for the chiral multiplets A arising from the D3-branes. For Kks, Kcs one finds (cf. (B.27),

(B.30))

Kcs(z, z̄) = − ln
[

− i
∫

Y

Ω ∧ Ω̄
]

, Kks(t, t̄) =− lnY , (8.2)

where Y and the chiral coordinates are given by14

Y = dαβγv
αvβvγ , tα =

∂Y

∂vα
+ iρα , (8.3)

The superpotential reads

W = Wm(A, t, z) +WGVW(z, τ) (8.4)

where

Wm = YijkA
iAjAk + . . . , WGVW =

∫

G3 ∧ Ω , (8.5)

and G3 = F3 − τH3 (cf. (7.22)).

14They differ in ordinary Calabi-Yau compactification and Calabi-Yau orientifold compactification.

Note that in general one cannot express Y in terms of the tα or in other words Kks is not explicitly

known in terms of the proper chiral coordinates.
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For the matter fields DAiW = 0 is solved by 〈Ai〉 = 0 implying 〈Wm〉 = 0. Computing

the remaining F -terms for 〈Wm〉 = 0 yields

DτW ∼
∫

Ḡ3 ∧ Ω , (8.6)

DtαW ∼ vαW , (8.7)

DzaW ∼
∫

G3 ∧ ωa2,1 , (8.8)

where in the last equation we used ∂zaΩ = ∂zaKΩ + ωa2,1. A supersymmetric minimum

requires that all F -terms vanish. For (8.6) this requires G3(3,0) = 0, for (8.7) this requires

W = G3(0,3) = 0, for (8.8) this requires G3(1,2) = 0. Altogether we have a supersymmetric

minimum only if G3 = G3(2,1) 6= 0. However, since W does not depend on the Kähler

moduli tα they remain flat directions of such minima. za and τ on the other hand are

generically fixed.

If flux components in any of the other directions are turned on supersymmetry is spon-

taneously broken. For G3 = G3(0,3) 6= 0 one has W 6= 0 and DtαW 6= 0. However 〈V 〉 = 0

still holds due to the no-scale property of Kks. Let us pause for a moment and review

no-scale supergravity at this point.

8.2 No-scale supergravity

The definition of no-scale supergravity is not unique in the literature and can denote one

of the two situations:

(i) V ≡ 0 (which one might call “strict/strong no-scale”).

(ii) V ≥ 0 (which one might call “weak no-scale”).

Examples of (i) are supergravities with

W = const. , Kig
i̄K̄ = 3 . (8.9)

(The second condition is often called the “no-scale” condition.) In this case one has

DiW = KiW , DiWgi̄D̄W̄ = 3|W |2 , (8.10)

and thus V ≡ 0 for V given by (4.10) is satisfied. For one chiral field the simplest Kähler

potential satisfying the no-scale condition is

K = −3 ln(t+ t̄) , (8.11)

which indeed follows from (8.2) for h
(1,1)
+ = 1.
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Examples of (ii) also occur in type IIB flux compactifications. Since K in (8.1) is a sum

of independent terms and Kks satisfies the no-scale condition (8.9) the potential in (4.10)

reads
V = eκ

2K
(
|DtW |2 + |DzW |2 + |DτW |2 + |DAW |2 − 3κ2|W |2

)

= eκ
2K
(
|DzW |2 + |DτW |2 + |DAW |2

)
≥ 0 .

(8.12)

In this case the minimum is at 〈V 〉 = 0 for DzW = DτW = DAW = 0 but the tα remain

unfixed. This is a generic property of all tree level potential in type IIB.

8.3 Adding quantum corrections

Let us return to type II compactifications. In type IIA the flux superpotential reads [17]

W =

∫

H3 ∧ Ωc +

∫

F2 ∧ J2
c +

∫

F4 ∧ Jc , (8.13)

where Jc is the complexified Kähler form and Ωc = Re Ω + iC3. Minimization of the

potential leads to supersymmetric AdS4 with tα,Re za fixed but axions from C3 undeter-

mined.

In both type IIA and type IIB the situation can be improved by

1. deforming the Calabi-Yau manifold,

2. adding quantum corrections.

Let us concentrate on the second point and postpone the discussion of the first point

to App. E. In type IIB the superpotential can receive non-perturbative corrections for

example from gaugino condensation on (hidden) D7-branes (and other branes instanton

effects). Generically one has

Wnp ∼ e−2πnαtα . (8.14)

The Kähler potential (8.1) is already corrected at one loop with the correction appearing

in Kks and given by [18]

Kks(t, t̄) = −2 ln

(

Y + ζ(3)χ(Y3)

(−i(τ − τ̄)
2

)3/2
)

, (8.15)

where χ(Y3) is the Euler number of Y3 and ζ(3) the Riemann ζ-function.

In the KKLT analysis only one Kähler modulus is non-trivial, Kks is taken at the tree

level while the considered superpotential reads [19]

W = W0 + e−2πt , (8.16)
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where W0 = WGVW is evaluated at 〈za〉, 〈τ〉. In this case one finds the minimum to be

supersymmetric AdS4 with 〈t〉 6= 0. However, one needs W0M
−3
Pl to be exponentially small

in order to have 〈t〉 large which is required for a consistent (supergravity) analysis. A

small W0 can be arranged by a fine-tuning of fluxes and once achieved also leads to a

small m3/2.

In a second step one has to “uplift” this minimum to R1,3 or dS4. In [19] this is achieved

by adding an explicit supersymmetry breaking anti-D3 brane. This has been critized in

that the stability of this non-supersymmetric configuration has been questioned.

Alternative possibilties discussed are D-term uplifts where some non-supersymmetric

gauge flux is turned on on some hidden (D7) brane. This generates a D-term which in turn

provides a positive contribution to the potential (4.10) [6]. Kähler uplifts use quantum

corections to the Kähler potential to provide an extra positive contribution. One of the

prominent examples are the large volume scenarios (LVS) which we briefly discuss now.

In LVS one considers h
(1,1)
+ = 2 and couplings

K = −2 ln
(

1
9
√

2

(
(Re tb)

3/2 − (Re ts)
3/2
)

+ 1
2
ζg−3/2

s

)

W = W0 + Ase
−2πnsts

(8.17)

where tb, ts are the two Kähler moduli. We abbreviated ζ ∼ ζ(3)χ which in LVS has to be

positive ζ > 0. In this case minimization leads to non-supersymmetric AdS4 backgrounds

with no fine-tuning for W0 necessary. The competition of exponential terms in ts with

power-law terms of tb in the potential leads to Vol(Y3) ∼ 〈tb〉3/2 ≫ 〈ts〉3/2 so that one can

trust the supergravity analysis.

In generalizations with h
(1,1)
+ > 2 one can arrange a similar structure such that the

overall volume is large but all other cycles are small. Such Calabi-Yau manifolds have

been termed “swiss-cheese” Calabi-Yaus.

The next step is to compute the soft supersymmetry breaking terms for the various

scenarios. Here we refer to the literature [6, 10].
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9 Dualities in string theory

Let us recall the parameters that we encountered so far. First of all there are the string-

scale/string-length/tension Ms, ls, T which are related by (1.6). They are related to the

measured value of MPl. Then there are the dimensionless string coupling gs ∼ e〈φ〉 and

the background values of the moduli 〈tα〉, 〈za〉 which in Calabi-Yau compactifications are

free, countinuous parameters spanning the moduli spaceM of a given string background.

Finally, there is a (discrete) choice of the background consisting of the choice of the

compact manifold Yd and the background fluxes.

The basic idea of a duality is that there exists map which relates different regions of

M. This map might differ in that it relates different regions inM

(i) of the same (string) theory,

(ii) of the different (string) theories.

Furthermore, the map might hold

(A) perturbatively (i.e. at weak string coupling gs ≪ 1),

(B) non-perturbatively (i.e. the map involves gs and includes gs = O(1)).

Let us discuss examples of these cases in turn [26, 27].

(Ai) Here the standard example is T-duality of the bosonic string in R1,9−d × T d. For

d = 1 the mass spectrum includes states with masses

m2(R, r, s) = r2R−2 + s2M4
sR

2 + const. , r, s ∈ Z , (9.1)

where R is the radius of the circle. The first term corresponds to the familiar masses

of KK-states while the second term are masses of the string-specific winding states.

This mass spectrum has a symmetry

m2( 1
M2

sR
, s, r) = m2(R, r, s) . (9.2)

T-duality states that the mass spectrum and all interactions of this theory are

invariant under

R↔ 1

M2
sR

, r ↔ s . (9.3)

We see that gs is not involved in the transformation and therefore it is of type

A) and since (9.3) acts within the same theory it is also of type i). R = M−1
s is

the fixed point of the transformation and has been discussed as a possible minimal

length scale in string theory. For d > 1 the T-duality transformation are elements

of the group SO(d, d,Z).
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(Aii) In this case the examples are:

– IIA in R1,8 × S1(R) ≡ IIB in R1,8 × S1(M−2
s R−1),

– Heterotic E8 ×E8 in R1,8× S1(R) ≡ Heterotic SO(32) in R1,8× S1(M−2
s R−1),

– IIA in R1,3 × Y3 ≡ IIB in R1,3 × Ỹ3 (mirror symmetry).

(Bi) This situation is often called S-duality and occurs in IIB in R1,9. This theory at

the tree level has a continuous SL(2,R) symmetry acting on the complex scalar

τ and the two forms B2, C2 as we discussed in (2.17). It is expected that this

symmetry is broken by non-perturbative (space-time instanton) effects and terms

of the form e−iτ appear. It is however conjectured that a discrete SL(2,Z) ⊂
SL(2,R) with a, b, c, d ∈ Z survives. From (2.17) we learn that this includes the

two transformations

1. τ → τ +1 for a = b = d = 1, c = 0 which is a shift symmetry for the RR-scalar

l and which redefines the RR 2-form as F3 → F3 +H3.

2. τ → −1/τ for a = d = 0, b = −c = 1. For l = 0 it includes a strong-weak

duality symmetry g−1
s ↔ gs and exchanges F3 ↔ −H3. Therefore it implies

a relation between the perturbative and the non-perturbative spectrum and

interactions. However, this cannot be checked with the present understanding

of string theory and thus there is no proof of this conjecture to date.

The evidence for the S-duality conjecture comes from BPS-states. These are states

which are anihilated by some of the supercharges Q|BPS〉 = 0. As a consequence the

supermultiplets for BPS states are “shorter” then ordinary massive multiplets. For

BPS particles one has M = Z where Z is the central charge of the supersymmetry

algebra and M the mass of the multiplet. For branes one has T = Z where T is the

tension and Z now is the central charge of the extended object. One expects that

the BPS condition is respected by non-perturbative physics as it only depends on

the existence of Q and its superalgebra. Therefore the duality map should also be

realized on BPS-states. In IIB one has the fundamental string F1 which couples to

the NSS two-form B2 and the odd branes D1,3,5 coupling to C2,4,6. C4 is anti self-dual

while C2 is Poincare dual to C6. Furthermore, the D-branes are non-perturbative

BPS states as their tension goes like T ∼ g−1
s . The conjectured SL(2,Z) relates

B2 ↔ C2 ⇔ F1 ↔ D1 ,

C4 ↔ C∗
4 ⇔ D3 self-dual ,

B6 ↔ C6 ⇔ F5 ↔ D5 ,

(9.4)

where F5 denotes an NS five-brane which indeed can be constructed as a supergravity

solution. (It is however, still not well understood.)
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Other conjectured examples which display an S-duality are:

– Heterotic in R1,3 × T 6,

– type II in R1,9−d × T d which is conjectured to even have a U-duality that

combines the SL(2,Z) S-duality and the SO(d, d,Z) T-duality into a bigger

group Ed,d(Z) called the U-duality group

SL(2,Z)× SO(d, d,Z) ⊂ Ed,d(Z) ⊂ Ed,d(R) . (9.5)

Here Ed,d(R) is the continues non-compact symmetry group of supergravities with

q = 32 supercharges.

