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1 Lecture 1: Path Integral in Quantum mechanics

Let start by considering a non-relativistic particle in one dimension with a Hamiltonian

P
H=—+V 1.1
L v (11)
We are interested in the amplitude of the particle to travel from x, to z; in time 7. In
quantum mechanics this is given by the position representation of the Schrodinger time
evolution operator

Uz, 2, T) = (zple™ 7 |24) (1.2)

Feynman showed that there is an alternative representation known as the path integral
given by

U(zg,zy, T /Dx Sl (1.3)
where

Slx(t)] :/0 dt L :/0 dt(2v* - V(2)) . (1.4)

S depends on the path x(t) from x, — x,. Mathematical it is a functional in that it
maps functions (or a path) to numbers

S x(t) — S[z(t)] . (1.5)
The integration in (1.3) is over all possible path, i.e.
/ Dx(t) = > (1.6)
all path from x, — x.

This is an integral over the function x(¢) and is called a functional integral.

Let us prove (1.3) by discretizing time and showing that both representations of U
satisfy the same differential equation with the same boundary conditions. On a discrete
time grid with spacing At = € one has

S — / dt % Vix )) _ Z (%(L&—l—l — 13,)? _ Ev($k+12+ $k>) ’ (1.7)

€
k
and N
1 o d!L’l d!L’Q dl’N_l 1 +eo dl’k
Da(t) = / / .../7—_ / (s
[ro=sf @) [ = S A R
Consider the last time step
+OO / x x x x
U(xa,xb,T):/ C‘if”) 5 SV 2 T — 6 (1.9)
oo Cle



For ¢ — 0 the first factor is rapidly oscillating and thus a non-zero contribution only
arises for 2/ ~ 1. Taylor expanding around 2’ = x; yields

oo d ! i m ’ )
Ulapran ) = [ S B0 = (@) + O@)

(1.10)
Yor, 2 ’ oxg @ ‘

Using the Gauss integrals

/dée-’fz:\/? T N F 1\/?

=5 (1.11)
one obtains
Uz, 0, T) = % \/g = %V(m + %83_;% 0@ Ul mT—),  (112)
for b = _2;:” For € — 0 we obtain
Uz, 0, T) = % T U0, T) (1.13)

which determines ¢ = /7. With this normalization one can rewrite (1.12) as

. U(zg, 5, T) — U(xg, 2, T — €) K2 0?

— - 7 T — 1.14
B (V(Ib) om axg> U($G>Iba 6) ) ( )
which, in the limit € — 0, yields

oU(xg, xp, T
il % = H Ulza, 2, T) . (1.15)
From quantum mechanics we know that this is indeed the differential equation which the
time evolution operator U satisfies. All that is left to check are the boundary conditions.
Again from quantum mechanics we recall that in the limit 7" — 0 (1.2) yields

Uz, zp, T — 0) — d(xqg — ) -

(1.16)
In the path integral representation (1.3) we have
iS[x ] m (zp—2a)>
lim Da(t)e™ = lim = o[FE RO (g, — ) (1.17)
—> e—0 C

and thus both expressions also satisfies the same boundary conditions. Thus one can
conclude the equality of (1.2) and (1.3).

Remarks:

1. The path integral formalism quantizes a system by summing over all path weighted
iS[z(1)]
with e 7 .



2. In the classical limit A~ — 0 the path integral is dominated by the path which
extremize S, i.e. the classical path.

3. The path integral depends only on classical quantities and no operators appear.

This method can be generalized to quantum systems with Hamiltonian H(q’, p") and
canonical variables ¢*,p’, i = 1,...,n. For such systems one has again the quantum
mechanical expression

U(dar @o: T) = (@le™""|qa) (1.18)
with ¢, = {q},}, @ = {q},,,}. For this case the path integral representation is given by

Ulqa, s, T) = H/in(t)Dp"(t)e[; ST (s, P —H(pg))] , (1.19)
where p* # ¢'. For
2
P;
H = T +Vi(q), (1.20)

the p' integrals are Gaussian and thus can be performed resulting in

i S[a(®)]
U(QaaQb>T):H/DqZ€ A (1.21)

IFor a proof see, for example, [2].



2 Lecture 2: Path Integral for Scalar Fields

The generalization of path integral of quantum mechanical systems to field theories re-
places the path of the particle by a field configuration or in other words

¢'(t) — o(Z,t) . (2.1)

One similarly defines the amplitude (setting & = 1)

T
(. DT, ~1)) = [ DoesH, slol= [ dyeie), (22
-7
with the boundary conditions

t=-T: ¢=a,(7), (2.3)
t=T: ¢=¢(T) . |

The integration [ D¢ in (2.2) is over all field configuration with these boundary condi-
tions.

Compared to canonical quantization the path integral quantization has the advantage
that it is manifestly Lorentz-invariant and, furthermore, perturbation theory was not
necessary to define the quantum theory.

Let us consider the quantity

1=/0¢wmwm»aWh (2.4)

with boundary conditions (2.3) and show that it corresponds to a correlation function.
To do so let us break up I into field configurations with the boundary condition that at
times ¥ and 29 the field configurations are fixed as

o(Z,2)) = ¢1(Z) . O(F,29) = o(7) (2.5)
and then integrate over ¢, ¢5. Or in other words the integrations splits according to
[ po= [ Dor [ Dos [ Doty sy (26)
Now use
iS
/ D g(a)=61 )0 =b0(a) € =

(Dol T |3 (o732 | o)) (9 | e~ H =T )

(2.7)

for Y < 29 and with an interchanged order for z

Schrodinger operator ¢g via

05(T12)|12) = Pr2(T12)|d12) (2.8)

0 0

5 < x7. Furthermore define the



and use

[ Dodoial =1 (29)
Inserted into (2.4) using (2.7)-(2.9) yields

I — <¢b|e—z’H(T—:cg)Qgs(j»z)e—iH(:cg—x(l))és(fl)e—iH(x?-i-T) ‘¢a> (210>

. . n — ; 07 -\ 0 .
Expressed in terms of Heisenberg operators ¢y (7, 2°) := 1% ¢4(Z)e " one obtains

I = (dole™™ dpr(w2) s (w1)e™ " |pa) . (2.11)
If one now adds the expression for 23 < 2? one arrives at
I = (dyle™ " T{n(x2)dn (1) e T |ba) - (2.12)

In the canonical formalism we took the limit 7" — oo(1 — €) to single out the vacuum
state via

7T gy = §jemﬂn (nla) " T2 10)(Q e T (2.13)

By appropriate normahzatlon, the factors and phases cancel out and we arrive at

. . L [ D ¢(a1) () ot Sl £19]
(QUT{Dn(x2)dm(21)}€2) = quorg_e) [ Do i I 00 , (2.14)
Similarly for an n-point function one has
i[Tr Llg)
QT (bner) . (e} Q) = i L P00 OEn) e (2.15)

T—o0(1—€) f D¢ eifTT L[]

Let us now explicitly evaluate the two-point function for a free theory. To do so we
discretize the space-time and replace * — x; which lives on some lattice with volume
V = L*. The integration measure is thus replaced by an integration at each lattice site

D¢ — [ [ do(x:) - (2.16)
The Fourier transformation of ¢(z;) is given by
1 ikt . 2mn
o) = =D e G(k) Wit ko= =t m, € 7' (2.17)

n

Since ¢ is real one also has ¢*(k) = ¢(—k). Inserted into the free action of a real scalar
field one obtains

§=1 / d'a(9,00"p — m2¢?)
= (k;n ki &) (k) — m* (k) ¢>(—kn)) (2.18)

== > (m* = k) ((Reg)” + (Img)*)

k2>0



where we used

L / dipemnthm) e — 5k 4 k) (2.19)
We can use Re¢ and Im¢ as independent integration variables for k% > 0
qus (z;) = ¢ [ | dRee(kS)dIme(k), (2.20)
k9 >0

where ¢ is a functional determinant from the change of variables which drops out later
on. Since (2.18) is symmetric in Re¢ and Im¢ one obtains

[ e =TT ( [ areo k°6v(”2)(m)2) ~ M e

E9>0 E9>0
where we used (1.11).

Now we need to compute the numerator N = [ Do (x1)¢(x2) €™ of (2.14). Using
(2.17) we arrive at

N=c H /dRegb YdIme(k,)e —%( 2—k%)(1>~c<z5(l~zn))2+(Im¢>(kn))2)_

0
k9>0 (2.22)

Z e~ ikmaithie2) (Reg (k) + ilmep (k) (Red(ky) + ilme (k)

Since N is odd under Re¢(k,) — —Re¢(k,,) it vanishes unless k,, = +k;. For k,, = +k
the terms proportional to (Re¢(k,))? cancel against the terms proportional to (Im¢(k,))?
and thus N vanishes again. Only for k,, = —k; there is a non-zero contribution due to
the sign from ¢*(k) = ¢(—k). Using (1.11) again one obtains

=c H /dRe<;$ n)dImo (k) e v( : kz)((Rw(kn)) +(Ime(k n))) )

k9 >0
Y e ) (Reg (k) (2.23)
c —imV - —1
= — _Z(k’m'(xl_mZ) -
ng0m2—k% me m2 — k2,

Inserting (2.21) and (2.23) into (2.14) we arrive at
~ ~ —1 e_i(km'(wl—iw))
(O[T{¢(z1)d(x2)}|0) = v ; m (2.24)

Finally, in the continuum limit one replaces V'3~ ~— f 4 and thus obtains

A ) 4 e—i(kv(m—m))
O s =i [ S

=Gp(ry —29) . 2.25
— m2 + 1€ F( 1 2) ( )

Thus by explicitly computation one can show that in the free theory the path integral
representation of correlation function coincides with expressions obtained in canonical
quantization.



3 Lecture 3: The Generating Functional

Defining a quantum theory via the path integral does not require the use of any pertur-
bation theory and n-point correlations functions are defined in (2.15). However, if the
theory has a perturbative regime one can expand the path integral perturbatively in the
corresponding coupling and express it in terms of n-point functions of the free theory.

It is thus useful to obtain simpler formulas for such a perturbation theory and consider

x1) ... b(x,) el
O o) . o)} 0) = L DW(I gmfé’fm — (3.1)

where Sy[¢] is the action of the free theory. One can compute (2.15) directly as we did in
the last lecture or with the help of a generating functional which we want to introduce
in this lecture.

Let us first define the functional derivative %@) via?
6J(y)
=5(x—v) . 2
S =il ) 32
or 5
— [ = [ d*yé(z — = . .
57 | P70 = [ atvia = o) = ot (33
The functional derivative obeys all rules of a derivative, in particular
0 g o
_ Y ifdIyely) _ i [dyJ(y)o(y) 4
6J(l’) € ZQS([L’)Q Y (3 )

which can be shown by expanding the exponential. If a space-time derivative is acting
on a function one partial integrates and obtains

Y TRV N N I (/) N
W/dyv (y)ﬁ—qu(y)——W/dy( T ) J(y) = —(8, V"), (3.5)

where it was assumed that the fields vanish a (spatial) infinity.

One defines the generating functional Z[.J] by
Z[J] = / Do et da(e+1@ow) (3.6)

With this definition we can check
1 .0 )

(AT (o()0(2)}10) = - (wigres)(igze )2l (37)
where we abbreviated Z, = Z[J = 0]. For n-point functions we have analogously
QT {6(01) ... o)) = (i) (i) 2] (39

ZO (SJ(ZL’l)

2This is the functional analog of 52- > w;k; = ki.

9



This formula is useful since Z[J] can be explicitly computed for the free theory. For
concreteness let us consider Ly = %(@gb@“gb — m?®?) which can be rewritten as

I= /d4a:(£0+J¢) = /d4z%(8u¢8”¢—m2¢2)+J¢ = —/d4a:%¢(D+m2)¢—J¢. (3.9)

Changing variables with

oa) = (o) +1 [ ayGrlo = )I) (3.10)

and using
(O+m?)Gplz —y) =idW(z —y) (3.11)

results in
I= —/d%%(qﬁ'(ﬂ +m?)¢) + % /d4xd4yJ(y)GF(:E —y)J(x) . (3.12)

The change of variables (3.10) is just a ¢-independent shift in the path integral and thus
the Jacobian is unity. As a consequence we arrive at

Z[J] — /D¢6ifd4:c(ﬁo+J¢) _ Zoe—%fd4xd4yJ(x)GF(x—y)J(y) ‘ (313)

Let us check this expression by computing the two-point function. Inserting (3.13)
into (3.7) we obtain

(O|T{ (1) () }|0) = i( P ) ( 0 ))Zoe—%fd4rd4yJ(m>GF<x—y>J(y>

ZO 5J(LU1) (SJ(SL’Q J=0
= 5fo1) /d4yGF(sz —y)J(y)%j]‘J:O
= GF(SL’l — LUQ) .
(3.14)
Another useful quantity is
E[J] :=ilnZ|J] (3.15)
Let us compute
SE[J] i 0Z[J] [ Dgd(x)e] TettIe
5J((L’) - Z[J] 5J($) - = fD¢6ifd4x£+‘]¢ = _<¢($>>J (316)
Furthermore
62E[J] o 5271 J] o WYARIRYARI
0J(2)oJ(y) — Z[J]6J(x)dI(y)  Z[J]* 6 (y) 6 (w) (3.17)

= —i((d(x)(y))s — (P(x)) (DY) 1)
where we abbreviate
i 82Z[J] [ Dép(x)ell daEHTs

Z50@sI () | [ DgedEe = @) (318

10



From (3.17) we see that the second term (¢(z)) ;(¢(y)) s subtracts the disconnected pieces
so that we have
E

STy —i(A(2)P(Y)) connectea = —iG(x —y) | (3.19)

where G(x — y) is the full quantum propagator.
Similarly one finds (J; = J(z;))

OB _ 0 (i 8#2lJ) _ isZ8Z
5102005 6J3 \ Z[J| 618, Z25J, 6,
i 876z 2
 Z 610980 220056010,
i (207 97 $Z\ | 2670207 320
Z2\0J10J3500y  0J10J20J3 Z360J36Jy 80,
= (P10203) — (93)(D102) — (92)(D193) — (P1)(BD203) + 2(1){(P2) (¢3)
= <¢1¢2¢3>connected .
In general one obtains
OBl
— =" . 3.21
5]1 o 5Jn ? <¢1 ¢n>connect6d ( )

Thus E[J] is the generating functional for connected correlation functions.

