Problem 6.1

The spin-flipped $u^{-s}(p)$ is given by

$$
u^{-s}(p)=\frac{1}{N}\binom{(p \cdot \sigma+m)\left(-i \sigma^{2} \xi^{s}\right)}{(p \cdot \bar{\sigma}+m)\left(-i \sigma^{2} \xi^{s}\right)}
$$

a) Show

$$
u^{-s}(\tilde{p})=-\gamma^{1} \gamma^{3}\left(u^{s}(p)\right)^{*}, \quad \text { where } \quad \tilde{p}=\left(p_{0},-\vec{p}\right) .
$$

b) Show

$$
T \psi(t, \vec{x}) T=\gamma^{1} \gamma^{3} \psi(-t, \vec{x}), \quad \text { for } \quad T a_{\vec{p}}^{s} T=a_{-\vec{p}}^{-s}, \quad T b_{\vec{p}}^{s} T=b_{-\vec{p}}^{-s}, \quad T^{2}=\mathbf{1}
$$

and T anti-unitary. (An anti-unitary operator obeys $T c=c^{*} T$ for $c \in \mathbb{C}$.)
Hint: Also use $v^{-s}(\tilde{p})=-\gamma^{1} \gamma^{3}\left(v^{s}(p)\right)^{*}$.
c) Compute

$$
T \bar{\psi} \psi(t, \vec{x}) T, \quad T \bar{\psi} \gamma^{5} \psi(t, \vec{x}) T, \quad T \bar{\psi} \gamma^{\mu} \psi(t, \vec{x}) T .
$$

Problem 6.2

a) Draw all Feynman-diagrams for the amplitude $\langle\Omega| T\{\phi(x) \phi(y)\}|\Omega\rangle$ to order λ^{2} using the interaction $H_{I}=\frac{\lambda}{4!} \int d^{4} z \phi^{4}(z)$.
b) Give for each diagram the associated expression in terms of Feynman-propagators (including the symmetry factor).
c) Show that the contribution at order λ is proportional to $I=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{k^{2}-m^{2}}$.
d) Show that in Euclidean \mathbb{R}^{4} one has $\int_{-\infty}^{\infty} d^{4} k e^{-k_{r}^{2}}=\pi^{2}$ for $k_{r}^{2}=\sum_{i=1}^{4} k_{i}^{2}$. By evaluating the same integral in polar coordinates with $d^{4} k=d \Omega_{3} d k_{r} k_{r}^{3}$ infer that $\int d \Omega_{3}=2 \pi^{2}$ holds.
e) Use the result from 2 d) and a Wick rotation $k^{0} \rightarrow i k^{0}$ to compute the integral I for $k_{r} \in[0, \Lambda]$. How does I behave in the limit $\Lambda \rightarrow \infty$?
a) Show that for n odd one has

$$
\operatorname{Tr}\left(\gamma^{\mu_{1}} \ldots \gamma^{\mu_{n}}\right)=0
$$

Hint: Insert $\left(\gamma^{5}\right)^{2}$.
b) Show

$$
\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma_{\mu}=4 \eta^{\nu \rho} \mathbf{1}
$$

c) Show

$$
\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{5}\right)=0
$$

Hint: Insert $\left(\gamma^{\rho}\right)^{2}$ for $\rho \neq \mu, \nu$.
d) Show

$$
\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{5}\right)=-4 i \epsilon^{\mu \nu \rho \sigma}
$$

Hint: Use 6.2c).

