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1 Lecture 1: Path Integral in Quantum mechanics

Let start by considering a non-relativistic particle in one dimension with a Hamiltonian

H =
p2

2m
+ V (x) (1.1)

We are interested in the amplitude of the particle to travel from xa to xb in time T . In
quantum mechanics this is given by the position representation of the Schrödinger time
evolution operator

U(xa, xb, T ) = 〈xb|e−
iHT

~ |xa〉 (1.2)

Feynman showed that there is an alternative representation known as the path integral
given by

U(xa, xb, T ) =

∫

Dx(t) e
iS[x(t)]

~ . (1.3)

where

S[x(t)] =

∫ T

0

dt L =

∫ T

0

dt
(
m
2
v2 − V (x)

)
. (1.4)

S depends on the path x(t) from xa → xb. Mathematical it is a functional in that it
maps functions (or a path) to numbers

S : x(t) → S[x(t)] . (1.5)

The integration in (1.3) is over all possible path, i.e.

∫

Dx(t) =
∑

all path from xa → xb.

(1.6)

This is an integral over the function x(t) and is called a functional integral.

Let us prove (1.3) by discretizing time and showing that both representations of U
satisfy the same differential equation with the same boundary conditions. On a discrete
time grid with spacing ∆t = ǫ one has

S =

∫ T

0

dt
(
m
2
ẋ2 − V (x)

)
=
∑

k

(m

2

(xk+1 − xk)
2

ǫ
− ǫV (

xk+1 + xk
2

)
)

, (1.7)

and
∫

Dx(t) =
1

c(ǫ)

∫ ∞

−∞

dx1

c(ǫ)

∫
dx2

c(ǫ)
· · ·
∫
dxN−1

c(ǫ)
=

1

c(ǫ)

N−1∏

k=1

∫ +∞

−∞

dxk
c(ǫ)

. (1.8)

Consider the last time step

U(xa, xb, T ) =

∫ +∞

−∞

dx′

c(ǫ)
e[

i
~
(m

2

(xb−x′)2

ǫ
−ǫV (

xb+x′

2
))] U(xa, x

′, T − ǫ) . (1.9)
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For ǫ → 0 the first factor is rapidly oscillating and thus a non-zero contribution only
arises for x′ ∼ xb. Taylor expanding around x′ = xb yields

U(xa, xb, T ) =

∫ +∞

−∞

dx′

c(ǫ)
e[

i
~

m
2ǫ

(xb−x′)2](1 − iǫ

~
V (xb) + O(ǫ2))·

· (1 + (x′ − xb)
∂

∂xb
+

1

2
(x′ − xb)

2 ∂
2

∂x2
b

+ . . .) U(xa, xb, T − ǫ)

(1.10)

Using the Gauss integrals

∫

dξ e−bξ
2

=

√
π

b
,

∫

dξ ξ e−bξ
2

= 0 ,

∫

dξ ξ2 e−bξ
2

=
1

2b

√
π

b
, (1.11)

one obtains

U(xa, xb, T ) =
1

c

√
π

b

[

1 − iǫ

~
V (xb) +

1

4b

∂2

∂x2
b

+ O(ǫ2)
]

U(xa, xb, T − ǫ) , (1.12)

for b = −im
2~ǫ

. For ǫ→ 0 we obtain

U(xa, xb, T ) =
1

c

√
π

b
U(xa, xb, T ) , (1.13)

which determines c =
√

π
b
. With this normalization one can rewrite (1.12) as

i~
U(xa, xb, T ) − U(xa, xb, T − ǫ)

ǫ
=
(

V (xb) −
~

2

2m

∂2

∂x2
b

)

U(xa, xb, T − ǫ) , (1.14)

which, in the limit ǫ→ 0, yields

i~
∂U(xa, xb, T )

∂T
= H U(xa, xb, T ) . (1.15)

From quantum mechanics we know that this is indeed the differential equation which the
time evolution operator U satisfies. All that is left to check are the boundary conditions.
Again from quantum mechanics we recall that in the limit T → 0 (1.2) yields

U(xa, xb, T → 0) → δ(xa − xb) . (1.16)

In the path integral representation (1.3) we have

lim
T→0

∫

Dx(t)e
iS[x(t)]

~ = lim
ǫ→0

i

c
e[

1
~
(m

2

(xb−xa)2

ǫ
+O(ǫ2))] → δ(xa − xb) , (1.17)

and thus both expressions also satisfies the same boundary conditions. Thus one can
conclude the equality of (1.2) and (1.3).

Remarks:

1. The path integral formalism quantizes a system by summing over all path weighted

with e
iS[x(t)]

~ .
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2. In the classical limit ~ → 0 the path integral is dominated by the path which
extremize S, i.e. the classical path.

3. The path integral depends only on classical quantities and no operators appear.

This method can be generalized to quantum systems with Hamiltonian H(qi, pi) and
canonical variables qi, pi, i = 1, . . . , n. For such systems one has again the quantum
mechanical expression

U(qa, qb, T ) = 〈qb|e−iHT |qa〉 , (1.18)

with qa ≡ {qiin}, qb ≡ {qifin}. For this case the path integral representation is given by1

U(qa, qb, T ) =
∏

i

∫

Dqi(t)Dpi(t)e[
i
~

R T
0 dt(

P

j p
j q̇j−H(p,q))] , (1.19)

where pi 6= q̇i. For

H =
∑

i

p2
i

2m
+ V (q) , (1.20)

the pi integrals are Gaussian and thus can be performed resulting in

U(qa, qb, T ) =
∏

i

∫

Dqi e
iS[q(t)]

~ . (1.21)

1For a proof see, for example, [2].
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2 Lecture 2: Path Integral for Scalar Fields

The generalization of path integral of quantum mechanical systems to field theories re-
places the path of the particle by a field configuration or in other words

qi(t) → φ(~x, t) . (2.1)

One similarly defines the amplitude (setting ~ = 1)

〈φb(~x, T )|e−2iHT |φa(~x,−T )〉 =

∫

Dφ eiS[φ] , S[φ] =

∫ T

−T
d4yL[φ] , (2.2)

with the boundary conditions

t = −T : φ = φa(~x) ,

t = T : φ = φb(~x) .
(2.3)

The integration
∫
Dφ in (2.2) is over all field configuration with these boundary condi-

tions.

Compared to canonical quantization the path integral quantization has the advantage
that it is manifestly Lorentz-invariant and, furthermore, perturbation theory was not
necessary to define the quantum theory.

Let us consider the quantity

I =

∫

Dφφ(x1)φ(x2) e
iS[φ] , (2.4)

with boundary conditions (2.3) and show that it corresponds to a correlation function.
To do so let us break up I into field configurations with the boundary condition that at
times x0

1 and x0
2 the field configurations are fixed as

φ(~x, x0
1) = φ1(~x) , φ(~x, x0

2) = φ2(~x) , (2.5)

and then integrate over φ1, φ2. Or in other words the integrations splits according to

∫

Dφ =

∫

Dφ1

∫

Dφ2

∫

Dφ|φ(~x,x0
1)=φ1(~x),φ(~x,x0

2)=φ2(~x) (2.6)

Now use
∫

Dφ|φ(x0
1)=φ1(~x),φ(x0

2)=φ2(~x) e
iS[φ] =

〈φb|e−iH(T−x0
2)|φ2〉〈φ2|e−iH(x0

2−x0
1)|φ1〉〈φ1|e−iH(x0

1−(−T ))|φa〉
(2.7)

for x0
1 < x0

2 and with an interchanged order for x0
2 < x0

1. Furthermore define the
Schrödinger operator φ̂S via

φ̂S(~x1,2)|φ1,2〉 = φ1,2(~x1,2)|φ1,2〉 , (2.8)
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and use ∫

Dφ1|φ1〉〈φ1| = 1 . (2.9)

Inserted into (2.4) using (2.7)-(2.9) yields

I = 〈φb|e−iH(T−x0
2)φ̂S(~x2)e

−iH(x0
2−x0

1)φ̂S(~x1)e
−iH(x0

1+T )|φa〉 (2.10)

Expressed in terms of Heisenberg operators φ̂H(~x, x0) := eiHx
0
φ̂S(~x)e

−iHx0
one obtains

I = 〈φb|e−iHT φ̂H(x2)φ̂H(x1)e
−iHT |φa〉 . (2.11)

If one now adds the expression for x0
2 < x0

1 one arrives at

I = 〈φb|e−iHTT{φ̂H(x2)φ̂H(x1)}e−iHT |φa〉 . (2.12)

In the canonical formalism we took the limit T → ∞(1 − ǫ) to single out the vacuum
state via

e−iHT |φa〉 =
∑

n

e−iHT |n〉〈n|φa〉
T→∞(1−ǫ)

= |Ω〉〈Ω|φa〉e−iE0T (2.13)

By appropriate normalization, the factors and phases cancel out and we arrive at

〈Ω|T{φ̂H(x2)φ̂H(x1)}|Ω〉 = lim
T→∞(1−ǫ)

∫
Dφφ(x1)φ(x2) e

i
R T

−T
L[φ]

∫
Dφ ei

R T
−T

L[φ]
, (2.14)

Similarly for an n-point function one has

〈Ω|T{φ̂H(x1) . . . φ̂H(xn)}|Ω〉 = lim
T→∞(1−ǫ)

∫
Dφφ(x1) . . . φ(xn) e

i
R T
−T

L[φ]

∫
Dφ ei

R T

−T
L[φ]

. (2.15)

Let us now explicitly evaluate the two-point function for a free theory. To do so we
discretize the space-time and replace x → xi which lives on some lattice with volume
V = L4. The integration measure is thus replaced by an integration at each lattice site

Dφ→
∏

i

dφ(xi) . (2.16)

The Fourier transformation of φ(xi) is given by

φ(xi) =
1

V

∑

n

e−iknµx
µ
i φ(kn) , with knµ =

2πnµ
L

, nµ ∈ Z4 . (2.17)

Since φ is real one also has φ∗(k) = φ(−k). Inserted into the free action of a real scalar
field one obtains

S = 1
2

∫

d4x
(
∂µφ∂

µφ−m2φ2
)

= 1
2V

∑

n

(

kn · kn φ(kn)φ(−kn) −m2φ(kn)φ(−kn)
)

= − 1
V

∑

k0
n>0

(
m2 − k2

n

)(
(Reφ)2 + (Imφ)2

)
,

(2.18)
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where we used
1
V

∫

d4xe−i(kn+km)·x = δ(kn + km) . (2.19)

We can use Reφ and Imφ as independent integration variables for k0
n > 0

∏

i

dφ(xi) = c
∏

k0
n>0

dReφ(k0
n)dImφ(k0

n), (2.20)

where c is a functional determinant from the change of variables which drops out later
on. Since (2.18) is symmetric in Reφ and Imφ one obtains

∫

DφeiS = c
∏

k0
n>0

(∫

dReφ(k0
n)e

− i
V

(
m2−k2

n

)
(Reφ)2

)2

= c
∏

k0
n>0

−iπV
m2 − k2

n

, (2.21)

where we used (1.11).

Now we need to compute the numerator N ≡
∫
Dφφ(x1)φ(x2) e

iS of (2.14). Using
(2.17) we arrive at

N = c
∏

k0
n>0

∫

dReφ(kn)dImφ(kn)e
− i
V

(
m2−k2

n

)
(Reφ(kn))2+(Imφ(kn))2)·

· 1
V 2

∑

m,l

e−i(km·x1+kl·x2)(Reφ(km) + iImφ(km))(Reφ(kl) + iImφ(kl))

(2.22)

Since N is odd under Reφ(kn) → −Reφ(kn) it vanishes unless km = ±kl. For km = +kl
the terms proportional to (Reφ(kn))

2 cancel against the terms proportional to (Imφ(kn))
2

and thus N vanishes again. Only for km = −kl there is a non-zero contribution due to
the sign from φ∗(k) = φ(−k). Using (1.11) again one obtains

N = c
∏

k0
n>0

∫

dReφ(kn)dImφ(kn) e
− i
V

(
m2−k2

n

)(
(Reφ(kn))2+(Imφ(kn))2

)

·

· 2
V 2

∑

m

e−i(km·(x1−x2))(Reφ(km))2

=
c

V

∏

k0
n>0

−iπV
m2 − k2

n

∑

m

e−i(km·(x1−x2)
−i

m2 − k2
m

.

(2.23)

Inserting (2.21) and (2.23) into (2.14) we arrive at

〈0|T{φ̂(x1)φ̂(x2)}|0〉 =
−i
V

∑

m

e−i
(
km·(x1−x2)

)

m2 − k2
m − iǫ

(2.24)

Finally, in the continuum limit one replaces V −1
∑

m →
∫

d4k
(2π)4

and thus obtains

〈0|T{φ̂(x1)φ̂(x2)}|0〉 = i

∫
d4k

(2π)4

e−i
(
k·(x1−x2)

)

k2 −m2 + iǫ
= GF (x1 − x2) . (2.25)

Thus by explicitly computation one can show that in the free theory the path integral
representation of correlation function coincides with expressions obtained in canonical
quantization.
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3 Lecture 3: The Generating Functional

Defining a quantum theory via the path integral does not require the use of any pertur-
bation theory and n-point correlations functions are defined in (2.15). However, if the
theory has a perturbative regime one can expand the path integral perturbatively in the
corresponding coupling and express it in terms of n-point functions of the free theory.

It is thus useful to obtain simpler formulas for such a perturbation theory and consider

〈0|T{φ(x1) . . . φ(xn)}|0〉 =

∫
Dφφ(x1) . . . φ(xn) e

iS0[φ]

∫
Dφ eiS0[φ]

, (3.1)

where S0[φ] is the action of the free theory. One can compute (2.15) directly as we did in
the last lecture or with the help of a generating functional which we want to introduce
in this lecture.

Let us first define the functional derivative δ
δJ(x)

via2

δJ(y)

δJ(x)
= δ(x− y) . (3.2)

or
δ

δJ(x)

∫

d4yJ(y)φ(y) =

∫

d4yδ(x− y)φ(y) = φ(x) . (3.3)

The functional derivative obeys all rules of a derivative, in particular

δ

δJ(x)
ei

R

d4yJ(y)φ(y) = iφ(x)ei
R

d4yJ(y)φ(y) , (3.4)

which can be shown by expanding the exponential. If a space-time derivative is acting
on a function one partial integrates and obtains

δ

δJ(x)

∫

d4yV µ(y)
∂

∂yµ
J(y) = − δ

δJ(x)

∫

d4y
(∂V µ(y)

∂yµ
)
J(y) = −(∂µV

µ) , (3.5)

where it was assumed that the fields vanish a (spatial) infinity.

One defines the generating functional Z[J ] by

Z[J ] :=

∫

Dφ ei
R

d4x
(
L+J(x)φ(x)

)

. (3.6)

With this definition we can check

〈Ω|T{φ(x1)φ(x2)}|Ω〉 =
1

Z0

(−i δ

δJ(x1)
)(−i δ

δJ(x2)
)Z[J ]

∣
∣
∣
J=0

, (3.7)

where we abbreviated Z0 ≡ Z[J = 0]. For n-point functions we have analogously

〈Ω|T{φ(x1) . . . φ(xn)}|Ω〉 =
1

Z0
(−i δ

δJ(x1)
) . . . (−i δ

δJ(xn)
)Z[J ]

∣
∣
∣
J=0

. (3.8)

2This is the functional analog of ∂
∂xi

∑

j xjkj = ki.
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This formula is useful since Z[J ] can be explicitly computed for the free theory. For
concreteness let us consider L0 = 1

2
(∂µφ∂

µφ−m2φ2) which can be rewritten as

I =

∫

d4x(L0+Jφ) =

∫

d4x1
2
(∂µφ∂

µφ−m2φ2)+Jφ = −
∫

d4x1
2
φ(�+m2)φ−Jφ . (3.9)

Changing variables with

φ(x) = φ′(x) + i

∫

d4yGF (x− y)J(y) (3.10)

and using
(� +m2)GF (x− y) = iδ(4)(x− y) (3.11)

results in

I = −
∫

d4x1
2
(φ′(� +m2)φ′) +

i

2

∫

d4xd4yJ(y)GF (x− y)J(x) . (3.12)

The change of variables (3.10) is just a φ-independent shift in the path integral and thus
the Jacobian is unity. As a consequence we arrive at

Z[J ] =

∫

Dφei
R

d4x(L0+Jφ) = Z0e
− 1

2

R

d4xd4yJ(x)GF (x−y)J(y) . (3.13)

Let us check this expression by computing the two-point function. Inserting (3.13)
into (3.7) we obtain

〈0|T{φ(x1)φ(x2)}|0〉 =
1

Z0

(

− i
δ

δJ(x1)

)(

− i
δ

δJ(x2)

)

Z0e
−1

2

R

d4xd4yJ(x)GF (x−y)J(y)
∣
∣
∣
J=0

=
δ

δJ(x1)

∫

d4yGF (x2 − y)J(y)
Z[J ]

Z0

∣
∣
∣
J=0

= GF (x1 − x2) .
(3.14)

Another useful quantity is
E[J ] := i lnZ[J ] (3.15)

Let us compute

δE[J ]

δJ(x)
=

i

Z[J ]

δZ[J ]

δJ(x)
= −

∫
Dφφ(x)ei

R

d4xL+Jφ

∫
Dφei

R

d4xL+Jφ
≡ −〈φ(x)〉J (3.16)

Furthermore
δ2E[J ]

δJ(x)δJ(y)
=

i

Z[J ]

δ2Z[J ]

δJ(x)δJ(y)
− i

Z[J ]2
δZ[J ]

δJ(y)

δZ[J ]

δJ(x)

= −i
(
〈φ(x)φ(y)〉J − 〈φ(x)〉J〈φ(y)〉J

)
,

(3.17)

where we abbreviate

i

Z[J ]

δ2Z[J ]

δJ(x)δJ(y)
= i3

∫
Dφφ(x)ei

R

d4xL+Jφ

∫
Dφei

R

d4xL+Jφ
≡ −i(〈φ(x)φ(y)〉J . (3.18)
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From (3.17) we see that the second term 〈φ(x)〉J〈φ(y)〉J subtracts the disconnected pieces
so that we have

δ2E

δJ(x)δJ(y)
= −i〈φ(x)φ(y)〉connected = −iG(x− y) , (3.19)

where G(x− y) is the full quantum propagator.