11



4 Lecture 4: Path Integral Quantization of the Elec-
tromagnetic Field

The classical Maxwell action for the photon field A, is expressed in terms of its field
strength F),, = 0,A, — 0,A, and given by

S = _i /d4SL’Fm/F’W = %/d4$AuDMVAy fOl" ij = TIWD - 8M8V ’ (41>

where the second equation was obtained by partial integration. S is gauge invariant in
that it obeys
S[Ag] = S[A,] for A, — AT = A, + 10,a (4.2)

Furthermore S[A4,] = 0 for A, = 19,a and thus the path integral for A, is ill-defined.?
The cure of this problem is to integrate only over gauge in-equivalent field configurations.
One way to implement this is the Fadeev-Popov procedure which we present in this
lecture. However, we need to define functional determinant and functional J-functions.

For a matrix M an integral representation of det(M) is proved in problem 1.1 to be

det(M) = (QW)N/2/ day ... .dey e 2" Mo (4.3)

— o0

This can be generalized to a functional determinant via a path integral representation

Vdet(M) = / D¢ e~z des@M@o) (4.4)

where M is a differential operator, e.g. M = ]+ m?.

For an N-dimensional -function one has the identity

/ dry ... dey 6N (G2, ..., xn)) det (8gi) -1, (4.5)

o Oxj

which can analogously be generalized as

o 0G(A%)Y _
/Daé(G(A ))det( = ) ~1. (4.6)
Inserted into the path integral we obtain
I= / DAeSA = / DADa §(G(A%)) det (5G5(A ))eiSW . (4.7)
a
Choosing
G(A%) = " A —w(x) = 0" A, + 100 —w(z) | (4.8)

with w(z) being an arbitrary scalar function, we see that % is independent of A

and a and thus can be moved outside the path integral. Furthermore, we can change

3In problem 1.3 it is shown that correspondingly the Greens function of D*¥ is ill-defined.

12



variables A — A®. This implies DA — DA® since the change is merely a A-independent
shift, and S[A] = S[A?] since S is gauge invariant. Thus we arrive at

0G( Aa

I = det ( / DA®Da §(G(A%))eSA (4.9)

Since A® is an (arbitrary) integration variable we can rename it back to A and factor out
the infinite-dimensional factor f Da which causes the problem, i.e.

I =de t 5G A%) /D /DA(S )etstAl (4.10)

d(G(A)) can be expressed as a correction to S by integrating over all w(x) with Gaussian
weight centered around w(x) = 0. This yields

3 /Dw et/ e

_N(g)dt 5G Aa /D /DAe’SA]/Dwe Zf“zaa(am —w(z)) (4.11)

= N(¢) de t 5G A%) /D /DAe’S'[A :

where N is a normalization factor and

§'=5—g / d'z (0"A,)° =1 / d'zA,D"™ A, (4.12)

with
D" =0 — (1 - 3)0"d” . (4.13)
We see that S’ has no problems with longitudinal photons since D" 0, # 0 for £ # oc.
In problem 1.3 we show that for arbitrary & the photon propagator is given by*

d*k PPN
Gz —y) = —i/wé(n’”—(l—f)%)e th(z=y) (4.14)

It does depend on & but, due to the Ward identity, the amplitudes are &-independent.
Thus the path integral definition of correlation function is given by

iy (- n )
QIT{O(ANQ) =  lim JDAOA) e . (4.15)
T—oo(1—¢) f D¢ eifTT (£_2_§(8HAN)2)

Another way to discover this gauge fixing term is to note that the canonical mo-
mentum 7¥ vanishes for the action (4.1) and the theory cannot be properly canonically
quantized. From (4.1) one computes

oL
8(8014#)

T = = —F% (4.16)

4Note that in QFT I we used the photon propagator in the gauge £ = 1 (Feynman gauge).

13



which implies 7% = 0. This can be remedied by augmenting the action (4.1) by a gauge
fixing term

— / d%(iFWF“” + i(&“AuY) =1 / d'zA,D" A, (4.17)

for ]
DW= n0d — 0M0" (1 — E) . (4.18)
D" is now invertible and 7% = —¢ 1 (9*A,,). Therefore canonical quantization is possible.

14



5 Lecture 5: Path Integral for Fermions

Fermionic operators obey anti-commutation relations and therefore fermions need to
be represent classical anti-commuting fields. This is achieved by Grassman numbers
and Grassman valued fields. Let 8,7, y be Grassman numbers which obey the following
properties.

1. The anti-commutation relation
on=—on , (5.1)

which implies 6% = 0.
2. The product of two Grassman numbers is commuting
(6n)x = —bxn = x(0n) - (5.2)
3. Grassman numbers can be added with the sum being again a Grassmann number

0+n=x. (5.3)

4. Multiplication with c-numbers leave any Grassmann number anti-commuting

cd =0c=x. (5.4)

5. Due to (5.1) any function of Grassman variables f(#,c) can be at most linear in ¢
f(0,¢) = A(c) + B(c)f . (5.5)

6. Differentiation obeys a graded Leibniz rule

d d9  dn

7. Integration (Berezin integration) is defined by

/d91 =0, /deez 1 (5.7)

/ d0£(0,¢) = B(c) . (5.8)

The definition (5.7) preserves a variable shift, i.e.

/de(e+n>:/dee—n/de:/deez1. (5.9)

Let us further choose the convention

such that

/d@dnn@ =1

15



8. Complex Grassman numbers are defined by

‘91 + 1‘92) y 0 = ‘91 - 7,92) y (510)

o
with 6, 5 real. Then
(On)" :==n"0" = —0"n" . (5.11)

The integration over complex @ is defined as in (5.7).

Later on we need

/de*dee—e*be = /de*d9(1 — 0*bh) = b/de*deee* =b, beC. (5.12)
Note that an ordinary Gauf-integral results in %’r We also need
b
/d@*d@ 6% =00 /d@*d@@@*( —67b0) = /dﬁ*d%@* =1= b (5.13)
Thus adding #6* in the integrand gives an additional % after integration.
If there are N Grassman variables 6;,7 = 1,..., N the product can be written as
N N
HHZ = %EilmiNeil ‘9@1\7 or Hil ‘911\7 = €i1~~~iNH9k . (514)
i=1

Under a unitary transformation 6; — 0; = >, U;;0;, UU T =1 one derives

N
/ 21...%
[0 = &€ Ui, ... Uiyir 0 ... 0,

= Levg,

NI 2121 . ZNZ, 67,1 e H ek (515)

N
= detUJ] 0

k=1

where the second equation used (5.14). Using (5.14) and (5.15) one derives (see problem

3.2)
/ (T d6;d6:) e r3 %% = det B
i (5.16)
/ ([T d6;d6:) 6,67 e 2w %iBrs = B ' det B .
Now we can Dirac spinors ¢,(x), a = 1,...,4 to be Grassmann valued or in other

words to be classically anti-commuting fields. The path integral can be computed in
analogy with bosonic fields by Fourier transforming and discretizing the measure. In this
way one confirms (5.16) and computes

/D¢Dweifd4x£°[w’w} = c det(id —m) , (5.17)

16



for £y = (i) — m)p with ¢ being a normalization constant. For the propagator one
obtains (cf. (5.16))

_ ) Dapet S A Lol blap (22 )0 (200
O/ )bl } 0) = L 2LDY V()i ()

- — =
f.D?ﬂD@De’fd zLo[1, Y] (5.18)
- ) oo — 13) = S — ).
The generating functional for fermions is defined by
Z[5,m] = / DDy 41 (LT @@+ i) (5.19)

where 7(x) and n(x) are Grassman valued sources, i.e. the analog of J(x) for scalar fields.
For the free theory £ = Ly Z is computed in problem 3.3 to be given by

2l n) = 217 = 0, = 0] S et 0ot (520)

Defining the functional derivative of Grasmmann fields by

@) s
one shows
O )i = 207 =izt ) (i) 2] 622

Using (5.19) one checks (5.18) and using (5.20) one confirms that the left hand side of
(5.22) also is given by Sg(x; — x3).

17



6 Lecture 6: Symmetries in the Path Integral For-
malism

The aim of this section is to derive the Schwinger-Dyson equation and a quantum version
of the Noether theorem or in other words the Ward-identities for a generic QFT.

6.1 Schwinger-Dyson equation
Let us start with a free scalar field
S = /d4x£0 = /d%%(ﬁugb@”gb —m?¢?) = —/d%%qﬁ(ﬂ +m?)o . (6.1)

and consider

D 1.-- neis[‘z’]
(QT{p(z1) ... () ) = f d}gﬁD(ﬁegw )

where for later use we already gave the formula for an interacting QFT and use the
notation ¢; = ¢(x;).

(6.2)

The classical equation of motion for ¢ leaves S stationary under the arbitrary variation

¢(x) = ¢'(z) = (z) + €() . (6.3)
In the path integral the measure is invariant under this shift, i.e. D¢ = D¢’. This implies

[ Do 0. = [ Dotof ., = [Doci..o, ¥, (0.

where in the first step we merely changed the names of the integration variable from ¢ to
¢’ while in the second step we used the invariance of the measure under the shift (6.3).
Now we expand the right hand side to first order in € to arrive at

0= [ D6e(~ 4 [ ()0, + moly) + 6(6)(, + m)elw))én . 00 o

—0—61¢2...¢n—|—¢162...¢n+¢1¢2...6n) .

By partially integrating twice the first two terms can be combined and one obtains

0= =i [ Do [[atye(u)((©, +m2)on)on..on+i 36y~ 2)on . 61-60)
i=1

(6.6)
where ¢; denotes the field which is omitted from the sum. Since (6.6) should hold for
any € e can drop the [ d*ye(y) from the equation. Let us first consider the case n = 1.
We can move the Klein-Gordon operator out of the path integral to arrive at

@, +m?) / DS p(y)$(ar) = —ib(y — 21) Z[0] | (6.7)

or equivalently
@y +m*{QT{B(y)d(21)[Q) = —id(y — 1) - (6.8)
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This confirms once more Q|T{¢(y)p(z1)|2) = Gr((y — z1). For n arbitrary one obtains
analogously

(Oy + m)(QT{p(y)p(21) . . . (an)IQ) = —ZZ QT{p(z1) ... 0(y — x:) ... p(2)|Q) .
(6.9)

Note that the previous derivation only depended on the invariance of the measure
D¢ = D¢’ and thus holds for any QFT! Let us denote an arbitrary field by ¢ and its
action by S¢] = [d*zL[p(x),d,¢]. Using the functional chain rule one obtains

0Slel _ [ (0L o OL o N 0L 0L
do(y) _/d (580(17) ( y)+5aug0(:£) 9o y)) do(y) Op 68,0(x) , (6.10)

where we partially integrated in the second step. We see that the functional derivative
of S gives the Euler-Lagrangian equations. With this fact we can redo the previous
computation and first use the invariance of the measure Dy = Dy’ under ¢ — ¢’ = p+¢
to obtain

/Dcpgpl Ly €S = /Dap'gp’l g el = /Dgp o ..l el (6.11)
Next we expand
/ 65
Sle'] = Slel + /dﬂ‘yE(y)M +0O() (6.12)
3 (y)

and insert it into (6.11). This yields

4 05[] .
0—/Dgoe /dye( )5(p(y)<p1...gon+;g01...ei...<pn> (6.13)

We drop again the [ d*ye(y) to arrive at the Schwinger-Dyson equation

(| %g T{o(w) . Sl ) =i Y QAT o(w) .8y = ) - 0@)|) . (6:14)

It states that the classical Euler-Lagrange equations are obeyed by all n-point functions
up to contact terms (the terms on the right hand side).

Note that the functional derivative is outside the time-ordering in (6.14). In the
following it will be convenient to introduce a separate notation for this situation and
simply write

(S o) b)) =i 0w) Sy =) b)) (69

to denote that the derivative is outside the time-ordering.
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6.2 Ward identities

Let us first consider a free complex scalar field with the Lagrangian

Lo = 0,00"6" — 266" (6.16)
It has a symmetry
p— ¢ =€, a€eR, or infinitesimally d¢ = ia¢ , (6.17)
which leaves Ly invariant Lo[¢] = Lo[¢']. The transformation d¢ = ia(x)¢$ is not a
symmetry and Ly changes
5Lo = (Oua(@)"(@) . for ) (e —6'0) . (6.18)

It is easy to check that j* is the Noether current of the symmetry (6.17) and therefore
conserved J,7" = 0 if one uses the equation of motion.

We can now perform analogous steps as in the previous section with the difference
that the transformation of ¢ is not arbitrary (as in (6.3)) but as in (6.18). The analog of
(6.4) for a complex scalar field reads

/ DGD@" ¢y ... ¢ €51097) = / D¢D¢* ¢ ... ¢, 510" (6.19)

where we used again the invariance of the measure. (The ¢; could also be ¢; or any
mixture.) Expanding to first order in « we obtain

0= / D¢pD* eS1o97] (z / d4y(8“a(y))j“(y)¢1...qﬁn+z¢1...5¢i...¢n> . (6.20)
i=1

Partially integrating and dropping [ d*y a(y) we arrive at the Ward identity

0= /ngng* e!S[6:¢7] ((@J”(y))ﬁbl c Ot Z¢l oo (E0)O(y — i) i - -¢n> . (6.21)
=1

where the sign ambiguity comes from considering d¢ or d¢*. In the “bracket-notation”
introduced in (6.15) it reads

n

(0ud" () (1) . D)) = =i D _(D(x1) ... (£0)d(y — 2:)s ... d(w)) (6.22)

i=1

This analysis can be generalized to an arbitrary theory characterized by S|[p,] with a
global symmetry

Pa = Yo = Pa + AP, (6.23)
such that
Llpa] = Llps] = Lpa] + €0 T" . Slga] = Sleal (6.24)
Replacing € — ¢(x) the transformation of £ is modified according to
oL

Llpa] = LIgL] = Llpa] + €0, T" + (946) Y A (6.25)

(Oupa)
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which results is the change

Slyp] = / d'y Llg,] = / dy (Llea) — €0uj") = Slpa] — / d*y €d g (6.26)

with j# being the Noether current
oL
=) Apams——J". (6.27)
za: 0(0Mg0a)
Therefore the Ward identity (6.22) is modified as

(0u7"(y) Par (1) - - ay (2n)) = —izml(afl) -0y — i) Apa, (i) - - ba, (n)) - (6.28)

Let us check this for QED. In this case we have the Lagrangian
L =id —m)y + A", for = eyt . (6.29)
It has a global symmetry

b= =, 0 =day,

/ (6.30)
A, — A=A, .

