Problem 1.1

a) Rotations in \mathbb{R}^{3} are characterized by an orthogonal 3×3 rotation matrix D satisfying $D^{T} D=1$. Determine D for a rotation in the $x-y$-plane in terms of a rotation angle α_{1} such that $\operatorname{det} D=1$ and $D\left(\alpha_{1}=0\right)=\mathbf{1}$ holds. How does D look for rotations in the $x-z$-and $y-z$-plane? Which form does a generic rotation matrix D have?
b) Expand D to first order in the rotation angles $\alpha_{j}, j=1,2,3$, write it in the form

$$
D=\mathbf{1}+i \sum_{j=i}^{3} \alpha_{j} T^{j}+\mathcal{O}\left(\alpha^{2}\right)
$$

and determine the T^{j}.
c) Compute $\left[T^{i}, T^{j}\right]$.
d) Lorentz transformations are characterized by a 4×4 matrix Λ which satisfies $\Lambda^{T} \eta \Lambda=\eta$ where η is the pseudo-Euclidean metric tensor. Show that rotations in \mathbb{R}^{3} are a special case of Lorentz transformations.
e) Show that

$$
\Lambda=\left(\begin{array}{cccc}
\cosh \theta & -\sinh \theta & 0 & 0 \\
-\sinh \theta & \cosh \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

is a Lorentz transformation.
f) Show that Lorentz transformations satisfy $\operatorname{det} \Lambda= \pm 1$.

Problem 1.2

A second rank tensor $T^{\mu \nu}$ is defined by its transformation law

$$
T^{\mu \nu} \rightarrow T^{\mu \nu \prime}=\sum_{\rho \sigma} \Lambda_{\rho}^{\mu} \Lambda_{\sigma}^{\nu} T^{\rho \sigma}
$$

a) Check that $\sum_{\mu \nu \kappa \theta} T^{\mu \nu} T^{\kappa \theta} \eta_{\mu \kappa} \eta_{\nu \theta}$ is a Lorentz scalar.
b) Determine the transformation law of $T_{\mu \nu}:=\sum_{\rho \sigma} \eta_{\mu \rho} \eta_{\nu \sigma} T^{\rho \sigma}$.
c) The field strength $F_{\mu \nu}$ is defined as $F_{\mu \nu}:=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ for a four-vector A_{μ}. Determine the transformation law of $F_{\mu \nu}$.
d) The ϵ-tensor is defined as

$$
\epsilon^{\mu \nu \rho \sigma}= \begin{cases}+1 & \text { for even permutations of } 0123 \\ -1 & \text { for odd permutations of } 0123 \\ 0 & \text { otherwise }\end{cases}
$$

It transforms as

$$
\epsilon^{\mu \nu \rho \sigma} \rightarrow \epsilon^{\mu \nu \rho \sigma \prime}=\sum_{\mu^{\prime} \nu^{\prime} \rho^{\prime} \sigma^{\prime}} \Lambda_{\mu^{\prime}}^{\mu} \Lambda_{\nu^{\prime}}^{\nu} \Lambda_{\rho^{\prime}}^{\rho} \Lambda_{\sigma^{\prime}}^{\sigma} \epsilon^{\mu^{\prime} \nu^{\prime} \rho^{\prime} \sigma^{\prime}} .
$$

Show that $\epsilon^{\mu \nu \rho \sigma}$ is invariant for $\operatorname{det} \Lambda=1$.

Problem 1.3

Consider a complex scalar field ϕ with Lagrangian

$$
\mathcal{L}=\sum_{\mu} \partial_{\mu} \phi \partial^{\mu} \phi^{*}-m^{2} \phi \phi^{*} .
$$

a) Decompose ϕ into its real and imaginary part as $\phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)$ and determine \mathcal{L} in terms of ϕ_{1} and ϕ_{2}.
b) Compute the Euler-Lagrange equations, the conjugate momenta $\pi_{1,2}$ and the Hamiltonian density \mathcal{H}.
c) Derive the Euler-Lagrange equations, the conjugate momenta π and the Hamiltonian density \mathcal{H} directly for the complex ϕ without decomposing into real and imaginary part.

Problem 1.4

Consider the Lagrangian

$$
\mathcal{L}=-\frac{1}{4} \sum_{\mu \nu} F_{\mu \nu} F^{\mu \nu}-\sum_{\mu} A_{\mu} j^{\mu}
$$

with $F_{\mu \nu}:=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}, F^{\mu \nu}:=\sum_{\rho \sigma} \eta^{\mu \rho} \eta^{\nu \sigma} F_{\rho \sigma}$ and A_{μ}, j^{μ} real.
a) Compute the Euler-Lagrange equations for A_{μ}.
b) Express $\sum_{\mu \nu} F_{\mu \nu} F^{\mu \nu}$ and the Euler-Lagrange equations for A_{μ} in terms of $E^{i}=F^{i 0}$ and $\sum_{k=1}^{3} \epsilon^{i j k} B^{k}=-F^{i j}$ and show that the inhomogeneous Maxwell equations appear.
c) Show that the homogeneous Maxwell equations in terms of $F_{\mu \nu}$ are given by the four equations

$$
\sum_{\nu \rho \sigma} \epsilon_{\mu \nu \rho \sigma} \partial^{\nu} F^{\rho \sigma}=0 .
$$