Similarly one finds (Ji ≡ J(xi))

δ3E[J ]

δJ1δJ2δJ3

=
δ

δJ3

(
i

Z[J ]

δ2Z[J ]

δJ1δJ1

− i

Z2

δZ

δJ1

δZ

δJ2

)

=
i

Z

δ3Z

δJ1δJ2δJ3
− i

Z2

δZ

δJ3

δ2Z

δJ1δJ2

− i

Z2

(
δ2Z

δJ1δJ3

δZ

δJ2
+
δZ

δJ1

δ2Z

δJ2δJ3

)

+
2i

Z3

δZ

δJ3

δZ

δJ2

δZ

δJ1

= 〈φ1φ2φ3〉 − 〈φ3〉〈φ1φ2〉 − 〈φ2〉〈φ1φ3〉 − 〈φ1〉〈φ2φ3〉 + 2〈φ1〉〈φ2〉〈φ3〉
= 〈φ1φ2φ3〉connected .

(3.20)

In general one obtains

δnE[J ]

δJ1 . . . δJn
= in+1〈φ1 . . . φn〉connected . (3.21)

Thus E[J ] is the generating functional for connected correlation functions.
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4 Lecture 4: Path Integral Quantization of the Elec-

tromagnetic Field

The classical Maxwell action for the photon field Aµ is expressed in terms of its field
strength Fµν = ∂µAν − ∂νAµ and given by

S = −1
4

∫

d4xFµνF
µν = 1

2

∫

d4xAµD
µνAν for Dµν = ηµν� − ∂µ∂ν , (4.1)

where the second equation was obtained by partial integration. S is gauge invariant in
that it obeys

S[Aαµ] = S[Aµ] for Aµ → Aαµ = Aµ + 1
e
∂µα (4.2)

Furthermore S[Aµ] = 0 for Aµ = 1
e
∂µα and thus the path integral for Aµ is ill-defined.3

The cure of this problem is to integrate only over gauge in-equivalent field configurations.
One way to implement this is the Fadeev-Popov procedure which we present in this
lecture. However, we need to define functional determinant and functional δ-functions.

For a matrix M an integral representation of det(M) is proved in problem 1.1 to be

√

det(M) = (2π)N/2
∫ ∞

−∞
dx1 . . . dxN e

− 1
2
xT ·M ·x . (4.3)

This can be generalized to a functional determinant via a path integral representation

√

det(M) =

∫

Dφ e−
1
2

R

d4xφ(x)M(x)φ(x) , (4.4)

where M is a differential operator, e.g. M = � +m2.

For an N -dimensional δ-function one has the identity

∫ ∞

−∞
dx1 . . . dxN δ

(N)(~g(x1, . . . , xN)) det
( ∂gi
∂xj

)
= 1 , (4.5)

which can analogously be generalized as

∫

Dαδ(G(Aα)) det
(δG(Aα)

δα

)

= 1 . (4.6)

Inserted into the path integral we obtain

I =

∫

DAeiS[A] =

∫

DADαδ(G(Aα)) det
(δG(Aα)

δα

)

eiS[A] . (4.7)

Choosing
G(Aα) = ∂µAαµ − ω(x) = ∂µAµ + 1

e
�α − ω(x) , (4.8)

with ω(x) being an arbitrary scalar function, we see that δG(Aα)
δα

is independent of A
and α and thus can be moved outside the path integral. Furthermore, we can change

3In problem 1.3 it is shown that correspondingly the Greens function of Dµν is ill-defined.
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variables A→ Aα. This implies DA→ DAα since the change is merely a A-independent
shift, and S[A] = S[Aα] since S is gauge invariant. Thus we arrive at

I = det
(δG(Aα)

δα

)∫

DAαDαδ(G(Aα))eiS[Aα] . (4.9)

Since Aα is an (arbitrary) integration variable we can rename it back to A and factor out
the infinite-dimensional factor

∫
Dα which causes the problem, i.e.

I = det
(δG(Aα)

δα

)(∫

Dα
)∫

DAδ(G(A))eiS[A] . (4.10)

δ(G(A)) can be expressed as a correction to S by integrating over all ω(x) with Gaussian
weight centered around ω(x) = 0. This yields

I ′ = N(ξ)

∫

Dω e−i
R

d4xω2

2ξ I

= N(ξ) det
(δG(Aα)

δα

)( ∫

Dα
)∫

DAeiS[A]

∫

Dω e−i
R

d4xω2

2ξ δ
(
∂µAµ − ω(x)

)

= N(ξ) det
(δG(Aα)

δα

)( ∫

Dα
)∫

DAeiS
′[A] ,

(4.11)

where N is a normalization factor and

S ′ = S − 1
2ξ

∫

d4x (∂µAµ)
2 = 1

2

∫

d4xAµD
′µνAν , (4.12)

with
D′µν = ηµν� − (1 − 1

ξ
)∂µ∂ν . (4.13)

We see that S ′ has no problems with longitudinal photons since D′µν∂να 6= 0 for ξ 6= ∞.

In problem 1.3 we show that for arbitrary ξ the photon propagator is given by4

G(x− y) = −i
∫

d4k

(2π)4

1

k2

(
ηµν − (1 − ξ)k

µkν

k2

)
e−ik(x−y) . (4.14)

It does depend on ξ but, due to the Ward identity, the amplitudes are ξ-independent.
Thus the path integral definition of correlation function is given by

〈Ω|T{O(A)}|Ω〉 = lim
T→∞(1−ǫ)

∫
DAO(A) e

i
R T
−T

(
L− 1

2ξ
(∂µAµ)2

)

∫
Dφ e

i
R T
−T

(
L− 1

2ξ
(∂µAµ)2

) . (4.15)

Another way to discover this gauge fixing term is to note that the canonical mo-
mentum π0 vanishes for the action (4.1) and the theory cannot be properly canonically
quantized. From (4.1) one computes

πµ =
∂L

∂(∂0Aµ)
= −F 0µ , (4.16)

4Note that in QFT I we used the photon propagator in the gauge ξ = 1 (Feynman gauge).
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which implies π0 = 0. This can be remedied by augmenting the action (4.1) by a gauge
fixing term

−
∫

d4x
(

1
4
FµνF

µν + 1
2ξ

(∂µAµ)
2
)

= 1
2

∫

d4xAµD
µνAν (4.17)

for

Dµν = ηµν� − ∂µ∂ν(1 − 1

ξ
) . (4.18)

Dµν is now invertible and π0 = −ξ−1(∂µAµ). Therefore canonical quantization is possible.
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5 Lecture 5: Path Integral for Fermions

Fermionic operators obey anti-commutation relations and therefore fermions need to
be represent classical anti-commuting fields. This is achieved by Grassman numbers
and Grassman valued fields. Let θ, η, χ be Grassman numbers which obey the following
properties.

1. The anti-commutation relation
θη = −θη , (5.1)

which implies θ2 = 0.

2. The product of two Grassman numbers is commuting

(θη)χ = −θχη = χ(θη) . (5.2)

3. Grassman numbers can be added with the sum being again a Grassmann number

θ + η = χ . (5.3)

4. Multiplication with c-numbers leave any Grassmann number anti-commuting

cθ = θc = χ . (5.4)

5. Due to (5.1) any function of Grassman variables f(θ, c) can be at most linear in θ

f(θ, c) = A(c) +B(c)θ . (5.5)

6. Differentiation obeys a graded Leibniz rule

d

dη
(θη) =

dθ

dη
η − θ

dη

dη
= −θ . (5.6)

7. Integration (Berezin integration) is defined by

∫

dθ 1 = 0,

∫

dθθ = 1 (5.7)

such that ∫

dθf(θ, c) = B(c) . (5.8)

The definition (5.7) preserves a variable shift, i.e.

∫

dθ(θ + η) =

∫

dθθ − η

∫

dθ =

∫

dθθ = 1 . (5.9)

Let us further choose the convention
∫

dθdη ηθ = 1
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8. Complex Grassman numbers are defined by

θ := 1√
2
(θ1 + iθ2) , θ∗ = 1√

2
(θ1 − iθ2) , (5.10)

with θ1,2 real. Then
(θη)∗ := η∗θ∗ = −θ∗η∗ . (5.11)

The integration over complex θ is defined as in (5.7).

Later on we need
∫

dθ∗dθe−θ
∗bθ =

∫

dθ∗dθ(1 − θ∗bθ) = b

∫

dθ∗dθθθ∗ = b , b ∈ C . (5.12)

Note that an ordinary Gauß-integral results in 2π
b
. We also need

∫

dθ∗dθ θθ∗e−θ
∗bθ =

∫

dθ∗dθθθ∗(1 − θ∗bθ) =

∫

dθ∗dθθθ∗ = 1 =
b

b
. (5.13)

Thus adding θθ∗ in the integrand gives an additional 1
b

after integration.

If there are N Grassman variables θi, i = 1, . . . , N the product can be written as

N∏

i=1

θi = 1
N !
ǫi1...iN θi1 . . . θiN or θi1 . . . θiN = ǫi1...iN

N∏

k=1

θk . (5.14)

Under a unitary transformation θi → θ′i =
∑

j Uijθj , UU
† = 1 one derives

N∏

k=1

θ′k = 1
N !
ǫi1...iNUi1i′1 . . . UiN i′N θi′1 . . . θi′N

= 1
N !
ǫi1...iNUi1i′1 . . . UiN i′N ǫi′1 . . . θi′N

N∏

k=1

θk

= detU
N∏

k=1

θk ,

(5.15)

where the second equation used (5.14). Using (5.14) and (5.15) one derives (see problem
3.2)

∫
(∏

i

dθ∗i dθi
)
e−

P

k,j θ
∗
k
Bkjθj = detB

∫
(∏

i

dθ∗i dθi
)
θnθ

∗
l e

−
P

k,j θ
∗
k
Bkjθj = B−1

nl detB .

(5.16)

Now we can Dirac spinors ψa(x), a = 1, . . . , 4 to be Grassmann valued or in other
words to be classically anti-commuting fields. The path integral can be computed in
analogy with bosonic fields by Fourier transforming and discretizing the measure. In this
way one confirms (5.16) and computes

∫

Dψ̄Dψei
R

d4xL0[ψ,ψ̄] = c det(i/∂ −m) , (5.17)
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for L0 = ψ̄(i/∂ − m)ψ with c being a normalization constant. For the propagator one
obtains (cf. (5.16))

〈0|T{ψ(x1)ψ̄(x2)}|0〉 =

∫
Dψ̄Dψei

R

d4xL0[ψ,ψ̄]ψ(x1)ψ̄(x2)
∫
Dψ̄Dψei

R

d4xL0[ψ,ψ̄]

=
c · det(i/∂ −m)

c · det(i/∂ −m)
SF (x1 − x2) = SF (x1 − x2) .

(5.18)

The generating functional for fermions is defined by

Z[η̄, η] :=

∫

Dψ̄Dψ ei
R

d4x
(
L[ψ,ψ̄]+η̄(x)ψ(x)+ψ̄(x)η(x)

)

, (5.19)

where η̄(x) and η(x) are Grassman valued sources, i.e. the analog of J(x) for scalar fields.
For the free theory L = L0 Z is computed in problem 3.3 to be given by

Z[η̄, η] = Z[η̄ = 0, η = 0] e−
R

d4xd4y η̄(x)SF (x−y)η(y) . (5.20)

Defining the functional derivative of Grasmmann fields by

δη(x)

δη(y)
= δ(x− y) , (5.21)

one shows

〈0|T{ψ(x1)ψ̄(x2)}|0〉 = Z[0]−1
(

− i
δ

δη̄(x1)

)(

+ i
δ

δη(x2)

)

Z[η, η̄]

∣
∣
∣
∣
η=η̄=0

. (5.22)

Using (5.19) one checks (5.18) and using (5.20) one confirms that the left hand side of
(5.22) also is given by SF (x1 − x2).
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6 Lecture 6: Symmetries in the Path Integral For-

malism

The aim of this section is to derive the Schwinger-Dyson equation and a quantum version
of the Noether theorem or in other words the Ward-identities for a generic QFT.

6.1 Schwinger-Dyson equation

Let us start with a free scalar field

S =

∫

d4xL0 =

∫

d4x1
2
(∂µφ∂

µφ−m2φ2) = −
∫

d4x1
2
φ(� +m2)φ . (6.1)

and consider

〈Ω|T{φ(x1) . . . φ(xn)}|Ω〉 =

∫
Dφφ1 . . . φn e

iS[φ]

∫
Dφ eiS[φ]

, (6.2)

where for later use we already gave the formula for an interacting QFT and use the
notation φi ≡ φ(xi).

The classical equation of motion for φ leaves S stationary under the arbitrary variation

φ(x) → φ′(x) = φ(x) + ǫ(x) . (6.3)

In the path integral the measure is invariant under this shift, i.e. Dφ = Dφ′. This implies
∫

Dφφ1 . . . φn e
iS[φ] =

∫

Dφ′ φ′
1 . . . φ

′
n e

iS[φ′] =

∫

Dφφ′
1 . . . φ

′
n e

iS[φ′] , (6.4)

where in the first step we merely changed the names of the integration variable from φ to
φ′ while in the second step we used the invariance of the measure under the shift (6.3).
Now we expand the right hand side to first order in ǫ to arrive at

0 =

∫

Dφ eiS[φ]
(

− i
2

∫

d4y
(
ǫ(y)(�y +m2)φ(y) + φ(y)(�y +m2)ǫ(y)

)
φ1 . . . φn

+ ǫ1φ2 . . . φn + φ1ǫ2 . . . φn + φ1φ2 . . . ǫn

)

.

(6.5)

By partially integrating twice the first two terms can be combined and one obtains

0 = −i
∫

Dφ eiS[φ]

∫

d4yǫ(y)
(

(�y +m2)φ(y)φ1 . . . φn + i

n∑

i=1

δ(y − xi)φ1 . . . φ̂i . . . φn

)

,

(6.6)
where φ̂i denotes the field which is omitted from the sum. Since (6.6) should hold for
any ǫ e can drop the

∫
d4yǫ(y) from the equation. Let us first consider the case n = 1.

We can move the Klein-Gordon operator out of the path integral to arrive at

(�y +m2)

∫

Dφ eiS[φ]φ(y)φ(x1) = −iδ(y − x1)Z[0] , (6.7)

or equivalently
(�y +m2)〈Ω|T{φ(y)φ(x1)|Ω〉 = −iδ(y − x1) . (6.8)
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This confirms once more Ω|T{φ(y)φ(x1)|Ω〉 = GF ((y − x1). For n arbitrary one obtains
analogously

(�y +m2)〈Ω|T{φ(y)φ(x1) . . . φ(xn)|Ω〉 = −i
n∑

i=1

〈Ω|T{φ(x1) . . . δ(y − xi) . . . φ(xn)|Ω〉 .

(6.9)

Note that the previous derivation only depended on the invariance of the measure
Dφ = Dφ′ and thus holds for any QFT! Let us denote an arbitrary field by ϕ and its
action by S[ϕ] =

∫
d4xL[ϕ(x), ∂µϕ]. Using the functional chain rule one obtains

δS[ϕ]

δϕ(y)
=

∫

d4x
( δL
δϕ(x)

δ(x− y) +
δL

δ∂µϕ(x)
∂µδ(x− y)

)

=
δL
δϕ(y)

− ∂µ
δL

δ∂µϕ(x)
, (6.10)

where we partially integrated in the second step. We see that the functional derivative
of S gives the Euler-Lagrangian equations. With this fact we can redo the previous
computation and first use the invariance of the measure Dϕ = Dϕ′ under ϕ→ ϕ′ = ϕ+ǫ
to obtain

∫

Dϕϕ1 . . . ϕn e
iS[ϕ] =

∫

Dϕ′ ϕ′
1 . . . ϕ

′
n e

iS[ϕ′] =

∫

Dϕϕ′
1 . . . ϕ

′
n e

iS[ϕ′] , (6.11)

Next we expand

S[ϕ′] = S[ϕ] +

∫

d4yǫ(y)
δS[ϕ]

δϕ(y)
+ O(ǫ2) (6.12)

and insert it into (6.11). This yields

0 =

∫

DϕeiS[ϕ]
(

i

∫

d4yǫ(y)
δS[ϕ]

δϕ(y)
ϕ1 . . . ϕn +

n∑

i=1

ϕ1 . . . ǫi . . . ϕn

)

(6.13)

We drop again the
∫
d4yǫ(y) to arrive at the Schwinger-Dyson equation

〈Ω| δS[ϕ]

δϕ(y)
T{φ(x1) . . . φ(xn)|Ω〉 = i

n∑

i=1

〈Ω|T{φ(x1) . . . δ(y − xi) . . . φ(xn)|Ω〉 . (6.14)

It states that the classical Euler-Lagrange equations are obeyed by all n-point functions
up to contact terms (the terms on the right hand side).

Note that the functional derivative is outside the time-ordering in (6.14). In the
following it will be convenient to introduce a separate notation for this situation and
simply write

〈 δS[ϕ]

δϕ(y)
φ(x1) . . . φ(xn)〉 = i

n∑

i=1

〈φ(x1) . . . δ(y − xi) . . . φ(xn)〉 , (6.15)

to denote that the derivative is outside the time-ordering.
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6.2 Ward identities

Let us first consider a free complex scalar field with the Lagrangian

L0 = ∂µφ∂
µφ∗ −m2φφ∗ (6.16)

It has a symmetry

φ→ φ′ = eiαφ , α ∈ R , or infinitesimally δφ = iαφ , (6.17)

which leaves L0 invariant L0[φ] = L0[φ
′]. The transformation δφ = iα(x)φ is not a

symmetry and L0 changes

δL0 =
(
∂µα(x)

)
jµ(x) , for jµ(x) = i

(
φ∂µφ∗ − φ∗∂µφ

)
. (6.18)

It is easy to check that jµ is the Noether current of the symmetry (6.17) and therefore
conserved ∂µj

µ = 0 if one uses the equation of motion.