If we replace & — «a(z) but do not transform the A, we obtain the transformation law
L— L =L—idx)". (6.31)
Inserted into (6.28) for n = 2 we get

0u{0IT {3 (y) (1) (2) }0) = 6(y — 21){0|T {1 (1)1} (x2) }0)

) (6.32)
— 0y — 22){0[T{)(z1)¥(22) }0) ,

or in Fourier space

ku(OIT{5" (k) () (p) }O) = (OIT{(k — q)¥(p)}0) — (0| T{¥'(—q)v(p+ k) }|0) . (6.33)

The right hand side does not contribute to the S-matrix as can be seen from the LSZ
formula. Thus we confirmed the QED Ward identity

ku{0IT{5" (k) ¥ (q)(p) }0) = 0 . (6.34)
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7 Lecture 7: Renormalization of ¢*

In QFT I we discussed the renormalization of QED. In this section we recall the concept
of renormalization for the example of a ¢*-theory.

We introduced a quantity D which represents the superficial degree of divergence of
a Feynman diagram. It counts the power of k-factors in the numerator minus the power
of k-factors in the denominator

A kot AP for D=a—-b#0
4 —_— =
/ 'k kb { InA for D=0 (7.1)

For D > 0 a Feynman diagram is naively divergent.

Before we focus on a ¢*-theory it is useful to consider a more general ¢"-theory defined
by the Lagrangian
L=10,00"p —m°¢*) + 2 ¢" . (7.2)

The propagator is represented by a line and is in momentum space proportional to
(k? +m?)~!. The interaction is represented by a vertex with n lines and proportional to

A
The following relations hold:

i)y L=P-V+1, (7.3)

where L is the number of loops, P counts the number of internal propagators and V'
the number of vertices. (7.3) holds since each propagator has a momentum integral but
each vertex has a d-function (momentum conservation) and the 41 expresses the overall
momentum conservation.

i) nV=2P+N, (7.4)

where N counts the number of external lines. (7.4) holds since out of each vertex comes
n lines. They can be external (N) or internal (P). The factor of two accounts for the
fact that an internal line always connects two vertices while an external line does not.

iii) D =A4L — 2P (7.5)

since each loop contributes a factor d*k and each internal propagator a k=2. As a conse-
quence of (7.3) and (7.4) one derives

D=4P-V+1)—2P=(n—-4)V - N+4. (7.6)

The last expression is useful as it shows that D is independent of P. Recall that in
QED we obtained D = 4 — N, — 3N, where N,(N,) counts the number of external
fermion(photon) lines. Hence D solely depends on the number of external legs and thus
shows that only diagrams with a small number of external legs can have a UV divergence.
In our case we have the same situation for n = 4.

Let us consider different values of n.

n = 2: This is the free theory.
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n = 3: In this case one has D =4 — N —V and a finite number of divergent diagrams.
Such theories are called super-renormalizable

n = 4: In this case one has D =4 — N and a finite number of divergent amplitudes.
Such theories are called renormalizable but the divergence occurs at all orders
in perturbation theory.

n > 4 : In this case one has D = (n —4)V — N + 4 and an infinite number of
divergences-
occurs. Such theories are called non-renormalizable.

These properties can also be formulated in terms of the dimension of the coupling A
which we denote by [A] in the following. In natural units 2 = ¢ = 1 one has

1

length = mass™! = time = energy ' . (7.7)

It is conventional to give the dimensions of the couplings either in units of mass or length.
In the following we will use mass dimensions. With this conventions one has

[S]=0, [da]=-4, [£]=4, [9]=1. (7.8)
For a ¢*-theory we then determine from (7.2)
=1, N=4-n. (7.9)

Inserted into (7.6) we get
D=4-N_-]\V, (7.10)
and see that for [A\] < 0 the theory is non-renormalizable.

Before we continue let consider QED with the Lagrangian
L= —5Fu " +§(id —m) + eA oyt . (7.11)
In this case we readily determine
W=2, [A)=1, [¢=0. (7.12)

So we have a dimensionless coupling e exactly as for a ¢*-theory. Let us now turn to the
renormalization of the latter.

For a ¢*-theory we have D = 4 — N which is semi-positive for all diagrams with zero
to four external legs. Due to the symmetry ¢ — —¢ diagrams with N odd cannot occur
and we are left with

’ (7.13)
pos
In renormalized perturbation theory one starts from the ‘bare’ Lagrangian
£ = 1(0,00"6 — m36?) + & Moo’ (7.14)
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with the ‘bare’ parameters mg, A\g. One then defines renormalized field variables and
renormalized couplings as

b=VZ2¢., Z=1+46y, Zmog=m+06m, Zl=A+0,. (7.15)
Inserted into (7.14) one obtains
L = 3(0,00"¢ — myd?) + £ Moo’

1
? 2,2 1 4 1 1 9 s 4 (716)
= 5(8y,¢7‘8u¢r —m ¢T> _'_ 2 >\¢7,, + 5528u¢),rau¢r _ §5m¢r _'_ 4_)'\ ¢7,,

The prescription now is to do perturbation in A (instead of )\g) with the redefined
Lagrangian (7.16) instead of (7.14). For this we need new Feynman rules. The first three
terms in (7.16) lead to the Feynman rules

1
p2—m2’

>< =  —i\.

The last three terms are called counterterms and they are denoted by

(7.17)

—<-®—<_ = i(pz(SZ - 5m) )

% . (7.18)

Now one defines the split given in (7.15) by the requirement that the renormalized
field ¢, has a propagator like a free field with the renormalized mass m being the position
of the pole. In other words

1
O = ——— + regularat p*=m? (7.19)

P2 —m?
Furthermore, at p= 0 one imposes

>§< N (7.20)

where in these diagrams all contribution of the counterterms are included.
Now one follows the following procedure:

1. Compute the divergent diagrams in perturbation theory and regulate them.

2. Impose the renormalization conditions (7.19), (7.20) and in this way determine
5m> 6)\7 5Z~

24



After this procedure all amplitudes are finite and independent of the regulator. Con-
cretely for the ¢* at one-loop the following diagrams contribute

— O - . @, b (D (7.21)

)

and

>X< >< }{ + d ch Is + X
_ + crossed channels (7.22)

Y

The diagrams in (7.21) contribute

L d% i,
p2 _ m2 - 5)\/ (277')4 k,z . m2 + Z(p 6Z - 6m) (723)

which, imposing (7.19), results in (see problem 4.1)

0z=0,  Om=-—lm 2(4;)d/2 r(;ﬂ-_dg) (7.24)
The diagrams in (7.22) contribute
—iX + (—iN)2(V (s) + iV (t) + iV (u) + ) — idy (7.25)
for
s=pi+p)?,  t=@i—p)?.,  s=(p—p)?, s+t+tu=4m?, (7.26)
and , d*k i i
V) ::%)\/ (2m)* k2 —m? (k + p)? — m?
~ i [ o0
=ty [ (2 -m(G) o).
for A =m? — z(1 — z)p?. Tmposing (7.20), results in
o = =N (V(4m?) +2V(0)) . (7.28)

V(p?) and the final finite amplitude is computed in problem 4.2.
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8 Lecture 8: Wilson’s Approach to Renormalization

The Wilsonian approach to renormalization is the ‘modern’ view of a quantum field theory
and it offers a more physical way to understand the role of UV-divergences. The basic
idea is to define any QFT with a cut-off A and analyze the theory successively at different
length or equivalently momentum scales. Concretely this is achieved by integrating over
the short-distance or high-momentum fluctuations of a quantum field.

As an example let us consider a ¢* theory with a momentum cut-off A in a Euclidean
space-time, i.e. with 2° = 2.5 In this case the path integral reads

7 = /D¢A e S Doy =[] dok), (8.1)
|k|<A
for
S[¢] = / d'zL,  L=1(9,00"0 +m?¢%) + L A" . (8.2)

Now one splits off the high-frequency Fourier-modes of ¢ via

6=+, (8.3)

where the momenta of ¢ obey |k| < bA,b < 1 while those of qg lie in the high-momentum
shell DA < |k| < A. Inserted into £ yields

S = S[¢] + S[e, 9] , (8.4)
with
Lold] = 30,609 (8.5)
Lind$, 3] = tm?@* + M4 %0 + 1020* + L 96° + £o%) .

Note that we treat %m2q32 as an interaction. Furthermore, there are no terms proportional
to ¢¢ since in Fourier-space they would vanish due to (8.3) which enforces

/ %% S(R)S(K )07 ~ Gk + k) = 0. (88)

Within this setup one now performs the path integral over qg and expresses it as a
correction to S[¢]

Z:/DQSA e S9] :/DquADqAﬁAe‘SW”‘i’] :/ngbAe—SeffW’]’ (8.7)

with
Serfld] = S[¢] +6S[¢] ,  where %51 = / Dy e 5191 (8.8)

5The Euclidean cut-off ensure that all momenta are below A.
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Serf[#] can be computed perturbatively for m << A, A < 1. One defines a QAS propaga-
tor by

T I DdG(R)dp)e P (2m)

k) ) = e = g Ok PO (9)
where 1 ifbA <kl <1
1 =~ =~
0(k) = { 0 otherwise ’ (8.10)

and denotes it diagrammatically by a double line. Now one does perturbation theory
where ¢ only appears on external lines, ¢ only appears as an internal propagator. The
resulting diagrams are then viewed as corrections to the couplings of S.r¢[¢], i.e. as
corrections to m and A but also higher order terms are generated in S.s¢[¢]. This yields
generically

Lepp =11+ AZ)0,00"¢ + L(m* + Am?)¢* + & (A + AN)¢* + higher order , (8.11)

where the higher order terms include ¢, (9¢)?, etc..

As an example let us compute

= 1) / d*z¢?po (8.12)

(2m)*
k3

4 4
— 1) / iR TR ik km g g ()

G ) S(ks + ks) 0(ks) |

where we went to momentum space and used (8.9). Performing the integral over k; and
T we arrive at

I = —i)\/ o . ks ¢(k‘1)¢(k2)(27r)4 0(ky + k2) O(ks)

(2m)t " (2m) k3 (8.13)
_ [ R s |
=—4u [ s ootk
with
[ s 0k R U
S\ / o = 5 / do /bA bk = 22 (1= A7 (8.14)

Similarly one can compute

I = \/< ~ g / iz () (8.15)

with
£E=— In—. (8.16)




This procedure can be performed perturbatively for each coupling to arbitrary order
computing AZ, Am?, A),.... On the other hand inspecting (8.7) we see that the two
path integrals are related by the transformation

K =k/b, ¥ =bx (8.17)

such that
Kz =kx, k| <bA = |K| <A, (8.18)

Inserted into (8.11) we obtain
Seff = /d4$’b_4<%(1 + AZ)6?0,00" ¢ + 5(m* + Am?)¢? + 5 (A + AN)o" + .. )

= /d4x’<%0L¢’8'“¢/ +ImP¢P + LN+ LN+ )
(8.19)

where
¢ =VA+AD 6,
m? = (m*+Am*)(1+AZ)"'b 2,
N=A+AN1+A2)72, (8.20)

N = (A + AN (1 + AZ) ™20

Therefore integration over a momentum shell bA < |k| < A can be viewed as a trans-
formation of £. Doing it again one successively integrates out the high-momentum or
short-distance fluctuations. For b ~ 1 the transformation can be viewed as continuous
and is called a renormalization group transformation.® Precisely due to the cut-off depen-
dence the couplings become also scale dependent which is seen from their b dependence.

Let us focus on this point more concretely. For simplicity one starts at a point
m? = X\ = \, = 0 in coupling space and looks for the first order change. From (8.20) one
then obtains

m? =b"2Am?
N =0"AN, (8.21)
No=b"rAN,

We see that for b < 1 the mass m? grows. Growing couplings are called relevant. For A on
the other hand one needs further information to determine its behavior. Couplings which
scale with % are called a marginal couplings. Finally A, grows for n < 4 and is relevant,
as we already said is marginal for n = 4 and decreases for n > 4. Couplings which
decrease are called irrelevant. Obviously the scaling behavior of a coupling is related to
its mass dimension in that ), has mass dimension [)\,] = 4 — n and scales with "%
At large distance, i.e. in the infrared, only relevant and marginal couplings have to be
considered. These are precisely the renormalizable couplings.

6This is a misnomer since mathematically there is no underlying group.
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Finally let us inspect the scale dependence of the marginal coupling A more closely.
From (8.16) one finds explicitly

2
1
AN (8.22)

I P
A=A 1672 b

i.e. a slow logarithmic decrease. The logarithmic correction of A is precisely the correction
computed in the previous lecture and problem 4.2.
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9 Lecture 9: Callan-Symanzik Equation

In the last lecture we saw that in a Wilsonian picture, i.e. for a quantum field theory
with a cut-off A, the couplings are scale dependent. However, a finite cut-off has the
technical problem of generically violating the Ward identities and therefore it is often
more convenient to send A — oo and instead recover the scale dependence of the couplings
from a modification of the renormalization conditions. In lecture 7 we discussed the
on-shell renormalization scheme in that we imposed the renormalization conditions (7.19)
and (7.20) on-shell at p* = m? However this choice is by no means mandatory and
we could instead impose these conditions at an arbitrary space-like momentum p? =
—M?. This would again remove all UV-divergences but the counterterms as well as the
renormalized couplings now depend on M?. Thus also in this set-up one ends up with
scale-dependent, couplings.

The on-shell scheme has the additional problem that the quantities are singular in a
massless theory. Since we are primarily interested in the behavior of the couplings far
above the physical masses it is necessary to introduce a renormalization procedure which
works for massless theories.

Let us see how this works in slightly more detail for the example of a massless ¢*-
theory. The renormalized field is defined as in (7.15) by ¢ = v/Z ¢,.. The n-point functions
G™(zy,...1,,\, M) then depend on the renormalized coupling A and the renormalization
scale M and are given by

G (@1, ., A, M) = (QUT{Gr(21) - b (€)} Q) = Z7HQUT{D(1) - - d(an) D)
(9.1)
A change M — M + )M then induces a change in the coupling A and the wave function
renormalization Z

A= A+0N,  VZ—-VZ(1-6m). (9.2)
Since the bare (Q|T{¢(x1) ... o(x,)}?) does not change one obtains from (9.1)

n n . OG™) n 0G
— G = 572 g™ 2 7 = 9.3
0=0(25G") =023 G + 2% =50 0M + Z% 26X (9.3)
Using 622 = —nZ™?6n and defining
M M
one arrives at the Callan-Symanzik-equations
Mi+ﬁg+n G™(zy, ... xp, A\, M) =0 (9.5)
8M a)\ 7 1y« -dny 2\ - . .