(Bii) Examples of this situation are

– Heterotic SO(32) in R1,9 ≡ type I in R1,9, where

gHet ∼ g−1
I

F1 ↔ D1

F5 ↔ D5

(9.6)

Thus the Heterotic SO(32) theory and the type I theory are only different de-

scription of different regimes in the moduli space of one and the same quantum

theory.

– IIA in R1,5× K3 ≡ Heterotic in R1,5× T 4, where also the couplings are related

by gHet ∼ g−1
IIA. Both backgrounds have the same moduli space

M =
SO(4, 20)

SO(4)× SO(20)
×R

+ , (9.7)

where R+ is parameterized by the two couplings. The heterotic gauge group

Ghet can be non-Abelian and one has Ghet ⊂ SO(32)/E8 × E8. On the type

II side the gauge group naively is GII = [U(1)]16. However, K3 has A-D-E-

type singular loci inM where two-cycles shrink. A D2-branes wrapping these

two-cycles gives rise to massless gauge bosons in gauge groups of A-D-E-type.

– IIA in R1,3 × CY3 ≡ Heterotic in R1,5 × K3 × T 4. In this case the type IIA

coupling gIIA is related to a geometric modulus of K3 while ghet is related to a

geometric modulus of the Calabi-Yau. This duality is discussed in more detail

in appendix F.
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10 M-theory

10.1 d = 11 Supergravity and its S1 compactification

In d = 11 there is only one supergravity with 32 supercharges and in that sense it is unique.

The massless multiplet contains the metric gM̂N̂ , M̂ , N̂ = 0, . . . , 10, an antisymmetric 3-

index tensor CM̂N̂P̂ and a gravitino ΨM̂ which together have 44 + 84 bosonic and 128

fermionic degrees of freedom. The bosonic action is [7]

S = 1
2κ2

11

∫

d11x
√−g

(
R− 1

2
|F4|2

)
− 1

6

∫

C3 ∧ F4 ∧ F4 (10.1)

where F4 = dC3 is the field strength of the three-form. Apart from diffeomorphism

invariance and local supersymmetry there is gauge invariance related to the three-form

δC3 = dΛ2 , δF4 = 0 , (10.2)

where Λ2 is a 2-form and dF4 = 0.

IIA supergravity can be obtained as an S1 compactification of d = 11 supergravity. In

terms of the spectrum one has

gM̂N̂ → gMN , gM10 ∼ CM , g10,10 ∼ φ ,

CM̂N̂ P̂ → CMNP , CMN10 ∼ BMN ,

ΨM̂ → ΨM , Ψ10 ∼ λ .

(10.3)

The Lagrangian of d = 11 supergravity in the background R1,9 × S1 agrees with the

Lagrangian given in (2.5) with the identification

R11 = gs
√
α′ , κ2

11 = 2πR11κ
2
10 = 1

2
(2π)8g3

s(α
′)9/2 = 1

4π
(2πl11)

9 . (10.4)

This in turn implies

l11 = g1/3
s

√
α′ , R11 = g2/3

s l11 , (10.5)

which means

gs →∞ =̂ R11 →∞ , for l11 fixed . (10.6)

Therefore the strong coupling limit of type IIA is a quantum theory of d = 11 supergravity

which has been termed M-theory [28].

10.2 The strong coupling limit of type IIA

Type IIA has even Dp-branes with tension Tp = 2πg−1
s (4π2α′)−

1
2
(p+1). Thus the lightest D-

brane (with the lowest Tp) is a D0-brane/D-particle with a tension/mass T0 = g−1
s (α′)−

1
2 .

Thus a bound state of n D-particles has masses

m2
n =

n2

g2
sα

′ =
n2

R2
11

. (10.7)
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This is precisely the KK-tower of the circle compactified d = 11 supergravity. Further-

more, one can show from the supersymmetry algebra

{Q,Q} = γM̂pM̂ = γMpM + γ10p10 , (10.8)

that the term proportional to p10 acts like a central charge and thus that the KK-spectrum

given in (10.7) is a BPS spectrum. Or in other words, the type IIA D-particles correspond

to d = 11 KK BPS states. Thus it is legitimate to extrapolate to strong coupling and

observe that for gs → ∞ an infinite tower of BPS states becomes massless and assemble

in the massless multiplet of d = 11 supergravity. Since there is no string theory with this

low energy supergravity the quantum theory behind it must be something other than a

string theory [28].

Before we proceed let us note that for the type IIA D-branes one has the following

correspondence:

D2 -brane → d = 11 membranes M2

D4 -brane → M5 wrapped on S1

D6 -brane → KK-monopole (magnetic dual of D-particle)

M2,5 as well as the KK-monopole are known as supergravity solutions.

10.3 Strong coupling limit of the heterotic E8 × E8 string

If one compactifies d = 11 supergravity on an interval I = S1/Z2 with a Z2 action

Z2 : X10 → −X10 , C3 → −C3 , (10.9)

the Z2-invariant states in R1,9 are

gMN , g10,10 ∼ φ , CMN10 ∼ BMN , (10.10)

while gM10 and CMNP are projected out. The fields listed in (10.10) correspond to the

N = 1 gravitational multiplet in R1,9.

However, in this situation one also needs to include a so called twisted sector in the

Hilbert space where X(σ + 2π, τ) = θ(X(σ, τ)) with θ ∈ Z2. Since the quantum theory

is unknown one cannot compute this twisted sector. Instead [29] infer from anomaly

cancellation that at each endpoint of the interval I there are ten-dimensional fixed planes

which each have to support an E8 gauge theory. Since (10.5) and (10.6) again hold in

this compactification one can conclude that in the strong coupling limit of the heterotic

E8 ×E8 string an extra dimensions opens up.
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Other strong coupling limits related to d = 11 supergravity are:

• Heterotic in R1,6 × T 3 gs→∞−→ M in R1,6 ×K3,

• IIB in R1,5 ×K3
gs→∞−→ M in R1,5 × T 5/Z2,

• Heterotic in R1,4 ×K3× S1 gs→∞−→ M in R1,4 × Y3,

A summary of the various strong coupling limits is depicted in Fig. 10.1.
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Figure 10.1: String theories and dualities

10.4 What is M-theory

The conjectures of the last two lectures suggest that all string theories are different per-

turbative limits of one and the same quantum theory called M-theory. Or in other words,

M-theory has a moduli space (sketched in Fig. 10.2) where the cusp regions correspond
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to some parameter becoming small. In that region a string theoretic and/or supergravity

description exists. Since there exists a limit where d = 11 supergravity appears it is

clear that M-theory cannot be a string theory. It is also clear that M-theory does include

higher-dimensional objects (D-branes) which become light in certain regions of the moduli

space. In [30] it was proposed that M-theory is the quantum theory of D-particles. One

of the exciting features of this proposal is that space-time becomes non-commutative.

Figure 10.2: Moduli space of M-theory

10.5 Compactification of M-theory on G2 manifolds

So far we did not find any strong coupling dual of backgrounds in R1,3 with N = 1

supersymmetry. Therefore it is interesting to study M-theory in the background R1,3×Y7

and demand

δψM̂ = DM̂ǫ+ . . . = 0 , (10.11)

for one spinor ǫ exactly as we did in Section 7.3. In d = 11 supergravity ǫ transform in

the 32 of SO(1, 10) which has a decomposition under SO(1, 3) analogous to (4.2)

SO(1, 10))→ SO(1, 3)× SO(7)

32→ (2, 8) + (2̄, 8̄) ,
(10.12)

where 8 is a spinor of SO(7). Therefore we need a seven-dimensional manifold Y7 with a

holonomy H such that

8→ 7 + 1 , (10.13)

with 7, 1 ∈ H . Indeed such a decomposition exists for H = G2 where G2 is an exceptional

group with rk(G2)=2 and dim(G2)=14. Seven-dimensional manifolds with G2-holonomy

have been constructed by D. Joyce as orbifolds T 7/Z3
2 (Joyce-manifold) and are termed

G2-manifolds [31]. These backgrounds break 7/8 of the supercharges and thus leave N = 1

(four supercharges) unbroken in R1,3.
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Similar to Calabi-Yau manifolds G2 manifolds are Ricci-flat and have a covariantly

constant real three-form φ3 which is closed and co-closed

dφ3 = d∗φ = 0 . (10.14)

As in (E.1) φ3 is constructed as a spinor bi-linear

φmnp = ǫγmnpǫ . (10.15)

Let us close with some remarks:

• G2 manifolds are difficult to construct explicitly and so far only orbifolds (general-

izations of the Joyce manifold) are known.

• Smooth G2 compactifications have an Abelian gauge group G = [U(1)]b2 where

b2 = dim(H2) and a non-chiral spectrum.

• G2 manifolds can have ADE-singularties leading to non-Abelian gauge groups and

a chiral spectrum. These compactifications are related to intersecting D6-brane

models of type IIA [6].
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11 F-theory

F-theory was introduced in [32] in order to offer a geometrical understanding of the

(conjectured) non-perturbative SL(2,Z) symmetry of type IIB. In addition it serves as a

compactification scheme which provides the “missing” strong coupling limits.

Any torus can be characterized as a two-dimensional lattice in a complex plane with

coordinate z and the identification

z ≈ z + n +mτ , n,m ∈ Z , Im τ > 0 . (11.1)

In this parametrization one of the two periods of the torus has been normalized to 1

and n is the corresponding winding number while the second period is characterized by

τ and the corresponding winding number is m. However, two τ ’s related by an SL(2,Z)

transformation

τ → τ ′ =
aτ + b

cτ + d
, ad− bc = 1 , a, b, c, d ∈ Z , (11.2)

parametrize the same torus. Therefore all inequivalent tori correspond to τ being in the

fundamental domain

F = {−1
2
≤ Re τ < 1

2
, |τ | ≥ 1} . (11.3)

Geometrically τ corresponds to the complex structure of the torus and its SL(2,Z) sym-

metry is also called the modular group.

In F-theory the SL(2,Z) of type IIB is interpreted as the modular group of an (auxiliary)

torus. This T 2 is auxiliary in that type IIB cannot be interpreted as a KK-reduction of

a theory in R1,9 × T 2. The reason is that there is no representation of supersymmetry in

R1,11 with 32 supercharges and the volume of the T 2 is not in the type IIB spectrum in

R1,9.

One way to make the definition of F-theory more precise is to use the (conjectured)

duality

M in R1,8 × T 2 gs→0−→ IIA in R1,8 × S1(R) ≡ IIB in R1,8 × S1(R−1) .

Sending R→ 0 we have

M in R1,8 × T 2(vol(T 2) = 0)
gs→0−→ IIB in R1,9 .