We can now perform analogous steps as in the previous section with the difference
that the transformation of φ is not arbitrary (as in (6.3)) but as in (6.18). The analog of
(6.4) for a complex scalar field reads

∫

DφDφ∗ φ1 . . . φn e
iS[φ,φ∗] =

∫

DφDφ∗ φ′
1 . . . φ

′
n e

iS[φ′,φ′∗] , (6.19)

where we used again the invariance of the measure. (The φi could also be φ∗
i or any

mixture.) Expanding to first order in α we obtain

0 =

∫

DφDφ∗ eiS[φ,φ∗]
(

i

∫

d4y(∂µα(y))jµ(y)φ1 . . . φn +

n∑

i=1

φ1 . . . δφi . . . φn

)

, (6.20)

Partially integrating and dropping
∫
d4y α(y) we arrive at the Ward identity

0 =

∫

DφDφ∗ eiS[φ,φ∗]
(

(∂µj
µ(y))φ1 . . . φn + i

n∑

i=1

φ1 . . . (±i)δ(y − xi)φi . . . φn

)

, (6.21)

where the sign ambiguity comes from considering δφ or δφ∗. In the “bracket-notation”
introduced in (6.15) it reads

〈∂µjµ(y)φ(x1) . . . φ(xn)〉 = −i
n∑

i=1

〈φ(x1) . . . (±i)δ(y − xi)φi . . . φ(xn)〉 , (6.22)

This analysis can be generalized to an arbitrary theory characterized by S[ϕa] with a
global symmetry

ϕa → ϕ′
a = ϕa + ǫ∆ϕa , (6.23)

such that
L[ϕa] → L[ϕ′

a] = L[ϕa] + ǫ∂µJ µ , S[ϕ′
a] = S[ϕa] (6.24)

Replacing ǫ→ ǫ(x) the transformation of L is modified according to

L[ϕa] → L[ϕ′
a] = L[ϕa] + ǫ∂µJ µ + (∂µǫ)

∑

a

∆ϕa
∂L

∂(∂µϕa)
, (6.25)
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which results is the change

S[ϕ′
a] =

∫

d4yL[ϕ′
a] =

∫

d4y
(
L[ϕa] − ǫ∂µj

µ
)

= S[ϕa] −
∫

d4y ǫ∂µj
µ , (6.26)

with jµ being the Noether current

jµ =
∑

a

∆ϕa
∂L

∂(∂µϕa)
− J µ . (6.27)

Therefore the Ward identity (6.22) is modified as

〈∂µjµ(y)ϕa1(x1) . . . ϕan
(xn)〉 = −i

n∑

i=1

〈ϕa1(x1) . . . δ(y−xi)∆ϕai
(xi) . . . φan

(xn)〉 . (6.28)

Let us check this for QED. In this case we have the Lagrangian

L = ψ̄(i/∂ −m)ψ + Aµj
µ , for jµ = eψ̄γµψ . (6.29)

It has a global symmetry

ψ → ψ′ = eiαψ , δψ = iαψ ,

Aµ → A′
µ = Aµ .

(6.30)

If we replace α→ α(x) but do not transform the Aµ we obtain the transformation law

L → L′ = L − i(∂µα)jµ . (6.31)

Inserted into (6.28) for n = 2 we get

∂µ〈0|T{jµ(y)ψ(x1)ψ̄(x2)}|0〉 = δ(y − x1)〈0|T{ψ(x1)ψ̄(x2)}|0〉
− δ(y − x2)〈0|T{ψ(x1)ψ̄(x2)}|0〉 ,

(6.32)

or in Fourier space

kµ〈0|T{jµ(k)ψ(q)ψ̄(p)}|0〉 = 〈0|T{ψ(k− q)ψ̄(p)}|0〉 − 〈0|T{ψ(−q)ψ̄(p+ k)}|0〉 . (6.33)

The right hand side does not contribute to the S-matrix as can be seen from the LSZ
formula. Thus we confirmed the QED Ward identity

kµ〈0|T{jµ(k)ψ(q)ψ̄(p)}|0〉 = 0 . (6.34)
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7 Lecture 7: Renormalization of φ4

In QFT I we discussed the renormalization of QED. In this section we recall the concept
of renormalization for the example of a φ4-theory.

We introduced a quantity D which represents the superficial degree of divergence of
a Feynman diagram. It counts the power of k-factors in the numerator minus the power
of k-factors in the denominator

∫ Λ

d4k
ka−4

kb
=

{
ΛD for D = a− b 6= 0
ln Λ for D = 0

(7.1)

For D ≥ 0 a Feynman diagram is naively divergent.

Before we focus on a φ4-theory it is useful to consider a more general φn-theory defined
by the Lagrangian

L = 1
2
(∂µφ∂

µφ−m2φ2) + λ
n!
φn . (7.2)

The propagator is represented by a line and is in momentum space proportional to
(k2 +m2)−1. The interaction is represented by a vertex with n lines and proportional to
λ.

The following relations hold:

i) L = P − V + 1 , (7.3)

where L is the number of loops, P counts the number of internal propagators and V
the number of vertices. (7.3) holds since each propagator has a momentum integral but
each vertex has a δ-function (momentum conservation) and the +1 expresses the overall
momentum conservation.

ii) nV = 2P +N , (7.4)

where N counts the number of external lines. (7.4) holds since out of each vertex comes
n lines. They can be external (N) or internal (P ). The factor of two accounts for the
fact that an internal line always connects two vertices while an external line does not.

iii) D = 4L− 2P (7.5)

since each loop contributes a factor d4k and each internal propagator a k−2. As a conse-
quence of (7.3) and (7.4) one derives

D = 4(P − V + 1) − 2P = (n− 4)V −N + 4 . (7.6)

The last expression is useful as it shows that D is independent of P . Recall that in
QED we obtained D = 4 − Nγ − 3

2
Ne where Ne(Nγ) counts the number of external

fermion(photon) lines. Hence D solely depends on the number of external legs and thus
shows that only diagrams with a small number of external legs can have a UV divergence.
In our case we have the same situation for n = 4.

Let us consider different values of n.

n = 2: This is the free theory.
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n = 3: In this case one has D = 4−N−V and a finite number of divergent diagrams.
Such theories are called super-renormalizable

n = 4: In this case one has D = 4 −N and a finite number of divergent amplitudes.
Such theories are called renormalizable but the divergence occurs at all orders
in perturbation theory.

n > 4 : In this case one has D = (n − 4)V − N + 4 and an infinite number of
divergences-

occurs. Such theories are called non-renormalizable.

These properties can also be formulated in terms of the dimension of the coupling λ
which we denote by [λ] in the following. In natural units ~ = c = 1 one has

length = mass−1 = time = energy−1 . (7.7)

It is conventional to give the dimensions of the couplings either in units of mass or length.
In the following we will use mass dimensions. With this conventions one has

[S] = 0 , [d4x] = −4 , [L] = 4 , [∂µ] = 1 . (7.8)

For a φ4-theory we then determine from (7.2)

[φ] = 1 , [λ] = 4 − n . (7.9)

Inserted into (7.6) we get
D = 4 −N − [λ]V , (7.10)

and see that for [λ] < 0 the theory is non-renormalizable.

Before we continue let consider QED with the Lagrangian

L = −1
4
FµνF

µν + ψ̄(i/∂ −m)ψ + eAµψ̄γ
µψ . (7.11)

In this case we readily determine

[ψ] = 3
2
, [Aµ] = 1 , [e] = 0 . (7.12)

So we have a dimensionless coupling e exactly as for a φ4-theory. Let us now turn to the
renormalization of the latter.

For a φ4-theory we have D = 4−N which is semi-positive for all diagrams with zero
to four external legs. Due to the symmetry φ→ −φ diagrams with N odd cannot occur
and we are left with

D = 0 ,

D = 2 ,

D = 4 .

(7.13)

In renormalized perturbation theory one starts from the ‘bare’ Lagrangian

L = 1
2
(∂µφ∂

µφ−m2
0φ

2) + 1
4!
λ0φ

4 (7.14)
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with the ‘bare’ parameters m0, λ0. One then defines renormalized field variables and
renormalized couplings as

φ =
√
Z φr , Z = 1 + δZ , Zm0 = m+ δm , Zλ0 = λ+ δλ . (7.15)

Inserted into (7.14) one obtains

L = 1
2
(∂µφ∂

µφ−m2
0φ

2) + 1
4!
λ0φ

4

= 1
2
(∂µφr∂

µφr −m2φ2
r) + 1

4!
λφ4

r + 1
2
δZ∂µφr∂

µφr − 1
2
δmφ

2
r + δλ

4!
φ4
r

(7.16)

The prescription now is to do perturbation in λ (instead of λ0) with the redefined
Lagrangian (7.16) instead of (7.14). For this we need new Feynman rules. The first three
terms in (7.16) lead to the Feynman rules

=
1

p2 −m2
,

= −iλ .

(7.17)

The last three terms are called counterterms and they are denoted by

= i(p2δZ − δm) ,

= −iδλ .

(7.18)

Now one defines the split given in (7.15) by the requirement that the renormalized
field φr has a propagator like a free field with the renormalized mass m being the position
of the pole. In other words

=
1

p2 −m2
+ regular at p2 = m2 (7.19)

Furthermore, at ~p = 0 one imposes

= −iλ ,
(7.20)

where in these diagrams all contribution of the counterterms are included.

Now one follows the following procedure:

1. Compute the divergent diagrams in perturbation theory and regulate them.

2. Impose the renormalization conditions (7.19), (7.20) and in this way determine
δm, δλ, δZ .
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After this procedure all amplitudes are finite and independent of the regulator. Con-
cretely for the φ4 at one-loop the following diagrams contribute

= + +
,

(7.21)

and

= + + crossed channels +

,

(7.22)

The diagrams in (7.21) contribute

1

p2 −m2
− i

2
λ

∫
d4k

(2π)4

i

k2 −m2
+ i(p2δZ − δm) (7.23)

which, imposing (7.19), results in (see problem 4.1)

δZ = 0 , δm = − lim
d→4

λ

2(4π)d/2
Γ(1 − d

2
)

m2−d . (7.24)

The diagrams in (7.22) contribute

−iλ + (−iλ)2
(
iV (s) + iV (t) + iV (u) +

)
− iδλ (7.25)

for

s = (p1 + p2)
2 , t = (p1 − p3)

2 , s = (p1 − p4)
2 , s+ t+ u = 4m2 , (7.26)

and

iV (p2) := i
2
λ

∫
d4k

(2π)4

i

k2 −m2

i

(k + p)2 −m2

= − i
2

lim
d→4

1

(4π)d/2

∫ 1

0

dx
Γ(2 − d/2)

∆2−d/2

= − 1
32π2 lim

ǫ→0

∫ 1

0

dx
(2

ǫ
− ln

(∆eγ

4π

)
+ O(ǫ)

)

,

(7.27)

for ∆ = m2 − x(1 − x)p2. Imposing (7.20), results in

δλ = −λ2
(
V (4m2) + 2V (0)

)
. (7.28)

V (p2) and the final finite amplitude is computed in problem 4.2.
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8 Lecture 8: Wilson’s Approach to Renormalization

The Wilsonian approach to renormalization is the ‘modern’ view of a quantum field theory
and it offers a more physical way to understand the role of UV-divergences. The basic
idea is to define any QFT with a cut-off Λ and analyze the theory successively at different
length or equivalently momentum scales. Concretely this is achieved by integrating over
the short-distance or high-momentum fluctuations of a quantum field.

As an example let us consider a φ4 theory with a momentum cut-off Λ in a Euclidean
space-time, i.e. with x0 = ix0.5 In this case the path integral reads

Z =

∫

DφΛ e
−S[φ] , DφΛ :=

∏

|k|<Λ

dφ(k) , (8.1)

for

S[φ] =

∫

d4xL , L = 1
2
(∂µφ∂

µφ+m2φ2) + 1
4!
λφ4 . (8.2)

Now one splits off the high-frequency Fourier-modes of φ via

φ→ φ+ φ̂ , (8.3)

where the momenta of φ obey |k| < bΛ, b < 1 while those of φ̂ lie in the high-momentum
shell bΛ < |k| ≤ Λ. Inserted into L yields

S = S[φ] + Ŝ[φ, φ̂] , (8.4)

with

Ŝ[φ, φ̂] =

∫

d4x
(
L̂0[φ̂] + L̂int[φ, φ̂]

)

L̂0[φ̂] = 1
2
∂µφ̂∂

µφ̂

L̂int[φ, φ̂] = 1
2
m2φ̂2 + λ

(
1
3!
φ3φ̂+ 1

4
φ2φ̂2 + 1

3!
φφ̂3 + 1

4!
φ̂4
)
.

(8.5)

Note that we treat 1
2
m2φ̂2 as an interaction. Furthermore, there are no terms proportional

to φφ̂ since in Fourier-space they would vanish due to (8.3) which enforces

∫
d4k

(2π)4

d4k′

(2π)4
φ(k)φ̂(k′)ei(k+k

′)x ∼ δ(k + k′) = 0 . (8.6)

Within this setup one now performs the path integral over φ̂ and expresses it as a
correction to S[φ]

Z =

∫

DφΛ e
−S[φ] =

∫

DφbΛDφ̂Λ e
−S[φ,φ̂] =

∫

DφbΛe
−Seff [φ] , (8.7)

with

Seff [φ] = S[φ] + δS[φ] , where e−δS[φ] ≡
∫

Dφ̂Λ e
−Ŝ[φ,φ̂] . (8.8)

5The Euclidean cut-off ensure that all momenta are below Λ.
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Seff [φ] can be computed perturbatively for m≪ Λ, λ≪ 1. One defines a φ̂ propaga-
tor by

φ̂(k) φ̂(p) =

∫
Dφ̂ φ̂(k)φ̂(p)e−S0[φ]

∫
Dφ̂ e−S0[φ]

=
(2π)4

k2
δ(k + p) θ(k) (8.9)

where

θ(k) =

{
1 if bΛ ≤ |k| ≤ 1
0 otherwise

, (8.10)

and denotes it diagrammatically by a double line. Now one does perturbation theory
where φ only appears on external lines, φ̂ only appears as an internal propagator. The
resulting diagrams are then viewed as corrections to the couplings of Seff [φ], i.e. as
corrections to m and λ but also higher order terms are generated in Seff [φ]. This yields
generically

Leff = 1
2
(1 + ∆Z)∂µφ∂

µφ+ 1
2
(m2 + ∆m2)φ2 + 1

4!
(λ+ ∆λ)φ4 + higher order , (8.11)

where the higher order terms include φ6, (∂φ)4, etc..

As an example let us compute

I1 =

= −1
4
λ

∫

d4xφ2φ̂φ̂

= −1
4
λ

∫

d4x
d4k1

(2π)4
. . .

d4k4

(2π)4
ei(k1+...k4)xφ(k1)φ(k2)

(2π)4

k2
3

δ(k3 + k4) θ(k3) ,

(8.12)

where we went to momentum space and used (8.9). Performing the integral over k4 and
x we arrive at

I1 = −1
4
λ

∫
d4k1

(2π)4
. . .

d4k3

(2π)4
φ(k1)φ(k2)

(2π)4

k2
3

δ(k1 + k2) θ(k3)

≡ −1
2
µ

∫
d4k1

(2π)4
φ(k1)φ(−k1) ,

(8.13)

with

µ = 1
2
λ

∫
d4k3

(2π)4

θ(k3)

k2
3

=
λ

2(2π)4

∫

dΩ

∫ Λ

bΛ

dkk =
λ

32π2
(1 − b2)Λ2 . (8.14)

Similarly one can compute

I2 = = − 1
4!
ξ

∫

d4xφ4(x)
(8.15)

with

ξ = − 3λ2

16π2
ln

1

b
. (8.16)
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This procedure can be performed perturbatively for each coupling to arbitrary order
computing ∆Z,∆m2,∆λ, . . .. On the other hand inspecting (8.7) we see that the two
path integrals are related by the transformation

k′ = k/b , x′ = bx (8.17)

such that
k′x′ = kx , |k| ≤ bΛ ⇒ |k′| ≤ Λ , (8.18)

Inserted into (8.11) we obtain

Seff =

∫

d4x′b−4
(

1
2
(1 + ∆Z)b2∂′µφ∂

′µφ+ 1
2
(m2 + ∆m2)φ2 + 1

4!
(λ+ ∆λ)φ4 + . . .

)

=

∫

d4x′
(

1
2
∂′µφ

′∂′µφ′ + 1
2
m′2φ′2 + 1

4!
λ′φ′4 + . . .+ 1

n!
λ′nφ

′n + . . .
)

(8.19)
where

φ′ =
√

(1 + ∆Z)b−1 φ ,

m′2 = (m2 + ∆m2)(1 + ∆Z)−1b−2 ,

λ′ = (λ+ ∆λ)(1 + ∆Z)−2 ,

λ′n = (λn + ∆λn)(1 + ∆Z)−n/2bn−4 ,

. . . .

(8.20)

Therefore integration over a momentum shell bΛ ≤ |k| ≤ Λ can be viewed as a trans-
formation of L. Doing it again one successively integrates out the high-momentum or
short-distance fluctuations. For b ≈ 1 the transformation can be viewed as continuous
and is called a renormalization group transformation.6 Precisely due to the cut-off depen-
dence the couplings become also scale dependent which is seen from their b dependence.

Let us focus on this point more concretely. For simplicity one starts at a point
m2 = λ = λn = 0 in coupling space and looks for the first order change. From (8.20) one
then obtains

m′2 = b−2∆m2 ,

λ′ = b0∆λ ,

λ′n = bn−4∆λn .

(8.21)

We see that for b < 1 the mass m2 grows. Growing couplings are called relevant. For λ on
the other hand one needs further information to determine its behavior. Couplings which
scale with b0 are called a marginal couplings. Finally λn grows for n < 4 and is relevant,
as we already said is marginal for n = 4 and decreases for n > 4. Couplings which
decrease are called irrelevant. Obviously the scaling behavior of a coupling is related to
its mass dimension in that λn has mass dimension [λn] = 4 − n and scales with bn−4.
At large distance, i.e. in the infrared, only relevant and marginal couplings have to be
considered. These are precisely the renormalizable couplings.

