Problem 7.1

Consider a gauge theory with Lagrangian

$$
\mathcal{L}=\sum_{j}\left(\bar{\psi}_{j} i \gamma^{\mu}\left(D_{\mu} \psi\right)_{j}-m \bar{\psi}_{j} \psi_{j}\right)-\frac{1}{4 c} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}
$$

with

$$
\left(D_{\mu} \psi\right)_{i}=\partial_{\mu} \psi_{i}-i g \sum_{j}\left(A_{\mu}\right)_{i j} \psi_{j}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i g\left[A_{\mu}, A_{\nu}\right]
$$

a) Show

$$
\sum_{j}\left[D_{\mu}, D_{\nu}\right]_{i j} \psi_{j}=-i g \sum_{j=1}\left(F_{\mu \nu}\right)_{i j} \psi_{j} .
$$

b) By using $\left(A_{\mu}\right)_{i j}=\sum_{a} A_{\mu}^{a} t_{i j}^{a}$ show

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f^{b c a} A_{\mu}^{b} A_{\nu}^{c}
$$

c) Show that

$$
D_{\rho} F_{\mu \nu}:=\partial_{\rho} F_{\mu \nu}-i g\left[A_{\rho}, F_{\mu \nu}\right]
$$

is a covariant derivative. Determine $D_{\rho} F_{\mu \nu}^{a}$.
d) Show that Euler-Lagrange equations are given by

$$
i \gamma^{\mu}\left(D_{\mu} \psi\right)_{i}-m \psi_{i}=0, \quad D^{\mu} F_{\mu \nu}^{a}=g j_{\nu}^{a}
$$

and compute j_{ν}^{a}.
e) Compute the Noether current J_{ν}^{a} including both ψ_{i} and A_{μ}^{a} by using the global limit of the gauge transformation and show its conservation by using d).
f) Show

$$
D_{\rho} F_{\mu \nu}+D_{\mu} F_{\nu \rho}+D_{\nu} F_{\rho \mu}=0
$$

Problem 7.2

a) Show that the matrices $\left(t^{a}\right)_{b c}:=i f^{b a c}$ are a representation of the Lie algebra in that they satisfy

$$
\left[t^{a}, t^{b}\right]=i \sum_{c} f^{a b c} t^{c}, \quad a, b, c=1, \ldots, d(G)
$$

Hint: Use the Jacobi identity.
b) Define

$$
T_{i j}^{2}:=\sum_{k} \sum_{a} t_{i k}^{a} t_{k j}^{a}, \quad i, j, k=1, \ldots, d(r)
$$

and show

$$
\left[T^{2}, t^{b}\right]=0 \quad \forall b .
$$

c) Use $T_{i j}^{2}=c_{2}(r) \delta_{i j}$ and $\operatorname{tr}\left(t^{a} t^{b}\right)=c(r) \delta^{a b}$ to show

$$
\begin{equation*}
c(r) d(G)=c_{2}(r) d(r) . \tag{*}
\end{equation*}
$$

d) Check $(*)$ in the fundamental representation of $S U(2)$ (denoted by $\mathbf{2}$) where

$$
t^{a}:=\frac{1}{2} \sigma^{a}, \quad\left[t^{a}, t^{b}\right]=i \sum_{c} \epsilon^{a b c} t^{c}
$$

and σ^{a} are the Pauli-matrices.

Problem 7.3

a) The complex conjugate representation \bar{r} is generated by $t_{\bar{r}}^{a}=-\left(t_{r}^{a}\right)^{T}$. Derive this relation and show that $t_{\bar{r}}^{a}$ satisfies the Lie algebra.
b) A representation is called real if

$$
t_{\bar{r}}^{a}=S t_{r}^{a} S^{-1} \quad \forall a
$$

Show that the 2 of $S U(2)$ is real and find S.