At this point the introduction of F-theory might seem a bit convoluted. However it

becomes more interesting in further compactifications and new non-trivial backgrounds

can be constructed. Let us consider

M in R1,6 ×K3 ,
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where the K3 is elliptically fibred. This means the K3 has a base B = P1 with T 2-fibres.

The T 2 varies over the base in that τ = τ(z, z̄) with z being the complex coordinate of

the P1. Taking the limit vol(T 2)→ 0 we thus have a construction of

IIB in R1,7 × B .

It seems that this is a compoactification of type IIB which does not feature a Calabi-Yau

manifold. The reason is that the type IIB dilaton τ is not constant but varies over B as

τ = τ(z, z̄). However, as it stands this compactifications is inconsistent. The equation of

motion for τ derived from L ∼ (Im τ)−2∂Mτ∂
M τ̄ reads in the z-direction

∂z∂̄z̄τ − (Im τ)−1∂zτ ∂̄z̄ τ̄ = 0 , (11.4)

with a solution ∂̄z̄ τ̄ = 0. This says that the fibration is holomorphic, i.e. τ = τ(z).

However, there is a complication as τ transforms under (11.2) while z does not! Therefore

consider a solution of the form

j(τ) =
(z0
z

)N

, (11.5)

where j(τ) is the modular invariant j-function which has a series expansion in q = e2πiτ

j(τ) = q−1 + 744 + 196884q +O(q2) . (11.6)

Near z ∼ 0 one thus has

τ =
N

2πi
ln
z

z0
. (11.7)

Thus z → 0 corresponds to Im τ → ∞ which is the type IIB weak coupling limit. From

(11.5) or (11.7) one sees that τ is multivalued which is physically non-sensible. The way

out is to add space-time filling D7-branes which are points on the P1-base. They induce

a deficit angle into the solution and precisely for 24 D7-branes a single valued solution

can be constructed [2]. Im τ = constant and large does not exist on the entire P1 and

therefore the solution is inherently non-perturbative.

The nature and the location of the singularity can be seen from the Weierstrass-

representation of the torus. One introduces two complex variables x, y with one complex

condition

y2 = x3 + fx+ g , f, g ∈ C . (11.8)

f and g are related to τ via

j(τ) =
4(24f)3

∆
, where ∆ = 4f 3 + 27g2 . (11.9)

For an elliptic fibration one has

y2 = x3 + f8(z) x+ g12(z) , (11.10)
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where f8(z) and g12(z) are polynomials of degree 8 and 12 respectively. We thus see that

the discriminant ∆ has 24 roots where ∆ = 0 which corresponds to the location of the

D7-branes.15 If the 24 branes are at differents points on the base the K3 is smooth. If

singularties coincide the K3 is singular and one has a non-Abelian gauge enhancement.

To summarize, F-theory can be viewed as non-perturbative IIB compactifications with

D7-branes.

Further remarks:

• There is a limit called the Sen-limit where τ =const. almost everywhere on the

base B [34]. In this limit the K3 has a description as an orientifold with singular

couplings at the point where O7-planes sit.

• Considering an orientifold of IIB in R1,7 × T 2 there is a T-duality to type I in

R1,7 × T 2. Since type I is S-dual to the heterotic SO(32) string which in turn is T-

dual to the heterotic E8×E8 one has the following chain of dualities in R1,7×T 2 [2]:

IIB orientifold
T←→ type I

S←→ het. SO(32)
T←→ het. E8 × E8

gIIB
s gI

s ∼ gIIBs

T IIB gHSO
s ∼ T IIB

gIIBs
gHE
s ∼ T IIB

T IIB T I ∼ 1
T IIB THSO ∼ 1

gIIBs
THE ∼ gIIB

s

where T is the Kähler modulus of the torus. This implies in particular for the

E8 ×E8 heterotic string

Heterotic in R1,7 × T 2 gHE
s →∞−→ F in R1,7 ×K3E,

where gHE
s corresponds to the P1-base of the elliptic K3.

• Similarly one has

Heterotic in R1,5 ×K3
gs→∞−→ F in R1,5 × Y E

3 ,

and

Heterotic in R1,3 × Y3
gs→∞−→ F in R1,3 × Y E

4 ,

where Y E
3 , Y

E
4 are elliptic Calabi-Yau threefolds and fourfolds respectively.

The various F-theory dualities are also summarized in Fig. 10.1.

15This is another way to see the necessity of 24 D7-branes.
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For phenomenological applications the last duality is of particular interest. There has

been a lot of activity recently in F-theory model building in connection with the construc-

tion of Grand Unified Theories (GUTs) [6]. There are mainly two interesting aspects:

1. At the intersection of two D7-branes the 16-dimensional spinor representation of

SO(10) can appear which is not possible within the perturbative heterotic string.

Since the matter representation of the Standard Model with an extra right-handed

neutrino precisely reside in this representation SO(10) GUTs can be constructed.

2. The up-type Yukawa coupling 10 ·5 · 5̄ of SU(5) GUTs can appear. Again this is not

possible within the perturbative heterotic string and thus also SU(5) GUT model

building has been pursued recently.
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Appendix

A Supersymmetry in arbitrary dimensions

A.1 Spinor representations of SO(1, D − 1)

The spinor representations of SO(1, D− 1) are constructed from Dirac matrices γM sat-

isfying the Clifford/Dirac algebra

{γM , γN} = 2ηMN , M,N = 0, . . . , D − 1 . (A.1)

Then the operators

ΣMN := 1
4
[γM , γN ] (A.2)

satisfy the SO(1, D− 1) algebra and thus are generator of (the spinor representations of)

SO(1, D− 1).

Concretely let us consider SO(1, D − 1) for D even.16 We choose D = 2k + 2, k =

0, 1, 2, . . . and define

γ0± := 1
2

(
±γ0 + γ1

)
,

γa± := 1
2

(
γ2a ± iγ2a+1

)
, a = 1, . . . , k ,

γA± :=
(
γ0±, γa±

)
, A = 0, . . . , k .

(A.3)

Inserting these definitions into (A.1), one obtains the relations

{γA+, γB−} = δAB , {γA±, γB±} = 0 . (A.4)

This corresponds to the algebra of k + 1 fermionic creation and annihilation operators

(oscillators). One can construct the Dirac representation from the a Clifford vacuum |Ω〉
defined by

γA−|Ω〉 = 0 , ∀A . (A.5)

The states are constructed by acting with γA+ in all possible ways on |Ω〉 using
(
γA+

)2
= 0.

The (complex) dimension of the Dirac representation thus is

n = dimC (Dirac rep.) =

k+1∑

i=0

(
k + 1

i

)

= 2k+1 . (A.6)

For D = 4 we have k = 1 and thus n = 22 = 4. For D = 2 we have k = 0 and thus

n = 2. Let us exemplary construct the matrix representation for D = 2 explicitly. The

only non-zero matrices are γ0+ and γ0− with

γ0+|Ω〉 = |1〉 , γ0−|1〉 = |Ω〉 . (A.7)

16Here we follow Appendix B of Vol II of [7].

56



Therefore we can read off the matrix representation

γ0+ =

(
0 1

0 0

)

, γ0− =

(
0 0

1 0

)

, (A.8)

and thus according to (A.3)

γ0 =

(
0 1

−1 0

)

, γ1 =

(
0 1

1 0

)

. (A.9)

The construction for arbitrary k can be obtained similarly [7].

It is possible to define a ‘generalized γ5’ by

γD+1 := ikγ0γ1 . . . γD−1 , (A.10)

satisfying

{γD+1, γ
M} = 0 ,

[
γD+1,Σ

MN
]

= 0 , (γD+1)
2 = 1 . (A.11)

Then one can define two projection operators, 1 ± γD+1, that split the Dirac represen-

tation into two Weyl representations with eigenvalues ±1. The dimension of the Weyl

representation thus is

dimC (Weyl rep.) = 2k . (A.12)

One can check that
(
γM
)∗

and
(
−γM

)∗
both satisfy the Dirac algebra (A.1). Since the

previous construction was unique both have to be similar to γM itself. Indeed one defines

B1 := γ3 · · ·γD−1 , B2 := γD+1B1 , (A.13)

and shows

B1γ
MB−1

1 = (−1)k
(
γM
)∗
, B2γ

MB−1
2 = (−1)k+1

(
γM
)∗
. (A.14)

i.e., for any k a similarity transformation exists. Furthermore

B1,2γD+1B
−1
1,2 = (−1)k (γD+1)

∗ , (A.15)

so that for k even, i.e., D = 2, 6, 10, . . . , the Weyl representation is its own conjugate

(s.c.), while for k odd, i.e., D = 4, 8, . . . , the Weyl representations are conjugate to each

other (c.c.). From

B1,2Σ
MNB−1

1,2 = −
(
ΣMN

)∗
(A.16)

it follows that both ψ and B−1ψ∗ obey the same Lorentz transformation law, i.e.,

δψ = iωMNΣMNψ , δB−1ψ∗ = iωMNΣMNB−1ψ∗ . (A.17)

Thus one can impose a Majorana condition and define the Majorana Spinor ψ being a

Dirac spinor but with the additional requirement (reality condition)

ψ∗ = Bψ . (A.18)
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Thus the dimension of the Majorana representation is

dimC (Majorana rep.) = 2k , or dimR (Majorana rep.) = 2k+1 . (A.19)

From (A.18) we find

ψ = B∗ψ∗ = B∗Bψ , (A.20)

and thus

BB∗ = 1 . (A.21)

From the definition (A.13) one computes

B1B
∗
1 = (−1)

k
2
(k+1) ⇒ k = 0, 3, 7, . . . (D = 2, 8, . . . ) , (A.22)

B2B
∗
2 = (−1)

k
2
(k−1) ⇒ k = 1, 4, 8, . . . (D = 4, 10, . . . ) . (A.23)

A Majorana-Weyl (MW) representation is only possible if the Weyl representation is

self-conjugated, i.e., k is even, and hence, for k = 0, 4, 8, . . . (D = 2, 10, . . . ). Its dimension

is

dimR (MW) = 2k . (A.24)

For D odd and D = 2k+ 1 there are no Weyl representation and a Majorana represen-

tation is possible only in D = 1, 3, 9, 11, . . . . Its dimension is

dimR (Majorana rep.) = 2k . (A.25)

In this case the dimension of the Dirac representation is

dimR (Dirac rep.) = 2k+1 . (A.26)

All the possible representations are summarized in Table A.1.

A.2 Supersymmetry algebra

The supersymmetry algebra is an extension of the Poincare algebra. In arbitrary space-

time dimensions D it depends on the spinor representations of SO (1, D − 1). Schemati-

cally it reads

{QI , Q
J} ∼ γMPMδ

IJ , {QI , QJ} ∼ ZIJ ,
[
LMN , Q

I
]
∼ ΣMNQ

I ,
[
PM , Q

I
]

= 0 ,
(A.27)

where M = 0, . . . , D − 1. QI is a spinor in the smallest spinor representation listed in

Table A.1. The Jacobi-identity requires that ZIJ commutes with all generators and this

is a central element of the algebra. Positivity requires the BPS-bound

M ≥ |Z| . (A.28)
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D k Majorana Weyl M-W dimR

2 0 X s.c. X 1

3 1 X - - 2

4 1 X c.c. - 4

5 2 - - - 8

6 2 - s.c. - 8

7 3 - - - 16

8 3 X c.c. - 16

9 4 X - - 16

10 4 X s.c. X 16

11 5 X - - 32

12 5 X c.c. - 64

Table A.1: Spinor representations for 2 ≤ D ≤ 12.

