Problem Set 5

This problem set is a former written exam. If you hand it in by 12.00h on 22.11.10, it counts towards the bonus. (Note that handing it in jointly does not count.)

Problem 5.1 (20 points)

Consider a complex scalar field ϕ with a Lagrangian

$$\mathcal{L} = (D_{\mu}\phi)(D^{\mu}\phi)^* - m^2\phi\phi^* - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

where

$$D_{\mu}\phi := \partial_{\mu}\phi + iqA_{\mu}\phi , \qquad F_{\mu\nu} := \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} , \qquad q \in \mathbb{R} .$$

- a) Compute the Euler-Lagrange equations for ϕ , ϕ^* and A_{μ} .
- b) Show that

$$\phi \to \phi' = e^{iq\alpha}\phi , \qquad \alpha \in \mathbb{R} ,$$

is a symmetry of \mathcal{L} , compute the associated Noether current and check its conservation.

Problem 5.2 (20 points)

a) Show in the chiral representation

$$\gamma^2 (\gamma^\mu)^* \gamma^2 = a \gamma^\mu , \qquad \gamma^0 (\gamma^\mu)^* \gamma^0 = b (\gamma^\mu)^T ,$$

and compute a and b.

Hint: You might find $\gamma^0 \gamma^\mu \gamma^0 = (\gamma^\mu)^\dagger$ useful.

b) Determine the transformation law of $\psi_c := \gamma^2 \psi^*$ to be

$$\delta\psi_c = -\frac{i}{2} d\,\omega_{\mu\nu} S^{\mu\nu}\psi_c \; ,$$

and compute d.

Hint: Use the result of a) and $\delta \psi = -\frac{i}{2} \omega_{\mu\nu} S^{\mu\nu} \psi$.

c) Which covariant first-order differential equation does ψ_c satisfy?

Problem 5.3 (20 points)

For a four-component Dirac spinor ψ one defines

$$\psi = \psi_L + \psi_R$$
, $\psi_L := \frac{1}{2}(1 - \gamma^5)\psi$, $\psi_R := \frac{1}{2}(1 + \gamma^5)\psi$.

a) Show

$$\bar{\psi}_L = \frac{1}{2} \bar{\psi} (1 + \gamma^5) , \qquad \bar{\psi}_R = \frac{1}{2} \bar{\psi} (1 - \gamma^5) ,$$

and

$$\bar{\psi}_R \psi_R = 0 = \bar{\psi}_L \psi_L , \qquad \bar{\psi}_R \gamma^\mu \psi_L = 0 = \bar{\psi}_L \gamma^\mu \psi_R .$$

Hint: $(\gamma^5)^2 = 1, \{\gamma^5, \gamma^\mu\} = 0, (\gamma^5)^\dagger = \gamma^5.$

b) Show

$$\gamma^5 \psi_L = -\psi_L , \qquad \gamma^5 \psi_R = \psi_R ,$$

and express $\bar{\psi}\psi$ and $\bar{\psi}\gamma^5\psi$ in terms of $\psi_L, \psi_R, \bar{\psi}_L, \bar{\psi}_R$.

Hint: Use the results of a).

c) Give the Dirac Lagrangian expressed in terms of $\psi_L, \psi_R, \bar{\psi}_L, \bar{\psi}_R$. Hint: Use the results of a).

Problem 5.4 (20 points)

Consider the operator

$$\vec{P} := -i \int d^3x \, \psi^\dagger \vec{\nabla} \psi$$
 .

Use

$$\psi(x,t=0) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\vec{p}}}} \sum_s \left(a^s_{\vec{p}} u^s(p) \, e^{i\vec{p}\cdot\vec{x}} + b^{\dagger s}_{\vec{p}} \, v^s(p) \, e^{-i\vec{p}\cdot\vec{x}} \right) \,,$$

to show

$$\vec{P} = \int \frac{d^3p}{(2\pi)^3} \vec{f} \sum_{s} \left(a^{\dagger s}_{\vec{p}} a^s_{\vec{p}} + g \, b^{\dagger s}_{\vec{p}} b^s_{\vec{p}} \right) + c \; ,$$

and compute \vec{f}, g and c.

Hint: You might find the following identities useful:

$$u^{s\dagger}(p) \, u^{s'}(p) = 2E_{\vec{p}} \, \delta^{ss'} = v^{s\dagger}(p) \, v^{s'}(p) \, , \qquad u^{s\dagger}(\vec{p}) \, v^{s'}(-\vec{p}) = 0 = v^{s\dagger}(\vec{p}) \, u^{s'}(-\vec{p}) \, .$$

Furthermore $\int d^3x e^{i(\vec{p}-\vec{p'})\cdot\vec{x}} = (2\pi)^3 \delta^3(\vec{p}-\vec{p'}).$