The renormalized coupling A does not depend on the UV cut-off A and neither does
the arbitrary scale M. From their definition (9.4) we thus conclude that also 3 and =
do not depend on A. Since 3 and v are dimensionless and for a massless theory there
is no dimensionfull quantity other than A in the theory one concludes that § and ~ are
also independent of M and one only has § = () and v = (\). This is not all obvious
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from their definition (9.4). This in turn implies that the Callan-Symanzik-equations only
contain two universal functions of A for all G,

Let us now explicitly compute 3 and ~ for massless ¢*-theory by computing G (M)
and GW (M) and inserting them into (9.5). In lecture 7 we showed in problem 4.1 and
(7.23) that the one loop corrections of the propagator are p-independent. Therefore

imposing the renormalization conditions at p?> = —M? (instead of p? = m?) does not
change the result and we conclude
0 0
M-—G® =0 —G® =0. 9.6
oM ’ O\ (96)

Inserted int (9.5) then implies
v =04+ 0()\?) . (9.7)

G™ was computed in problem 4.2 and (7.25) to be proportional to
GW = —i\ + (=i (iV(s) + iV (t) + iV (u) + ) — 0y (9.8)

In lecture 7 we determine J, by imposing an on-shell renormalization condition. Now we
impose G[(f;,)@pu:t:u:_ w2 = —iX which implies

Sy = (—iN)2 3V (—M?)

o3 g /1 4 L2—d/2)
T2 ani(amyi2 J, (1 — o) M2 (9.9)
3\ 2 2 .
= 35,2 11_1)% (E —InM* + ﬁmte) :
Thus 3 .
g qw - 2
M@M G 1622 (9.10)
Inserted into (9.5) together with v = 0 we arrive at
0 3iN?
= G®W —
/68)\G 1607 - (9.11)
From (9.8) we see that at leading order G® = —i)\ so that we conclude
3\ 3
= — . A2
f= s + O (912)

The analysis can also be done for massless QED for G™™ (zy, ... M, ¢) where n counts
the number of electron fields ¥ while m counts the number of photon fields A,. In this
case the CS-equation reads

0 0
Mo+ B(e) 5 + 7+ mg| GO (@, Mie) =0, (9.13)
where Y
V2,3 = _5—M 5772,3 ) (9-14>
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with 72 3 being the change in the wave-function renormalization of ¥ or A, respectively.

In QFT I we used the on-shell renormalization conditions. In problem 5.1 the coun-

terterms dp 3 are determined at p?> = —M? to be
2 T((2-4d/2
52:_6 ( /)+ﬁnite,
1672 M4-d
e (9.15)
e 2—d/2 .
03 = — om2  aAfid + finite .

In QFT I we further recorded ¢; = do. From these expressions and (9.13) one obtains

(see problem 5.1)
2

— 1)y __“
V2 5 MOndo 1672
! ¢ 9.16
73:_§M8M63:T7T2’ (9.16)
3
_ 1¢y_ €
ﬂ = €M8M(—(51 —|—(52 + 5(53) = ﬁ .
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10 Lecture 10: Solution of the CS Equation

Let us consider G® (p). Dimensional analysis determines

GO(p) = p—f (—p?/M?) (10.1)

where f is an arbitrary function for now. As a consequence one has

1 2p?
Moy G® = = f =
M2’
P (10.2)
@) @ _ & 20
which implies
Moy G® = (—pd, — 2) G? (10.3)
Inserted into the Callan-Symanzik equation (9.5) we obtain
0
(pap B 42— 27) G (p,\, M) =0 (10.4)
This is a partial differential equation of the type
0 0
[E +v(z) e (:)3)] D(xz,t) =0, (10.5)

where for the case at hand

t=In(p/M), wv(x)=-00R), plz)=2v()-2. (10.6)

In problem 5.2 we show that (10.5) is solved by

D(t,z) = D(z(t, ) exp ( /0 v o(T(t', g;))) (10.7)

with D arbitrary and

= (@, T0,2)==x. (10.8)

With the identification (10.6) one thus determines

GO (p, A\, M) =G (A(p, N)) exp < — /p_:: d(lnpﬁ') 2 [1—v(Ap, \)] ) (10.9)
with .
) Ap,A) =B, AMA) =X (10.10)

) is called running coupling “constant”. Since (10.10) governs the flow of A when chang-
ing the scale p it is often called the renormalization group equation. Note that the
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quantity G in (10.9) coincides with G® at p = M but for p # M it depends effectively
on the new coupling A\ obtained as a solution of (10.10).

Similar solutions can be found for all G™,

Let us now turn again to massless ¢*-theory as an example. In this case we computed
in (9.12)
2

d 3\ —3
dln % 1672 + O

This differential equation can be solved by integration which yields

Ap,A) = B(N) =

). (10.11)

- A

Ap)=—= 7

. (10.12)
1 — 5 Ing;

We can check that for p = M indeed A = X holds as required by the boundary condition.
Furthermore in the IR, i.e. for p — 0 the theory becomes weakly coupled in that A — 0.
In the UV, i.e. for p — oo the theory becomes strongly coupled in that A — co. However,
perturbation theory breaks down at the Landau pole

3\ 1672
_ 62 =0 = p= Me3x . (10.13)

From (10.10) we see that the question if a theory is weakly or strongly coupled in the
UV or IR is determined by the sign of 3. Therefore one can identify the following generic
cases:

d >0 IR-free,
ST Ap,\) = B =0 scale independent (finite QFT) , (10.14)
(In 57) < 0 UV-free (asymptotically free) .

Here IR-free means that A decreases for decreasing p (X | for p |). For asymptotically
free theories one has instead A | for p T.
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11 Lecture 11: Non-Abelian Gauge Theories

Let us first recall the situation in an Abelian gauge theory with QED as its prominent
example. Here one starts from the Lagrangian

L = i@y — my . (11.1)
It has a gauge symmetry
oY =%, Yoy =", a€eR, (11.2)
and a corresponding Noether current
J* =Py (11.3)

The associated gauge symmetry corresponds to the replacement o — «(x). Of course
L is no longer invariant but has to be coupled to a gauge boson A, via the covariant
derivative

D;ﬂ/) = M¢ - Z.gA;ﬂvb ) (11'4)
where ¢ is called the gauge coupling constant (¢ = e for QED). A, is assigned the

transformation law
Ay — A=A+ 0, (11.5)

such that '
D,y — (D) = 0,4 — igA:Lw/ =D,y . (11.6)
The Lagrangian
£(¢7 A,u) = iquVuD;ﬂb - ml@ﬁ = iquyuﬁ;ﬂb - W’HW + gjuA,u (117>

is gauge invariant, i.e. £(¢', A}) = L(¢), A,). In order to promote A, to a propagating
field one needs to add a kinetic term (the Maxwell term)

L= _iF;wFW , with F,=90,A,-0,A, . (11.8)
F,, is gauge invariant, i.e. obeys Fy, — F}, = F),,.
This story can be generalized to n Dirac spinors ¢;,7 = 1,...,n with the Lagrangian
L= (i — mibis) . (11.9)
i=1

L has the unitary symmetry
Ui ==Y Uty = 0= UL (11.10)
J j

with UUT = 1 since 32, vty — 2, 00 = 32 0L Ut = 32, it

The associated gauge symmetry is obtained by the replacement U — U(zx). L is no
longer invariant but has to be coupled to a matrix gauge boson (A,);; via the covariant
derivative

Duwi = ;ﬂ/}i —1g Z(Au)ij%' ) (11-11)
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such that
D;ﬂ/)i - (D/ﬂ/’); = ;ﬂ/); —1ig Z(Au);ﬂ/); = Z UijD/ﬂ/)j . (11-12)
J J

This determines the transformation law of A, to be (in matrix notation)
Ay — A, =UAU = L(9,U)U", (11.13)

which can be checked by inserting (11.13) and (11.10) into (11.12).
The field strength for A,,;; is defined as

F. =0,A,—0,A, —iglA., A . (11.14)
One checks the transformation law
Fu — F, = 0,4, —0,A, —ig[Al,,A]] =UF,U". (11.15)
As a consequence
trF,, F*' = tr(UF, U UF*U) = trF,, F* . (11.16)

Therefore the gauge invariant Lagrangian (L(¢', A},) = L(1), A,)) for this non-Abelian
gauge theory (or Yang-Mills theory) is given by

L= ()" Dty — mibyahy) — KtrF, F™ | (11.17)

i=1
where the normalization s will be determined later.

It is often easier to consider infinitesimal transformations
U=1+H+0OH?), U'l=1-H+0O(H?, (11.18)
such that for unitary U A R
Ull=U" = H=-H", (11.19)

i.e. H is anti-Hermitian. Therefore one conventionally defines H = iH with H = H'. It
is convenient to separate the parameters of a transformation (e.g. rotation angles) from
the basis of hermitian matrices and define

Hy=iY o'y, a"€R, =), (11.20)

where t* denotes a basis of all hermitian n x n matrices. (They are called generators.)
There are n? linearly independent such matrices and thus a = 1,...,n?. If additionally
det U = 1 the t® are traceless and there are only n? — 1 generators. In the next lecture
we show that the ¢t satisfy

[t ] =0y e (11.21)

The fe¢ are called structure constants of the Lie-algebra.
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12 Lecture 12: A little Group Theory

A group G consists of a set of elements g1, ..., g, € G with a multiplication “-” such that
(1) ¢;-9,€G (closure of the multiplication)
(2) 9i-(95-9%) = (9i- gj) - gr (associativity)
3) gi-1=1-g,=gy; (existence of the identity)
4) gi-g't=1 (existence of an inverse)

An additional option is
x) 9i-9,=9i" Gi
in which case the group is called Abelian.

In quantum field theory the concept of a group is an indispensable tool since sym-
metry transformations such as rotations, Lorentz-transformations and gauge transforma-
tions are mathematically described by a group. However, in this application the group
elements depend on the rotation angles, the boost parameters or the gauge parameters.
Such groups are called Lie-groups which have the property that their elements g depend
continuously on a finite number of parameters a,,a = 1,...,d, i.e. ¢ = g(a,...,qq).
The group multiplication now reads

g(alv"'uad) 'g(ﬁlv"wﬂd) = 9(717”'7760 ) (121>
where
Ya = Ya (ala"'vadvﬁlv"'uﬂd) (122>
is a differentiable function of «a, and f,.

An infinitesimal element of a Lie-group can be parametrized as’

d d
gla) =1+ agt"+1> a,T™+0 (o) (12.3)

a=1 a,b=1

where 7% can be chosen symmetric 7% = T". The group multiplication can then be
expressed as relations among the t°.

In order to derive this relation let us first note that g(0) = 1 so that

Ya(ag, ..o 0g,0,...,0) =7, (0,...,0,0q,...,0q) = Qg - (12.4)
This implies
d
Yo (@, B) = aq + B4 + Z Cscabﬂc +0 ((Oz, 5)3) ) (12.5)
b,c=1

or in other words no terms proportional to o or 3% can appear as they would not satisfy

"This does not capture global issues.
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(12.4). We can compute explicitly
9(0) g (8) =1 +i) (ant Bt + 5 (o + Buh)T = 200 5t'") + O (o)
a a,b

=g =1+i) Wt +3> 1nl™+0 ()
a a,b

=1+ (o + B)t"

a

+ Z Cscabﬁcta + % Z(aa + 6(1)(0% + ﬂb)Tab —+ ... s
b,c ab

(12.6)
where we used (12.5) in the last step. Decomposing tt* = ${t*,t*} + $[t*,t*] and com-
paring the second order terms we arrive at

[t 8] =iy (C = Oy (12.7)

together with a slightly more complicated (and uninteresting) equation for {¢¢, t*}. Defin-
ing the structure constants f¢ := 0% —(C% = — fbac oq. (12.7) turns into the Lie-algebra

of the group G
d

[t 8] =iy feee (12.8)
c=1
The t* are called the generators of the algebra while d is called the dimension of the
algebra. It is left to show that at higher orders no further constraints appear. A proof
of this fact can be found, for example, in [6]. Before we continue let us note that
(12.8) says that the group multiplication is characterized by a finite-dimensional algebra
independently of any parameter.

The structure constants f satisfy the Jacobi-identity which holds for any commu-
tator

0= [e% [¢" ] + [, [, ] + [, [, ¢

. (12.9)
_ Z (ifbce [ta7 te] + Z»fcae [tb, te] + ifabe [t07 te]) ’
e=1
where in the second equation we used (12.8). Using it again implies
d
Z (fbcefaef + fcaefbef + fabefcef) —0. (1210)

[y

e=

Let us now give some examples of Lie groups. Let us start with the group GL(n).
This is the group of n x n matrices M acting on R™ with det M # 0. These matrices
satisfy the group axioms. As a second example consider the group U(n) which is the
group of unitary n x n-matrices U,UUT = UTU = 1 again with detU # 0 and acting
on C". These matrices also satisfy the group axioms. Let £, 60 be complex vectors i.e.
&,0 € C". Under a unitary transformation one has

0—0 =U6, & =& =U0¢, (12.11)
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or with indices

0; — 0; = Z Uijt; &i— &= Z Uii&j (12.12)
J=1 j=1

The inner product Y, 6¢; is invariant under this transformation since

0" — 0T = (UG =0 TUT . (12.13)

In the previous lecture we already saw that an infinitesimal group element can be
written as

d
U=1+i) ot +0(a?), (12.14)
a=1

with generators which are hermitian, i.e. t* = t*f. There are n? such generators and thus

the dimension of the Lie-Algebra is d = n?.®

SU(n) denotes the group of unitary n x n-matrices U with the additional property
detU = 1. In the previous lecture we saw that in this case the generators are also
traceless Trt® = 0. Such transformation are rotations in C* and d = n? — 1.

O(n) is the group of orthogonal n x n-matrices O with OOT = OTO = 1,det O # 0.
Let &, 0 now be real vectors i.e. £, 0 € R™ with transformations

60— 0 =00, § =& =0¢, (12.15)

The inner product #7¢ is left invariant by these transformations and thus the transfor-
mations correspond to rotations and/or reflections of R”. The infinitesimal element reads
again O = 1 + Z'ZZZI gt + O (a?) but now OTO = 1 requires the generators to be
antisymmetric t* = —t7. The dimension of the Lie-algebra therefore is d = in(n — 1).

2
Imposing additionally det O = 1 excludes reflections and this (proper) rotation group is

called SO(n).

The group SO(n,m) consists of matrices A which satisfy
ATpA =1, (12.16)

for n = diag(1,...,1,—1,...,—1) with signature (n,m). Such transformation leave the
inner product £7nf invariant. In this notation the Lorentz-group corresponds to SO(1, 3).

