Problem 9.1

The Γ-function is defined by

$$
\Gamma(\alpha):=\int_{0}^{\infty} d y y^{\alpha-1} e^{-y}
$$

a) Show

$$
\Gamma(\alpha+1)=\alpha \Gamma(\alpha), \quad \Gamma(\alpha)=(\alpha-1)!\quad \text { for } \alpha \in \mathbb{N}
$$

and

$$
\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}=\int_{0}^{1} d y y^{\alpha-1}(1-y)^{\beta-1}
$$

Hint: The first identity can be shown by appropriate partial integration. The last identity can be proved by writing $\Gamma(\alpha) \Gamma(\beta)$ as a double integral (in y and z) and substituting $y=s t, z=s(1-t)$.
b) The Γ-function also has a product representation of the form

$$
\frac{1}{\Gamma(\alpha)}=\alpha e^{\gamma \alpha} \prod_{n=1}^{\infty}\left(1+\frac{\alpha}{n}\right) e^{-\frac{\alpha}{n}}
$$

where γ is the Euler-Mascheroni constant. Use this representation to show

$$
\lim _{\alpha \rightarrow 0} \Gamma(\alpha)=\frac{1}{\alpha}-\gamma+\mathcal{O}(\alpha)
$$

Problem 9.2

a) Using a Wick rotation show

$$
\int \frac{d^{d} l}{(2 \pi)^{d}} \frac{1}{\left(l^{2}-\Delta\right)^{m}}=\frac{i(-1)^{m}}{(4 \pi)^{d / 2}} \frac{1}{\Delta^{m-d / 2}} \frac{\Gamma(m-d / 2)}{\Gamma(m)}
$$

and

$$
\int \frac{d^{d} l}{(2 \pi)^{d}} \frac{l^{2}}{\left(l^{2}-\Delta\right)^{m}}=\frac{i(-1)^{m-1}}{(4 \pi)^{d / 2}} \frac{d}{2} \frac{1}{\Delta^{m-d / 2-1}} \frac{\Gamma(m-d / 2-1)}{\Gamma(m)}
$$

b) Using the results of 9.1 and 9.2 a) compute explicitly the divergent and finite pieces of the integral

$$
\lim _{d \rightarrow 4} \int \frac{d^{d} l}{(2 \pi)^{d}} \frac{l^{2}}{\left(l^{2}-\Delta\right)^{3}}
$$

Problem 9.3

a) Show

$$
\int \frac{d^{d} l}{(2 \pi)^{d}} \frac{l^{\mu} l^{\nu}}{\left(l^{2}-\Delta\right)^{m}}=\frac{1}{d} \eta^{\mu \nu} \int \frac{d^{d} l}{(2 \pi)^{d}} \frac{l^{2}}{\left(l^{2}-\Delta\right)^{m}} .
$$

Analogously argue that

$$
\int \frac{d^{d} l}{(2 \pi)^{d}} \frac{l^{\mu} l^{\nu} l^{\rho} l^{\sigma}}{\left(l^{2}-\Delta\right)^{m}}=T^{\mu \nu \rho \sigma} \int \frac{d^{d} l}{(2 \pi)^{d}} \frac{\left(l^{2}\right)^{2}}{\left(l^{2}-\Delta\right)^{m}}
$$

and determine $T^{\mu \nu \rho \sigma}$.
b) Show that for $d=4-\epsilon$ one has

$$
\begin{aligned}
\gamma^{\mu} \gamma^{\nu} \gamma_{\mu} & =(\epsilon-2) \gamma^{\nu}, \\
\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma_{\mu} & =4 \eta^{\nu \rho}-\epsilon \gamma^{\nu} \gamma^{\rho}, \\
\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma_{\mu} & =-2 \gamma^{\sigma} \gamma^{\rho} \gamma^{\nu}+\epsilon \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}
\end{aligned}
$$

Problem 9.4

In a Pauli-Villars regularization one introduce an additional massive ghost field with a wrongsign kinetic term. For the electron self-energy computed in class one can show that as a consequence the divergent integral is replaced as follows:

$$
\int \frac{d^{4} l}{(2 \pi)^{4}} \frac{1}{\left(l^{2}-\Delta\right)^{2}} \rightarrow I=\int \frac{d^{4} l}{(2 \pi)^{4}}\left(\frac{1}{\left(l^{2}-\Delta\right)^{2}}-\frac{1}{\left(l^{2}-M\right)^{2}}\right) .
$$

a) Argue that I is convergent in $d=4$.
b) Compute I by Wick rotating and introducing a UV cut-off. Show

$$
I=\frac{i}{(4 \pi)^{2}} \log (M / \Delta)
$$

c) In which limit do you now see the UV-divergence?

