Theoretische Physik I

WS 09/10

Abgabe: 17.12

Aufgabe 1

a) Berechnen Sie mit Hilfe des Gaußschen Satzes das elektrische Feld eines unendliche langen Kreiszylinder mit Radius R und homogener Ladungsdichte ρ_0 innerhalb und außerhalb des Zylinders.

Hinweis: Benutzen Sie Zylinderkoordinaten

$$x = r\cos\phi$$
, $y = r\sin\phi$, $z = z$

und zeigen Sie zunächst $dxdydz = rdrd\phi dz$.

b) Wie lautet das elektrische Feld für 2 dünne unendlich lange Drähte mit entgegensetzer Ladungsdichte, die sich an den Positionen $x = \pm a, y = 0$ befinden.

Hinweis: Bestimmen Sie zunächst die kartesischen Komponenten des in a) berechneten elektrischen Feldes in kartesischen Koordinaten.

Aufgabe 2

Gegeben sei die homogene Ladungsdichte

$$\rho = \frac{q}{2d} \, \delta(x) \, \delta(y) \, \theta(d - |z|) .$$

 $(\theta(u)$ ist die Stufenfunktion mit $\theta(u)=1$ für $u\geq 0$ und $\theta(u)=0$ für u<0.)

- a) Um welche geometrische Ladunsgverteilung handelt es sich?
- b) Berechnen Sie das Potenzial $\phi(\vec{x})$ mit Hilfe der Formel

$$\phi(\vec{x}) = \frac{1}{4\pi\epsilon_0} \int d^3x' \frac{\rho(\vec{x}')}{|\vec{x} - \vec{x}'|} .$$

Hinweis: Benutzen Sie $\int \frac{dx}{\sqrt{a^2 + x^2}} = arsinh(\frac{x}{a})$.

- c) Berechnen Sie \vec{E} in kartesischen Koordinaten.
- d) Vergleichen Sie Ihr Ergebnis im Limes $d \to \infty$ mit dem Ergebnis aus Aufgabe 1.

Aufgabe 3

Zeigen Sie, dass der Laplaceoperator in Zylinderkoordinaten durch

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2}$$

gegeben ist.

Aufgabe 4

a) Zeigen Sie die folgenden Eigenschaften der δ -Funktion:

i)
$$x\delta(x) = 0$$
, ii) $\delta(x) = \delta(-x)$, iii) $\delta(ax) = \frac{1}{|a|}\delta(x)$,

$$iv$$
) $\frac{d}{dx}\theta(x) = \delta(x)$,

wobei $\theta(x)$ die Stufenfunktion ist.

b) Gegeben sei die Funktionenfolge

$$g_n = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}n^2k^2} e^{ikx} dk$$
.

Zeigen Sie

$$\delta(x - x_0) = \lim_{n \to 0} g_n(x - x_0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ik(x - x_0)} dk .$$

Hinweis: Schreiben Sie den Exponenten von g_n in der Form $-\frac{1}{2}n^2(k-i\frac{x}{n^2})^2$, substituieren Sie $q=k-i\frac{x}{n^2}$ und führen Sie die k-Integration in g_n aus.