8Note that the phase rotations U = €' form the group U(1).
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13 Lecture 13: Representations of Lie Groups

Under a representation of a group G one understands the map

gi — M;(g;) with  M;(g;) - M; (g;) = My (gr) for gi-g; = gx (13.1)

or for Lie-groups

gla) = M(a) with M (a)- M () =M(y) for g(a)-g(B)=g(), (13.2)

where M is a linear operator (a matrix or a differential operator) acting on an d,-
dimensional vector space V. d, is the dimension of the representation. If all M’s act
within a subspace of V' the representation is called reducible and otherwise irreducible.

The groups discussed in the previous lectures were defined by a particular represen-
tation. This is called the defining or fundamental representation.

A prominent example in physics is the group SU(2) which is generated by d = n?—1 =
4 — 1 = 3 hermitian generators. These are precisely the Pauli matrices t* = %U“. They
satisfy

[t 8] =iy etere (13.3)

Comparison with (12.8) implies fa% = eabe,

However, all groups can have higher-dimensional representations. For SU(2) these are
the spin-j representations which are (2j+ 1)-dimensional and also satisfy (13.3). In order
to notate the different representations we sometimes use ¢¢ to state that the generators t*
are taken in the representation r. In particle physics all known gauge groups are among
the SU(n) and so we focus on this case henceforth.

The matrices (%), = i f** form a representation since they satisfy (12.8) due to the
Jacobi-identity (12.10). (This is shown in problem 7.2.) This representation is called the
adjoint representation and it has dimension d, = d = d(G).

The complex conjugate representation is generated by t¢ = —(t%)T (which is shown
in problem 7.3). A real representation satisfies t¢ = St%s™!, Va.

Let us define

D= Tr(t%),  ab=1,...,d=n*>—1. (13.4)
Due to the cyclicity of the trace D® = D% and furthermore

(D) = Te(t17) = D", (13.5)

where we used t¢ = %7 and again the cyclicity of the trace. Thus D% is a hermitian and
symmetric matrix and thus real. It can be diagonalized and furthermore the normaliza-
tion of the t* can be chosen such that

Tr (t242) = c(r) 6 . (13.6)

c¢(r) is called the index of the representation. In the fundamental n-dimensional repre-

sentation of SU(n) one chooses ¢(n) = 1.
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Another property of the f%¢ can be learned from considering

Tr ([t2, £2]t5) = i f* Tr (t4t2) =i f**c(r)

TYUT

(13.7)
= Tr (t2t0tC — t2e24) = Tr (L2[2, ¢C]) = i f*c(r) |

rorer rer-r rTyor

where we used (13.6) and the cyclicity of the trace in the second line. Thus we have the
symmetry properties

fabc — _fbac — fbca 7 (138)
or in other words the structure constants are totally antisymmetric for SU(n).

The quadratic Casimir operator is defined as

d(@) d(r)
TS =)t (13.9)
a=1 k=1
It commutes with all generators
[t T?] =0, Vb. (13.10)

Thus 72 must be proportional to the unit matrix and one can write
T3 = ca(r) bij - (13.11)
Taking the trace of 72 and D® one derives (problem 7.2) the relation
c(r) - d(G) = co(r) - d(r) . (13.12)
Let us close this lecture with a brief discussion of the Lorentz group in this formalism.

It corresponds to the group SO(1,3) with the defining representation obeying (12.16).
For infinitesimal Lorentz transformations one expands

A =0+ Y wa(t")h + Ow?) . (13.13)

Inserted into (12.16) one obtains
t Ty = —nt* (13.14)

or on other words the generators with both indices lowered are antisymmetric. There are
six such generators and it is customary to assembles them in an antisymmetric matrix
JP? = —J°P. Similarly the six Lorentz parameters are expressed in terms of the anti-
symmetric matrix w,, = —w,, such that Y w.t* = > ) WepJ??. The JP7 satisfy the
SO(1,3) algebra

[, JP0) = (P T — e JUT — T g g ] (13.15)

All SO(n,m) groups have also spinor representations. Starting from the Clifford
algebra

{7} =20 (13.16)
one can construct the operator '
S = 4y, 7"] (13.17)

which satisfies (13.15). S* is the generator of the spinor representations of SO(n,m).
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14 Lecture 14: Feynman Rules in Non-Abelian Gauge
Theories

In lecture 11 we introduced non-Abelian gauge theories and gave the Lagrangian in
(11.17) which is invariant under the transformations (11.10) and (11.13). Using the
group-theoretical considerations of the previous lecture it is convenient to also determine
the infinitesimal transformation laws of non-Abelian gauge theories. That is we expand
U as in (12.14) and insert it into (11.10) to obtain

d
S =0 —p=iY oty (14.1)
a=1
or with indices .
S =iy > athy; . (14.2)
a=1 j=1

For SU(n) one has d = n? — 1. ¢ transforms as

=09 - =9Ul = ==i) a"Pt". (14.3)

For the gauge bosons we find from (11.13)
0A = Al — Ay =i a®t" A+ 1) (9,0°) " (14.4)

From the last term we see that A, must be an element of the Lie-algebra and we can
expand A, in a basis of generators

A, =) At (14.5)
Inserted into (14.4) we arrive at

0A, = =iy oAbt "] + 13 (9,0t (14.6)

a

Using (12.8) and (14.5) we can alternatively write
0As == a’As f* +19,0" = 1D,a" (14.7)
be

g

The covariant derivative (11.11) now reads
Dyt = 0p — igAub = 0, — ig Y | Ast*y (14.8)
while the field strength is given by (see problem 7.1)
Fy =0,A, — 0,A, —ig[A,, A =) Fot®
‘ (14.9)
F, =0,A% — 0,A% + 9> [ ALAS
be
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In the Lagrangian (11.17) we left the normalization x undetermined. Inserting (14.5)

and using (13.6) we see that for k = _ﬁ(r) we obtain a properly normalized kinetic term
of the gauge bosons. Thus (11.17) turns into
L= (iv" Dy, —myy; — 1y Fo Fo (14.10)

In order to derive the Feynman rules we split £ according to

L= Lo+ Ling (14.11)

where
Lo = i(y"0 — m)ihi + %AZ (g —0"0") AL, )
Line = gALJ™" — gf O, AJAMA® — 17 [ AL A fEATA

and j* = y"t%). L, contains the kinetic terms which are also present in the Abelian
limit. Together they results in the following Feynman rules [2]

p—m

~ i -0-o)

2

;

2

igy"t

v%@% ® >\@0999J o
¢

gf g™ (k —p) + 9" (p — )" + 9" (¢ — k)"]

o

2

—Zg [fabefcde (gupgua _ guagup) + facefbde (g/u/gpa _ guaguagup)
_|_fadefbce(g;u/gpa _ gupgua)]

(14.13)
Note that the momenta are incoming in the second diagram.

In order to derive the gauge boson propagator recall that the kinetic term for A}, in
(14.12) is not invertible and as a consequence a gauge fixing is necessary. To do so we
repeat the Fadeev-Popov procedure which we used in lecture 4 for the Abelian case. As
we will see momentarily for a non-Abelian gauge bosons a slight complication occurs.

Let us again start from the path integral

I= /DA el (14.14)
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where S[A] contains all A-dependent terms in (14.12). We again insert the identity in
the form

/Da 5(G(A%)) det <5G5(A >> ~1, (14.15)
«
where
As® =A%+ 1D, 0%, with  Dya®=19,a" — f*a’ Ay, (14.16)
Choosing
G(A”) = 9" A — w(z) (14.17)

with w(z) being an arbitrary scalar function, we see that % in the non-Abelian case

depends on A and is given by

IG(A%)
Inserted into the path integral we obtain

I= / DADa§(G(A%)) det (%)am . (14.19)

but now the determined cannot be moved outside the integral. Changing variables
A, — A =UAU" - U9, U, (14.20)

and using S[A] = S[A?] (since it is gauge invariant) and DA = DA® since the change is
a unitary transformation plus an A-independent shift we arrive at
0G(AY)\ ;g1ae
I= / DA“Da §(G(A%)) det (%)ew I (14.21)
o
Since A“ is an (arbitrary) integration variable we can rename it back to A and factor out
the infinite-dimensional factor f Da which causes the problem, i.e.

I= (/Da) /DA(S(G(A))det <%)eis[‘ﬂ . (14.22)

o

The determinant in I can be represented as a path integral over anti-commuting
bosonic ghost fields ¢*. Recall from (5.17) that a functional determined can be represented
by a fermionic path integral

/ D Dype’ S 17900 — ¢ det(O) . (14.23)

However % does not act on spinors and therefore we need bosonic Grassmann fields
to represent the determinant

0G (A% _ i [dix X
det ( éa )) = det (;aﬂDM(A)) _ / DéDeetd deLansilesd] (14.24)
where
Lanostlc, &, A = &(—=0"D,)c = ¢*(—056% — g f** A)c” . (14.25)
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Since the fields ¢, ¢ have the “wrong” spin-statistic they are called ghost fields. They are
not physical but rather their introduction is a trick to represent det(éG(aA )). Now we can
evaluate this determinant by the additional Feynman rules

p2

§ (14.26)

a T~ —gfrp

Finally §(G(A)) can again be expressed as a correction to S by integrating over all
w(z) with Gaussian weight centered around w(x) = 0. This yields

=N 5)/Dw€_”d4x“§s I
=N f)(/Doz) /DADCDEeiS,[C@A]

where N is a normalization factor and
S = / d4z<Z@Ei(iv”DM— -——ZF“ Fom — (0" Au)° + (—aﬂpu)c) , (14.28)

where we now also included the fermions again. As a consequence the gauge boson
propagator reads again in momentum space

(14.27)

' kK,
_é(nw/ —(1-9~ L2 ) o, (14.29)

as already anticipated in (14.13)
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15 Lecture 15: BRST Quantization

The gauged fixed action (14.28) has no gauge symmetry but instead a new global sym-
metry the so called Becchi-Rouet-Stora-Tyutin (BRST) symmetry. This symmetry can
be seen by considering the auxiliary Lagrangian

Lp= Z%(W“Du —m; = Y (4F;VF“W Z (0"D,)ape® — §B*B* — B0" AZ) ,

a

(15.1)
Since there is no kinetic terms for B* its Euler-Lagrangian equation is purely algebraic
oL
— £RB HAC — 15.2
and thus can be used to express B in terms of A,
B = —%8“143 . (15.3)
Inserted into the Lp of (15.1) we get back the original gauged fixed £ of (14.28).
Lp is invariant under the following BRST-transformations
5Aa _EZDCLCCC:€8 @ _'_ngabcAb c
zgeZc (t)i05 ,
15.4
0.t = —%gez fabechee ( )
be
0.c" = eB® |
0.B*=0,

where € is the Grassmann parameter of the BRST transformation and satisfies €2 = 0.
To show it we first observe that the gauge transformations (14.3) and (14.4) and the
BRST-transformation are related by

604AZ|06‘1:£]EC“ = 6EAZ s 5a¢i|a“:geca - 55¢z . (155)

This immediately implies that the first two terms in (15.1) are invariant. The term
proportional to £ is trivially invariant so that we need to compute

o (Y@ D - Y B0 ay)
ab a

= (080" Dyarc”) + > T 0"5(Dyarc”) — Y B 05 AL .
ab ab a

(15.6)
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Using (15.4) we see that the first and the last term cancel and we are left with

anaﬂ (90" +ngabc (6. Ab)ce +ng“bcAbéc)

_ Z@la” (ger“bc( — 1(0u¢) + (9uc”)c”) (15.7)

+g262 (fabc(fbefAZcfcc o %fcefAZCeCf))) )

beef

Using

> PO = § Z fabed, (e (15.8)

be

which holds due to the antisymmetry of f¢ and the Grassmann nature of ¢%, and

Do SreprIele =53 e (et — gy (15.9)

beef beef

one sees that also the remaining terms cancel. Thus Lz has a global BRST symmetry
for any ¢ as a remnant of the gauge symmetry.

One commonly defines the BRST operator Q by the action

QAZ = 0,c" + gf“bCAch ,

QY =1igc"TY

Qc" = —Lgfoeche (15.10)
Qc" = B",
R@B*=0,

In problem 8.1 it is shown that () is nil-potent, i.e. satisfies
Q*=0, (15.11)

and furthermore the action (15.1) can be written as
Lp= Gi(in" D, —myy — LY Fo Fow 1 QN (9" A% 4 $eBY) , (15.12)

which is another way to see its invariance under BRST-transformations. One can also
show

[Q,H] =0, Q=Q". (15.13)

The space of states H decomposes into three subspaces: H = H; & Ho B Hy, where

Hi: contains states |¢);) which are not annihilated by @, i.e. Q|¢1) # 0,
Hy:  contains states [i9) for which [i9) = Q|v.) holds.

(15.11) then implies Qi) = 0,
Ho: contains states |¢)g) which obey Q|vy) = 0 but |[¢g) # Q|x).
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Note that Hy coincides with the cohomology of () which is defined as
~ Ker@

= . 15.14
coh(Q) 0 (15.14)

From (15.10) we that in the free theory (¢ — 0)
QA = Ouc” Qc* = B* QY =Qc" =QB*=0, (15.15)

which implies that for the asymptotic states we have
A}fng € Hl ) Aftrans € HO ) ¢ c HO ) Ca S H2 ) Ea € Hl ) BCL € H2 . (1516)

We see that the physical degrees of freedom Afjans,w are in Hy while the unphysical
degrees of freedom Aif“g, c*, ¢, B® are in 'H; or Hy respectively. Therefore in the BRST
quantization procedure H, or in other words the cohomology of @, is identified with the
physical Hilbert space. Thus, all asymptotic states of the theory have to be in Hj.

It remains to show that the time evolution does not change this picture. Since @)
commutes with H we have

Qlibo, t) = Qe |1hg) = ™' Qipg) =0 . (15.17)

Thus |1, t) € Hy ® Ho. However, (|1, t) = (¥.|Q1ho,t) = 0 and thus |1y, t) has no
component in Hy or in other words |1, t) € Hy.