For arbitrary D it is more convenient to counts real supercharges (which we denote by

q) instead of the number of spinor representations. For example, N = 1 in D = 4 has

q = 4 real supercharges, or in general q = 4N for arbitrary N in D = 4. For this notation

the various supersymmetric theories for 4 ≤ D ≤ 12 and 4 ≤ q ≤ 32 are displayed in

Table A.2.17

Most of the entries in Table A.2 are self-explanatory. However note that in D = 6 the

supercharge Q is self-conjugate and two independent Weyl representations of opposite

chirality, denoted 8 and 8′, of SO(1, 5) exist. For the theory denoted by (1, 1) the two

supercharges transform as Q1 ∈ 8, Q2 ∈ 8′ and thus the theory is non-chiral while the

(2,0) theory has Q1 ∈ 8, Q2 ∈ 8 and therefore is chiral.

In D = 10 also two Majorana-Weyl representations of opposite chirality 16, 16′ exist.

Type IIA is non-chiral with Q1 ∈ 16, Q2 ∈ 16′ while type IIB is chiral with Q1 ∈ 16,

Q2 ∈ 16.

In D = 2 the Lorentz group is SO(1, 1) and the supercharges Q are real one-dimensional

Majorana-Weyl spinors. The type (p, q) superalgebra in two dimensions reads

{QIL
L , Q

JL

L } = δILJL P− , IL, JL = 1, . . . , p ,

{QIR
R , Q

JR

R } = δIRJR P+ , IR, JR = 1, . . . , q ,

{QIL
L , Q

IR
R } = ZILIR .

(A.29)

17For q = 64 one goes beyond N = 8 and thus has higher spin fields in the massless multiplet. For these

theories one does not have a consistent interacting quantum field theory in a Minkowski background.
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H
H

H
H

H
H

H
D

q
4 8 . . . 16 . . . 24 . . . 32 64

4 ×
(N=1)

◦
(N=2)

◦ ◦
(N=4)

◦ ◦ ◦ ◦
(N=8)

5 × ◦ ◦ ◦
6 ×

(1,0)
◦

(1,1)
◦

(2,0)
◦ ◦ ◦

(2,2)

7 × ◦
8 × ◦
9 × ◦
10 ×

I
◦

IIA
◦

IIB

11 ×
12 ×

Table A.2: Table of supersymmetric theories. “×” denotes the theories with the minimal

number of supersymmtries.

B Calabi-Yau manifolds and mirror symmetry

B.1 Some basic differential geometry

An n-dimensional complex manifold Y locally looks like Cn. It has an complex structure

I which is a map

I : T (Y )→ T (Y ) , vm ∈ T (Y ) 7→ Imn v
n , m, n = 1, . . . , 2n , (B.1)

with

Imn Ikm = −δkn . (B.2)

If such an I exists the tanget space T (Y ) splits into two eigenspaces with eigenvalues ±i
and locally one can define complex coordinates zi, z̄̄, i, ̄ = 1, . . . , n.

A one-form ω1 = ωmdy
m then splits as

ω1 = ω(1,0) + ω(0,1) = ωidz
i + ωı̄dz̄

ı̄ (B.3)

Similarly the exterior derivative d splits

d = ∂ + ∂̄ = dzi∂i + dz̄ ı̄∂ı̄ . (B.4)

One defines (p, q)-forms by

ω(p,q) = ωi1···ip ̄1···̄q dz
i1 ∧ · · · ∧ dzip ∧ dz̄̄1 ∧ · · · ∧ dz̄̄q . (B.5)
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The properties we discussed so far also hold for almost complex manifold. On a complex

manifold I satisfies in addition that its Nijenhuis-tensor N vanishes

Nk
mn(I) := Ikl ∂lI

l
n − I lm∂lIKn − (m↔ n) = 0 . (B.6)

On hermitian manifolds the line element takes the form

ds2 = gi̄dz
idz̄̄ (B.7)

which in real coordinates is equivalent to the property gmn = IpmI
q
ngpq. On hermitian

manifolds one defines a fundamental (1, 1)-form J by

J = igi̄ dz
i ∧ dz̄̄ . (B.8)

Kähler manifolds are hermitian manifolds where Kähler form J is closed, i.e.

dJ = 0 . (B.9)

In terms of the metric this is equivalent to the properties

∂igjk̄ = ∂jgik̄ , ∂ı̄gjk̄ = ∂k̄gjı̄ , (B.10)

which are locally solved by

gi̄ = ∂i∂̄K(z, z̄) . (B.11)

K is real and called the Kähler potential. It is not unique as the Kähler transformation

K → K + f(z) + f̄(z̄) leave the metric invariant. On Kähler manifolds the Riemann

tensor considerably simplifies and only the component with index structure Ri̄kl̄ is non-

vanishing. The Ricci-tensor in turn obeys

Ri̄ = −∂i∂̄ ln det g . (B.12)

Calabi-Yau manifolds are Ricci-flat Kähler manifolds defined in Section 2.

B.2 The moduli space of Calabi-Yau threefolds

It is of interest to study the deformation of a Calabi-Yau metric which preserves the

Ricci-flatness and which are not coordinate transformations. Or in other words one looks

for the solutions of

Rmn(g
0 + δg) = 0 (B.13)

subject to the gauge fixing condition ∇mδgmn − 1
2
∇nδg

m
m = 0. Expanding Rmn to first

order in δg one obtains the Lichnerowicz equation

∇l∇l δgmn + 2Rmknl δg
kl = 0 (B.14)
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One can check that on Kähler manifolds δgi̄ and δgij independently satisfy (B.14). For

δgi̄ one finds that (B.14) coincides

∆δgi̄ = 0 , (B.15)

where ∆ = dd∗+d∗d is the Laplace operator acting on differential forms.18 The solution of

(B.15) are harmonic (1, 1)-forms which are in turn elements of the Dolbeault cohomology

group H(1,1)(Y ) defined in (3.12). Therefore δgi̄ can be expanded in a basis (denoted by

ωαi̄) of H(1,1)(Y ) according to

δgi̄ = i
h(1,1)
∑

α=1

vα ωαi̄ , α = 1, . . . , h(1,1) , (B.16)

where the vα denote h(1,1) Calabi-Yau moduli. Exactly as in Kaluza-Klein compactifica-

tion these moduli appear as scalar fields in the effective action in that we can assign an

arbitrary dependence on the space-time coordinates x by replacing vα → vα(x).

The deformations δgij change the complex structure of the original metric and (B.14)

leads to

∆δgi = 0 , (B.17)

where δgi ≡ gik̄δgk̄̄dz̄
̄ is a (0, 1) form with values in the holomorphic tangent bundle

T 1,0(Y ). By using the (3, 0)-form Ω = Ωijkdz
i ∧ dzj ∧ dzk one can show that

Ωijkδg
k
l̄ dz

i ∧ dzj ∧ dz̄ l̄ ∈ H(2,1)(Y ) (B.18)

Therefore one has an expansion

δgij =
i

||Ω||2
h(1,2)
∑

a=1

z̄a(x) ω̄aīı̄ Ω
ı̄̄
j , a = 1, . . . , h(1,2) , (B.19)

where ωaīı̄ is a basis of H(1,2) and za are h(1,2) complex moduli. (We abbreviate ||Ω||2 ≡
1
3!

ΩijkΩ̄
ijk.) So altogether there are h(1,1) + 2h(1,2) real moduli of the Calabi-Yau metric.

For the other p-form gauge fields which occur in string theory and which we discussed

in Section 2 the equations of motion in the gauge d∗Cp = 0 also read

∆Cp = 0 , (B.20)

and thus the solutions are Cp ∈ H(p). In particular for the NS two-form B one has

B ∈ H2 = H(1,1) and thus one can expand

δBi̄ =
∑

α

bα(x)ωαi̄ . (B.21)

18d∗ is the adjoint of d and maps p-forms to (p− 1)-forms.
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It turns out to be convenient to complexify the Kähler-form J → Jc = B + iJ so that in

components

δJc = δBi̄ + iδgi̄ =
∑

α

tα(x)ωαi̄ , tα = bα + ivα . (B.22)

The moduli itself span a space – the moduli space – with a metric which is the met-

ric on the space of metrics (and B-fields). The fact the deformations δgi̄ and δgij are

independent says that the moduli space is the procuct

M =Mh(1,2)

cs (z)× Mh(1,1)

ks (t) . (B.23)

Mh(1,2)

cs is the complex h(1,2)-dimensional component spanned by the complex structure

deformations za while Mh(1,1)

k is the complex h(1,1)-dimensional component spanned by

the complexified Kähler deformations tα. Both components turn out to be special Kähler

manifolds.

A special Kähler manifold is Kähler manifold where the Kähler potential is of the specific

form [?,?,?,?,?].

K = − ln i
[
Z̄AFA(Z)− ZAF̄A(Z̄)

]
, A = 0, . . . , h (B.24)

with

FA :=
∂F

∂ZA
and ZAFA = 2F , (B.25)

i.e. F is homogeneous of degree 2. One defines special coordinates as za = Za

Z0 , so that

F = (Z0)2F(za) and K then can be also expressed as:

K = − ln
[
2i
(
F + F̄

)
−
(
Fa + F̄a

)
(za − z̄a)

]
, (B.26)

where F(za) is an arbitrary holomorphic function with no homogeneity property.

The metric on Mh(1,2)

cs turns out to be a special Kähler metric with a Kähler potential

given by [?]

gab̄ = ∂za∂z̄b̄ Kcs , Kcs = − ln
[

− i
∫

Y

Ω ∧ Ω̄
]

= − ln i
[

Z̄AFA − ZBF̄B

]

. (B.27)

The second form of Kcs is obtained from the expansion of Ω

Ω(z) = ZA(z)αA − FB(z) βB , (B.28)

where (αA, β
B) is a real, symplectic basis of H3(Y ) satisfying

∫

Y

αA ∧ βB = δBA ,

∫

Y

αA ∧ αB = 0 =

∫

Y

βA ∧ βB . (B.29)

The moduli spaceMh(1,1)

ks spanned by the coordinates tα also is a special Kähler manifold

with a Kähler potential and prepotential F(t) given by

Kks = − ln dαβγv
αvβvγ , F0(t) = dαβγt

αtβtγ , (B.30)
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where dαβγ =
∫

Y
ωα ∧ ωβ ∧ ωγ are topological intersection numbers. F0 represents the

leading contribution in a large volume limit. There are, however, perturbative and non-

perturbative α′ corrections. The perturbative corrections can be understood as arising

from loop corrections of the 2d SCFT which also give rise to higher derivative interactions

in L10
eff . The non-perturbative corrections correspond to topological non-trivial embed-

dings of the worldsheet into space-time and they are termed worldsheet instanton corrections.

For the case at hand the worldsheet can wrap a two-cycle in Y3 which give amplitudes

suppressed by e−nαvα

where vα parametrizes the volume of the two-cycle in question.

Including both types of corrections results in

F(t) = dαβγt
αtβtγ + 2

(2π)3
χ(Y3) + Fnp , (B.31)

where χ(Y3) = 2(h(1,2) − h(1,1)) is the Euler number of Y3 and Fnp denotes the non-

perturbative effects. They are more easily expressed by the third derivative

∂α∂β∂γFnp =
∞∑

n1···nh(1,1)=1

Nn1···nh(1,1)
nαnβnγ

∏

δ q
nδ

1−∏δ q
nδ
, qδ := e2πit

δ

, (B.32)

N is the instanton number which counts how often a worldsheet wraps around a 2-cycle,

nαnβnγ is a combinatorical factor and the last factor aroses from the instanton action [?].

