Problem 5.1

a) Consider the scalar potential of $N=1$ supergravity in the form

$$
V=e^{G}\left(G^{i \bar{\jmath}} G_{i} G_{\bar{\jmath}}-3\right), \quad G=K+\ln |W|^{2}
$$

Compute the mass matrices in a Minkowskian background and show

$$
M_{i \bar{\jmath}}^{2}=\left\langle\left(D_{i} G_{k} \bar{D}_{\bar{\jmath}} G^{k}-R_{i \bar{\jmath} k} G^{k} G^{\bar{l}}+G_{i \bar{\jmath}}\right) e^{G}\right\rangle, \quad M_{i j}^{2}=\left\langle\left(G^{k} D_{i} D_{j} G_{k}+D_{i} G_{j}+D_{j} G_{i}\right) e^{G}\right\rangle,
$$

where $D_{i} G_{j}=\partial_{i} G_{j}-\Gamma_{i j}^{k} G_{k}, D_{i} G_{\bar{\jmath}}=G_{i \bar{\jmath}}$.
Hint: : Use $D_{i} V=0$ as the condition for a Minkowski minimum.
b) Show that the fermionic mass matrix $m_{i j}=\left\langle\left(D_{i} G_{j}+\frac{1}{3} G_{i} G_{j}\right)\right\rangle m_{3 / 2}$ always has a zero eigenvalue and explain its physical interpretation.

Hint: Find an appropriate null-eigenvector.

Problem 5.2

The Polonyi model is defined by

$$
K=\phi \bar{\phi}, \quad W_{P}=m^{2}(\phi+\beta), \quad m, \beta \in \mathbb{R}
$$

a) For which β is supersymmetry spontaneously broken?
b) Check that $\kappa \phi= \pm(\sqrt{3}-1), \kappa \beta= \pm(2-\sqrt{3})$ is a Minkowskian extremum of the potential V.
c) Compute the gravitino mass and $\left\langle F_{\phi}\right\rangle$.

Problem 5.3

Consider the situation where an observable sector is coupled to the Polonyi model with

$$
K=\phi \bar{\phi}+Q^{I} \bar{Q}^{I}, \quad W=\frac{1}{2} m_{I J} Q^{I} Q^{J}+\frac{1}{3} Y_{I J L} Q^{I} Q^{J} Q^{K}+W_{P}(\phi)
$$

where Q^{I} are the fields of the observable sector, $m_{I J}, Y_{I J L}$ are constant and W_{P} is given in problem 5.2.
a) Compute the soft scalar masses and the A and B terms assuming that $\left\langle F_{\phi}\right\rangle$ is the only non-vanishing F-term. Are they universal?
b) Compute the soft gaugino masses for the two cases of a gauge kinetic function $f(\phi)$ and $f=$ constant. Are they universal?

Hint: Use the formulas given in section 15.3 of the lecture notes.

Problem 5.4

a) Rewrite the $N=2$ Kähler potential, which for one field a is given by

$$
K=i\left(\bar{a}_{D} a-a_{D} \bar{a}\right), \quad a_{D}=\partial_{a} F(a)
$$

in the form

$$
K=i \bar{V}^{T} \Omega V, \quad \text { for } \quad V=\binom{a_{D}}{a}
$$

and determine the 2×2 matrix Ω.
b) Show that K invariant under the transformation

$$
V \rightarrow S V, \quad \text { where } \quad S=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right), \quad a d-b c=1, \quad a, b, c, d \in \mathbb{R}
$$

c) The complex gauge coupling τ transforms as

$$
\tau \rightarrow \tau^{\prime}=\frac{a \tau+b}{c \tau+d}
$$

Consider the two cases $a=d=1, c=0$ and $a=d=0, b=-c=1$. What is their physical significance in terms of τ and V ?