This can be repeated including the interaction so that indeed the physical states are
the states of Hy, i.e. they are in the cohomology of Q.
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16 Lecture 16: Renormalized perturbation theory
for Non-Abelian Gauge Theories

Let us start with the bare Lagrangian determined in (14.28)
L= —1Fg, Fg" — 3¢ (0" A5,) (8" AG,) + o (i) — mo) vo + 5 (=" Dy) ¢, (16.1)

and define the renormalized fields by

Yo =\ Za ¥, A, =V 23 Ay g =\ 25", cg =\ 25", (16.2)
with
The renormalized couplings are then defined by
Zomy = m ~+ O, G022\ Zs =g (1+61) , QOZ;/2 =g (1 + 5?9) ;
, (16.4)
975 =9 (1+47) , 9025\ Z3 = g(1+67) .

We thus have eight counterterms (5m,5172,3,5‘f72,5fg’4g ) for only five physical quantities
(A,1,c,g,m). Indeed one can show that at one-loop (16.3) and (16.4) imply the three

relations
01— 6y = 679 — 03 = 6 — 65 = L(619 — 43) . (16.5)

Inserting (16.2), (16.3) and (16.4) into (16.1) we obtain
L=L,Ac)+ Lot (16.6)

where

Lor = =185 (8,A% — 8,A%)" + ) (1020 — 6,0) ¥ — 65¢"0c" + & A%j* o)
aoc a Ccr ea a 2 C=a aoc C '
— g6 fohe (9, A%) A A — 12519 (f PALAD)T — goset fre ot AD e

These counterterms lead to the additional Feynman rules
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~ Z(}/§52 - 5m)

_<_®_«_
@WQQQ/ ~ =g (l{;zg‘“’ _ k“l{;”) 5a653
% ~ gttt

(16.8)

AT~ s
In the following we give the results for d; 23 which we need for the computation of

the f-function. For further details see [2]. The one-loop corrections to the gauge boson
propagator includes the diagrams

@U@Uo@mm Y et @m%m
>,

The first two diagrams are as in QED and they give
e =i (¢*g™ — ¢"q") 6°"T(¢%) (16.10)

with

(¢°) = — Lsac(r)ny T (2 — 4) + finite
(4m)? 3 (2-3) (16.11)
- 63 )

where we allowed for the possibility of ny fermions in representation . The last three
diagrams in (16.9) only arise in non-Abelian gauge theories and they give

2

M(¢%) = 522 ex(G)T (2 — 4) + finite . (16.12)
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Imposing the renormalization condition
(¢ =-M*)=0 (16.13)

yields
r@2-3)

(M2)2_d/2 :

2

03 = (4‘77)2 [2¢2(G) — gnge(r)] (16.14)

The fermion self energy 5 has the two contributions

@66%% + & (16.15)

which are computed in problem 8.3 to give (for massless fermions)

ALypea(r)T (2 — &) + finite + ipd, . (16.16)

Imposing the renormalization conditions

d
S(p=-M)=0, d—pz(p: —M) =0 (16.17)
yields® : )
2 r- g
52 = _(47r)2 C2(T) W (1618)

Finally we consider the vertex corrections

g / AN ?\
—igDMe ~ %‘WR + (16.19)

In problem 8.3 one computes

—iglHe® :(ifr§2t“7“F (2= 9) (c2(r) — Leo(G) + 265(G)) + finite

(16.20)
+igy 05y

where the combination ¢;(r) — ¢2(G) arises from the first graph while 2¢,(G) results

from the second graph. Imposing
—igl™" (p' —p = —M) = —igy" (16.21)

yields
. I(2-9)

— 2
0 = _(4‘%2 (Mz)z—d/2

(ca(r) + 2(G)) (16.22)

9The first condition fixes J,,.
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The computation of the f— and y-functions proceeds as in QED since only the coef-
ficients changed. Using

re-49) 2
(M2)2—§/2 = E —In (M2) +.. ; (1623)
we obtain .
Yo = §MOM52 = (4‘[]7)202(7“) s
1 , (16.24)
V3 = §M8M53 = (fT)z(%nfC('r) — §CQ(G)) ,
and
0 3
Blg) = QMW( — 01+ 0y + 503) = e (Hea(G) — gnse(r). (16.25)

The physical significance of this results is that 3 can easily be negative leading to UV
free (asymptotically free) theories. For example for SU(n) one has ¢(n) = 3,¢(G) =n

resulting in
3

Blg) = — ik (5 —3ny) (16.26)

which is negative for 11n — 2ny > 0. A prominent example of such a theory is QCD
which we turn to in the next lecture.
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17 Lecture 17: Quantum Chromo Dynamics (QCD)

17.1 Basic definitions and properties

The basic idea of QCD is that the strong interactions are mediated by an SU(3) gauge
theory. Thus there are 32—1 = 8 gauge bosons of SU(3) called gluons and we denote them
by Gjj,a = 1,...,8. The constituents of baryons and mesons are fermions called quarks
and they transform in the fundamental three-dimensional representation of SU(3). They
are denoted by ¢;,7 = 1,2, 3 and each of the ¢;(z) is a Dirac spinor. The SU(3) quantum
number is often called colour and in this nomenclature the ¢; form a colour-triplet with
1 being the colour-index. Experimentally one observes six of these colour triplets and so
together we denoted them by ¢/, 1 = 1,...,n; = 6. Here one often says that there are
six flavours of quarks and thus the index [ is called the flavor index. Furthermore they
are grouped in three families according to their electric charge.

family | quarks charge | quark charge
1 u (up) 2/3 | d (down) -1/3
2 ¢ (charm) | 2/3 | s (strange) | —1/3
3 t (top) 2/3 | b (bottom) | —1/3

The QCD Lagrangian reads

6 3
Locp = ZGC‘ G — ZZ (ig! P — mrsala]) , (17.1)

where the field strength is defined canonically as
G, = 0,Go — 0,G5 + g fGh Gy, (17.2)
and the covariant derivatives are

D,q! = 0uq! — ZQSZZG - (17.3)

The tf; are the generators of SU(3), fe¢ the corresponding structure constants and g, is
the strong coupling constant. The gauge transformation of the quarks therefore is

8 3
5q = iZZoﬂ(m) t?jqjl- : (17.4)
a=1 j=1

Before we continue let us pause and note that all six quarks are electrically charges
and thus couple to the photon ~. Including the electromagnetic interactions the gauge
group is SU(3) x U(1)em and one has to add the Maxwell term to the Lagrangian of
(17.1) with the covariant derivatives modified according to

DNqZI - Mql 298 Z Z Glltquj ZQfefquzI ) (175)
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where @) indicates the fraction of electric charge they carry, i.e. Q¢ = 2/3 for u, ¢, t and
Q= —1/3 for d, s,b. Accordingly the transformation law reads

8 3
5q! = ZZ Z a®(2) t,q] + icem(2)q] - (17.6)

a=1 j=1

The [-function was determined in (16.26) to be

bog? ,
B(g) = _(4()%2 o with by = Ley(@) — Snge(r) (17.7)
which for QCD evaluates to
bo=%(8) —3npc(3)=43-265=7>0, (17.8)

where we used ¢(8) = 3,¢(3) = 3,ny = 6. Thus QCD is an asymptotically free theory
which is weakly coupled at high energies and strongly coupled at low energies. At low
energies one observes experimentally only colour singlet states. This is called confinement
which, however, has not been proved in QCD yet. These colour singlets are bound states
of the quarks. More precisely one has

mesons : M/ = E qilqi[,
i

(17.9)
baryons : B!7E = Z ei]—kq{q}]q,ﬁ{.
ijk
One checks that both combinations are SU(3) singlets.

At high energies one can use perturbation theory in g, as developed in this course.
For low energies other methods such as lattice gauge theories are necessary. To estimate
the scale Aqcp where QCD becomes strongly coupled one consider the solution of the
CS equation which was determined in problem 6.4 to be

g(P) =g (M) + g3z n(P/M) (17.10)
or for ay := %
a(P) = = s aiz%)ln(P/M) . (17.11)
One now estimates Aqcp by the condition
a;'(M = Agep) =0 . (17.12)
Inserted into (17.10) one determines
Agep = Pe 8% () (17.13)

In problem 9.3 it is shown that Aqcp is a renormalization group invariant scale in that

it satisfies
dAqep

dP

=0. (17.14)
Numerically one finds

Agep = 200M eV using as(1GeV) =04 . (17.15)
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17.2 Experimental observations

Even though perturbation is not applicable at low energies QCD is a well tested theory.
The electromagnetic production of hadrons via the process ee~ — hadrons is very

similar to the in QFT I computed process ete™ — pu™p~. There we found the cross
section 4
T Olem
Owt(eTeT = ptuT) R ——— =0y (17.16)
3E7“mCM

valid in the limit Ecy > my,. Here the difference is the different electric charge of the
quarks and the multiplicity due to the colour quantum number. Thus one obtains

owi(ete” — qq) = 3oy Z Q? ) (17.17)
f

This is indeed observed including the jumps when additional quark flavor can be ener-
getically excited.

The leading one-loop QCD correction arises from the diagram

e+ q
eM . 1718
which leads to o
= 21+ =2 )Y . 17.1
Otot 3002f:Qf( + . +O(as)) (17.19)

A further confirmation of QCD was the observation of three-jet events in the 70ies at
DESY. They arise form diagrams such as

e+ q
w g
e a (17.20)

The crucial experiment, however was the SLAC-MIT experiment in 1968 where 20GeV
electrons were shot on a hydrogen-target. This in some sense repeated Rutherford’s exper-
iments in that a substructure of the proton became visible. At high momentum transfer
the scattering process was seen to be on point-like constituents which were called partons
at the time and later on identified with the quarks. Again there is a closely connected
QED process ey~ — e~ and the modification only comes from the fact that the
quarks are bound in the proton. This is parametrized by the parton distribution function
(PDF) f;(x) which gives the probability of finding the parton i inside the proton with
x parameterizing the fraction of the proton momentum carried by the quark. With this
parametrization one finds

do 9 do
= - . 17.21
dcost zi:fl(x)Ql (dcos@)QED ’ (17:21)

which is indeed observed with 10 — 20% accuracy. (For further details see [2].)

95



18 Lecture 18: Spontaneous Symmetry Breaking &
Goldstone’s Theorem

The simplest theory which displays spontaneous symmetry breaking is a real scalar field
with Lagrangian

L=10,00"0—V(p), where V=-1p2¢"+iNs" pAA>0. (181)

Due to the “wrong sign” of the quadratic term g is not the mass of the field. The
minimum of V' (¢) is found from

o 9 o
= 26 =0 (182)

to be at ¢ = £4/u?/\ while ¢ = 0 is a local maximum.

The Lagrangian (18.1) has a discrete symmetry ¢ — —¢ which leaves £ unchanged,
i.e. L(¢) = L(—¢). However the minimum does not have this symmetry. Instead it spon-
taneously breaks it. This is the prototype example of spontaneous symmetry breaking:

The theory has a global symmetry which is not shared by its ground state.

For a continuous symmetry this phenomenon can be observed for a complex scalar
field ¢ = %(Cﬁl + 1¢5) with Lagrangian

L=0,60"¢" V(6,67 ,  where V= —p2¢¢" +IN¢¢")?, 12 A>0. (18.3)

This £ has a global U(1) symmetry ¢ — ¢ = "¢, € R in that L(¢, ¢*) = L(¢, ¢*).
In this case the minimum is found at
o

* 2 *\
56 = ¢ K T A697) =0 (184)

which implies
12

This is the equation of a circle and thus the minimum is a one-dimensional field space.
Any values on that circle breaks the symmetry spontaneously. (At ¢ = 0 = ¢* we have
again a local maximum.) It is convenient to expand ¢ = %(v + h(x) +10(x)) with

%v =—, such that &|min = %v , h|min = 0|min =0 . (18.6)

Inserted into V' one obtains from (18.3)
L = 10,hd"h + £8,00"c —V(h,0) (18.7)
with
V(h,o) = =312 ((v+ h)* 4+ %) + tX(v+ h)* + 0%)* = V(v) + p°h* + cubic , (18.8)
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where we used % = % in the second step. Thus we see that o(z) is massless while h(z)

has mass m? = 2u?. o(x) is called Goldstone boson.

As a next generalization consider N complex scalar fields ¢* with Lagrangian

N
[ — 28u¢i8u¢i* . V(¢i7 ¢2*) : V= —,u2 Zﬁblﬁbl* + %(Z¢2¢2*)2 _ (18.9)

1=1

L has a global U(N) symmetry

o=t =d Uy, et =) UM, vUt=1.  (18.10)
J J
The minimum of V' is found by solving
ov , 9 - ov . o
- = ¢ (— A I¢7*) =0 — = ¢ (—p® + A I¢7*) =0 18.11
ik G ;w) A T ;w) . (1811
to be on the 2/N-dimensional sphere
2
S @it = MT . (18.12)
J
One can parametrize the field space by
o' = %(v + h(z) 4 10(x)), »?, ... 0N (18.13)
such that
v? 2
? = % , ¢1|min = %U 5 h‘min = U‘min = (bz‘min = ... = ¢N|min =0. (1814>

We see that the minimum breaks the U (V) to a residual U(NN — 1) acting on ¢o, ..., ¢y.
Inserting (18.13) into V' given in (18.9) one computes

V =V (v) + u*h* + cubic . (18.15)
We thus see that one scalar fields h is massive (with mass m? = p?) while the 2N — 1
scalars o, ¢o, ..., ¢n are massless. These are again the Goldstone bosons.

Generically the number of massless scalar fields in a theory with a spontaneously
broken global symmetry is determined by the Goldstone-theorem. It says:

For every spontaneously broken continuous symmetry there exists a real massless
scalar field called Goldstone boson.

Let us prove the theorem. Consider N real scalars ¢, = 1,..., N with Lagrangian
N

L=13 060" —V(¢') . (18.16)
i=1

The kinetic term has a global O(N) symmetry. The potential V' we leave arbitrary and
only assume that it has a global symmetry G C O(N) with transformation law

dim(G)

o= o' =¢i+ o0t with  dgi=0 Y a’(th)ie (18.17)

a=1
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where the t* are the generators of G and « € R is the global transformation parameter.
Since V' is assumed to be invariant under G we have

V(") =V (¢' +6¢") = V(') +Za¢15¢i+‘“ =V (¢, (18.18)
which implies at first order
5 =0 18.1
Z 35 ¢ =0 (18.19)
Differentiating this equation w.r.t. ¢/ yields
*V 9V 0
—— 0" —00" ) =0. 18.20
> (o™ * G35 ) =0 (1520
Evaluated at the minimum where g}; = 0 holds we obtain
> mise| =0, (18.21)
where we defined the N x N mass matrix
o*V
2 = — 18.22
mw 0¢’0¢J min ( 8 )

Since mj; is symmetric it can be diagonalized to mj; = m7d;;. Inserted into (18.21) wi
arrive at

> miogl| . =0. (18.23)

One defines the unbroken generators t, of G to be those which leave the minimum
invariant, i.e. which obey

(t)7¢ lmin =0, implying  6,¢'| (18.24)

min

The broken generators t, of G on the other hand are those which transform the ground
state, i.e. which obey

(t6)7¢ lmin #0,  implying  &¢'[ , #0. (18.25)

Inspecting (18.23) we see that it is automatically satisfied for all unbroken generators
while for the broken generators m? = 0 has to hold.