6This is a misnomer since mathematically there is no underlying group.
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Finally let us inspect the scale dependence of the marginal coupling λ more closely.
From (8.16) one finds explicitly

λ′ = λ− 3λ2

16π2
ln

1

b
, (8.22)

i.e. a slow logarithmic decrease. The logarithmic correction of λ is precisely the correction
computed in the previous lecture and problem 4.2.
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9 Lecture 9: Callan-Symanzik Equation

In the last lecture we saw that in a Wilsonian picture, i.e. for a quantum field theory
with a cut-off Λ, the couplings are scale dependent. However, a finite cut-off has the
technical problem of generically violating the Ward identities and therefore it is often
more convenient to send Λ → ∞ and instead recover the scale dependence of the couplings
from a modification of the renormalization conditions. In lecture 7 we discussed the
on-shell renormalization scheme in that we imposed the renormalization conditions (7.19)
and (7.20) on-shell at p2 = m2. However this choice is by no means mandatory and
we could instead impose these conditions at an arbitrary space-like momentum p2 =
−M2. This would again remove all UV-divergences but the counterterms as well as the
renormalized couplings now depend on M2. Thus also in this set-up one ends up with
scale-dependent couplings.

The on-shell scheme has the additional problem that the quantities are singular in a
massless theory. Since we are primarily interested in the behavior of the couplings far
above the physical masses it is necessary to introduce a renormalization procedure which
works for massless theories.

Let us see how this works in slightly more detail for the example of a massless φ4-
theory. The renormalized field is defined as in (7.15) by φ =

√
Z φr. The n-point functions

G(n)(x1, . . . xn, λ,M) then depend on the renormalized coupling λ and the renormalization
scale M and are given by

G(n)(x1, . . . xn, λ,M) := 〈Ω|T{φr(x1) . . . φr(xn)}|Ω〉 = Z−n/2〈Ω|T{φ(x1) . . . φ(xn)}|Ω〉
(9.1)

A change M →M + δM then induces a change in the coupling λ and the wave function
renormalization Z

λ→ λ+ δλ ,
√
Z →

√
Z(1 − δη) . (9.2)

Since the bare 〈Ω|T{φ(x1) . . . φ(xn)}|Ω〉 does not change one obtains from (9.1)

0 = δ
(
Z

n
2G(n)

)
= δZ

n
2 G(n) + Z

n
2
∂G(n)

∂M
δM + Z

n
2
∂G

∂λ
δλ . (9.3)

Using δZ
n
2 = −nZn/2δη and defining

β :=
M

δM
δλ , γ := − M

δM
δη (9.4)

one arrives at the Callan-Symanzik-equations

[

M
∂

∂M
+ β

∂

∂λ
+ nγ

]

G(n)(x1, . . . xn, λ,M) = 0 . (9.5)

The renormalized coupling λ does not depend on the UV cut-off Λ and neither does
the arbitrary scale M . From their definition (9.4) we thus conclude that also β and γ
do not depend on Λ. Since β and γ are dimensionless and for a massless theory there
is no dimensionfull quantity other than Λ in the theory one concludes that β and γ are
also independent of M and one only has β = β(λ) and γ = γ(λ). This is not all obvious
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from their definition (9.4). This in turn implies that the Callan-Symanzik-equations only
contain two universal functions of λ for all G(n).

Let us now explicitly compute β and γ for massless φ4-theory by computing G(2)(M)
and G(4)(M) and inserting them into (9.5). In lecture 7 we showed in problem 4.1 and
(7.23) that the one loop corrections of the propagator are p-independent. Therefore
imposing the renormalization conditions at p2 = −M2 (instead of p2 = m2) does not
change the result and we conclude

M
∂

∂M
G(2) = 0,

∂

∂λ
G(2) = 0 . (9.6)

Inserted int (9.5) then implies
γ = 0 + O(λ2) . (9.7)

G(4) was computed in problem 4.2 and (7.25) to be proportional to

G(4) = −iλ + (−iλ)2
(
iV (s) + iV (t) + iV (u) +

)
− iδλ (9.8)

In lecture 7 we determine δλ by imposing an on-shell renormalization condition. Now we
impose G

(4)
amp|s=t=u=−M2 = −iλ which implies

δλ = (−iλ)2 3V (−M2)

=
3λ2

2
lim
d→4

1

(4π)d/2

∫ 1

0

dx
Γ(2 − d/2)

[x(1 − x)M2]2−d/2

=
3λ2

32π2
lim
ǫ→0

(2

ǫ
− lnM2 + finite

)

.

(9.9)

Thus

M
∂

∂M
G(4) =

3iλ2

16π2
(9.10)

Inserted into (9.5) together with γ = 0 we arrive at

−β ∂

∂λ
G(4) =

3iλ2

16π2
. (9.11)

From (9.8) we see that at leading order G(4) = −iλ so that we conclude

β =
3λ2

16π2
+O(λ3) . (9.12)

The analysis can also be done for massless QED forG(n,m)(x1, . . .M, e) where n counts
the number of electron fields Ψ while m counts the number of photon fields Aµ. In this
case the CS-equation reads

[

M
∂

∂M
+ β(e)

∂

∂e
+ nγ2 +mγ3

]

G(n,m)(x1, . . .M, e) = 0 , (9.13)

where

γ2,3 = − M

δM
δη2,3 , (9.14)
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with η2,3 being the change in the wave-function renormalization of Ψ or Aµ respectively.

In QFT I we used the on-shell renormalization conditions. In problem 5.1 the coun-
terterms δ2,3 are determined at p2 = −M2 to be

δ2 = − e2

16π2

Γ(2 − d/2)

M4−d + finite ,

δ3 = − e2

12π2

Γ(2 − d/2)

M4−d + finite .

(9.15)

In QFT I we further recorded δ1 = δ2. From these expressions and (9.13) one obtains
(see problem 5.1)

γ2 = −1
2
M∂Mδ2 =

e2

16π2
,

γ3 = −1
2
M∂Mδ3 =

e2

12π2
,

β = eM∂M (−δ1 + δ2 + 1
2
δ3) =

e3

12π2
.

(9.16)
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10 Lecture 10: Solution of the CS Equation

Let us consider G(2)(p). Dimensional analysis determines

G(2)(p) =
i

p2
f (−p2/M2) , (10.1)

where f is an arbitrary function for now. As a consequence one has

M∂M G(2) =
i

p2
f ′ 2p2

M2
,

p∂pG
(2) = −2G(2) − i

p2
f ′ 2p2

M2
.

(10.2)

which implies
M∂M G(2) = (−p∂p − 2)G(2) (10.3)

Inserted into the Callan-Symanzik equation (9.5) we obtain

(

p∂p − β
∂

∂λ
+ 2 − 2γ

)

G(2)(p, λ,M) = 0 . (10.4)

This is a partial differential equation of the type

[
∂

∂t
+ v(x)

∂

∂x
− ρ(x)

]

D(x, t) = 0 , (10.5)

where for the case at hand

t = ln(p/M) , v(x) = −β(λ) , ρ(x) = 2γ(λ) − 2 . (10.6)

In problem 5.2 we show that (10.5) is solved by

D(t, x) = D̂
(
x(t, x)

)
exp

(∫ t

0

dt′ ̺(x(t′, x))
)

(10.7)

with D̂ arbitrary and

∂x(t′, x)

∂t′
= −v(x) , x(0, x) = x . (10.8)

With the identification (10.6) one thus determines

G(2)(p, λ,M) = Ĝ
(
λ(p, λ)

)
exp

(

−
∫ p′=p

p′=M

d(ln p′

M
) 2
[
1 − γ(λ(p′, λ))

] )

(10.9)

with
d

d(ln p
M

)
λ(p, λ) = β(λ) , λ(M,λ) = λ . (10.10)

λ is called running coupling “constant”. Since (10.10) governs the flow of λ when chang-
ing the scale p it is often called the renormalization group equation. Note that the
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quantity Ĝ in (10.9) coincides with G(2) at p = M but for p 6= M it depends effectively
on the new coupling λ obtained as a solution of (10.10).

Similar solutions can be found for all G(n).

Let us now turn again to massless φ4-theory as an example. In this case we computed
in (9.12)

d

d ln p
M

λ(p, λ) = β(λ) =
3λ

2

16π2
+O(λ

3
) . (10.11)

This differential equation can be solved by integration which yields

λ(p) =
λ

1 − 3λ
16π2 ln p

M

. (10.12)

We can check that for p = M indeed λ = λ holds as required by the boundary condition.
Furthermore in the IR, i.e. for p→ 0 the theory becomes weakly coupled in that λ→ 0.
In the UV, i.e. for p→ ∞ the theory becomes strongly coupled in that λ→ ∞. However,
perturbation theory breaks down at the Landau pole

1 − 3λ

16π2
= 0 ⇒ p = M e

16π2

3λ . (10.13)

From (10.10) we see that the question if a theory is weakly or strongly coupled in the
UV or IR is determined by the sign of β. Therefore one can identify the following generic
cases:

d

d(ln p
M

)
λ(p, λ) = β(λ)







> 0 IR-free ,
= 0 scale independent (finite QFT) ,
< 0 UV-free (asymptotically free) .

(10.14)

Here IR-free means that λ decreases for decreasing p (λ ↓ for p ↓). For asymptotically
free theories one has instead λ ↓ for p ↑.
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11 Lecture 11: Non-Abelian Gauge Theories

Let us first recall the situation in an Abelian gauge theory with QED as its prominent
example. Here one starts from the Lagrangian

L = iψ̄ /∂ψ −mψ̄ψ . (11.1)

It has a gauge symmetry

ψ → ψ′ = eiαψ , ψ̄ → ψ̄′ = e−iαψ̄ , α ∈ R , (11.2)

and a corresponding Noether current

jµ = ψ̄γµψ . (11.3)

The associated gauge symmetry corresponds to the replacement α → α(x). Of course
L is no longer invariant but has to be coupled to a gauge boson Aµ via the covariant
derivative

Dµψ := ∂µψ − igAµψ , (11.4)

where g is called the gauge coupling constant (g = e for QED). Aµ is assigned the
transformation law

Aµ → A′
µ = Aµ + 1

g
∂µα , (11.5)

such that
Dµψ → (Dµψ)′ = ∂µψ

′ − igA′
µψ

′ = eiαDµψ . (11.6)

The Lagrangian

L(ψ,Aµ) = iψ̄γµDµψ −mψ̄ψ = iψ̄γµ∂µψ −mψ̄ψ + gjµAµ (11.7)

is gauge invariant, i.e. L(ψ′, A′
µ) = L(ψ,Aµ). In order to promote Aµ to a propagating

field one needs to add a kinetic term (the Maxwell term)

L = −1
4
FµνF

µν , with Fµν = ∂µAν − ∂νAµ . (11.8)

Fµν is gauge invariant, i.e. obeys Fµν → F ′
µν = Fµν .

This story can be generalized to n Dirac spinors ψi, i = 1, . . . , n with the Lagrangian

L =

n∑

i=1

(iψ̄i /∂ψi −mψ̄iψi) . (11.9)

L has the unitary symmetry

ψi → ψ′
i =

∑

j

Uijψj , ψ̄i → ψ̄′
i =

∑

j

ψ̄jU
†
ji , (11.10)

with UU † = 1 since
∑

i ψ̄iψi →
∑

i ψ̄
′
iψ

′
i =

∑

ijk ψ̄iU
†
ijUjkψk =

∑

i ψ̄iψi.

The associated gauge symmetry is obtained by the replacement U → U(x). L is no
longer invariant but has to be coupled to a matrix gauge boson (Aµ)ij via the covariant
derivative

Dµψi := ∂µψi − ig
∑

j

(Aµ)ijψj , (11.11)
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such that
Dµψi → (Dµψ)′i = ∂µψ

′
i − ig

∑

j

(Aµ)
′
ijψ

′
j =

∑

j

UijDµψj . (11.12)

This determines the transformation law of Aµ to be (in matrix notation)

Aµ → A′
µ = UAµU

† − i
g
(∂µU)U † , (11.13)

which can be checked by inserting (11.13) and (11.10) into (11.12).

The field strength for Aµij is defined as

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] . (11.14)

One checks the transformation law

Fµν → F ′
µν = ∂µA

′
ν − ∂νA

′
µ − ig[A′

µ, A
′
ν ] = UFµνU

† . (11.15)

As a consequence

trF ′
µνF

µν′ = tr(UFµνU
†UF µνU †) = trFµνF

µν . (11.16)

Therefore the gauge invariant Lagrangian (L(ψ′, A′
µ) = L(ψ,Aµ)) for this non-Abelian

gauge theory (or Yang-Mills theory) is given by

L =
n∑

i=1

(iψ̄iγ
µDµψi −mψ̄iψi) − κtrFµνF

µν , (11.17)

where the normalization κ will be determined later.

It is often easier to consider infinitesimal transformations

U = 1+ Ĥ + O(Ĥ2) , U−1 = 1− Ĥ + O(Ĥ2) , (11.18)

such that for unitary U
U−1 = U † ⇒ Ĥ = −Ĥ† , (11.19)

i.e. Ĥ is anti-Hermitian. Therefore one conventionally defines Ĥ = iH with H = H†. It
is convenient to separate the parameters of a transformation (e.g. rotation angles) from
the basis of hermitian matrices and define

Ĥij = i
∑

a

αataij , αa ∈ R , ta = (ta)† , (11.20)

where ta denotes a basis of all hermitian n × n matrices. (They are called generators.)
There are n2 linearly independent such matrices and thus a = 1, . . . , n2. If additionally
detU = 1 the ta are traceless and there are only n2 − 1 generators. In the next lecture
we show that the ta satisfy

[ta, tb] = i
∑

c

fabctc . (11.21)

The fabc are called structure constants of the Lie-algebra.
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12 Lecture 12: A little Group Theory

A group G consists of a set of elements g1, . . . , gn ∈ G with a multiplication “·” such that

(1) gi · gj ∈ G (closure of the multiplication)

(2) gi · (gj · gk) = (gi · gj) · gk (associativity)

(3) gi · 1 = 1 · gi = gi (existence of the identity)

(4) gi · g−1
i = 1 (existence of an inverse)

An additional option is

(⋆) gi · gj = gj · gi
in which case the group is called Abelian.

In quantum field theory the concept of a group is an indispensable tool since sym-
metry transformations such as rotations, Lorentz-transformations and gauge transforma-
tions are mathematically described by a group. However, in this application the group
elements depend on the rotation angles, the boost parameters or the gauge parameters.
Such groups are called Lie-groups which have the property that their elements g depend
continuously on a finite number of parameters αa, a = 1, . . . , d, i.e. g = g (α1, . . . , αd).
The group multiplication now reads

g (α1, . . . , αd) · g (β1, . . . , βd) = g (γ1, . . . , γd) , (12.1)

where
γa = γa (α1, . . . , αd, β1, . . . , βd) (12.2)

is a differentiable function of αa and βa.

An infinitesimal element of a Lie-group can be parametrized as7

g (α) = 1 + i

d∑

a=1

αat
a + 1

2

d∑

a,b=1

αaαbT
ab + O

(
α3
)
, (12.3)

where T ab can be chosen symmetric T ab = T ba. The group multiplication can then be
expressed as relations among the ta.

In order to derive this relation let us first note that g(0) = 1 so that

γa (α1, . . . , αd, 0, . . . , 0) = γa (0, . . . , 0, α1, . . . , αd) = αa . (12.4)

This implies

γa (α, β) = αa + βa +

d∑

b,c=1

Cbc
a αbβc + O

(
(α, β)3

)
, (12.5)

or in other words no terms proportional to α2 or β2 can appear as they would not satisfy

7This does not capture global issues.
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(12.4). We can compute explicitly

g (α) · g (β) = 1 + i
∑

a

(αa + βa)t
a + 1

2

∑

a,b

(
(αaαb + βaβb)T

ab − 2αaβbt
atb
)

+ O
(
α3
)

= g (γ) = 1 + i
∑

a

γat
a + 1

2

∑

a,b

γaγbT
ab + O

(
γ3
)

= 1 + i
∑

a

(αa + βa)t
a

+
∑

b,c

Cbc
a αbβct

a + 1
2

∑

ab

(αa + βa)(αb + βb)T
ab + . . . ,

(12.6)
where we used (12.5) in the last step. Decomposing tatb = 1

2
{ta, tb} + 1

2
[ta, tb] and com-

paring the second order terms we arrive at

[ta, tb] = i
∑

c

(Cba
c − Cab

c )tc , (12.7)

together with a slightly more complicated (and uninteresting) equation for {ta, tb}. Defin-
ing the structure constants fabc := Cba

c −Cab
c = −f bac eq. (12.7) turns into the Lie-algebra

of the group G

[
ta, tb

]
= i

d∑

c=1

fabctc . (12.8)

The ta are called the generators of the algebra while d is called the dimension of the
algebra. It is left to show that at higher orders no further constraints appear. A proof
of this fact can be found, for example, in [6]. Before we continue let us note that
(12.8) says that the group multiplication is characterized by a finite-dimensional algebra
independently of any parameter.