B.3 Mirror Symmetry

Mirror symmetry is not yet a symmetry but rather the conjecture about a not yet rigor-

ously defined space of Calabi-Yau threefolds [?]. It has been established on a subspace of

Calabi-Yau manifolds [?] and is a very useful concept in order to compute certain cou-

plings in the effective action. It states that for ‘every’ Calabi-Yau Y there exists (at least)

one mirror manifold Ỹ with reversed Hodge numbers, i.e.

h1,1(Y ) = h1,2(Ỹ ) , h1,2(Y ) = h1,1(Ỹ ) . (B.33)

In terms of the Hodge diamond (3.13) this corresponds to a reflection along the diagonal or

in other words the third cohomology H(3) = H(3,0)⊕H(2,1)⊕H(1,2)⊕H(0,3) is interchanged

with the even cohomologies H(even) = H(0,0) ⊕H(1,1) ⊕H(1,2) ⊕H(3,3).

Furthermore, the respective (complexified) moduli spaces of (B.23) are identified under

mirror symmetry

Mh(1,2)

cs (Y ) ≡Mh(1,1)

ks (Ỹ ) , Mh(1,1)

ks (Y ) ≡Mh(1,2)

cs (Ỹ ) . (B.34)

This in turn means that the underlying prepotentials are identical

F(Y ) ≡ F(Ỹ ) , F(Y ) ≡ F(Ỹ ) . (B.35)
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This fact has been used to compute instanton corrections to the prepotential F of the

Kähler moduli (B.30) which only in the large volume approximation is a cubic polynomial.

In type II string theory mirror symmetry manifests itself by the equivalence of the

two different type II string theories, called type IIA and type IIB, in mirror symmetric

background or in other words the following equivalence holds

IIA in background M4 × Y ≡ IIB in backgroundM4 × Ỹ . (B.36)

Therefore one can focus the attention on one of the two string theories and infer couplings

of the other one by mirror symmetry. However, depending on the precise question it might

be easier to ask it either in IIA or IIB.
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C The holomorphic anomaly and soft supersymme-

try breaking

C.1 The holomorphic anomaly

As we saw in section 5 it is of interest to compute f (1)(Φ) in string theory. This is possible

essentially in two ways:

1. directly via the computation of a string loop diagram,

2. indirectly via the holomorphic anomaly.

The problem with method 1 is that the entire massive string spectrum contributes in

the loop and therefore f (1)(Φ) is difficult to compute. Similarly, the result depends on

the chosen background and thus relatively few generic properties can be identified.

The direct computation has been done for orbifold compactification of the heterotic

string with the result [?]

∆ ∼ ln
[
|η(it)|4(t+ t̄)

]
, (C.1)

where t are the moduli in the untwisted sector of the orbifold and η is the Dedekind

η-function. This result has two distinct features:

• ∆ is invariant under an SL(2,Z) transformations of the form

t → at− ib
ict + d

, (C.2)

where a, b, c, d ∈ Z and ad− bc = 1.

• ∆ is non-harmonic in that

∂t∂̄t̄∆ ∼ ∂t∂̄t̄ log(t+ t̄) 6= 0 , (C.3)

and therefore

∆ 6= Re f (1)(t) (C.4)

as one would naively expect for a consistent supersymmetric effective theory. The

failure of eq. (C.4) is known as the holomorphic anomaly but as we will see shortly

this anomaly has nothing to do with string theory but rather occurs in any super-

symmetric field theory with massless fermions in the spectrum.

It can be shown that supersymmetric theories the threshold correction have two contri-

butions

∆ = ∆m + ∆0 , (C.5)
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where massive particles contribute

∆m = Re f (1) . (C.6)

On the other hand massless particles with non-trivial non-renormalizable couplings con-

tribute

∆0 = − c

16π2
K̂(t, t̄)−

∑

r

T (r)

8π2
log detZ(r) , (C.7)

where r runs over the representations of the gauge group, c = T (ad) −∑
r
T (r) and we

expand the Kähler potential as

K(t, t̄, A, Ā) = K̂(t, t̄) + ZAB̄(t, t̄)AAĀB̄ + . . . , (C.8)

and Z(r) is the block of the matrix ZAB referring to the “flavor” indices of the matter

multiplets A in the representation r. For orbifolds (C.1) splits as

f (1) ∼ ln η(it)2 , ∆0 ∼ ln(t+ t̄) . (C.9)

Altogether we thus have

g−2(µ) = Re (f (0) + f (1))− b

8π2
ln
MPl

µ
− c

16π2
K̂(t, t̄)−

∑

r

T (r)

8π2
log detZ(r) . (C.10)

The second, indirect method to determine f (1) uses (C.10) and an exact quantum sym-

metries such as the SL(2,Z) of orbifolds. One computes ∆0 from (C.7) and solely tree-

level couplings and then determines the harmonic piece ∆m by requiring that the physical

gauge couplings g−2(µ) is invariant. For the Standard Embedding this method is used in

refs. [?, 25].

Before we come to soft supersymmetry breaking let us briefly update gaugino conden-

sation discussed in section 5. For a single pure gauge group in orbifold compactifications

one finds

f (1) =
T (G)

4π2
log η(iT ) , (C.11)

which leads via eq. (5.13) to

W (S, T ) ∼M3
Pl e

− 8π2

T (G)
S η(it)−2 . (C.12)

For large t one has W → e
π
12

(t+t̄) and thus a minimum at finite t. The explicit mini-

mization of V reveals that 〈t〉 = O(1) and supersymmetry is broken since 〈DtW 〉 6= 0.

Unfortunately, this minimum has a large negative cosmological constant. The analysis of

refs. [?,?,?,?] showed that the moduli dependence of f (1) can lead to a stabilization of

the moduli vacuum expectation values and the breaking of supersymmetry. However, the

dilaton problem and the problem of the cosmological constant remain unsolved in this

class of models.
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The next step is to include a moduli dependent f (1) into the racetrack scenarios. Indeed

one finds [?] that one can simultaneously achieve the stabilization of the dilaton and

moduli and break supersymmetry in the moduli directions. However, within this approach

there always is a cosmological constant induced.

C.2 Soft Supersymmetry Breaking

Let us consider a generic N = 1 effective theory with an observable and a hidden sector

specified by a superpotential

W = Wobs(t, A) +Whid(t) . (C.13)

Here t generically denotes the moduli fields while A denotes the observable (charged)

matter fields.19 Wobs(t, A) should be thought of as generated at the string tree level while

Whid(t) arises non-perturbatively. For Wobs(t, A) we make the general Ansatz

Wobs(t, A) = 1
2
µAB(t)AAAB + 1

3
YABC(t)AAABAC +O(A4) . (C.14)

For simplicity we are interested in the situation where 〈A〉 = 0 and the gauge group is

unbroken. Therefore we expand the tree level Kähler potential as in (C.8) around 〈A〉 = 0

to obtain

K(t, t̄, A, Ā) = K̂(t, t̄) + ZAB̄(t, t̄)AAĀB̄ +HAB(t, t̄)AAAB + h.c. +O(A3) , (C.15)

We further assume:

1. 〈FA〉 = 0, ie. no supersymmetry breaking in the observable sector.

2. 〈Fα〉 6= 0, ie. supersymmetry breaking in the hidden sector.

3. 〈V 〉 = 0, ie. a vanishing cosmological constant.

4. m3/2 ≪MPl, ie. hierarchical supersymmetry breaking.

In the N = 1 potential (4.10) we now take the limit MPl → ∞ with m3/2 fixed or in

other words we keep the leading order contributions of the supersymmetry breaking. One

finds that the (canonically normalized) gaugino masses turn out to be

m̃ = F α∂α ln g−2 +
bg2

16π2
m3/2 , (C.16)

whereas the (un-normalized) masses of the observable matter fermions and their (un-

normalized) Yukawa couplings are given by

µ̃AB ≡ eK̂/2µAB +m3/2HAB − F̄ ᾱ∂̄ᾱHAB ,

ỸABC ≡ eK̂/2 YABC .
(C.17)

19Of course there is the possibility of hidden matter which we ignore for this discussion.
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It is convenient to combine both terms into an effective superpotential

W eff(A) ≡ 1
2 µ̃ABA

AAB + 1
3
ỸABCA

AABAC , (C.18)

but one should remember that this is a superpotential of the observable sector and not

of the full theory. In the latter context, (C.18) would not make sense as a superpotential

because µ̃AB and ỸABC are non-holomorphic functions of the moduli. The potential V

splits into a potential of global N = 1 supersymmetry (denoted as V N=1
global) and the soft

supersymmetry breaking terms Vsoft

V = V N=1
global + Vsoft , (C.19)

where

V N=1
global = 1

2
D2 + ∂AW

effZAB̄∂̄B̄W̄
eff ,

Vsoft = m2
AB̄A

AĀB̄ +
(

1
3
AABCA

AABAC + 1
2
BABA

AAB + h.c.
)
.

(C.20)

The first line here gives the scalar potential of an effective theory with unbroken rigid

supersymmetry while the second line is comprised of the soft supersymmetry-breaking

terms. The coefficients of these soft terms are as follows

m2
AB̄ = m2

3/2ZAB̄ − F αF̄ β̄Rαβ̄AB̄ ,

AABC = F αDαỸABC ,

BAB = F αDαµ̃AB − m3/2µ̃AB ,

(C.21)

where

Rαβ̄AB̄ ≡ ∂α∂̄β̄ZAB̄ − ΓDαAZDC̄Γ
C̄

β̄B̄ , ΓDαA = ZDB̄∂αZB̄A ,

DαỸABC ≡ ∂αỸABC + 1
2
K̂αỸABC − ΓDα(AỸBC)D ,

Dαµ̃AB ≡ ∂αµ̃AB + 1
2
K̂α µ̃AB − ΓDα(A µ̃B)D .

(C.22)

(When evaluating ∂αµ̃AB or ∂αỸABC , one should apply ∂tα to all quantities on the right-

hand side of eqs. (C.17), including m3/2 and F̄ β̄.) Notice that all quantities appear-

ing in eqs. (C.16), (C.17) and (C.21) are covariant with respect to the supersymmetric

reparametrization of matter and moduli fields as well as covariant under Kähler transfor-

mations.

According to eq. (C.21), m2
AB̄
∼ m2

3/2, AABC ∼ m3/2ỸABC , and BAB ∼ m3/2µ̃AB;

nevertheless, the soft terms are generally not universal, ie. AABC 6= const · m3/2ỸABC
and m2

AB̄
6= const · m2

3/2ZAB̄, even at the tree level. In the context of the minimal
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supersymmetric standard model, this non-universality means that the absence of flavor-

changing neutral currents is not an automatic feature of supergravity but a non-trivial

constraint that has to be satisfied by a fully realistic theory.

To summarize, the displayed formulae express all the couplings of the observable sector

in terms of a few perturbative parameters of the effective supergravity, namely K̂(t, t̄),

ZAB̄(t, t̄), HAB(t, t̄), YABC(t) and f(t), and even fewer non-perturbative parameters in-

duced by the hidden sector, namely m3/2 and F α.

