Problem 4.1

The solution of the Dirac equation can be given as

$$
\psi^{+}=u(p) e^{-i p \cdot x} \quad \text { where } \quad u(p)=\frac{1}{N}\binom{(p \cdot \sigma+m) \xi^{s}}{(p \cdot \bar{\sigma}+m) \xi^{s}}
$$

and

$$
\psi^{-}=v(p) e^{i p \cdot x} \quad \text { where } \quad v(p)=\frac{1}{N}\binom{(p \cdot \sigma+m) \xi^{s}}{-(p \cdot \bar{\sigma}+m) \xi^{s}}
$$

with

$$
p^{0}=E_{\vec{p}}, \quad N=\sqrt{2\left(E_{\vec{p}}+m\right)}, \quad \xi^{1}=\binom{1}{0}, \quad \xi^{2}=\binom{0}{1}
$$

a) Check the following relations

$$
\begin{array}{rlrl}
\bar{u}_{a}^{r}(p) u_{a}^{s}(p) & =2 m \delta^{r s}, & \bar{v}_{a}^{r}(p) v_{a}^{s}(p)=-2 m \delta^{r s}, & \bar{u}_{a}^{r}(p) v_{a}^{s}(p)=0, \\
u_{a}^{r \dagger}(p) u_{a}^{s}(p) & =2 p^{0} \delta^{r s}, & v_{a}^{r \dagger}(p) v_{a}^{s}(p)=2 p^{0} \delta^{r s}
\end{array}
$$

b) Show

$$
\sum_{s=1}^{2} u_{a}^{s}(p) \bar{u}_{b}^{s}(p)=\gamma_{a b}^{\mu} p_{\mu}+m \delta_{a b}, \quad \sum_{s=1}^{2} v_{a}^{s}(p) \bar{v}_{b}^{s}(p)=\gamma_{a b}^{\mu} p_{\mu}-m \delta_{a b}
$$

c) Show

$$
\bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p)=\frac{1}{2 m} \bar{u}\left(p^{\prime}\right)\left(p^{\prime \mu}+p^{\mu}+2 i S^{\mu \nu}\left(p^{\prime}-p\right)_{\nu}\right) u(p)
$$

where $S^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$.
Hint: Use $\left(\gamma^{\mu} p_{\mu}-m\right) u(p)=0=\bar{u}\left(p^{\prime}\right)\left(\gamma^{\mu} p_{\mu}^{\prime}-m\right)$.

Problem 4.2

a) Show that $S^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ satisfies

$$
\left[S^{\mu \nu}, S^{\rho \sigma}\right]=i\left(\eta^{\nu \rho} S^{\mu \sigma}-\eta^{\nu \sigma} S^{\mu \rho}-\eta^{\mu \rho} S^{\nu \sigma}+\eta^{\mu \sigma} S^{\nu \rho}\right)
$$

b) Determine the Lorentz transformation of

$$
j^{\mu}:=\bar{\psi} \gamma^{\mu} \psi, \quad \text { and } \quad A^{\mu \nu}:=\frac{1}{2} \bar{\psi}\left[\gamma^{\mu}, \gamma^{\nu}\right] \psi .
$$

Problem 4.3

A quantized Dirac field $\psi(x)$ is given in terms of raising and lowering operators by

$$
\begin{aligned}
\psi(x) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{p}}}} \sum_{s=1}^{2}\left(a_{\vec{p}}^{s} u^{s}(p) e^{-i p \cdot x}+b_{\vec{p}}^{s \dagger} v^{s}(p) e^{i p \cdot x}\right)_{p^{0}=E_{\vec{p}}}, \\
\bar{\psi}(x) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{p}}}} \sum_{s=1}^{2}\left(b_{\vec{p}}^{s} \bar{v}^{s}(p) e^{-i p \cdot x}+a_{\vec{p}}^{s \dagger} \vec{u}^{s}(p) e^{i p \cdot x}\right)_{p^{0}=E_{\vec{p}}},
\end{aligned}
$$

with

$$
\left\{a_{\vec{p}}^{s}, a_{\vec{q}}^{r \dagger}\right\}=\left\{b_{\vec{p}}^{s}, b_{\vec{q}}^{r \dagger}\right\}=(2 \pi)^{3} \delta(\vec{p}-\vec{q}) \delta^{r s},
$$

a) Show

$$
\left\{\psi_{a}(\vec{x}, t), \psi^{\dagger}(\vec{y}, t)\right\}=\delta(\vec{x}-\vec{y}) \delta_{a b}
$$

Hint: Use the result from problem 4.2.b).
b) The Hamiltonian for a Dirac field is given by

$$
H(\psi)=i \int d^{3} x \bar{\psi} \gamma^{0} \partial_{0} \psi
$$

Express H in terms of raising and lowering operators and show

$$
H=\int \frac{d^{3} p}{(2 \pi)^{3}} E_{\vec{p}} \sum_{s}\left(a_{\vec{p}}^{s \dagger} a_{\vec{p}}^{s}+b_{\vec{p}}^{s \dagger} b_{\vec{p}}^{s}\right)+c(\psi),
$$

Compute $c(\psi)$.
c) Repeat the computation for the Noether charge Q and show

$$
Q=\int d^{3} x \psi^{\dagger} \psi=\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{s}\left(a_{\vec{p}}^{s \dagger} a_{\vec{p}}^{s}-b_{\vec{p}}^{s \dagger} b_{\vec{p}}^{s}\right)+c^{\prime}
$$

d) Add to $H(\psi)$ an appropriate $H\left(\phi^{i}\right)\left(\phi^{i}\right.$ being a set of N scalar fields) such that

$$
c(\psi)+c\left(\phi^{i}\right)=0 .
$$

Why is this not a solution to the problem of the cosmological constant?