The structure constants fabc satisfy the Jacobi-identity which holds for any commu-
tator

0 =
[
ta,
[
tb, tc

]]
+
[
tb, [tc, ta]

]
+
[
tc,
[
ta, tb

]]

=
d∑

e=1

(
if bce [ta, te] + if cae

[
tb, te

]
+ ifabe [tc, te]

)
,

(12.9)

where in the second equation we used (12.8). Using it again implies

d∑

e=1

(
f bcefaef + f caef bef + fabef cef

)
= 0 . (12.10)

Let us now give some examples of Lie groups. Let us start with the group GL(n).
This is the group of n × n matrices M acting on Rn with detM 6= 0. These matrices
satisfy the group axioms. As a second example consider the group U(n) which is the

group of unitary n × n-matrices U,UU † = U †U = 1 again with detU 6= 0 and acting
on Cn. These matrices also satisfy the group axioms. Let ξ, θ be complex vectors i.e.
ξ, θ ∈ Cn. Under a unitary transformation one has

θ → θ′ = Uθ , ξ → ξ′ = Uξ , (12.11)
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or with indices

θi → θ′i =

n∑

j=1

Uijθj , ξi → ξ′i =

n∑

j=1

Uijξj , (12.12)

The inner product
∑n

i=1 θ
∗
i ξi is invariant under this transformation since

θ∗T → θ∗T ′ = (Uθ)∗T = θ∗TU † . (12.13)

In the previous lecture we already saw that an infinitesimal group element can be
written as

U = 1 + i
d∑

a=1

αat
a + O

(
α2
)
, (12.14)

with generators which are hermitian, i.e. ta = ta†. There are n2 such generators and thus
the dimension of the Lie-Algebra is d = n2.8

SU(n) denotes the group of unitary n × n-matrices U with the additional property
detU = 1. In the previous lecture we saw that in this case the generators are also
traceless Tr ta = 0. Such transformation are rotations in Cn and d = n2 − 1.

O(n) is the group of orthogonal n× n-matrices O with OOT = OTO = 1, detO 6= 0.
Let ξ, θ now be real vectors i.e. ξ, θ ∈ Rn with transformations

θ → θ′ = Oθ , ξ → ξ′ = Oξ , (12.15)

The inner product θT ξ is left invariant by these transformations and thus the transfor-
mations correspond to rotations and/or reflections of Rn. The infinitesimal element reads
again O = 1 + i

∑d
a=1 αat

a + O (α2) but now OTO = 1 requires the generators to be
antisymmetric ta = −taT . The dimension of the Lie-algebra therefore is d = 1

2
n(n − 1).

Imposing additionally detO = 1 excludes reflections and this (proper) rotation group is
called SO(n).

The group SO(n,m) consists of matrices Λ which satisfy

ΛTηΛ = η , (12.16)

for η = diag(1, . . . , 1,−1, . . . ,−1) with signature (n,m). Such transformation leave the
inner product ξTηθ invariant. In this notation the Lorentz-group corresponds to SO(1, 3).

8Note that the phase rotations U = eiα form the group U(1).
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13 Lecture 13: Representations of Lie Groups

Under a representation of a group G one understands the map

gi →Mi (gi) with Mi (gi) ·Mj (gj) = Mk (gk) for gi · gj = gk (13.1)

or for Lie-groups

g (α) →M (α) with M (α) ·M (β) = M (γ) for g (α) · g (β) = g (γ) , (13.2)

where M is a linear operator (a matrix or a differential operator) acting on an dr-
dimensional vector space V . dr is the dimension of the representation. If all M ’s act
within a subspace of V the representation is called reducible and otherwise irreducible.

The groups discussed in the previous lectures were defined by a particular represen-
tation. This is called the defining or fundamental representation.

A prominent example in physics is the group SU(2) which is generated by d = n2−1 =
4 − 1 = 3 hermitian generators. These are precisely the Pauli matrices ta = 1

2
σa. They

satisfy
[
ta, tb

]
= i
∑

c

ǫabctc . (13.3)

Comparison with (12.8) implies fabc = ǫabc.

However, all groups can have higher-dimensional representations. For SU(2) these are
the spin-j representations which are (2j+1)-dimensional and also satisfy (13.3). In order
to notate the different representations we sometimes use tar to state that the generators ta

are taken in the representation r. In particle physics all known gauge groups are among
the SU(n) and so we focus on this case henceforth.

The matrices (ta)bc = if bac form a representation since they satisfy (12.8) due to the
Jacobi-identity (12.10). (This is shown in problem 7.2.) This representation is called the
adjoint representation and it has dimension dr = d ≡ d(G).

The complex conjugate representation is generated by tar̄ = −(tar)
T (which is shown

in problem 7.3). A real representation satisfies tar̄ = Stars
−1, ∀a.

Let us define
Dab
r := Tr(tart

b
r) , a, b = 1, . . . , d = n2 − 1 . (13.4)

Due to the cyclicity of the trace Dab
r = Dba

r and furthermore

(Dab
r )† = Tr(tb†r t

a†
r ) = Dab

r , (13.5)

where we used tar = ta†r and again the cyclicity of the trace. Thus Dab
r is a hermitian and

symmetric matrix and thus real. It can be diagonalized and furthermore the normaliza-
tion of the ta can be chosen such that

Tr
(
tart

b
r

)
= c(r) δab . (13.6)

c(r) is called the index of the representation. In the fundamental n-dimensional repre-
sentation of SU(n) one chooses c(n) = 1

2
.
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Another property of the fabc can be learned from considering

Tr
(
[tar , t

b
r]t

c
r

)
= ifabd Tr

(
tdrt

a
r

)
= ifabcc(r)

= Tr
(
tart

b
rt
c
r − tbrt

a
rt
c
r

)
= Tr

(
tar [t

b
r, t

c
r]
)

= if bcac(r) ,
(13.7)

where we used (13.6) and the cyclicity of the trace in the second line. Thus we have the
symmetry properties

fabc = −f bac = f bca , (13.8)

or in other words the structure constants are totally antisymmetric for SU(n).

The quadratic Casimir operator is defined as

T 2
ij :=

d(G)
∑

a=1

d(r)
∑

k=1

taikt
a
kj. (13.9)

It commutes with all generators
[
tb, T 2

]
= 0 , ∀b . (13.10)

Thus T 2 must be proportional to the unit matrix and one can write

T 2
ij = c2(r) δij . (13.11)

Taking the trace of T 2 and Dab one derives (problem 7.2) the relation

c(r) · d(G) = c2(r) · d(r) . (13.12)

Let us close this lecture with a brief discussion of the Lorentz group in this formalism.
It corresponds to the group SO(1, 3) with the defining representation obeying (12.16).
For infinitesimal Lorentz transformations one expands

Λµ
ν = δµν + i

∑

a

ωa(t
a)µν + O(ω2) . (13.13)

Inserted into (12.16) one obtains

taT η = −ηta , (13.14)

or on other words the generators with both indices lowered are antisymmetric. There are
six such generators and it is customary to assembles them in an antisymmetric matrix
Jρσ = −Jσρ. Similarly the six Lorentz parameters are expressed in terms of the anti-
symmetric matrix ωρσ = −ωσρ such that

∑

a ωat
a =

∑

σρ ωσρJ
σρ. The Jρσ satisfy the

SO(1, 3) algebra

[Jµν , Jρσ] = i
(
ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ

)
(13.15)

All SO(n,m) groups have also spinor representations. Starting from the Clifford
algebra

{γµ, γν} = 2ηµν (13.16)

one can construct the operator
Sµν := i

4
[γµ, γν ] (13.17)

which satisfies (13.15). Sµν is the generator of the spinor representations of SO(n,m).
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14 Lecture 14: Feynman Rules in Non-Abelian Gauge

Theories

In lecture 11 we introduced non-Abelian gauge theories and gave the Lagrangian in
(11.17) which is invariant under the transformations (11.10) and (11.13). Using the
group-theoretical considerations of the previous lecture it is convenient to also determine
the infinitesimal transformation laws of non-Abelian gauge theories. That is we expand
U as in (12.14) and insert it into (11.10) to obtain

δψ = ψ′ − ψ = i
d∑

a=1

αataψ , (14.1)

or with indices

δψi = i

d∑

a=1

n∑

j=1

αataijψj . (14.2)

For SU(n) one has d = n2 − 1. ψ̄ transforms as

δψ̄ = ψ̄′ − ψ̄ = ψ̄ U † − ψ̄ = −i
∑

a

αaψ̄ ta . (14.3)

For the gauge bosons we find from (11.13)

δAµ = A′
µ −Aµ = i

∑

a

αa[ta, Aµ] + 1
g

∑

a

(∂µα
a) ta (14.4)

From the last term we see that Aµ must be an element of the Lie-algebra and we can
expand Aµ in a basis of generators

Aµ =
∑

a

Aaµt
a. (14.5)

Inserted into (14.4) we arrive at

δAµ = −i
∑

a

αaAbµ[t
a, tb] + 1

g

∑

a

(∂µα
a) ta . (14.6)

Using (12.8) and (14.5) we can alternatively write

δAaµ = −
∑

bc

αbAcµf
bca + 1

g
∂µα

a ≡ 1
g
Dµα

a (14.7)

The covariant derivative (11.11) now reads

Dµψ = ∂µψ − igAµψ = ∂µψ − ig
∑

a

Aaµt
aψj (14.8)

while the field strength is given by (see problem 7.1)

Fµν =∂µAν − ∂νAµ − ig[Aµ, Aν ] =
∑

a

F a
µνt

a

F a
µν =∂µA

a
ν − ∂νA

a
µ + g

∑

bc

fabcAbµA
c
ν

(14.9)
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In the Lagrangian (11.17) we left the normalization κ undetermined. Inserting (14.5)
and using (13.6) we see that for κ = − 1

4c(r)
we obtain a properly normalized kinetic term

of the gauge bosons. Thus (11.17) turns into

L =
∑

i

ψ̄i(iγ
µDµ −m)ψi − 1

4

∑

a

F a
µνF

aµν . (14.10)

In order to derive the Feynman rules we split L according to

L = L0 + Lint , (14.11)

where

L0 = ψ̄i(γ
µ∂µ −m)ψi +

1
2
Aaµ (ηµν − ∂µ∂ν)Aaν ,

Lint = gAaµj
aµ − gfabc∂µA

a
νA

bµAcν − 1
4
g2f cabAaµA

b
νf

cdeAdµAeν ,
(14.12)

and jµ = ψ̄γµtaψ. L0 contains the kinetic terms which are also present in the Abelian
limit. Together they results in the following Feynman rules [2]

i

p

j ∼ i

/p−m
δij

a b ∼ −i
(ηµν
k2

− (1 − ξ)
kµkν
k4

)

i j

a

∼ igγµta

a

b c ∼ gfabc[gµµ(k − p)ρ + gνρ(p− q)µ + gρν(q − k)ν ]

a b

c d
∼ −ig[fabef cde(gµρgνσ − gµσgνρ) + facef bde(gµνgρσ − gµσgµσgνρ)

+fadef bce(gµνgρσ − gµρgνσ)]
(14.13)

Note that the momenta are incoming in the second diagram.

In order to derive the gauge boson propagator recall that the kinetic term for Aaµ in
(14.12) is not invertible and as a consequence a gauge fixing is necessary. To do so we
repeat the Fadeev-Popov procedure which we used in lecture 4 for the Abelian case. As
we will see momentarily for a non-Abelian gauge bosons a slight complication occurs.

Let us again start from the path integral

I =

∫

DAeiS[A] , (14.14)
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where S[A] contains all A-dependent terms in (14.12). We again insert the identity in
the form ∫

Dαδ(G(Aα)) det
(δG(Aα)

δα

)

= 1 , (14.15)

where

Aaαµ = Aaµ + 1
g
Dµα

a , with Dµα
a = 1

g
∂µα

a − fabcαbAcµ (14.16)

Choosing
G(Aα) = ∂µAaαµ − ω(x) (14.17)

with ω(x) being an arbitrary scalar function, we see that δG(Aα)
δα

in the non-Abelian case
depends on A and is given by

δG(Aα)

δα
= 1

g
∂µDµ(A) (14.18)

Inserted into the path integral we obtain

I =

∫

DADαδ(G(Aα)) det
(δG(Aα)

δα

)

eiS[A] . (14.19)

but now the determined cannot be moved outside the integral. Changing variables

Aµ → Aαµ = UAµU
† − U∂µU

† , (14.20)

and using S[A] = S[Aα] (since it is gauge invariant) and DA = DAα since the change is
a unitary transformation plus an A-independent shift we arrive at

I =

∫

DAαDαδ(G(Aα)) det
(δG(Aα)

δα

)

eiS[Aα] . (14.21)

Since Aα is an (arbitrary) integration variable we can rename it back to A and factor out
the infinite-dimensional factor

∫
Dα which causes the problem, i.e.

I =
(∫

Dα
)∫

DAδ(G(A)) det
(δG(Aα)

δα

)

eiS[A] . (14.22)

The determinant in I can be represented as a path integral over anti-commuting
bosonic ghost fields ca. Recall from (5.17) that a functional determined can be represented
by a fermionic path integral

∫

Dψ̄Dψei
R

d4xψ̄Ôψ = c det(Ô) . (14.23)

However δG(Aα)
δα

does not act on spinors and therefore we need bosonic Grassmann fields
to represent the determinant

det
(δG(Aα)

δα

)

= det
(

1
g
∂µDµ(A)

)

=

∫

Dc̄Dcei
R

d4xLghost[c,c̄,A] , (14.24)

where
Lghost[c, c̄, A] = c̄(−∂µDµ)c = c̄a(−�δac − g∂µfabcAbµ)c

c . (14.25)
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Since the fields c, c̄ have the “wrong” spin-statistic they are called ghost fields. They are
not physical but rather their introduction is a trick to represent det( δG(Aα)

δα
). Now we can

evaluate this determinant by the additional Feynman rules

a b ∼ iδab

p2

a

b

c ∼ −gfabcpµ

(14.26)

Finally δ(G(A)) can again be expressed as a correction to S by integrating over all
ω(x) with Gaussian weight centered around ω(x) = 0. This yields

I ′ = N(ξ)

∫

Dω e−i
R

d4xω2

2ξ I

= N(ξ)
(∫

Dα
)∫

DADcDc̄ eiS
′[c,c̄,A]

(14.27)

where N is a normalization factor and

S ′ =

∫

d4x
(∑

i

ψ̄i(iγ
µDµ−m)ψi− 1

4

∑

a

F a
µνF

aµν− 1
2ξ

(∂µAµ)
2 + c̄(−∂µDµ)c

)

, (14.28)

where we now also included the fermions again. As a consequence the gauge boson
propagator reads again in momentum space

− i

k2

(
ηµν − (1 − ξ)

kµkν
k2

)
δab , (14.29)

as already anticipated in (14.13)
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15 Lecture 15: BRST Quantization

The gauged fixed action (14.28) has no gauge symmetry but instead a new global sym-
metry the so called Becchi-Rouet-Stora-Tyutin (BRST) symmetry. This symmetry can
be seen by considering the auxiliary Lagrangian

LB =
∑

i

ψ̄i(iγ
µDµ −m)ψi −

∑

a

(
1
4
F a
µνF

aµν +
∑

b

c̄a(∂µDµ)abc
b − ξ

2
BaBa −Ba∂µAaµ

)

.

(15.1)
Since there is no kinetic terms for Ba its Euler-Lagrangian equation is purely algebraic

∂L
∂Ba

= ξBa + ∂µAaµ = 0 , (15.2)

and thus can be used to express Ba in terms of Aµ

Ba = −1
ξ
∂µAaµ . (15.3)

Inserted into the LB of (15.1) we get back the original gauged fixed L of (14.28).

LB is invariant under the following BRST-transformations

δǫA
a
µ = ǫ

∑

c

Dac
µ c

c ≡ ǫ∂µc
a + g

∑

bc

fabcAbµc
c ,

δǫψi = igǫ
∑

aj

ca(ta)ijψj ,

δǫc
a = −1

2
gǫ
∑

bc

fabccbcc ,

δǫc̄
a = ǫBa ,

δǫB
a = 0 ,

(15.4)

where ǫ is the Grassmann parameter of the BRST transformation and satisfies ǫ2 = 0.
To show it we first observe that the gauge transformations (14.3) and (14.4) and the
BRST-transformation are related by

δαA
a
µ|αa=gǫca = δǫA

a
µ , δαψi|αa=gǫca = δǫψi . (15.5)

This immediately implies that the first two terms in (15.1) are invariant. The term
proportional to ξ is trivially invariant so that we need to compute

δǫ

(∑

ab

c̄a(∂µDµ)abc
b −
∑

a

Ba∂µAaµ

)

=
∑

ab

(δǫc̄
a)(∂µDµabc

b) +
∑

ab

c̄a∂µδǫ(Dµabc
b) −

∑

a

Ba∂µδǫA
a
µ .

(15.6)
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Using (15.4) we see that the first and the last term cancel and we are left with

∑

a

c̄a∂µ
(
∂µδǫc

a + g
∑

bc

fabc(δǫA
b
µ)c

c + g
∑

bc

fabcAbµδǫc
c
)

=
∑

a

c̄a∂µ
(

gǫ
∑

bc

fabc
(
− 1

2
(∂µc

bcc) + (∂µc
b)cc
)

+ g2ǫ
∑

bcef

(
fabc(f befAeµc

fcc − 1
2
f cefAbµc

ecf)
))

.

(15.7)

Using
∑

bc

fabc(∂µc
b)cc = 1

2

∑

bc

fabc∂µ(c
bcc) , (15.8)

which holds due to the antisymmetry of fabc and the Grassmann nature of ca, and

∑

bcef

fabcf befcfcc = 1
2

∑

bcef

cfcc(fabcf bef − fabff bec) , (15.9)

one sees that also the remaining terms cancel. Thus LB has a global BRST symmetry
for any ξ as a remnant of the gauge symmetry.

One commonly defines the BRST operator Q by the action

QAaµ = ∂µc
a + gfabcAbµc

c ,

Qψ = igcaT aψ ,

Qca = −1
2
gfabccbcc ,

Qc̄a = Ba ,

QBa = 0 ,

(15.10)

In problem 8.1 it is shown that Q is nil-potent, i.e. satisfies

Q2 = 0 , (15.11)

and furthermore the action (15.1) can be written as

LB =
∑

i

ψ̄i(iγ
µDµ −m)ψi − 1

4

∑

a

F a
µνF

aµν +Q
∑

a

(
c̄a∂µAaµ + ξ

2
c̄aBa

)
, (15.12)

which is another way to see its invariance under BRST-transformations. One can also
show

[Q,H ] = 0 , Q = Q† . (15.13)

The space of states H decomposes into three subspaces: H = H1 ⊕H2 ⊕H0, where

H1: contains states |ψ1〉 which are not annihilated by Q, i.e. Q|ψ1〉 6= 0,
H2: contains states |ψ2〉 for which |ψ2〉 = Q|ψ∗〉 holds.

