Übungsblatt 9

Quantenmechanik I

SS 12

Abgabetermin: 21.6

Aufgabe 1 [1a) 1 Punkt, 1b), 1c) je 2 Punkte]

Die Eigenzustände von L^2, L_z seien $|l, m\rangle$ mit $l = 0, \ldots, m = -l, \ldots, l$

- a) Wie lautet die dreidimensionale Matrixdarstellung der Operatoren L_x , L_y , L_z in der Basis $|l,m\rangle$ für l=1? Hinweis: Benutzen Sie L_{\pm} .
- b) Zeigen Sie, daß die Matrizendarstellungen von L_x , L_y , L_z die selben Eigenwerte haben.
- c) Finden Sie die Eigenvektoren von L_x und die Matrix U, die L_x auf Diagonalgestalt transformiert. Berechnen Sie $L'_x = U^{\dagger} L_x U$.

Aufgabe 2 [1a), 1c), 1d) je 1 Punkt, 1b) 2 Punkte]

a) Ein Operator A transformiert unter einer unitären Transformation in den Operator A' nach der Vorschrift

$$A' = U^{\dagger} A U$$
, mit $U^{\dagger} U = U U^{\dagger} = \mathbf{1}$.

Ist A' hermitesch wenn A hermitesch ist? Ist [A', B'] = 0 wenn [A, B] = 0 gilt?

b) In einem dreidimensionalen Hilbertraum sei der Hamiltonoperator

$$H = \begin{pmatrix} h_1 & 0 & 0 \\ 0 & h_1 & 0 \\ 0 & 0 & h_2 \end{pmatrix} , \qquad h_1, h_2 \in \mathbb{R} ,$$

gegeben. Geben Sie zwei Operatoren A_1, A_2 an, die mit H vertauschen, aber nicht untereinander. (Es soll also gelten $[A_1, H] = [A_2, H] = 0, [A_1, A_2] \neq 0.$)

- c) Zeigen Sie, dass für eine Basis $|n\rangle$ mit $H|n\rangle = E_n|n\rangle$ ganz allgemein gilt, daß falls $[A_1, H] = [A_2, H] = 0$ und $[A_1, A_2]|n\rangle \neq 0 \,\forall n$, der Hamiltonoperator H entartete Eigenwerte haben muss.
- d) Welche Bedingung muss $[A_1, A_2]|n\rangle$ erfüllen, damit es nicht-entartete Eigenwerte gibt?

Die Pauli-Matrizen lauten

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \text{und} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

a) Zeigen Sie

$$\sigma_i \, \sigma_j = \delta_{ij} \mathbf{1} + i \, \sum_{k=1}^3 \epsilon_{ijk} \, \sigma_k \; ,$$

wobei 1 die Einheitsmatrix ist.

b) Zeigen Sie

$$\exp(-i\vec{a}\cdot\vec{\sigma}) = \cos|\vec{a}|\,\mathbf{1} - i\,\frac{\vec{a}\cdot\vec{\sigma}}{|\vec{a}|}\,\sin|\vec{a}|\,\,,$$

wobei \vec{a} ein beliebiger konstanter Vektor ist.

Hinweis: Stellen Sie die Exponentialfunktion als Reihe dar und berechnen Sie $(\vec{a} \cdot \vec{\sigma})^2$ mit Hilfe von a).

c) Berechnen Sie $\langle \vec{S}^2 \rangle$, $\langle S_z \rangle$, $\langle S_x \rangle$, $\langle S_y \rangle$, ΔS_x , ΔS_y für die Zustände $|\uparrow\rangle$ und $|\downarrow\rangle$.

Aufgabe 4 [1a), 1c),1d) je 1 Punkt, 1b) 2 Punkte]

Der Gesamtdrehimpuls eines Teilchens ist durch $\vec{J} = \vec{L} + \vec{S}$ definiert. Die Eigenzustände von $\{\vec{J}^2, J_z, \vec{L}^2, \vec{S}^2\}$ seien $|j, m_j, l, s\rangle$, die Eigenzustände von $\{\vec{L}^2, L_z, \vec{S}^2, S_z\}$ seien $|l, m\rangle \otimes |s, s_z\rangle$. Für l = s = 1 hat man (2l+1)(2s+1) = 9 Zustände.

a) Starten Sie mit $|j=2,m_j=2,l=1,s=1\rangle=|l=1,m=1\rangle\otimes|s=1,s_z=1\rangle$ und berechnen Sie $J^2|2,2,1,1\rangle$ sowie $J_z|2,2,1,1\rangle$.

Hinweis: Benutzen Sie $J^2 = L^2 + S^2 + 2L_zS_z + L_+S_- + L_+S_-$

- b) Konstruieren Sie durch Anwendung von J_- auf $|2,2,1,1\rangle$ 4 weitere Zustände. Hinweis: Legen Sie die Normierung erst am Ende der Rechnung fest und benutzen Sie $L_{\pm}|l,m\rangle = \sqrt{(l\pm m+1)(l\mp m)}|l,m\pm 1\rangle$, $S_{\pm}|s,s_z\rangle = \sqrt{(s\pm s_z+1)(s\mp s_z)}|s,s_z\pm 1\rangle$.
- c) Berechnen Sie j und m_j für den Zustand

$$|j, m_j, l = 1, s = 1\rangle = \frac{1}{\sqrt{2}}(|1, 0\rangle \otimes |1, 1\rangle - |1, 1\rangle \otimes |1, 0\rangle)$$

und konstruieren Sie daraus durch Anwendung von J_{-} 2 weitere Zustände.

d) Berechnen Sie j und m_i für den Zustand

$$|j, m_j, l = 1, s = 1\rangle = \frac{1}{\sqrt{3}}(|1, -1\rangle \otimes |1, 1\rangle - |1, 0\rangle \otimes |1, 0\rangle + |1, 1\rangle \otimes |1, -1\rangle)$$
.