In order to confirm the physical meaning of the mass matrix m - let us Taylor expand
the potential around ¢' = ¢'| i, + A

V(¢ |aninn + AG) = V(¢ |euin) + 2 mejA¢iA¢j +
Y (18.26)
= V(¢ min) + 3 Y mIAGAG + ..
I
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We see that m? are the mass parameters of the fields ¢* when they are expanded around
their background values. Therefore we have completed the proof of Goldstone’s theorem
in that we showed that for each broken generator there exists a massless scalar field.

To conclude let us check the consistency of the U(N) example with Lagrangian (18.9).
In this case we found that the U(NN) is spontaneously broken to U(N — 1) and thus the
number of broken generators is

N?—(N—-1=2N-1, (18.27)

which indeed coincides with the number of massless scalars we found. Another example
is given in problem 9.4.
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19 Lecture 19: Higgs Mechanism

In the previous lecture we considered spontaneous symmetry breaking for a global sym-
metry and proved that a massless scalar field, the Goldstone boson, is necessarily present.
In this lecture we generalize the analysis in that we consider instead local gauge sym-
metries. As we will see this results in the possibility of massive gauge bosons where the
longitudinal degree of freedom is precisely the Goldstone boson.

Let us start with an Abelian example and consider the Lagrangian
L=—iFu,F" + D' Dy — V(g, ") , (19.1)

where ¢ is a complex charged scalar field. The covariant derivative and the potential
read

Du¢ = au¢ - igAu¢ ) V= _:u2¢¢* + %A(¢¢*)2 ) ,U2> A>0. (192>
L is invariant under the gauge symmetry
¢ — ¢ = eio‘(x)(ﬁ , A, — A:; =A,+ %@a . (19.3)
The minimum of V' is found at

1 %
¢ |min = ¢|min = ﬁv = T . (194)

Here we use a different parametrization than in the previous lecture in that we change
variables (¢, ¢*) — (h, 3) according to

o(a) = J5(v+h(@)e®™ . ¢*(x) = J5 (v + h(x))e 7). (19.5)

h(x) will be identified as the Higgs boson while 5(z) will be the Goldstone boson. Inserted
into V' we obtain

V(h) = —p*(v+Rh)* + $A(v + h)! = V(v) + p?h® = $a0h® + IAR" (19.6)

— 2

We see that the Goldstone boson (3 drops out completely from the potential. Inserting
(19.5) into the kinetic term of ¢ yields

DF¢* Dy = %(8‘% Fi(gAr — 0"8) (v + h)) (auh —i(gA, — 8,8)(v + h)) . (19.7)
We see that 3 can be removed by the gauge transformation
Ay — A=A+ é@uﬁ ) (19.8)

which leaves F),, invariant. This gauge is called the unitary gauge and it corresponds to
a field basis where the Goldstone boson 3 is removed from the entire Lagrangian in that
L of (19.1) now reads

L= —3FuF"™ 4 30"h,6 — V(h) + 5mA A A + (gPvh + W) AA" . (19.9)

We see that the gauge boson has a mass term given by m?% = g?v? while the last term is
an A, — h interaction term. Let us count the degrees of freedom. In the unbroken phase
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both A, and ¢ each have two real physical degrees of freedom. In the broken phase the
massive A, has 2s 4+ 1 = 3 degrees of freedom while there is only one real scalar h left.
Also from the gauge transformation (19.8) we see that 3 plays the role of the longitudinal
degree of freedom of a massive A,,.

Let us generalize this situation to an SU(n) gauge symmetry with complex scalar fields
transforming in the fundamental n-dimensional representation of SU(n). The Lagrangian
reads

n2—1 n
L=—5> FuF™+Y D'e"Dud’ = V(4 ¢"), (19.10)
a=1 i=1
where the covariant derivative and the potential read

D“(bi _ 8u¢l . igAZtaiijj : Du¢*l — 8u¢l + igAZt*aij¢j ,

. - (19.11)
V=207 + 0T A0
L is invariant under the gauge symmetry
¢ — it =U , A, — A, =UAU - 1U9,U" . (19.12)
The minimum of V' is found at
O min = ' min = v e (19.13)
V2 A

Expanding ¢ around its background or vacuum expectation value v* as ¢' = %vi +...
we can directly compute the gauge boson mass term to be

Ly, = smi, Al A% (19.14)
The mass matrix is given by

where we used that the generators are hermitian and that the mass matrix is symmetric.
From (19.15) we see immediately that it vanishes for the unbroken generators which
satisfy t?*v¥ = 0. In the previous lecture we found that there are 2N — 1 broken
generators for which t**v¥ £ 0 and thus m?2, has 2N — 1 non-zero eigenvalues or in other
words 2N — 1 massive gauge bosons. With this information we can parametrize the
unitary gauge as

0
¢ = 7 ; Ux), U=eZai @i, (19.16)
v+ h(z)

where ! denote the broken generators and the 2N — 1 Goldstone bosons 3% are real.
One can check that U is unitary and thus can be removed by an appropriate gauge
transformation. In this gauge the potential is again given by (19.6).
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Let us close this lecture with two explicit examples. First consider an SU(2) theory
with one Higgs doublet ¢'. In this case the generators are the Pauli matrices, i.e. t* = %U“
and we parametrize ¢' as in (19.16). Inserted into (19.15) we obtain

m2, = 2g* Vol = LgPy?5 (19.17)
We see that all 3 gauge bosons are massive and the SU(2) is completely broken.

Finally the electro-weak sector of the standard model is based on the gauge group
G = SU(2) x U(1)y broken to U(1)ep. U(1l)y denotes the hyper charge while U(1)e,
denotes QED. The Higgs-doublet is charged under both factors and thus the Lagrangian
reads

3 2
Cm Y R B S DG Ve, (10
a=1 1=1

where FY, is the field strength of the SU(2) factor while B, is the field strength of
U(1)y. The potential is again given by (19.2) and the covariant derivative read
D¢’ = 0,¢" — 5gALo™ ¢ —iyg' Buo' (19.19)

where y = 1/2 is the hyper charge of ¢. £ is invariant under the gauge symmetry

60" = La"c™ ¢ + Loy, ¢ (19.20)
Parameterizing ¢° by
i_ 1 (0
¢_ﬁ<v T (19.21)
we find
o 0
DF D, = é(O,v)(gA““J“ +2yg'B,1) @A%—“ +2yg'B,1) (U) T (19.22)
Using
a 0 2 ca3 a b 0 2 cab
(0,v)0 = —v9" (0,v)0% = v, (19.23)
v v
we obtain

Dr¢D, ¢t = 2 (92(A1ﬂAL +AMAL) + (9 A, —2yg'B,) (9A™ — 2yg’B“)) +o. (19.24)

Written as a mass matrix as in (19.14) this expression corresponds to

2 2
2 v g
mo, = — . 19.25
—g99 ¢”
Now one defines
Wi = J5(Alp£idy)

. 19.26
Zg =0 Ai where 0= C.OS Ow = sin b ( )

Yu B, )’ sinfy  cos Oy ’



with ,

9 9

cos Oy = —————, sinfy = ———— . (19.27)
/92 + 912 /92 +g/2
Oy is called the weak or Weinberg angle. Inserted into (19.24) yields
DFQY Dyt = miy WHWo 4 amy Z0 210 + (19.28)
where m
= Lgv,  mg = WFET g0 = (19.20)

cos Oy

We see that three massive gauge bosons Wf, Zg arise while the photon v, stays massless.
Thus we indeed observe the spontaneous symmetry breaking SU(2) x U(1)y — U(1)em.
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20 Lecture 20: Chiral gauge theories and the Glashow-
Salam-Weinberg theory
20.1 Chiral gauge theories

Let us first recall from QFT I that any four-component Dirac spinor ¢)p can be decom-
posed into two two-component Weyl spinors {1, p via

o= (55) T == ) | (201
where .
s <50“ ‘g) Lot —(L,5), ot =(1,-7). (20.2)

The fermionic Lagrangian decomposes accordingly

L =p(iy" Dy +m)p = o 0" D, + i) go" Dythr +m (EL?/’R + ERQ/)L) . (20.3)

Gauge theories are called chiral gauge theories whenever ¢y, and 1 transform in different
representations of the gauge group G.

The simplest example are chiral U(1) theories with the transformations

Y, — Yy = W@y, Yp — Pp = Ry (20.4)

Note that they transform with the same local function «(z) but in general with different
charges y;, # yr. (For y, = yr the U(1) theory is called vector-like.) The corresponding
covariant derivatives now read

D,rr = 0ur,r — 19y, RAL R - (20.5)

From (20.3) we see that for y;, # yg the Lagrangian is only invariant for m = 0 while
for y;, = yr an invariant mass term m # 0 is possible. Or in other words, chiral gauge
theories forbid fermionic mass terms.

The non-Abelian generalization has the same £ as in (20.3) but now with covariant
derivatives

Dypr, = 0L — igALty Yr Dyr = Oubr — igAjt: Vg (20.6)
and transformation laws
5¢L = iOzat?LwL y 5lpr == iOAatffRiﬂR . (207)

In a chiral gauge theory the representations ry and rgr are different and therefore no
gauge invariant mass term is possible. However in spontaneously broken chiral gauge
theories a fermionic mass can be generated by the Higgs mechanism. Let us see how this
works.

We start with the chiral U(1) gauge theory and add to (20.3) a Yukawa coupling of
the form

Ly = M@Urtbr + ¢*Yripyr) - (20.8)
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The combination 171 is Lorentz invariant and Lyy is also gauge invariant provided we
assign for ¢ the transformation law

b — ¢ = ei(yL—yR)a(:v)(Z) ) (20.9)
Using the parametrization (19.5) we obtain

Ly = m(bpbp +vrir) + ..., where m = \%)\v ) (20.10)

Thus we see that the Higgs mechanism generates both gauge boson masses and fermion
masses in chiral gauge theories.

In non-Abelian gauge theories one adds the same Yukawa interaction (20.8) with ¢ in
a representation such that the product ¢ 1R is a singlet. As example we now discuss
the GSW model.

20.2 GSW model

The GSW (Glashow-Salam-Weinberg) model (with one family) is a chiral gauge theory
with gauge group G = SU(2) x U(1)y spontaneously broken to U(1).,,. The spectrum
is summarized in table 20.2.

Spectrum SU(2) Y Q
1) Gauge bosons
Az=123 3 0 0+l
B, 1 0 0
2) Weyl fermions
i=12 _ [ Ve 1 0
(), 2+ (5

3) Higgs boson

) )

Table 20.0: Spectrum of GSW model

The Lagrangian is given by

L=—L1F, F" — 1B, B" + D'"¢* D¢’ — V(¢', ")
| | - o (20.11)
+iE 0" D, E} +ié.0"D,e, + N(¢'Erer + 9™ erE]) ,

where Fj, is the field strength of the SU(2) factor while B,,, is the field strength of U(1)y-.

The potential is again given by (19.11) and the covariant derivative of ¢ in (19.19). The
covariant derivatives of the fermions reads

D,E} = 0,E} — 1gAtotE] —ig'y(EL)B,E}
(20.12)
D,e, = d,er —ig'y(er)B,er ,
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where y(E.) = —3 and y(eg) = —1.

The spontaneous symmetry breaking in the Higgs sector of this theory we already
discussed in the previous lecture. Thus we can insert the redefinitions (19.26)—(19.29)
and furthermore define

/

o= = gsinfy = ¢  cos Oy ,

1
1.3 (35 TY 0
Q’_§U + yloxo = <2 0 _%+y) .

(20.13)

This yields

| ) i , .
D,Ey = 0,E, — g (W)o" +W,) By, - COSQQW 70 (L6® — sin® 0w Q) By, — iev,QEy

g

D,er = 0,er + Zg sin? Oy ep + ieYuer ,

cos Oy
(20.14)

where we defined o* = 3 (0! +i0?).

From the Yukawa interaction we read off the fermionic mass term. Inserting (19.21)
we obtain
L., = me(eére, + éger) , for m, = % Av . (20.15)

Thus the electron receives a Dirac mass terms while the neutrino v, is massless. In
problem 10.3 we show that introducing a right-handed neutrino v which is a singlet
under the entire SU(2) x U(1)y with a Majorana mass term also generates a mass for
the neutrino.

66



21 Lecture 21: GSW 11

In the previous lecture we discussed the GSW model with one family of leptons. However
three families are experimentally observed and they can be accommodated by adding

(9, (), (), e
€/ \F /) \T /o (21.1)

I _
€r = €RrR, UR, TR ,

that is the index I = 1,2, 3 counts the different families. The quantum numbers for each
family are identical and as given in table 20.2. The Lagrangian is as in (20.11) with an
additional sum over I and modified Yukawa interactions

L =— iFSVFaMV _ iBuquj + DM¢*2DM¢Z _ V(¢Z, ¢*z)
5 e . . (21.2)
+iY Efo"D,E +i) elo"Duel + Y A (¢'Efleh + " eRE}) .
I=1 I=1 1J

The covariant derivatives are as in (20.14) as they are identical for each family. The
Yukawa couplings are now 3 x 3 matrices in family space and as a consequence the
spontaneous symmetry breaking yields the mass matrices

mi = A, (21.3)
with eigenvalues which are identified with m., m,,, m,.

It is convenient to rewrite the Lagrangian (21.2) and explicitly display the interaction
of the gauge bosons with the fermionic currents.

L=—LF8,F" —1B,,B" 4 D'6"D,¢' — V(¢',6")
3 ~ 3 B
+i Y Efoto. B +i) elot el + Y A($'Efl el + T ehEY) (21.4)
I=1 I=1 1J

em

+g (WM + W dg" + Z)JY) + eA,Jt

where
w1 =I _pu, I +u 1 =TI _p I woo_ =I _p I =I _p I
Jwt' = ZHrioter It = ety Jb = —(e ote, +exoter) ,
1 (21.5)
1— 1 .2 . 2 =
Jh = 5 [51/L0“VL + (—5 + sin Qw) erofer + sin HweRa“eR}.
cos O,

In this form we easily see that QED processes like e"e™ — pu~pu~ ore” et — u~ ' receive
(measured) corrections from a Z? exchange. Furthermore the charged current interactions
lead to new (observed) processes such as electron-neutrino scattering e”v — e~ v.