(15.11) then implies Q|ψ2〉 = 0,
H0: contains states |ψ0〉 which obey Q|ψ0〉 = 0 but |ψ0〉 6= Q|ψ∗〉.
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Note that H0 coincides with the cohomology of Q which is defined as

coh(Q) :=
KerQ

ImQ
. (15.14)

From (15.10) we that in the free theory (g → 0)

QAaµ = ∂µc
a , Qc̄a = Ba , Qψ = Qca = QBa = 0 , (15.15)

which implies that for the asymptotic states we have

Along
µ ∈ H1 , Atrans

µ ∈ H0 , ψ ∈ H0 , ca ∈ H2 , c̄a ∈ H1 , Ba ∈ H2 . (15.16)

We see that the physical degrees of freedom Atrans
µ , ψ are in H0 while the unphysical

degrees of freedom Along
µ , ca, c̄a, Ba are in H1 or H2 respectively. Therefore in the BRST

quantization procedure H0, or in other words the cohomology of Q, is identified with the
physical Hilbert space. Thus, all asymptotic states of the theory have to be in H0.

It remains to show that the time evolution does not change this picture. Since Q
commutes with H we have

Q|ψ0, t〉 = QeiHt|ψ0〉 = eiHtQ|ψ0〉 = 0 . (15.17)

Thus |ψ0, t〉 ∈ H2 ⊕ H0. However, 〈ψ2|ψ0, t〉 = 〈ψ∗|Q|ψ0, t〉 = 0 and thus |ψ0, t〉 has no
component in H2 or in other words |ψ0, t〉 ∈ H0.

This can be repeated including the interaction so that indeed the physical states are
the states of H0, i.e. they are in the cohomology of Q.
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16 Lecture 16: Renormalized perturbation theory

for Non-Abelian Gauge Theories

Let us start with the bare Lagrangian determined in (14.28)

L = −1
4
F a

0µνF
aµν
0 − 1

2ξ

(
∂µAa0µ

)
(∂νAa0ν) + ψ̄0

(
i /D −m0

)
ψ0 + c̄a0

(
−∂µDac

µ

)
ca0 , (16.1)

and define the renormalized fields by

ψ0 =
√

Z2 ψ , Aa0µ =
√

Z3A
a
µ , ca0 =

√

Zc
2 c

a , c̄a0 =
√

Zc
2 c̄

a , (16.2)

with
Z2 = 1 + δ2 , Z3 = 1 + δ3 , Zc

2 = 1 + δc2 . (16.3)

The renormalized couplings are then defined by

Z2m0 = m+ δm , g0Z2

√

Z3 = g (1 + δ1) , g0Z
3/2
3 = g

(
1 + δ3g

1

)
,

g2
0Z

2
3 = g2

(
1 + δ4g

1

)
, g0Z

c
2

√

Z3 = g (1 + δc1) .
(16.4)

We thus have eight counterterms (δm, δ1,2,3, δ
c
1,2, δ

3g,4g
1 ) for only five physical quantities

(A,ψ, c, g,m). Indeed one can show that at one-loop (16.3) and (16.4) imply the three
relations

δ1 − δ2 = δ3g
1 − δ3 = δc1 − δc2 = 1

2
(δ4g

1 − δ3) . (16.5)

Inserting (16.2), (16.3) and (16.4) into (16.1) we obtain

L = L(ψ,A, c) + LCT , (16.6)

where

LCT = −1
4
δ3
(
∂µA

a
ν − ∂νA

a
µ

)2
+ ψ̄

(
iδ2 /∂ − δm

)
ψ − δc2c̄

a
�ca + gδ1A

a
µj

aµ

− gδ3g
1 f

abc (∂µA
a
ν)A

bµAcν − 1
4
g2δ4g

1

(
f eabAaµA

b
ν

)2 − gδc1c̄
afabc∂µAbµc

c.
(16.7)

These counterterms lead to the additional Feynman rules
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∼ i(/pδ2 − δm)

∼ −i
(
k2gµν − kµkν

)
δabδ3

∼ igtaγµδ1

∼ δc1

∼ δ3g
1

∼ δ4g
1

∼ δc1 .

(16.8)

In the following we give the results for δ1,2,3 which we need for the computation of
the β-function. For further details see [2]. The one-loop corrections to the gauge boson
propagator includes the diagrams

+ +

+ +
. (16.9)

The first two diagrams are as in QED and they give

Πµνab = i
(
q2gµν − qµqν

)
δabΠ(q2) (16.10)

with
Π(q2) = − g2

(4π)2
4
3
c(r)nf Γ

(
2 − d

2

)
+ finite

− δ3 ,
(16.11)

where we allowed for the possibility of nf fermions in representation r. The last three
diagrams in (16.9) only arise in non-Abelian gauge theories and they give

Π(q2) = g2

(4π)2
5
3
c2(G)Γ

(
2 − d

2

)
+ finite . (16.12)
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Imposing the renormalization condition

Π
(
q2 = −M2

)
= 0 (16.13)

yields

δ3 = g2

(4π)2

[
5
3
c2(G) − 4

3
nfc(r)

] Γ
(
2 − d

2

)

(M2)2−d/2 . (16.14)

The fermion self energy Σ2 has the two contributions

+ (16.15)

which are computed in problem 8.3 to give (for massless fermions)

ig2

(4π)2 /pc2(r)Γ
(
2 − d

2

)
+ finite + i/pδ2 . (16.16)

Imposing the renormalization conditions

Σ
(

/p = −M
)

= 0 ,
d

d/p
Σ
(

/p = −M
)

= 0 (16.17)

yields9

δ2 = − g2

(4π)2
c2(r)

Γ
(
2 − d

2

)

(M2)2−d/2
(16.18)

Finally we consider the vertex corrections

−igΓµta ∼

+

+ (16.19)

In problem 8.3 one computes

−igΓµta = ig3

(4π)2
taγµΓ

(
2 − d

2

) (
c2(r) − 1

2
c2(G) + 3

2
c2(G)

)
+ finite

+ igγµtaδ1 ,
(16.20)

where the combination c2(r) − 1
2
c2(G) arises from the first graph while 3

2
c2(G) results

from the second graph. Imposing

−igΓµ (p′ − p = −M) = −igγµ (16.21)

yields

δ1 = − g2

(4π)2

Γ
(
2 − d

2

)

(M2)2−d/2 (c2(r) + c2(G)) (16.22)

9The first condition fixes δm.
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The computation of the β− and γ-functions proceeds as in QED since only the coef-
ficients changed. Using

Γ
(
2 − d

2

)

(M2)2−d/2
=

2

ǫ
− ln

(
M2
)

+ . . . , (16.23)

we obtain

γ2 =
1

2
M∂Mδ2 = g2

(4π)2
c2(r) ,

γ3 =
1

2
M∂Mδ3 = g2

(4π)2

(
4
3
nfc(r) − 5

3
c2(G)

)
,

(16.24)

and

β(g) = gM
∂

∂M

(
− δ1 + δ2 + 1

2
δ3
)

= − g3

(4π)2

(
11
3
c2(G) − 4

3
nf c(r)

)
. (16.25)

The physical significance of this results is that β can easily be negative leading to UV
free (asymptotically free) theories. For example for SU(n) one has c(n) = 1

2
, c2(G) = n

resulting in
β(g) = − g3

(4π)2

(
11
3
n− 2

3
nf
)
, (16.26)

which is negative for 11n − 2nf > 0. A prominent example of such a theory is QCD
which we turn to in the next lecture.
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17 Lecture 17: Quantum Chromo Dynamics (QCD)

17.1 Basic definitions and properties

The basic idea of QCD is that the strong interactions are mediated by an SU(3) gauge
theory. Thus there are 32−1 = 8 gauge bosons of SU(3) called gluons and we denote them
by Ga

µ, a = 1, ..., 8. The constituents of baryons and mesons are fermions called quarks
and they transform in the fundamental three-dimensional representation of SU(3). They
are denoted by qi, i = 1, 2, 3 and each of the qi(x) is a Dirac spinor. The SU(3) quantum
number is often called colour and in this nomenclature the qi form a colour-triplet with
i being the colour-index. Experimentally one observes six of these colour triplets and so
together we denoted them by qIi , I = 1, . . . , nf = 6. Here one often says that there are
six flavours of quarks and thus the index I is called the flavor index. Furthermore they
are grouped in three families according to their electric charge.

family quarks charge quark charge
1 u (up) 2/3 d (down) −1/3
2 c (charm) 2/3 s (strange) −1/3
3 t (top) 2/3 b (bottom) −1/3

The QCD Lagrangian reads

LQCD = −1
4

8∑

a=1

Ga
µνG

aµν −
6∑

I=1

3∑

i=1

(iqIi /Dq
I
i −mIJq

I
i q
J
i ) , (17.1)

where the field strength is defined canonically as

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν , (17.2)

and the covariant derivatives are

Dµq
I
i = ∂µq

I
i − igs

∑

a

∑

j

Ga
µt
a
ijq

I
j . (17.3)

The taij are the generators of SU(3), fabc the corresponding structure constants and gs is
the strong coupling constant. The gauge transformation of the quarks therefore is

δqIi = i
8∑

a=1

3∑

j=1

αa(x) taijq
I
j . (17.4)

Before we continue let us pause and note that all six quarks are electrically charges
and thus couple to the photon γ. Including the electromagnetic interactions the gauge
group is SU(3) × U(1)em and one has to add the Maxwell term to the Lagrangian of
(17.1) with the covariant derivatives modified according to

Dµq
I
i = ∂µq

I
i − igs

∑

a

∑

j

Ga
µt
a
ijq

I
j − iQfeγµq

I
i , (17.5)
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where Qf indicates the fraction of electric charge they carry, i.e. Qf = 2/3 for u, c, t and
Qf = −1/3 for d, s, b. Accordingly the transformation law reads

δqIi = i

8∑

a=1

3∑

j=1

αa(x) taijq
I
j + iαem(x)qIi . (17.6)

The β-function was determined in (16.26) to be

β(g) = − b0g
3

(4π)2
, with b0 = 11

3
c2(G) − 4

3
nfc(r) , (17.7)

which for QCD evaluates to

b0 = 11
3
c2(8) − 4

3
nf c(3) = 11

3
3 − 4

3
6 1

2
= 7 > 0 , (17.8)

where we used c2(8) = 3, c(3) = 1
2
, nf = 6. Thus QCD is an asymptotically free theory

which is weakly coupled at high energies and strongly coupled at low energies. At low
energies one observes experimentally only colour singlet states. This is called confinement
which, however, has not been proved in QCD yet. These colour singlets are bound states
of the quarks. More precisely one has

mesons : M IJ =
∑

i

q̄Ii q
I
i ,

baryons : BIJK =
∑

ijk

ǫijkq
I
i q
J
j q

K
k .

(17.9)

One checks that both combinations are SU(3) singlets.

At high energies one can use perturbation theory in gs as developed in this course.
For low energies other methods such as lattice gauge theories are necessary. To estimate
the scale ΛQCD where QCD becomes strongly coupled one consider the solution of the
CS equation which was determined in problem 6.4 to be

ḡ−2(P ) = ḡ−2(M) + b0
(8π)2

ln(P/M) (17.10)

or for αs := g2s
4π

ᾱs(P ) =
ᾱs(M)

1 + b0
(2π)

ᾱs(M) ln(P/M)
. (17.11)

One now estimates ΛQCD by the condition

ᾱ−1
s (M = ΛQCD) = 0 . (17.12)

Inserted into (17.10) one determines

ΛQCD = Pe
− 2π

b0
ᾱ−1

s (P )
. (17.13)

In problem 9.3 it is shown that ΛQCD is a renormalization group invariant scale in that
it satisfies

dΛQCD

dP
= 0 . (17.14)

Numerically one finds

ΛQCD ≈ 200MeV using ᾱs(1GeV ) = 0.4 . (17.15)
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17.2 Experimental observations

Even though perturbation is not applicable at low energies QCD is a well tested theory.
The electromagnetic production of hadrons via the process e+e− → hadrons is very
similar to the in QFT I computed process e+e− → µ+µ−. There we found the cross
section

σtot(e
+e− → µ+µ−) ≈ 4παem

3E2
rmCM

≡ σ0 (17.16)

valid in the limit ECM ≫ mµ. Here the difference is the different electric charge of the
quarks and the multiplicity due to the colour quantum number. Thus one obtains

σtot(e
+e− → qq) = 3σ0

∑

f

Q2
f . (17.17)

This is indeed observed including the jumps when additional quark flavor can be ener-
getically excited.

The leading one-loop QCD correction arises from the diagram

e−

e + q

q (17.18)

which leads to
σtot = 3σ0

∑

f

Q2
f

(
1 +

αs
π

+ O(α2
s)
)
. (17.19)

A further confirmation of QCD was the observation of three-jet events in the 70ies at
DESY. They arise form diagrams such as

e−

e + q

q

g

. (17.20)

The crucial experiment, however was the SLAC-MIT experiment in 1968 where 20GeV
electrons were shot on a hydrogen-target. This in some sense repeated Rutherford’s exper-
iments in that a substructure of the proton became visible. At high momentum transfer
the scattering process was seen to be on point-like constituents which were called partons
at the time and later on identified with the quarks. Again there is a closely connected
QED process e−µ− → e−µ− and the modification only comes from the fact that the
quarks are bound in the proton. This is parametrized by the parton distribution function
(PDF) fi(x) which gives the probability of finding the parton i inside the proton with
x parameterizing the fraction of the proton momentum carried by the quark. With this
parametrization one finds

dσ

d cos θ
=
∑

i

fi(x)Q
2
i

(
dσ

d cos θ

)

QED

, (17.21)

which is indeed observed with 10 − 20% accuracy. (For further details see [2].)
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18 Lecture 18: Spontaneous Symmetry Breaking &

Goldstone’s Theorem

The simplest theory which displays spontaneous symmetry breaking is a real scalar field
with Lagrangian

L = 1
2
∂µφ∂

µφ− V (φ) , where V = −1
2
µ2φ2 + 1

4
λφ4 , µ2, λ > 0 . (18.1)

Due to the “wrong sign” of the quadratic term µ is not the mass of the field. The
minimum of V (φ) is found from

∂V

∂φ
= φ(−µ2 + λφ2) = 0 (18.2)

to be at φ = ±
√

µ2/λ while φ = 0 is a local maximum.

The Lagrangian (18.1) has a discrete symmetry φ → −φ which leaves L unchanged,
i.e. L(φ) = L(−φ). However the minimum does not have this symmetry. Instead it spon-
taneously breaks it. This is the prototype example of spontaneous symmetry breaking:

The theory has a global symmetry which is not shared by its ground state.

For a continuous symmetry this phenomenon can be observed for a complex scalar
field φ = 1√

2
(φ1 + ıφ2) with Lagrangian

L = ∂µφ∂
µφ∗ − V (φ, φ∗) , where V = −µ2φφ∗ + 1

2
λ(φφ∗)2 , µ2, λ > 0 . (18.3)

This L has a global U(1) symmetry φ → φ′ = eıαφ, α ∈ R in that L(φ′, φ∗′) = L(φ, φ∗).
In this case the minimum is found at

∂V

∂φ
= φ∗(−µ2 + λφφ∗) = 0 (18.4)

which implies

φφ∗ =
µ2

λ
. (18.5)

This is the equation of a circle and thus the minimum is a one-dimensional field space.
Any values on that circle breaks the symmetry spontaneously. (At φ = 0 = φ∗ we have
again a local maximum.) It is convenient to expand φ = 1√

2
(v + h(x) + ıσ(x)) with

1
2
v2 =

µ2

λ
, such that φ|min = 1√

2
v , h|min = σ|min = 0 . (18.6)

Inserted into V one obtains from (18.3)

L = 1
2
∂µh∂

µh + 1
2
∂µσ∂

µσ − V (h, σ) (18.7)

with

V (h, σ) = −1
2
µ2((v + h)2 + σ2) + 1

8
λ((v + h)2 + σ2)2 = V (v) + µ2h2 + cubic , (18.8)
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where we used v2

2
= µ2

λ
in the second step. Thus we see that σ(x) is massless while h(x)

has mass m2 = 2µ2. σ(x) is called Goldstone boson.

As a next generalization consider N complex scalar fields φi with Lagrangian

L =
N∑

i=1

∂µφ
i∂µφi∗ − V (φi, φi∗) , V = −µ2

∑

i

φiφi∗ + λ
2

(∑

i

φiφi∗
)2
. (18.9)

L has a global U(N) symmetry

φi → φ′i =
∑

j

U ijφj , φi∗ → φ′i∗ =
∑

j

φj∗U †ji , UU † = 1 . (18.10)

The minimum of V is found by solving

∂V

∂φi
= φi∗(−µ2 + λ

∑

j

φjφj∗) = 0 ,
∂V

∂φi∗
= φi(−µ2 + λ

∑

j

φjφj∗) = 0 , (18.11)

to be on the 2N -dimensional sphere

∑

j

φjφj∗ =
µ2

λ
. (18.12)

One can parametrize the field space by

φ1 = 1√
2

(
v + h(x) + ıσ(x)

)
, φ2, ..., φN , (18.13)

such that

v2

2
=
µ2

λ
, φ1|min = 1√

2
v , h|min = σ|min = φ2|min = . . . = φN |min = 0 . (18.14)

We see that the minimum breaks the U(N) to a residual U(N − 1) acting on φ2, . . . , φN .
Inserting (18.13) into V given in (18.9) one computes

V = V (v) + µ2h2 + cubic . (18.15)

We thus see that one scalar fields h is massive (with mass m2 = µ2) while the 2N − 1
scalars σ, φ2, . . . , φN are massless. These are again the Goldstone bosons.

Generically the number of massless scalar fields in a theory with a spontaneously
broken global symmetry is determined by the Goldstone-theorem. It says:

For every spontaneously broken continuous symmetry there exists a real massless

scalar field called Goldstone boson.