Nothing so far relied in any way on the stringy nature of the fundamental theory behind

the effective supergravity and are equally valid for any other unified theory that gives rise

to an effective supergravity below the Planck scale. However, in the context of string

theory, one can make again use of the special properties of the dilaton S. Let us recall

from eqs. (5.7) that at the tree level K(0) = − ln(S + S̄) + K̂(0)(t, t̄), f (0) = S while

ZAB̄(t, t̄), HAB(t, t̄), and YABC(t) are independent of S. (Their t dependence cannot be

further constrained unless one chooses to focus on a particular class of string vacua).20

Generically, the dynamics of the hidden sector can give rise to both 〈F S〉 and 〈F t〉,
but one type of F -term often dominates over the other. Therefore, it is instructive to

concentrate on the two limiting cases 〈F S〉 ≫ 〈F t〉 and 〈F S〉 ≪ 〈F t〉 and discuss the

phenomenological implications of the two scenarios. The main feature of the 〈F S〉 ≫
〈F t〉 scenario is the great simplicity of the resulting soft terms before string loops and

renormalization are taken into account. Specifically, one finds

m̃ =
√

3m3/2 , m2
AB̄ = m2

3/2ZAB̄ , AABC = −
√

3m3/2ỸABC , (C.23)

whereas µ̃AB and BAB are independent parameters. Thus, in the context of the minimal

supersymmetric standard model the masses of all super-particles as well as the Higgs

VEVs are determined in terms of the three independent parameters m3/2, µ̃ and B, and if

we further assume that µ = 0, then only m3/2 and µ̃ are independent while B = 2m3/2µ̃.

Numerical study of the electroweak phenomenology produced by these soft terms shows

that for µ = 0 the Higgs particle is too light for all allowed values of the other parameters;

the general case (µ 6= 0) is slightly more involved and nor ruled out by current data.

When the dominant non-perturbative effect in the hidden sector is the formation of

gaugino (and possibly) other condensates, the resulting effective W (np)(S, t) is more likely

to give rise to 〈F t〉 than to 〈F S〉 as we saw in section 5. However, the analysis of this

scenario is much more model-dependent since the t-dependence of various couplings is

quite different for different string vacua; nevertheless, even without choosing a particular

vacuum it is possible to make some generic statements about the soft terms. First of all,

the usual assumption of the universality of the soft terms in the minimal supersymmetric

20At the string loop level, K̂, ZAB̄ and HAB receive an S-dependent but generically small threshold

correction, which we neglect in the following discussion. f is corrected by the one-loop t-dependent (but

S-independent) term f (1)(t) which we discussed above.
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standard model does not automatically hold in this case: m2
AB̄

is not flavor-blind or

even generation-blind; instead, we have a non-universality parameterized by the field-

space curvature Rαβ̄AB̄ (see eqs. (C.21)), which generically does not vanish. The absence

of flavor-changing neutral currents imposes strong phenomenological constraints on this

curvature term and thus on string model building. Equations (C.21) also reveals that the

trilinear couplings AABC are not strictly proportional to the Yukawa couplings ỸABC , nor

is BAB proportional to µ̃AB.

Despite the lack of universality in the 〈F t〉-driven scenario, we can still make an order-

of-magnitude estimate of the supersymmetry-breaking masses and couplings. The scalar

masses are typically O(m3/2). Similarly, the trilinear couplings AABC = O(m3/2ỸABC).

On the other hand, because the gauge couplings depend on the dilaton S more strongly

than on the other moduli ti, the gaugino masses come out rather light, O( α
4π
m3/2) (see

eq. (C.16)). Furthermore, eq. (C.7) allows us to estimate the magnitude of the gaugino

masses after the renormalization, ie. just above m3/2. The result is

m̃(µ) = C
α(mu)

4π
m3/2 ≪ m3/2 , (C.24)

where the coefficients C is model-dependent but generally O(1). Therefore, in this scenario

we expect the gaugino masses to be close to their experimental lower bounds, while the

squarks and the sleptons heavy.

The two scenarios we just analyzed lead to distinct signals at the weak scale. It is

important to stress that such signals do not depend on the detailed mechanism for super-

symmetry breaking nor do they depend on the chosen string vacuum. Rather, they are a

mere consequence of which F -term is the dominant seed of the breaking.
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D Supergravity actions for 4 ≤ d ≤ 9

In this section we discuss the couplings of (bosonic) supergravity actions in dimensions

4 ≤ d ≤ 9. The effective actions derived from string theory have to satisfy the constraints

and properties of these actions.

A generic bosonic Lagrangian reads

L =− 1
2κ2R − 1

4g
−2
ab F

a
µνF

µνb − 1
2GIJ(Φ)DµΦ

IDµΦJ − V (Φ) + . . . , (D.1)

where R is the Einstein-Hilbert-term and GIJ(Φ) is the metric on the scalar manifold

M . The . . . stand for additional topological terms and/or kinetic terms and couplings of

higher p-form gauge potentials. These terms differ in various dimensions.

L is gauge invariant under the gauge transformations

δαΦ
I = αa(x) kIa(Φ) , a = 1, . . . , nv , (D.2)

where nv is the number of vector multiplets or equivalently the dimension of the Lie algebra

assocciated to the Lie group G, αa(x) is the (local) parameter of the gauge transformation

and kIa are Killing vector fields. Correspondingly, the covariant derivatives are given by

DµΦ
I = ∂µΦ

I −Aaµ kIa(Φ) . (D.3)

Gauge invariance requires that the metric is invariant δαGij̄ = 0 which implies the Killing

equations

∇Ik
a
J +∇Jk

a
I = 0 . (D.4)

D.1 N = 1 supergravity in d = 4

The N = 1 multiplets are summarized in Table D.1 where [s] denotes a field of spin

(helicity) s.21

N = 1 d = 4

Gravitational multiplet
(

[2], [3
2
]
)

Vector multiplet
(

[1], [1
2
]
)

Chiral/Linear multiplet
(

[1
2
], 2[0]

)

Table D.1: N = 1, d = 4 multiplets

21The linear multiplet contains an antisymmetric tensor Bµν and a real scalar φ. Bµν can be dualized

to a second scalar a so that the entire multiplet becomes dual to a chiral multiplet.
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In N = 1 the scalars in the chiral multiplets are complex Φi, Φ̄̄, i, ̄ = 1, . . . , nc and M

is a Kähler manifold, i.e. the metric obeys

Gij̄ = ∂i∂j̄K . (D.5)

In a addition, a topological term θab

32π2 ǫ
µνρσF a

µνF
b
ρσ is present and the (inverse) gauge cou-

plings and the θ-angle combine into the holomorphic gauge kinetic function

fab = g−2
ab + i

8π2 θab . (D.6)

The potential is given by

V = eκ
2K
[

(DiW )G−1ij̄
(
Dj̄W̄

)
− 3κ2|W |2

]

+ 1
2
g−1
ab D

aDb , (D.7)

where W is the holomorphic superpotential and

DiW :=
∂W

∂Φi
+ κ2

(
∂K

∂Φi

)

W . (D.8)

The D-terms Da are the Killing prepotentials. On a Kähler manifold the solution of (D.4)

is

∂j̄k
ai = 0 , kaī = i∂īD

a . (D.9)

The first equation states that kai is holomorphic while the second determines kaī in terms

of the Killing prepotentials (or moment maps) Da. Using kaī = Gījk
aj one finds

Da = −i(∂jK)kaj + ξδaU(1) . (D.10)

ξ is a Fayet-Illiopoulos parameter which arises for any U(1)-factor in the gauge group G

as an (undetermined) integration constant of the Killing prepotentials. The Lagrangian

(D.1) is thus characterized by four functions K(Φ, Φ̄), f(Φ),W (Φ) and Da.

D.2 N = 2 supergravity in d = 4, 5, 6

The N = 2 multiplets in dimensions d = 4, 5, 6 are summarized in Table D.2. The scalar

field space is locally the product

M =M4nh

h,QK ×







M2nv

v,SK d = 4

Mnv

v,RSK d = 5
O(1,nt)
O(nt)

d = 6

, (D.11)

whereM4nh

h,QK is a 4nh-dimensional quaternionic-Kähler manifold,M2nv

v,SK is a 2nv-dimensional

special Kähler manifold, Mnv

v,RSK is nv-dimensional real special Kähler manifold and nt
counts the number of tensor multiplets. Let us discuss these geometries in turn [4].
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N = 2(eight supercharges) d = 4 d = 5 d = 6

Gravitational multiplet
(

[2], 2[3
2
], [1]

) (

[2], [3
2
], [1]

) (

[2], [3
2
], [1], B−

µν

)

Vector multiplet
(

[1], 2[1
2
], 2[0]

) (

[1], [1
2
], [0]

) (

[1], [1
2
]
)

Hypermultiplet
(

2[1
2
], 4[0]

) (

[1
2
], 4[0]

) (

[1
2
], 4[0]

)

Tensor multiplet dual to hyper dual to vector
(

B+
µν , ([

1
2
], [0]

)

Table D.2: N = 2, d = 4, 5, 6 multiplets

D.2.1 Quaternionic-Kähler geometry

M4nh

h,QK is not a Kähler manifold bur rather quaternionic-Kähler manifold. This means

that it admits three almost complex structures (Jx)vu, x = 1, 2, 3, u, v = 1, . . . , 4nh, which

satisfy

JxJy = −δxy1 + iǫxyzJz , (D.12)

and the metric Guv is Hermitian with respect to all three of them. They are also covari-

antly closed with respect to an SU(2) connection ω

DJx = 0 . (D.13)

The associated Kähler two-forms Kx
uv = Guw(Jx)wv obey

DKx = dKx + ǫxyzwy ∧Kz = 0 . (D.14)

On this geometry the Killing vectors can be expressed in terms of Killing prepotential

P x
A by

kuAK
x
uv = −DvP

x
A = −∂νP x

A − ǫxyzwyvP z
A , (D.15)

where the index A takes the values A = (0, a) and the 0-direction denotes the graviphoton.

Explicit quaternionic-Kähler manifolds are sparsely known. A prominent example ap-

pearing at the tree-level of type II compactifications are the quaternionic-Kähler manifolds

in the image of the c-map. The metric depends on the coordinates (za, ξA, ξ̃A, φ, a) with

index ranges a = 1, . . . , nh − 1, A = (0, a). It reads

ds2 = Gab̄(z, z̄) ∂µz
a∂µz̄b̄ + (∂µφ)2 + 1

4

(
∂µa− (ξ̃A∂µξ

A − ξA∂µξ̃A)
)2

−1
2
e2φ(ImN (z, z̄))−1AB(∂µξ̃A −NAC∂µξC)(∂ν ξ̃B −NBD∂µξD) ,

(D.16)

where Gab̄(z, z̄) is the metric on a special Kähler manifold MSK while N is the gauge

kinetic function on MSK. (Both are discussed in the next section.) Thus the c-map

associates to every special Kähler manifold a quaternionic Kähler manifold

c : M2(nh−1)
SK × SU(1, 1)

U(1)
→ M4nh

QK , (D.17)
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where (φ, a) are the coordinates on the SU(1, 1)/U(1) component. In string theory one

finds MSK = MΩ(MJ) for IIA (IIB) and (φ, a are dilaton and axion while (ξA, ξ̃A) are

the RR-scalars.

D.2.2 Special Kähler geometry

In Appendix B.2 we already discussed special Kähler geometry in the context of the

Calabi-Yau moduli spaces as they are examples of special Kähler manifolds.

