WS 05/06

Abgabetermin: 2.12.

Aufgabe 1 (3 Punkte)

a) Druck P und chemisches Potential μ sind intensive Variable und erfüllen daher

$$P(\lambda V, \lambda N) = P(V, N)$$
, $\mu(\lambda V, \lambda N) = \mu(V, N)$, $\lambda \in \mathbf{R}$

Zeigen Sie, daß daraus die folgenden Beziehungen resultieren

$$V \frac{\partial P}{\partial V} + N \frac{\partial P}{\partial N} = 0 , \qquad V \frac{\partial \mu}{\partial V} + N \frac{\partial \mu}{\partial N} = 0 .$$

- b) Welche Maxwell Relationen folgen aus der der Enthalpie H bzw. der freien Enthalpie G?
- c) Benutzen Sie die Ergebnisse aus a) und eine Maxwell Relation der freien Energie, um zu zeigen

$$\kappa_T = \frac{V}{N^2} \left(\frac{\partial N}{\partial \mu} \right)_{T.V} .$$

 $(\kappa_T \text{ ist die isotherme Kompressibilität.})$

Aufgabe 2 (3 Punkte)

a) Zeigen Sie, daß für den thermische Ausdehnungskoeffizienten α gilt

$$\frac{\alpha}{\kappa_T} = \left(\frac{\partial P}{\partial T}\right)_V.$$

Hinweis: Benutzen Sie Aufgabe 3 von Blatt 4.

b) Zeigen Sie

$$\left(\frac{\partial E}{\partial V}\right)_T + P - T\left(\frac{\partial P}{\partial T}\right)_V = 0.$$

 $\mathit{Hinweis} :$ Verwenden Sie die Maxwell Relation, die aus $\frac{\partial^2 S}{\partial T \partial V}$ folgt.

c) Berechnen Sie die adiabatische Kompressibilität κ_S , sowie die Ausdehnungskoeffizienten α, β für das ideale Gas. Überprüfen Sie ebenso die Relationen aus 2a) und 2b) für das ideale Gas.

Aufgabe 3 (4 Punkte)

Ein isolierter Zylinder enthält ein ideales Gas von Temperatur T_1 . Als oberer Abschluß dient ein beweglicher Kolben mit Masse M_1 (siehe Abb.) Der Druck P des Gases und die Gravitationskraft des Kolbens ($K = M_1 g$) kompensieren sich im Gleichgewicht (Druck = Kraft/Fläche).

- a) Die Masse M_1 wird plötzlich durch eine Masse M_2 ersetzt. Im neuen Gleichgewichtszustand stellt sich eine neue Gleichgewichtslage z_2 und eine neue Temperatur T_2 ein. Berechnen Sie $\frac{z_2}{z_1}$ und $\frac{T_2}{T_1}$ als Funktion von $\frac{M_2}{M_1}$.
- b) Berechnen Sie $\frac{z_2}{z_1}$ und $\frac{T_2}{T_1}$ wenn die Masse M_1 langsam verkleinert wird (in infinitesimalen Schritten) bis die Masse M_2 erreicht ist.