Let us prove the theorem. Consider N real scalars φi, i = 1, . . . , N with Lagrangian

L = 1
2

N∑

i=1

∂µφ
i∂µφi − V (φi) . (18.16)

The kinetic term has a global O(N) symmetry. The potential V we leave arbitrary and
only assume that it has a global symmetry G ⊂ O(N) with transformation law

φi → φi′ = φi + δφi , with δφi = ı

dim(G)
∑

a=1

αa(ta)ijφj , (18.17)
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where the ta are the generators of G and α ∈ R is the global transformation parameter.
Since V is assumed to be invariant under G we have

V (φi′) = V (φi + δφi) = V (φi) +
∑

i

∂V

∂φi
δφi + . . . = V (φi) , (18.18)

which implies at first order
∑

i

∂V

∂φi
δφi = 0 . (18.19)

Differentiating this equation w.r.t. φj yields

∑

i

(
∂2V

∂φj∂φi
δφi +

∂V

∂φi
∂

∂φj
δφi
)

= 0 . (18.20)

Evaluated at the minimum where ∂V
∂φi = 0 holds we obtain

∑

i

m2
ijδφ

i
∣
∣
min

= 0 , (18.21)

where we defined the N ×N mass matrix

m2
ij ≡ ∂2V

∂φi∂φj

∣
∣
∣
min

. (18.22)

Since m2
ij is symmetric it can be diagonalized to m2

ij = m2
i δij . Inserted into (18.21) we

arrive at ∑

i

m2
i δφ

i
∣
∣
min

= 0 . (18.23)

One defines the unbroken generators tu of G to be those which leave the minimum
invariant, i.e. which obey

(tu)
ijφj |min = 0 , implying δuφ

i
∣
∣
min

= 0 . (18.24)

The broken generators tb of G on the other hand are those which transform the ground
state, i.e. which obey

(tb)
ijφj |min 6= 0 , implying δbφ

i
∣
∣
min

6= 0 . (18.25)

Inspecting (18.23) we see that it is automatically satisfied for all unbroken generators
while for the broken generators m2

i = 0 has to hold.

In order to confirm the physical meaning of the mass matrix m2
ij let us Taylor expand

the potential around φi = φi|min + ∆φi

V (φi|min + ∆φi) = V (φi|min) + 1
2

∑

ij

m2
ij∆φ

i∆φj + . . .

= V (φi|min) + 1
2

∑

I

m2
i∆φ

i∆φi + . . . .
(18.26)
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We see that m2
i are the mass parameters of the fields φi when they are expanded around

their background values. Therefore we have completed the proof of Goldstone’s theorem
in that we showed that for each broken generator there exists a massless scalar field.

To conclude let us check the consistency of the U(N) example with Lagrangian (18.9).
In this case we found that the U(N) is spontaneously broken to U(N − 1) and thus the
number of broken generators is

N2 − (N − 1)2 = 2N − 1 , (18.27)

which indeed coincides with the number of massless scalars we found. Another example
is given in problem 9.4.
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19 Lecture 19: Higgs Mechanism

In the previous lecture we considered spontaneous symmetry breaking for a global sym-
metry and proved that a massless scalar field, the Goldstone boson, is necessarily present.
In this lecture we generalize the analysis in that we consider instead local gauge sym-
metries. As we will see this results in the possibility of massive gauge bosons where the
longitudinal degree of freedom is precisely the Goldstone boson.

Let us start with an Abelian example and consider the Lagrangian

L = −1
4
FµνF

µν +Dµφ∗Dµφ− V (φ, φ∗) , (19.1)

where φ is a complex charged scalar field. The covariant derivative and the potential
read

Dµφ = ∂µφ− igAµφ , V = −µ2φφ∗ + 1
2
λ(φφ∗)2 , µ2, λ > 0 . (19.2)

L is invariant under the gauge symmetry

φ→ φ′ = eiα(x)φ , Aµ → A′
µ = Aµ + 1

g
∂µα . (19.3)

The minimum of V is found at

φ∗|min = φ|min = 1√
2
v =

√

µ2

λ
. (19.4)

Here we use a different parametrization than in the previous lecture in that we change
variables (φ, φ∗) → (h, β) according to

φ(x) = 1√
2

(
v + h(x)

)
eiβ(x) , φ∗(x) = 1√

2

(
v + h(x)

)
e−iβ(x) . (19.5)

h(x) will be identified as the Higgs boson while β(x) will be the Goldstone boson. Inserted
into V we obtain

V (h) = −µ2(v + h)2 + 1
8
λ(v + h)4 = V (v) + µ2h2 = 1

2
λvh3 + 1

8
λh4 . (19.6)

We see that the Goldstone boson β drops out completely from the potential. Inserting
(19.5) into the kinetic term of φ yields

Dµφ∗Dµφ = 1
2

(

∂µh+ i(gAµ − ∂µβ)(v + h)
)(

∂µh− i(gAµ − ∂µβ)(v + h)
)

. (19.7)

We see that β can be removed by the gauge transformation

Aµ → A′
µ = Aµ + 1

g
∂µβ , (19.8)

which leaves Fµν invariant. This gauge is called the unitary gauge and it corresponds to
a field basis where the Goldstone boson β is removed from the entire Lagrangian in that
L of (19.1) now reads

L = −1
4
FµνF

µν + 1
2
∂µh∂µφ− V (h) + 1

2
m2
AAµA

µ + (g2vh+ 1
2
g2h2)AµA

µ . (19.9)

We see that the gauge boson has a mass term given by m2
A = g2v2 while the last term is

an Aµ− h interaction term. Let us count the degrees of freedom. In the unbroken phase
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both Aµ and φ each have two real physical degrees of freedom. In the broken phase the
massive Aµ has 2s + 1 = 3 degrees of freedom while there is only one real scalar h left.
Also from the gauge transformation (19.8) we see that β plays the role of the longitudinal
degree of freedom of a massive Aµ.

Let us generalize this situation to an SU(n) gauge symmetry with complex scalar fields
transforming in the fundamental n-dimensional representation of SU(n). The Lagrangian
reads

L = −1
4

n2−1∑

a=1

F a
µνF

aµν +

n∑

i=1

Dµφ∗iDµφ
i − V (φi, φ∗i) , (19.10)

where the covariant derivative and the potential read

Dµφ
i = ∂µφ

i − igAaµt
aijφj , Dµφ

∗i = ∂µφ
i + igAaµt

∗aijφj ,

V = −µ2φ∗iφi + 1
2
λ(φ∗iφi)2 , µ2, λ > 0 .

(19.11)

L is invariant under the gauge symmetry

φi → φi′ = U ijφj , Aµ → A′
µ = UAµU

† − i
g
U∂µU

† . (19.12)

The minimum of V is found at

φ∗i|min = φi|min =
vi√
2

=

√

µ2

λ
. (19.13)

Expanding φi around its background or vacuum expectation value vi as φi = 1√
2
vi + . . .

we can directly compute the gauge boson mass term to be

Lm = 1
2
m2
abA

a
µA

bµ . (19.14)

The mass matrix is given by

m2
ab = g2 t∗aijvjtbikvk = g2 vjtajitbikvk = g2 1

2
vj{ta, tb}jkvk , (19.15)

where we used that the generators are hermitian and that the mass matrix is symmetric.
From (19.15) we see immediately that it vanishes for the unbroken generators which
satisfy tbikvk = 0. In the previous lecture we found that there are 2N − 1 broken
generators for which tbikvk 6= 0 and thus m2

ab has 2N − 1 non-zero eigenvalues or in other
words 2N − 1 massive gauge bosons. With this information we can parametrize the
unitary gauge as

φi =
1√
2







0
...
0

v + h(x)






U(x) , U = ei

P2N−1
a=1 βa(x) tabr , (19.16)

where tabr denote the broken generators and the 2N − 1 Goldstone bosons βa are real.
One can check that U is unitary and thus can be removed by an appropriate gauge
transformation. In this gauge the potential is again given by (19.6).
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Let us close this lecture with two explicit examples. First consider an SU(2) theory
with one Higgs doublet φi. In this case the generators are the Pauli matrices, i.e. ta = 1

2
σa

and we parametrize φi as in (19.16). Inserted into (19.15) we obtain

m2
ab = 1

8
g2 vjσajiσbikvk = 1

8
g2v2δab . (19.17)

We see that all 3 gauge bosons are massive and the SU(2) is completely broken.

Finally the electro-weak sector of the standard model is based on the gauge group
G = SU(2) × U(1)Y broken to U(1)em. U(1)Y denotes the hyper charge while U(1)em
denotes QED. The Higgs-doublet is charged under both factors and thus the Lagrangian
reads

L = −1
4

3∑

a=1

F a
µνF

aµν − 1
4
BµνB

µν +

2∑

i=1

Dµφ∗iDµφ
i − V (φi, φ∗i) , (19.18)

where F a
µν is the field strength of the SU(2) factor while Bµν is the field strength of

U(1)Y . The potential is again given by (19.2) and the covariant derivative read

Dµφ
i = ∂µφ

i − i
2
gAaµσ

aijφj − iyg′Bµφ
i , (19.19)

where y = 1/2 is the hyper charge of φ. L is invariant under the gauge symmetry

δφi = i
2
αaσaijφj + i

2
αy φ

i . (19.20)

Parameterizing φi by

φi = 1√
2

(
0
v

)

+ . . . (19.21)

we find

Dµφ∗iDµφ
i = 1

8
(0, v)

(

gAaµσa + 2yg′Bµ1)(gAaµσa + 2yg′Bµ1)(0

v

)

+ . . . . (19.22)

Using

(0, v)σa
(

0

v

)

= −v2δa3 , (0, v)σaσb
(

0

v

)

= v2δab , (19.23)

we obtain

Dµφ∗iDµφ
i = v2

8

(

g2(A1µA1
µ+A2µA2

µ)+(gA3
µ−2yg′Bµ)(gA

3µ−2yg′Bµ)
)

+ . . . . (19.24)

Written as a mass matrix as in (19.14) this expression corresponds to

m2
ab =

v2

8







g2

g2

g2 −gg′
−gg′ g′2







. (19.25)

Now one defines

W±
µ := 1√

2
(A1µ± iA2µ) ,

(
Z0
µ

γµ

)

:= O

(
A3
µ

Bµ

)

, where O ≡
(

cos θW − sin θW
sin θW cos θW

)

,
(19.26)
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with

cos θW =
g

√

g2 + g′2
, sin θW =

g′
√

g2 + g′2
. (19.27)

θW is called the weak or Weinberg angle. Inserted into (19.24) yields

Dµφ∗iDµφ
i = m2

WW
+µW−

µ + 1
2
m2
ZZ

0
µZ

µ0 + . . . . (19.28)

where
mW = 1

2
gv , mZ = 1

2

√

g2 + g′2 v =
mW

cos θW
. (19.29)

We see that three massive gauge bosons W±
µ , Z

0
µ arise while the photon γµ stays massless.

Thus we indeed observe the spontaneous symmetry breaking SU(2) × U(1)Y → U(1)em.
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20 Lecture 20: Chiral gauge theories and the Glashow-

Salam-Weinberg theory

20.1 Chiral gauge theories

Let us first recall from QFT I that any four-component Dirac spinor ψD can be decom-
posed into two two-component Weyl spinors ψL,R via

ψD =

(
ψL
ψR

)

, ψ = ψ†γ0 =
(
ψR, ψL

)
, (20.1)

where

γµ =

(
0 σµ

σµ 0

)

, σµ = (1, ~σ) , σµ = (1,−~σ) . (20.2)

The fermionic Lagrangian decomposes accordingly

L = ψD(iγµDµ +m)ψD = iψLσ
µDµψL + iψRσ

µDµψR +m
(
ψLψR + ψRψL

)
. (20.3)

Gauge theories are called chiral gauge theories whenever ψL and ψR transform in different
representations of the gauge group G.

The simplest example are chiral U(1) theories with the transformations

ψL → ψ′
L = eiyLα(x)ψL , ψR → ψ′

R = eiyRα(x)ψR . (20.4)

Note that they transform with the same local function α(x) but in general with different
charges yL 6= yR. (For yL = yR the U(1) theory is called vector-like.) The corresponding
covariant derivatives now read

DµψL,R = ∂µψL,R − igyL,RAµψL,R . (20.5)

From (20.3) we see that for yL 6= yR the Lagrangian is only invariant for m = 0 while
for yL = yR an invariant mass term m 6= 0 is possible. Or in other words, chiral gauge
theories forbid fermionic mass terms.

The non-Abelian generalization has the same L as in (20.3) but now with covariant
derivatives

DµψL = ∂µψL − igAaµt
a
rL
ψL , DµψR = ∂µψR − igAaµt

a
rR
ψR , (20.6)

and transformation laws

δψL = iαatarLψL , δψr = iαatarRψR . (20.7)

In a chiral gauge theory the representations rL and rR are different and therefore no
gauge invariant mass term is possible. However in spontaneously broken chiral gauge
theories a fermionic mass can be generated by the Higgs mechanism. Let us see how this
works.

We start with the chiral U(1) gauge theory and add to (20.3) a Yukawa coupling of
the form

LYuk = λ(φψ̄LψR + φ∗ψ̄RψL) . (20.8)
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The combination ψ̄LψR is Lorentz invariant and LYuk is also gauge invariant provided we
assign for φ the transformation law

φ→ φ′ = ei(yL−yR)α(x)φ . (20.9)

Using the parametrization (19.5) we obtain

LYuk = m(ψ̄LψR + ψ̄RψL) + . . . , where m = 1√
2
λv . (20.10)

Thus we see that the Higgs mechanism generates both gauge boson masses and fermion
masses in chiral gauge theories.

In non-Abelian gauge theories one adds the same Yukawa interaction (20.8) with φ in
a representation such that the product φψ̄LψR is a singlet. As example we now discuss
the GSW model.

20.2 GSW model

The GSW (Glashow-Salam-Weinberg) model (with one family) is a chiral gauge theory
with gauge group G = SU(2) × U(1)Y spontaneously broken to U(1)em. The spectrum
is summarized in table 20.2.

Spectrum SU(2) Y Q
1) Gauge bosons

Aa=1,2,3
µ 3 0 0,±1

Bµ 1 0 0

2) Weyl fermions

Ei=1,2
L =

(
νe
e−

)

L

2 −1
2

(
0
−1

)

e−R 1 −1 −1

3) Higgs boson

φi =

(
φ+

φ0

)

2 1
2

(
1
0

)

Table 20.0: Spectrum of GSW model

The Lagrangian is given by

L = − 1
4
F a
µνF

aµν − 1
4
BµνB

µν +Dµφ∗iDµφ
i − V (φi, φ∗i)

+ iĒi
Lσ

µDµE
i
L + iērσ

µDµer + λ(φiĒi
LeR + φ∗iēRE

i
L) ,

(20.11)

where F a
µν is the field strength of the SU(2) factor while Bµν is the field strength of U(1)Y .

The potential is again given by (19.11) and the covariant derivative of φ in (19.19). The
covariant derivatives of the fermions reads

DµE
i
L = ∂µE

i
L − i

2
gAaµσ

a
ijE

j
L − ig′y(EL)BµE

i
L ,

Dµer = ∂µeR − ig′y(eR)BµeR ,
(20.12)
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where y(EL) = −1
2

and y(eR) = −1.

The spontaneous symmetry breaking in the Higgs sector of this theory we already
discussed in the previous lecture. Thus we can insert the redefinitions (19.26)–(19.29)
and furthermore define

e :=
gg′

√

g2 + g′2
= g sin θW = g′ cos θW ,

Q :=1
2
σ3 + y12×2 =

(
1
2

+ y 0
0 −1

2
+ y

)

.

(20.13)

This yields

DµEL = ∂µEL − i√
2
g
(
W+
µ σ

+ +W−
µ

)
EL − ig

cos θW
Z0
µ

(
1
2
σ3 − sin2 θWQ

)
EL − ieγµQEL ,

DµeR = ∂µeR +
ig

cos θW
Z0
µ sin2 θW eR + ieγµeR ,

(20.14)
where we defined σ± = 1

2
(σ1 ± iσ2).

From the Yukawa interaction we read off the fermionic mass term. Inserting (19.21)
we obtain

Lm = me(ēLer + ēReL) , for me = 1√
2
λv . (20.15)

Thus the electron receives a Dirac mass terms while the neutrino νe is massless. In
problem 10.3 we show that introducing a right-handed neutrino νR which is a singlet
under the entire SU(2) × U(1)Y with a Majorana mass term also generates a mass for
the neutrino.
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21 Lecture 21: GSW II

In the previous lecture we discussed the GSW model with one family of leptons. However
three families are experimentally observed and they can be accommodated by adding

EiI
L =

(
νe
e−

)

L

,

(
νµ
µ−

)

L

,

(
ντ
τ−

)

L

, I = 1, 2, 3

eIR = eR, µR, τR ,

(21.1)

that is the index I = 1, 2, 3 counts the different families. The quantum numbers for each
family are identical and as given in table 20.2. The Lagrangian is as in (20.11) with an
additional sum over I and modified Yukawa interactions

L = − 1
4
F a
µνF

aµν − 1
4
BµνB

µν +Dµφ∗iDµφ
i − V (φi, φ∗i)

+ i

3∑

I=1

ĒiI
L σ

µDµE
iI
L + i

3∑

I=1

ēIrσ
µDµe

I
r +

∑

IJ

λIJ(φ
iĒiI

L e
J
R + φ∗iēJRE

iI
L ) .

(21.2)

The covariant derivatives are as in (20.14) as they are identical for each family. The
Yukawa couplings are now 3 × 3 matrices in family space and as a consequence the
spontaneous symmetry breaking yields the mass matrices

mIJ = v√
2
λIJ , (21.3)

with eigenvalues which are identified with me, mµ, mτ .

It is convenient to rewrite the Lagrangian (21.2) and explicitly display the interaction
of the gauge bosons with the fermionic currents.