For special Kähler manifolds the Kähler potential is given by

K = − ln i
[
Z̄AFA(Z)− ZAF̄A(Z̄)

]
, A = 0, . . . , nv (D.18)

with

FA :=
∂F

∂ZA
and ZAFA = 2F , (D.19)

i.e. F is homogeneous of degree 2. One defines special coordinates as za = Za

Z0 , so that

F = (Z0)2F(za) and K then can be also expressed as

K = − ln
[
2i
(
F + F̄

)
−
(
Fa + F̄a

)
(za − z̄a)

]
, (D.20)

where F(za) is an arbitrary holomorphic function with no homogeneity property.

The gauge kinetic matrix f is given by:

fAB = FAB −
(ImF )AC Z̄

C (ImF )BDZ̄
D

Z̄C (Im)CD Z̄
D

, (D.21)

where the second term is not holomorphic and arises due to the mixing with the gravipho-

ton.

The Killing vectors can again be expressed in terms of Killing prepotential PB
0 by

kBa = i∂aP
B
0 . (D.22)

Together with the Killing vectors kuA(q) and Killing prepotentials P x
A onMh,QK discussed

in the previous section the covariant derivatives are

Dµq
u = ∂µq

u −AAµkuA(q) , Dµz
a = ∂µz

a − ABµ kBa(z) , (D.23)

while the potential is given by

V = eK
(

Gab̄k
a
Ak̄

b̄
BZ

AZ̄B + 4huvk
u
Ak

v
BZ

AZ̄B +Gab̄(∂aZ
A)(∂̄b̄Z̄

B)P x
AP

x
B − 3ZAZ̄BP x

AP
x
B

)

.

(D.24)

Before we continue let us mention one caveat. The situation discussed here only features

multiplets which are charged with respect to electric gauge bosons but not their magnetic

duals. In string theory it is sometimes convenient to go to a different symplectic basis

and includes magnetic charges. This can be done via the embedding tensor formalism [?].
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D.2.3 Real special Kähler geometry

In d = 5 Mh,QK is unchanged while Mv becomes a real special Kähler manifold. The

vector multiplets contain a real instead of a complex scalar and the geometry is constrained

by

dABCΦAΦBΦC = 1 . (D.25)

The physical scalars ϕa are the solutions of this constraint with a metric

Gab = −3 (
∂ΦA

∂ϕa
)(
∂ΦB

∂ϕb
) dABCΦC . (D.26)

In d = 6Mh is again is unchanged, the vector multiplets have no scalar but the tensor

multiplets have a real scalar spanning the geometry

Mt =
O(1, nt)

O(nt)
. (D.27)

D.3 Supergravities with 16 supercharges

In theories with 16 supercharges there is the gravitational multiplet and the vector mul-

tiplet. Their bosonic components are

gravitational multiplet :
(

[2], (10−D)[1], [0], BMN

)

,

vector multiplet :
(

[1], (10−D)[0]
)

,

(D.28)

plus an appropriate number of gravitinos and s = 1/2-fermions. (For more details see [?].)

The scalar field space is

M =
SO (10−D, nv)

SO (10−D)× SO (nv)
×
{

R+ for D = 5, . . . , 10 ,
SU(1,1)
U(1)

for D = 4
(D.29)

where nv is the number of vector multiplets. The first component of the product is

spanned by the scalars of the vector multiplet and the second by the scalar(s) of the

gravity multiplet.

A special case is the (2, 0) theory in d = 6 where the scalar manifold is given by

M =
SO (5, 21)

SO (5)× SO(21)
. (D.30)
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D.4 Supergravities with 32 supercharges

For 32 supercharges there only is the gravitational multiplet which in D = 4 has the field

content (

[2], 8[3/2], 28[1], 56[1/2], 70[0]
)

. (D.31)

In D > 4 the field content can be found, for example, in [?].

We summarize all geometries in the following Table D.3 [?, ?]. We abbreviate

SOm,n ≡
SO(m,n)

SO(m)× SO(n)
×
{

R+ for D = 5, . . . , 10 ,
SU(1,1)
U(1)

for D = 4
.

D/q 4 8 16 32

4 MK MSK ×MQK SO6,n
E7(7)

SU(8)

5 MRSK ×MQK SO5,n
E6(6)

Usp(8)

6 O(1,nt)
O(nt)

×MQK SO4,n/SO5,21
E5(5)

Usp(4)×Usp(4)

7 SO3,n
E4,4

Usp(4)

8 SO2,n
E3,3

U(2)

9 SO1,n
GL(2)
SO(2)

10 R+ R+, SU(1,1)
U(1)

11 - -

“MSK” ×MQK SO10−D,n
E11−D

HR

Table D.3: Scalar geometries in supergravity
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E Compactifications on generalized geometries

E.1 Manifolds with G-structure

Recall the discussion of supersymmetry in compactification with backgrounds R1,3×Y6 in

section 3.2. The decomposition of the Lorentz group is given in eq. (3.2) while the decom-

position of the spinor representation is given in (4.2). The existence of a supercharge in

R1,3 requires the existence of a nowhere vanishing and globally defined spinor ǫ on Y6. This

requires that ǫ is a singlet of SO(6) but it does not require it to be covariantly constant,

i.e. Dmǫ 6= 0 is possible. Manifolds which admit a globally defined tensor or spinor have

been studied in the mathematical literature and are called manifolds with G-structure.

Here G denotes the subgroup of the structure group SO(6) which leaves the tensor or

spinor invariant. Generically G does not coincide with the holonomy group precisely be-

cause the spinor does not have to be covariantly constant with respect to the Levi-Civita

connection. However, one can show that a different connection – a connection with torsion

D(T ) – always exists which satisfies D
(T )
m ǫ = 0.

In this section we focus on the example of one globally defined spinor. Using SO(6) ∼
SU(4) we see that a globally defined spinor is left invariant by an SU(3) ⊂ SU(4) and thus

we have G = SU(3) or in other words we need to study manifolds with SU(3)-structure.

On manifolds with SU(3)-structure it is possible to build a two-form J and a three-

form Ω from ǫ

Jmn = − i
2
ǭγ[mn]ǫ , Ωmnp = − i

2
ǫγ[mnp]ǫ . (E.1)

Due to Fierz identities they obey the relation

J ∧ J ∧ J = 3i
4
Ω ∧ Ω . (E.2)

Raising one index on Jmn with the metric one can show that Jmn is an almost complex

structure in that it satisfies J2 = −1. Using the definition (E.1) and D
(T )
m ǫ = 0 implies

dJ = 3i
4

(
W1Ω̄− W̄1Ω

)
+W4 ∧ J +W3 ,

dΩ = W1J
2 +W2 ∧ J + W̄5 ∧ Ω ,

(E.3)

and

W3 ∧ J = W3 ∧ Ω = W2 ∧ J2 = 0 , (E.4)

where the W ’s are five different torsion classes which can be characterized by their SU(3)

representation or equivalent their form-degree. W1 is a zero-form, W4,W5 are one-forms,

W2 is a two-form and W3 is a three-form. Generically manifolds with SU(3) structure are

neither complex, nor Kähler, nor Ricci-flat. Only for a particular choice of the torsion

such that some of the Wα vanish one has manifolds with additional properties. For

example Calabi-Yau manifolds are manifolds of SU(3) structure where all five torsion
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classes vanish W1,...,5 = 0. Complex manifolds have W1,2 = 0 while Kähler manifolds have

W1,...,4 = 0. Half-flat manifolds play a special role later on and their are characterized by

ImW1 = ImW2 = W4 = W5 = 0 or in other words

dJ ∼ Im Ω , dΩ ∼ J2 . (E.5)

E.2 Leff on manifolds with SU(3)-structure

The KK reduction on manifolds with SU(3)-structure leads to an effective action with

N = 2 supersymmetry which can be spontaneously broken. The scalar geometry is

unchanged compared to the Calabi-Yau case and the Kähler potentials for the geometric

moduli are given by

Kks(t, t̄) = − ln

∫

Y6

J ∧ J ∧ J , Kcs(z, z̄) = − ln
[

− i
∫

Y6

Ω ∧ Ω̄
]

. (E.6)

The Killing vectors and the potential on the other hand do depend on dJ and dΩ.

There is no globally defined one-form which can be build from ǫ so that we continue

to have the vanishing of the first Betti-number b1 = b5 = 0. The existence of J and Ω

implies that b2,3,4 6= 0. Let us define a finite basis of light modes by a set of two-forms

ωα, α = 1, . . . , b2, a symplectic set of three-forms (αA, β
B), A,B = 1, . . . , 1

2
b3 and a set of

four-forms ω̃α dual to the two-forms. To ensure the vanishing of the five-forms they are

required to obey

ωα ∧ αA = 0 = ωα ∧ βB . (E.7)

Now one can parametrize the torsion by the parameters (eαA, m
αA) which appear as

dωα = mαAαA − eαBβB ,

dαA = eαBω̃α ,

dβB = mαBω̃α ,

dω̃α = 0 .

(E.8)

Here the consistency condition

ωα ∧ dαA = −dωα ∧ αA , ωα ∧ dβB = −dωα ∧ βB , (E.9)

has been already implemented. In addition d2 = 0 implies

mαAeβA − eαAmβA = 0 . (E.10)

By using this basis one can compute the Killing vectors and the potential which turn out

to be consistent with the constraints of N = 2 supergravity. However before we display

the result let us pause and discuss mirror symmetry in compactification with fluxes.
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E.3 Mirror symmetry in flux compactifications

Recall that in Calabi-Yau compactifications of type IIA we turned on RR-fluxes for F2

and F4 in (7.15) and in IIB for F3 in (7.21). In type IIA one can add flux for F0 and

F6 where F0 denotes the flux in the space-time part of F4 and F6 can be identified as

an additional parameter of ten-dimensional type IIA supergravity. Thus altogether there

are 2(h(1,1) + 1) fluxes in IIA and 2(h(1,2) + 1) fluxes in IIB. Mirror symmetry exchanges

h(1,1) ↔ h(1,2) and we can see that that the number of fluxes is such that it could be

extended to Calabi-Yau compactifications with RR-flux. This can indeed be verified in

the effective Lagrangian.

However, the NS-flux H3 is identical in IIA and IIB with no obvious mirror dual. In

manifolds with SU(3)-structure the torsion can play the role of mirror fluxes for H3 in

that one can have

H3 + idJ ↔ dΩ . (E.11)

A detailed analysis shows that on half-flat manifolds discussed in (E.5) one obtains mirror

symmetric compactifications for electric three-form flux [10]. However, including also

magnetic fluxes we immediately see that the left hand side corresponds to 2b3 fluxes while

the right hand side only has b4 fluxes. These missing fluxes are provided on manifolds

with SU(3)× SU(3)-structure.

E.4 Manifolds with SU(3)× SU(3)-structure

The notion of generalized geometry was introduced by Hitchin [20–23]. He suggested to

combine the sum of the tangent bundle and the cotangent bundle into one generalized

tangent bundle. In addition he demanded an action of SO(d, d) on this 2d-dimensional

generalized tangent bundle. However, this is not the structure group of a manifold as

it includes T-duality type transformations.22 Manifolds of G × G-structure are defined

to have a pair of globally defined spinors/tensors where each one is left invariant by a

(different) G ⊂ SO(6) ⊂ SO(6, 6). Here the case of interest is a pair of spinors each left

invariant by SU(3) ⊂ SO(6) ⊂ SO(6, 6). If the two SU(3)’s coincide one has a manifold

with SU(3)-structure. For this generalized tangent bundle one can develop notions of

generalized differential geometry and define generalized complex structures or generalized

Kähler structures.