From the form (21.4) we can also easily derive the relation with Fermi’s theory of
the weak interactions. At low energies p < myy+ zo one neglects the kinetic term of the
heavy gauge bosons W*, Z° such that the field equation become algebraic

oL g
SW=E =gJTF—mipWTr =0 = W =_—1JF,
g " (21.6)
O iz =0 = =Yg |
A my,
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Inserted back into £ one obtains

Ly =Gl "+ gL— JzuJ (21.7)

where Gp = %be’—j is the Fermi constant. The first term in (21.7) is a non-renormalizable
w

charged current interaction of Fermi’s theory. The second term is a neutral current
interaction predicted by the GSW-theory. It was indeed observed at CERN in 1973.

Let us close this section with a summary of the prediction of the GSW-model:
e Neutral current interactions which were observed at CERN in 1973.

e Existence of heavy gauge bosons Wf, ZS with a mass relation

mw

=1. (21.8)

p _— =
My coS O,

They were observed at CERN in 1979.

e Existence of at least one Higgs boson with an undetermined mass my. This is not
yet observed.
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22 Lecture 22 & 23: The Standard Model

22.1 Spectrum and Lagrangian

The Standard Model (SM) combines QCD with the GSW-theory. The gauge group
therefore is G = SU(3) x SU(2) x U(1)y which is spontaneously broken by the Higgs
mechanism to SU(3) X U(1)em. The particle spectrum is given in table 22.1. The indices
I =1,2,3 denotes the three families of the SM and ¢ = 1,2, 3 the colour index.

Spectrum SU@B) SU2) Y Q
1) Gauge bosons
Ga=to8 8 1 0 0
Az=123 3 0 0,41
B, 1 1 0 0
2) Weyl fermions
2, 1 r 1 ()
e’ 1 1 -1 -1
vh 1 1 0 0
() s ()
uf Cos 1 2 2
U s 1 b
3) Higgs boson
o) 2 ()

Table 22.0: Spectrum of GSW model

The Lagrangian is given by
L=—1G G — LF8,F*™ — 1B, B" +iY  [o"D,f + D'¢"D,é' — V(' ¢™)
f

4"

+ (N o' Efed, + (\) 1€ EL i, + (M) 10" Q dy + (M) 1s€i;0™ Q% ufy + hc.
(22.1)
where f denotes all Weyl fermions of table 22.1 with covariant derivatives

D,=0, - igsGZt& — %gAZUf”j —ig'y(EL)B,

~ i - 29 . .
=Dy, — 59 (VVJUJr +W,o )EL — o HWZS (30° —sin® 0w Q) Er, — iev,QE; |
(22.2)

and we abbreviated ﬁu =0, — z'gstjt&. Once again we rewrite

iy fo"Duf =iy fo"Duf+g(WEI! + W, T+ Z0J4) + eA, b, (22.3)
! !
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now with

—p 1 (=T I | —I _pgl tp 1 (=T o I T
Iyt = 5 (Troter +aotdy) | Ty = 5 (epotvy +dpouy)

wo_ =l o 0 20 1 15 gl

Jim = —€p¥'ep + supyup — 3dpy*dp,

1
Mo 1= p I (1 .2 I I 20 =1 p 1 1 2.2 —I _p, 1
JZ_cos@ [Lv]otv] — (5 —sin®6,,) €] ote] + sin® 0,ex0" el + (3 2sin*0,,) upotug,
w

+ (—2sin?6,,) Uhouh + (=1 + Lsin?6,,) dyotd) + (3 sin6,,) dpotdl].
(22.4)

I : -
€p, Up, dp denote Dirac spinors.

22.2 Fermion masses and CKM-mixing

The spontaneous symmetry breaking of SU(2) x U(1l)y — U(1)em again generates the
heavy W, Z) with masses given in (19.29). In addition in analogy with (20.15) the
following fermion mass terms are induced

Ly = (me)sepe + (my) vivh + (ma) radidf + (my) g, (22.5)
where
(me)IJ = %()\e)u s (mu)IJ = %()\u)u )
(22.6)
(ma)rs = %()\d)u ; (mu)ry = %()\u)IJ -

We see that generically the fermion mass matrices can be non-diagonal. This field basis is
called the weak basis. Using the polar decomposition theorem one can always go instead
to a field basis where the fermion mass matrices are diagonal.

The polar decomposition theorem states that any non-degenerate complex matrix M

can always be written as
M=HW , (22.7)

where H is hermitian and W is unitary. This implies that any M can be diagonalized
by a bi-unitary transformation of the form

UyMUJ = Mp , (22.8)

where U, 5 are in general different unitary matrices and Mp is a diagonal matrix.

For concreteness let us focus on the quark-sector and perform a rotation in family
space of the form
WS =T
& =UFSiEt afh=1Mdy 229
where Sy 4,1, q are all unitary. Inserting (22.9) into (22.5) and using the polar decom-
position theorem we can choose S, 4,7} 4 such that the mass terms given in (22.5) are
diagonal with the physical masses being the diagonal entries. Of course we also need
to insert this transformation in the rest of the Lagrangian (22.1). By inspection we see
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immediately that the kinetic terms are unchanged and from (22.4) we also infer that the
neutral currents JX | J4 are invariant. However the charged currents change due to

b otdt = Vialotd; Eia“ui = ij]E/LIU“u/LJ : (22.10)
where
Vig = S:EIKSdKJ (22.11)

is the unitary CKM (Cabbibo-Kobayashi-Maskawa) matrix. Since V is unitary it depends
a priori on 9 real parameters, three rotation angles and six phases. However, L,, of (22.5)
is even for diagonal mass matrices invariant under the six phase rotation

I —iag I 1 _iﬁl 1
uppr— e "““up g, dpp— e "dp g . (22.12)

These rotation change V' as can be seen from (22.10) except for the global rotation with
a; = g = a3 = (B = P2 = f3. Thus the phase rotations (22.12) remove an additional
five phases from V' leaving three rotation angles and one phase.

The three angles are measured for example in semi-leptonic quark decays while the
phase parametrizes CP-violation observed for example in K° — K° mixing. For further
details see [8]. Finally a similar phenomenon is taking place in the leptonic sector where
the parameters are measured in neutrino oscillations. (See also [8].)

22.3 Measurements of the SM parameters

Let us first list the parameters of the SM.!°

e Three gauge couplings: g, g, ¢' or equivalently g,, e, sin6,,,

e one Higgs VEV: v = \/W,

e one parameter of the Higgs potential: A,

e six quark masses, three charged lepton masses and three or six neutrino masses,
o four CKM parameters,

e four-ten mixing parameters in the neutrino sector.

These parameters are overdetermined by the experimental measurements and thus apart
from determining the above parameters as precisely as possible one has a lot of consistency
checks. The bottom line is that the SM works very well, some of the prediction are meet
at the pro-mille level. For further details we again refer to [8]. The only so far unobserved
part of the SM is the Higgs boson. Its mass is not predicted by the SM and it has not yet
been directly observed. However electro-weak precisions measurements at LEP strongly
constrains my, as it contributes to the one-loop correction in the process Z°Z° — ff [8].

10 Additionally one sometimes adds three §-angles, the cosmological constant and the Newton constant.
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23 Lecture 24: Anomalies in QFT

Any classical symmetry implies via the Noether-theorem a conserved current d,j* = 0.
If this symmetry is broken at the quantum level the symmetry is called anomalous and
one has

ot =hA . (23.1)
A is called the anomaly.
There are two possible anomalies:

1) An anomalous global symmetry, i.e. j* does not couple to a gauge field. This leads

to new physical processes such as 70 — .

2) An anomalous (local) gauge symmetry, i.e. j* does couple to a gauge field. In this
case the Ward-identity is broken, renormalizability is lost and the theory becomes
quantum inconsistent.

As a consequence physical gauge theories have to be anomaly free.

The Feynman diagram which contributes to the anomaly is the triangle graph

(23.2)
One finds ,
D, j" = —{is P F, Fo AT (23.3)
with
A®e(r) = Tr, (t2 {t2,¢}) . (23.4)

Thus the anomaly vanishes for all representations with A%¢ = (0. Furthermore, the
Adler-Bardeen-theorem states that if A% = 0 than D,j% = 0 holds at all orders in
perturbation theory.

Let us compute 4% for the complex conjugate representation T
A(T) = Trg (82 {82, t5}) = — T, (¢80 {t2 ¢ })
— _ (ta* -tb* kt?;m + ta* -tc* ktfj;“)

rijirj rijory
_ af 4bt et at 4et bt
- (trjitrkjtrik + trjitrkjtrik)

o a 4c b a 4cC b
- ( rji riktrkj + rji rkjtrik)

= —Tr, (t2 {2, t2}) = —A(r)

rr

Thus vector-like theories, i.e. theories with fermions in the r & r representation, are
automatically anomaly free. Similarly, fermions in real representations do not lead to an
anomaly.!!

1 Note that in A one needs to compare fermions in the same Lorentz representation (i.e. all left-handed
or all right-handed). This can be done by noting that g transforms as 1, under the Lorentz group.
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Let us now check that the SM is anomaly free. For the SU(3) only the quarks
contribute in the loop. uy,d;, transform in the 3 while @g, dg transform in the 3. Thus
the SU(3) part of the SM is vector-like and A vanishes. For the SU(2) one has

A =Tr (0°{o*, 0} ) = 20" Tro® =0 . 23.5
r (o {aba}) 1;;‘ (23.5)
26be.1

The reason behind this is that the fundamental 2 of SU(2) is a real representation. For
the U(1)y one has

A~y (23.6)
!

where the sum runs over all fermions f charged under U(1)y and Y is their hypercharge.
For each family of the SM one has

Si=2 () e @ 3 (=0, @
!

(This is called the cubic anomaly.)

In addition to the above three anomalies one also has mixed anomalies which generi-
cally occur for gauge groups which contain various factors. The SU(2) —SU(3) — SU(3)
anomaly vanishes due to A ~ tr(c®) = 0 while the SU(2) — SU(2) — SU(3) anomaly
vanishes due to A ~ tr(t?) = 0. For the U(1)y — SU(3) — SU(3) anomaly one has

A~ >y =2y(Qu) +y(ur) +y(dr) =2 =3 +1=0. (23.8)
f=quarks
For the U(1)y — SU(2) — SU(2) anomaly one has
A~y =y(BL) +3y(Q) = -3 +2=0. (23.9)

fi

Finally one can also compute the gravitational anomaly with

A~ Ty =29(EL)+y(er)+6y(Qr)+3y(tr)+3y(dr) = —3+1+5—5+2 = 0. (23.10)
allf

Thus we showed that the SM is anomaly free. One can ask if the absence of all anoma-
lies determines the hyper charges of the SM particles. Indeed we have four equations
(23.7)-(23.10) for the five unknowns y(Ey), y(ér), y(Qr),y(ur),y(dg). Fixing y(eg) =1
(corresponding to Qem(e) = —1) one obtains a unique solution, up to the ambiguity
y(tig) < y(dg). Furthermore only a completely neutral chiral fermion such as vz can be
added without upsetting the anomaly freedom.
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24 Lecture 25: Theories beyond the Standard Model

The SM is experimentally very well confirmed. However, theoretically one expects it to
be an effective theory of a more fundamental theory. This is partly due to the following
(unanswered) questions.

o Why is G = SU(3) x SU(2) x U(1)y?

e What determines the spontaneous symmetry breaking G — SU(3) X U(1)em and
sets the scale of the breaking?

What determines the particle spectrum?

What determines the parameters of the SM?

What is the Dark Matter component?

How does one couple the SM to (quantum) gravity?

Theories beyond the Standard Model (BSM) attempt to generalize or extend the SM.
There are basically two possibilities.

1. Change L so that some of the above questions are answered. Examples are:

— Supersymmetric theories,
— Grand Unified Theories (GUTS),

— Technicolour theories.

2. Change the formalism of the QFT. Here the example is string theory.

24.1 Supersymmetric theories

In supersymmetric theories the Poincare space-time symmetry is enlarged by a fermionic
symmetry generator () with (anti-) commutation relations

{Q> Q} ~ UMPM ) [Q> Pu] =0 ) [Q> JMV] ~ O-/WQ ) (241)

where P, is the momentum operator generating space-time translations and J*” is the
Lorentz-generator. The representation of this superalgebra are super multiplets which
combine bosonic and fermionic fields. For example the chiral multiplet (¢, ) contains a
complex scalar ¢ and a Weyl fermion . Under a supersymmetry transformation they
transform into each other Q¢ ~ 1, Qi ~ 0¢. The vector multiplet (A,, \) contains a
gauge boson A, and a gauge fermion .

With these multiplets a supersymmetric Standard Model can be constructed with the
following properties:

e it contains new scalar and fermionic particles,

e it predicts a ‘light’ Higgs with m; < 200GeV,
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e it contains a weakly interacting massive particle (WIMP) as a candidate for Dark
Matter,

e it fits the electro-weak precision data,

e it solves the naturalness problem.

24.2 Grand Unified Theories (GUTS)

In this class of theories the gauge symmetry is enlarged in that the SM gauge group G,
is embedded in a larger gauge group Gy which is spontaneously broken at Mgyt by a
Higgs mechanism Ggyr — Gsy. Examples are Gopr = SU(5), SO(10). In the first case
one family of the SM precisely fits into a 5 & 10 representation of SU(5). In the second
case one family including a right-handed neutrino sit in the 16 spinor representation of
SO(10). These theories predict proton decay and the unification of gauge couplings

9510 =gs =g =/5/3g' (24.2)

at Mgyr. Using (10.9) this prediction can be compared to the measured gauge couplings
of the SM, for example at m,. For the SM this prediction fails while in the supersymmetric
SM it works perfectly.

24.3 String Theory

The basic idea of string theory is to replace a classical point-like particle by an extended
object: a string. String theory can then be viewed as the quantum theory of extended
objects. Upon quantization one finds a finite number of massless modes with spins
0, %, 1, %, 2 and a infinite number of massive modes with masses M ~ nM,,n € N. M, is
the characteristic scale of string theory related to the tension of the string. The massless
spin-2 excitation of the string can be identified with the graviton of General Relativity
if M, ~ Mp; = /hc/Gn ~ 10°GeV. Furthermore, due to the extended nature of the

string the theory becomes UV finite and thus is a candidate for a quantum gravity.
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