L = − 1
4
F a
µνF

aµν − 1
4
BµνB

µν +Dµφ∗iDµφ
i − V (φi, φ∗i)

+ i
3∑

I=1

ĒiI
L σ

µ∂µE
iI
L + i

3∑

I=1

ēIrσ
µ∂µe

I
r +

∑

IJ

λIJ(φ
iĒiI

L e
J
R + φ∗iēJRE

iI
L )

+ g
(
W+
µ J

−µ
W +W−

µ J
+µ
W + Z0

µJ
µ
Z

)
+ eAµJ

µ
em ,

(21.4)

where

J−µ
W = 1√

2
νILσ

µeIL , J+µ
W = 1√

2
eILσ

µνIL , Jµem = −(eILσ
µeIL + eIRσ

µeIR) ,

JµZ =
1

cos Θw

[
1
2
νLσ

µνL +
(
−1

2
+ sin2 θw

)
eLσ

µeL + sin2 θweRσ
µeR
]
.

(21.5)

In this form we easily see that QED processes like e−e− → µ−µ− or e−e+ → µ−µ+ receive
(measured) corrections from a Z0 exchange. Furthermore the charged current interactions
lead to new (observed) processes such as electron-neutrino scattering e−ν → e−ν.

From the form (21.4) we can also easily derive the relation with Fermi’s theory of
the weak interactions. At low energies p ≪ mW±,Z0 one neglects the kinetic term of the
heavy gauge bosons W±, Z0 such that the field equation become algebraic

δL
δW±

µ

= gJ∓µ −m2
WW

∓µ = 0 ⇒ W±µ =
g

m2
W

J± ,

δL
δZ0

µ

=gJµZ −m2
ZZ

0µ = 0 ⇒ Z0µ =
g

m2
Z

JµZ .

(21.6)
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Inserted back into L one obtains

LF = 8√
2
GFJ

+
µ J

−µ + g2

m2
Z

JZ µJ
µ
Z , (21.7)

where GF = 8√
2

g2

m2
W

is the Fermi constant. The first term in (21.7) is a non-renormalizable

charged current interaction of Fermi’s theory. The second term is a neutral current
interaction predicted by the GSW-theory. It was indeed observed at CERN in 1973.

Let us close this section with a summary of the prediction of the GSW-model:

• Neutral current interactions which were observed at CERN in 1973.

• Existence of heavy gauge bosons W±
µ , Z

0
µ with a mass relation

ρ ≡ mW

mZ cos θw
= 1 . (21.8)

They were observed at CERN in 1979.

• Existence of at least one Higgs boson with an undetermined mass mH . This is not
yet observed.
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22 Lecture 22 & 23: The Standard Model

22.1 Spectrum and Lagrangian

The Standard Model (SM) combines QCD with the GSW-theory. The gauge group
therefore is G = SU(3) × SU(2) × U(1)Y which is spontaneously broken by the Higgs
mechanism to SU(3)×U(1)em. The particle spectrum is given in table 22.1. The indices
I = 1, 2, 3 denotes the three families of the SM and î = 1, 2, 3 the colour index.

Spectrum SU(3) SU(2) Y Q
1) Gauge bosons

Gâ=1,...,8
µ 8 1 0 0

Aa=1,2,3
µ 1 3 0 0,±1

Bµ 1 1 0 0

2) Weyl fermions

EiI
L =

(
νIe
e−I

)

L

1 2 −1
2

(
0
−1

)

e−IR 1 1 −1 −1
νIR 1 1 0 0

QîiI
L =

(

uîI

dîI

)

L

3 2 1
6

(
2
3

−1
3

)

uîIR 3 1 2
3

2
3

dîIR 3 1 −1
3

−1
3

3) Higgs boson

φi =

(
φ+

φ0

)

1 2 1
2

(
1
0

)

Table 22.0: Spectrum of GSW model

The Lagrangian is given by

L = − 1
4
Gâ
µνG

âµν − 1
4
F a
µνF

aµν − 1
4
BµνB

µν + i
∑

f

f̄σµDµf +Dµφ∗iDµφ
i − V (φi, φ∗i)

+ (λl)IJφ
iĒiI

L e
J
R + (λν)IJǫijφ

∗iĒjI
L ν

J
R + (λd)IJφ

iQ̄iI
L d

J
R + (λu)IJǫijφ

∗iQ̄jI
L u

J
R + h.c. ,

(22.1)
where f denotes all Weyl fermions of table 22.1 with covariant derivatives

Dµ = ∂µ − igsG
â
µt
â − i

2
gAaµσ

a
ij − ig′y(EL)Bµ

= D̂µ − i√
2
g
(
W+
µ σ

+ +W−
µ σ

−)EL − ig

cos θW
Z0
µ

(
1
2
σ3 − sin2 θWQ

)
EL − ieγµQEL ,

(22.2)
and we abbreviated D̂µ = ∂µ − igsG

â
µt
â. Once again we rewrite

i
∑

f

f̄σµDµf = i
∑

f

f̄σµD̂µf + g
(
W+
µ J

−µ
W +W−

µ J
+µ
W + Z0

µJ
µ
Z

)
+ eAµJ

µ
em , (22.3)
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now with

J−µ
W = 1√

2

(
νILσ

µeIL + uILσ
µdIL
)
, J+µ

W = 1√
2

(

eILσ
µνIL + d

I

Lσ
µuIL

)

,

Jµem = −eIDγµeID + 2
3
uIDγ

µuID − 1
3
d
I

Dγ
µdID,

JµZ =
1

cos Θw

[
1
2
νILσ

µνIL −
(

1
2
− sin2 θw

)
eILσ

µeIL + sin2 θwe
I
Rσ

µeIR +
(

1
2
− 2

3
sin2 θw

)
uILσ

µuIL

+
(
−2

3
sin2 θw

)
uIRσ

µuIR +
(
−1

2
+ 1

3
sin2 θw

)
d
I

Lσ
µdIL +

(
1
3
sin2 θw

)
d
I

Rσ
µdIR
]
.

(22.4)
eID, u

I
D, d

I
D denote Dirac spinors.

22.2 Fermion masses and CKM-mixing

The spontaneous symmetry breaking of SU(2) × U(1)Y → U(1)em again generates the
heavy W±

µ , Z
0
µ with masses given in (19.29). In addition in analogy with (20.15) the

following fermion mass terms are induced

Lm = (me)IJ ē
I
Le

J
R + (mν)IJ ν̄

I
Lν

J
R + (md)IJ d̄

I
Ld

J
R + (mu)IJ ū

I
Lu

J
R , (22.5)

where
(me)IJ = v√

2
(λe)IJ , (mν)IJ = v√

2
(λν)IJ ,

(md)IJ = v√
2
(λd)IJ , (mu)IJ = v√

2
(λu)IJ .

(22.6)

We see that generically the fermion mass matrices can be non-diagonal. This field basis is
called the weak basis. Using the polar decomposition theorem one can always go instead
to a field basis where the fermion mass matrices are diagonal.

The polar decomposition theorem states that any non-degenerate complex matrix M
can always be written as

M = HW , (22.7)

where H is hermitian and W is unitary. This implies that any M can be diagonalized
by a bi-unitary transformation of the form

U1MU †
2 = MD , (22.8)

where U1,2 are in general different unitary matrices and MD is a diagonal matrix.

For concreteness let us focus on the quark-sector and perform a rotation in family
space of the form

ūIL = ū′KL S
†KI
u , uJR = T JMu u′MR ,

d̄IL = Ū ′K
L S†KI

d , dJR = T JMd d′MR ,
(22.9)

where Su,d, Tu,d are all unitary. Inserting (22.9) into (22.5) and using the polar decom-
position theorem we can choose Su,d, Tu,d such that the mass terms given in (22.5) are
diagonal with the physical masses being the diagonal entries. Of course we also need
to insert this transformation in the rest of the Lagrangian (22.1). By inspection we see
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immediately that the kinetic terms are unchanged and from (22.4) we also infer that the
neutral currents Jµem, J

µ
Z are invariant. However the charged currents change due to

uILσ
µdIL = VIJu

′I
Lσ

µd′JL , d
I

Lσ
µuIL = V ∗

IJd
′I
Lσ

µu′JL , (22.10)

where
VIJ := S†

uIKSdKJ (22.11)

is the unitary CKM (Cabbibo-Kobayashi-Maskawa) matrix. Since V is unitary it depends
a priori on 9 real parameters, three rotation angles and six phases. However, Lm of (22.5)
is even for diagonal mass matrices invariant under the six phase rotation

uIL,R → e−iαIuIL,R , dIL,R → e−iβIdIL,R . (22.12)

These rotation change V as can be seen from (22.10) except for the global rotation with
α1 = α2 = α3 = β1 = β2 = β3. Thus the phase rotations (22.12) remove an additional
five phases from V leaving three rotation angles and one phase.

The three angles are measured for example in semi-leptonic quark decays while the
phase parametrizes CP-violation observed for example in K0 − K̄0 mixing. For further
details see [8]. Finally a similar phenomenon is taking place in the leptonic sector where
the parameters are measured in neutrino oscillations. (See also [8].)

22.3 Measurements of the SM parameters

Let us first list the parameters of the SM.10

• Three gauge couplings: gs, g, g
′ or equivalently gs, e, sin θw,

• one Higgs VEV: v =
√

2µ2/λ,

• one parameter of the Higgs potential: λ,

• six quark masses, three charged lepton masses and three or six neutrino masses,

• four CKM parameters,

• four-ten mixing parameters in the neutrino sector.

These parameters are overdetermined by the experimental measurements and thus apart
from determining the above parameters as precisely as possible one has a lot of consistency
checks. The bottom line is that the SM works very well, some of the prediction are meet
at the pro-mille level. For further details we again refer to [8]. The only so far unobserved
part of the SM is the Higgs boson. Its mass is not predicted by the SM and it has not yet
been directly observed. However electro-weak precisions measurements at LEP strongly
constrains mh as it contributes to the one-loop correction in the process Z0Z0 → f f̄ [8].

10Additionally one sometimes adds three θ-angles, the cosmological constant and the Newton constant.
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23 Lecture 24: Anomalies in QFT

Any classical symmetry implies via the Noether-theorem a conserved current ∂µj
µ = 0.

If this symmetry is broken at the quantum level the symmetry is called anomalous and
one has

∂µj
µ = ~A . (23.1)

A is called the anomaly.

There are two possible anomalies:

1) An anomalous global symmetry, i.e. jµ does not couple to a gauge field. This leads
to new physical processes such as π0 → γγ.

2) An anomalous (local) gauge symmetry, i.e. jµ does couple to a gauge field. In this
case the Ward-identity is broken, renormalizability is lost and the theory becomes
quantum inconsistent.

As a consequence physical gauge theories have to be anomaly free.

The Feynman diagram which contributes to the anomaly is the triangle graph

(23.2)

One finds
Dµj

aµ = − g2

16π2 ǫ
µνρσF b

µνF
c
ρσAabc , (23.3)

with
Aabc(r) = Trr

(
ta
r

{
tb
r
, tc

r

})
. (23.4)

Thus the anomaly vanishes for all representations with Aabc = 0. Furthermore, the
Adler-Bardeen-theorem states that if Aabc = 0 than Dµj

aµ = 0 holds at all orders in
perturbation theory.

Let us compute Aabc for the complex conjugate representation r̄

A(r̄) = Trr̄
(
ta
r̄

{
tb
r̄
, tc

r̄

})
= −Trr

(
ta∗
r

{
tb∗
r
, tc∗

r

})

= −
(
ta∗
r ijt

b∗
r jkt

c∗
r ki + ta∗

r ijt
c∗
r jkt

b∗
r ki

)

= −
(

ta†
r jit

b†
r kjt

c†
r ik + ta†

r jit
c†
r kjt

b†
r ik

)

= −
(
ta
r jit

c
r ikt

b
r kj + ta

r jit
c
r kjt

b
r ik

)

= −Trr
(
ta
r

{
tb
r
, tc

r

})
= −A(r)

Thus vector-like theories, i.e. theories with fermions in the r ⊕ r̄ representation, are
automatically anomaly free. Similarly, fermions in real representations do not lead to an
anomaly.11

11Note that in A one needs to compare fermions in the same Lorentz representation (i.e. all left-handed
or all right-handed). This can be done by noting that ψ̄R transforms as ψL under the Lorentz group.
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Let us now check that the SM is anomaly free. For the SU(3) only the quarks
contribute in the loop. uL, dL transform in the 3 while ūR, d̄R transform in the 3̄. Thus
the SU(3) part of the SM is vector-like and A vanishes. For the SU(2) one has

Aabc = Tr
(
σa
{
σb, σc

}

︸ ︷︷ ︸

2δbc·1

)
= 2δbc Tr σa

︸ ︷︷ ︸

=0

= 0 . (23.5)

The reason behind this is that the fundamental 2 of SU(2) is a real representation. For
the U(1)Y one has

A ∼
∑

f

y3
f (23.6)

where the sum runs over all fermions f charged under U(1)Y and Yf is their hypercharge.
For each family of the SM one has

∑

f

y3
f = 2 ·

(
−1

2

)3
+ 13 + 6 ·

(
1
6

)3
+ 3 ·

(
−2

3

)
+ 3 ·

(
1
3

)
= 0 . (23.7)

(This is called the cubic anomaly.)

In addition to the above three anomalies one also has mixed anomalies which generi-
cally occur for gauge groups which contain various factors. The SU(2)−SU(3)−SU(3)
anomaly vanishes due to A ∼ tr(σa) = 0 while the SU(2) − SU(2) − SU(3) anomaly
vanishes due to A ∼ tr(tâ) = 0. For the U(1)Y − SU(3) − SU(3) anomaly one has

A ∼
∑

f=quarks

yf = 2y(QL) + y(ūR) + y(d̄R) = 2
6
− 2

3
+ 1

3
= 0 . (23.8)

For the U(1)Y − SU(2) − SU(2) anomaly one has

A ∼
∑

fl

yfL
= y(EL) + 3y(QL) = −1

2
+ 3

6
= 0 . (23.9)

Finally one can also compute the gravitational anomaly with

A ∼
∑

allf

yf = 2y(EL)+y(ēR)+6y(QL)+3y(ūR)+3y(d̄R) = −2
2
+1+ 6

6
− 6

3
+ 3

3
= 0 . (23.10)

Thus we showed that the SM is anomaly free. One can ask if the absence of all anoma-
lies determines the hyper charges of the SM particles. Indeed we have four equations
(23.7)–(23.10) for the five unknowns y(EL), y(ēR), y(QL), y(ūR), y(d̄R). Fixing y(ēR) = 1
(corresponding to Qem(e) = −1) one obtains a unique solution, up to the ambiguity
y(ūR) ↔ y(d̄R). Furthermore only a completely neutral chiral fermion such as νR can be
added without upsetting the anomaly freedom.

73



24 Lecture 25: Theories beyond the Standard Model

The SM is experimentally very well confirmed. However, theoretically one expects it to
be an effective theory of a more fundamental theory. This is partly due to the following
(unanswered) questions.

• Why is G = SU(3) × SU(2) × U(1)Y ?

• What determines the spontaneous symmetry breaking G → SU(3) × U(1)em and
sets the scale of the breaking?

• What determines the particle spectrum?

• What determines the parameters of the SM?

• What is the Dark Matter component?

• How does one couple the SM to (quantum) gravity?

Theories beyond the Standard Model (BSM) attempt to generalize or extend the SM.
There are basically two possibilities.

1. Change L so that some of the above questions are answered. Examples are:

– Supersymmetric theories,

– Grand Unified Theories (GUTs),

– Technicolour theories.

2. Change the formalism of the QFT. Here the example is string theory.

24.1 Supersymmetric theories

In supersymmetric theories the Poincare space-time symmetry is enlarged by a fermionic
symmetry generator Q with (anti-) commutation relations

{Q, Q̄} ∼ σµPµ , [Q,Pµ] = 0 , [Q, Jµν ] ∼ σµνQ , (24.1)

where Pµ is the momentum operator generating space-time translations and Jµν is the
Lorentz-generator. The representation of this superalgebra are super multiplets which
combine bosonic and fermionic fields. For example the chiral multiplet (φ, ψ) contains a
complex scalar φ and a Weyl fermion ψ. Under a supersymmetry transformation they
transform into each other Qφ ∼ ψ,Qψ ∼ ∂φ. The vector multiplet (Aµ, λ) contains a
gauge boson Aµ and a gauge fermion λ.

With these multiplets a supersymmetric Standard Model can be constructed with the
following properties:

• it contains new scalar and fermionic particles,

• it predicts a ‘light’ Higgs with mh ≤ 200GeV,

74



• it contains a weakly interacting massive particle (WIMP) as a candidate for Dark
Matter,

• it fits the electro-weak precision data,

• it solves the naturalness problem.

24.2 Grand Unified Theories (GUTs)

In this class of theories the gauge symmetry is enlarged in that the SM gauge group GSM

is embedded in a larger gauge group GGUT which is spontaneously broken at MGUT by a
Higgs mechanism GGUT → GSM . Examples are GGUT = SU(5), SO(10). In the first case
one family of the SM precisely fits into a 5 ⊕ 1̄0 representation of SU(5). In the second
case one family including a right-handed neutrino sit in the 16 spinor representation of
SO(10). These theories predict proton decay and the unification of gauge couplings

g5,10 = gs = g =
√

5/3g′ (24.2)

at MGUT . Using (10.9) this prediction can be compared to the measured gauge couplings
of the SM, for example atmz. For the SM this prediction fails while in the supersymmetric
SM it works perfectly.

24.3 String Theory

The basic idea of string theory is to replace a classical point-like particle by an extended
object: a string. String theory can then be viewed as the quantum theory of extended
objects. Upon quantization one finds a finite number of massless modes with spins
0, 1

2
, 1, 3

2
, 2 and a infinite number of massive modes with masses M ∼ nMs, n ∈ N. Ms is

the characteristic scale of string theory related to the tension of the string. The massless
spin-2 excitation of the string can be identified with the graviton of General Relativity
if Ms ∼ MP l =

√

~c/GN ∼ 1019GeV. Furthermore, due to the extended nature of the
string the theory becomes UV finite and thus is a candidate for a quantum gravity.
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