It turns to be convenient to express the couplings of the effective Lagrangian in terms of

spinors Φ of SO(6, 6). As in ordinary differential geometry one has a one-to-one correspon-

dence between bi-spinors and differential forms. The correspondence ωp ∼ ǫγ[i1 · · · γip]ǫ is

generalized as

ΦΓ · · ·ΓΦ ∼
∑

p

ωp , (E.12)

22It also is tailored for the split into left- and right-movers on the string worldsheet.
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where Γ are generalized Γ-matrices and the left hand side now is a poly-form. A Majorana

condition on Φ implies that the poly-form is real while a Weyl-condition splits the poly-

form into even and odd parts

Φ± ∼
∑

p even/odd

ωp . (E.13)

For manifolds with SU(3)-structure one finds

Φ+ ∼ eJc , Φ− ∼ Ω . (E.14)

The metric on the deformation space is again special Kähler with Kähler potentials

K± = − ln i〈Φ±, Φ̄±〉 , (E.15)

where 〈·, ·〉 is the Mukai-pairing defined by

〈Φ+, Φ̄+〉 = ω0 ∧ ω̄6 − ω2 ∧ ω̄4 + ω4 ∧ ω̄2 − ω6 ∧ ω̄0 ,

〈Φ−, Φ̄−〉 = ω1 ∧ ω̄5 − 2ω3 ∧ ω̄3 − ω5 ∧ ω̄1 .
(E.16)

The Killing vectors and the potential can also be expressed in terms of Φ± and expres-

sions like 〈Φ−, dΦ+〉, 〈Φ+, dΦ−〉 appear. The quantities 〈dΦ+〉, 〈dΦ−〉 can be viewed as

the generalized fluxes. Expanding in a symplectic basis (αA, β
B) for the odd-forms and

(ωα, ω̃α) for the even forms. They generalize (E.8) and obey

dωα = mαAαA − eαBβB ,

dω̃α = −qAααA + pαBβ
B ,

dαA = pαAω
α + eβAω̃β ,

dβA = qAαω
α +mAβω̃β .

(E.17)

d2 = 0 again imposes additional relations among the fluxes. However, d is no longer an

exterior derivative but a nilpotent operator (d2 = 0) which maps even-forms↔ odd-forms.

With this generalization mirror symmetry can be established which simply amounts to

Φ+ ↔ Φ− . (E.18)

Finally orientifolding such manifolds leads to superpotentials of the form

WIIB/O3 = −
∫

〈Φ−, dΠ+〉 , WIIA/O6 = −
∫

〈Φ+, dΠ−〉 , (E.19)

where

Π+ = C0 + C2 + C4 + C6 + iRe Φ+ , Π− = C1 + C3 + C5 + iRe Φ− . (E.20)

This leads to additional terms in the potential and helps moduli stabilization and super-

symmetry breaking.
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F Heterotic–type IIA duality in R1,3

In this appendix we discuss the conjecture

Heterotic in R1,3 ×K3× T 2 ≡ IIA in R1,3 × Y3 (≡ IIB in R1,3 × Ỹ3) . (F.1)

The second equality is the already familiar (perturbative) mirror symmetry with Ỹ3 being

the mirror Calabi-Yau of Y3. The first equality is non-perturbative and the topic of this

lecture.

Let us first recall the massless bosonic spectrum on both sides. The IIA spectrum

is summarized in Table 7.1, the heterotic spectrum for Calabi-Yau compactification we

discussed in Table 4.1 but we now need to redo the analysis for compactifications in

R1,3 ×K3× T 2.

The Hodge diamond for K3 reads

h(0,0)

h(1,0) h(0,1)

h(2,0) h(1,1) h(0,2)

h(2,1) h(1,2)

h(2,2)

=

1

0 0

1 20 1

0 0

1

, (F.2)

i.e. all Hodge numbers are fixed and therefore also the Euler number χ =
∑

r(−1)rbr =

1+b2 +1 = 24 is fixed. The metric on the moduli space of K3 surfaces has been studied in

mathematics extensively and is know to be the metric on the 58-dimensional coset space

MK3 =
SO(3, 17)

SO(3)× SO(17)
×R

+ . (F.3)

The NS two-form is expanded as

B2 = Bµνdx
µdxν + bαωα2 , α = 1, . . . , 22 , (F.4)

where ω2 is a basis of H2(K3). The K3 metric and the B-field together have the moduli

space

MK3+B =
SO(4, 20)

SO(4)× SO(20)
, (F.5)

which is a quaternionic-Kähler manifold.

As for Calabi-Yau compactifications we need to implement the heterotic constraint

(2.22). On K3 it implies

∫

K3

dĤ3 = −1
4
α′
∫

K3

(TrF ∧ F − TrR ∧R) = 0 . (F.6)
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Using ∫

K3

TrR ∧R = χ(K3) = 24 ,

∫

K3

TrF ∧ F = ninst , (F.7)

one infers that on the K3 there has to be gauge bundle with instanton number 24.

In the standard embedding one breaks E8 → E7 × SU(2) and embeds the instanton

background in the SU(2) so that E7 appears as the unbroken gauge group in R1,3. More

generally one breaks E8 → G×H , embeds the instanton background in H and is left with

G as the unbroken gauge group in R1,3. The instanton solutions on K3 have a moduli space

MHK which is hyper-Kähler but otherwise unknown. In the heterotic compactification

discussed here is is fibred overMK3+B given in (F.5) and this total moduli space is known

to be quaternionic-Kähler but otherwise is unknown.

Before we proceed let us discuss the bosonic spectrum of the heterotic string in R1,5×K3.

It features the gravity multiplet containing (gµ̂ν̂ , B
−
µ̂ν̂), µ̂, ν̂ = 0, . . . 5, one tensor multiplet

containing (B+
µ̂ν̂ , φ), nv = dim(G) vector multiplets containing Aaµ̂ and nh = 20 + ninst

h =

20 + dim(MHK) hypermultiplets each containing four scalars.

Further compactification on T 2 gives one Kähler modulus T , one complex structure

modulus U and dilaton φ and axion a (dual of Bµν) combine again to S = e−φ + ia.

There are also four KK gauge fields arising from Gµi, Bµi, µ, ν = 0, . . . 3, i = 1, 2. The

6d gauge fields Aaµ̂ split into (Aaµ, A
a
i ). The scalars ACSAi in the Cartan subalgebra of G

are flat direction of the potential and thus parametrize part of the moduli space. For

generic 〈ACSAi 〉 the gauge group is broken G→ [U(1)]rank(G). At such points the spectrum

contains the gravity multiplet (gµν , A
0
µ), nv = rank(G) vector multiplets (ACSAµ , ACSAi )

plus three vector multiplets out of the four Gµi, Bµi. (The fourth is the graviphoton A0
µ.)

Finally the nh hypermultiplets are exactly as in d = 6.

The scalar field space was discussed in section D.2. The scalar geometry is the product

space given in (D.11). Recall that the M2nv

v,SK component is a special Kähler manifold

specified by a holomorphic prepotential F as given in (D.20) and (B.31). Since the

dilaton in type IIA is part of a hypermultiplet, F receives no quantum correction and

thus is exact at the string tree-level.

As we just saw on the heterotic side the dilaton is in a vector multiplet and thus F is

corrected at one-loop and non-perturbatively as follows

F = F0(S, t) + F1−loop(t) + Fnp(e−S, t) , (F.8)

where t = (T, U,ACSA). For F0(S, t) one finds

F0(S, t) = Sηijt
itj , (F.9)

where η is the flat metric of SO(2, nv − 1). The Kähler potential derived from this F0

(with the help of (D.20)) reads

K0 = − ln(S + S̄)− ln ηij(t+ t̄)i(t+ t̄)j , (F.10)

83



which is the Kähler potential on the space

M =
SU(1, 1)

U(1)
× SO(2, nv − 1)

SO(2)× SO(nv − 1)
. (F.11)

Recall that the second derivative Fij is related to the gauge couplings via (D.21). There-

fore F1−loop(t) is related to the threshold corrections of the gauge couplings which we

discussed for N = 1 in Section C.1.

As in N = 1 it is difficult to compute F1−loop(t) in general. As in N = 1 one has

two option: a direct computation via an explicit string loop diagram or indirectly via the

holomorphic anomaly which in N = 2 reads

∆0 = − 1
16π2 b K̂(t, t̄) , (F.12)

where b = 2(T (ad)−∑
r
T (r)) is the one-loop coefficient of the N = 2 β-function.

For the toroidal moduli T, U one finds [?]

∂3
TF1−loop =

1

2π

E4(iT )E4(iU)E6(iU)

(j(iT )− j(iU))η(iU)
,

∂3
UF1−loop = − 1

2π

E4(iU)E4(iT )E6(iT )

(j(iT )− j(iU))η(iT )
.

(F.13)

Here Er are modular forms which means they are holomorphic and transform under

SL(2,Z) as

Er(iT )→ (icT + d)rEr(iT ) . (F.14)

j is the unique holomorphic, SL(2,Z) invariant but singular j-function. The Dedekind

η-function we already intoduced in Section C.1. The singularities in (F.13) correspond to

the gauge enhancement [U(1)]2 → SU(2)×U(1)→ SU(3) on a torus. Before we proceed

let us note that the expressions given in (F.13) can be integrated to give F1−loop [?].

Now we are prepared to discuss the duality (F.1). For a dual pair the massless spectrum

has to agree, i.e. one has to have nhet
v = nIIA

v , nhet
h = nIIA

h and there has to be a “mirror

map” tα ↔ (S, ti) such that

Fhet(S, t
i) ≡ FIIA(tα) . (F.15)

From (F.8) and (F.9) we see that the dilaton plays a special role and there has to be one

Kähler modulus ts which is dual to the heterotic dilaton. Comparing (F.9) and (B.31) we

see that this requires

dtststs = 0 = dtststi . (F.16)

This condition is known in the mathematics literature and states that the Calabi-Yau

Y3 is K3-fibred. This means that it has a P1 as a base and K3 manifolds as fibers.

One requirement is that there are only a finite number of points on the P1 where the

K3 is allowed to degenerate. For these classes of manifolds the Calabi-Yau intersection
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numbers dαβγ obey (F.16) with ts being the volume of the P1. Via mirror symmetry one

can compute FIIA exactly in specific cases, evaluate it in the large ts limit and compare

with Fhet computed via (F.13). In all known examples (F.15) holds for an infinite number

of terms. Conversely, if one accepts the duality (F.1) one can use (F.15) to compute Fhet

exactly including all non-perturbative terms.

The scalars in the hypermultiplets live on a quaternionic-Kähler geometryM4nh

h,QK as dis-

cussed in section D.2. This geometry is more constrained but at the same time more diffi-

cult to describe. (For example, there is no (easy) holomorphic function which characetrizes

it.) As a consequence the checks performed so far are much weaker. A similar analysis as

we just described for the vector multiplets has been partially performed for hypermulti-

plets in [?]. One of the resulting conjectures is that the duality (F.15) also requires that

the mirror Calabi-Yau Ỹ3 has to be a K3-fibration [?].
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