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1 Outline of the lectures

1. Supersymmetry

• Representations and multiplets

• σ-models

• (Gauged) supergravities

• Supergravity in arbitrary dimensions

2. Kaluza-Klein compactifications

• Torus/sphere compactifications

• Calabi-Yau compactifications

• Generalized geometries and flux compactifications

3. String Theory

• Introduction to string theory

• Dualities in string theory

• F/M-theory

2 Supersymmetry in D=4

Supersymmetry in D = 4 can be regarded as an extension of the Poincaré
algebra. Let us remember some facts about this algebra.
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The Poincaré algebra has a set of 10 generators in total, 6 Lµν (also
known as Lorentz generators) and 4 Pµ which are the components of the
three momentum plus the energy operator 1, satisfying the relations:

[Lµν , Lρσ] = ηνρLµσ − ηµρLνσ − ησµLρν + ησνLρµ

[Pµ, Lρσ] = ηµρPσ − ηµρPρ (1)
[Pµ, Pν ] = 0

where ηµν = (−,+,+,+).
The representation of this algebra is labelled by the mass m of the par-

ticle, and by its spin s = 0, 1
2 , 1, ...

Coleman and Mandula, in 1968, proved that there exist no trivial ex-
tension of the Poincaré algebra. A possible extension is the supersymmetric
algebra, which was presented by Haag, Sohnius and Lopuszanski in 1973.
The importance of it roots in the fact that it is the only graded Lie alge-
bra of symmetries of the S-matrix consistent with relativistic quantum field
theory. The SuSy algebra is given by the following relations:

{QIα, Q̄Jβ̇} = 2σµαβPµδ
IJ

{QIα, QJβ} = εαβZ
IJ

{Q̄Iα̇, Q̄Jβ̇} = εαβZ̄
IJ (2)[

Pµ, Q
J
α

]
= 0[

Lµν , Q
I
α

]
=

1
2
σβµναQ

J
β

(plus the fact that ZIJ commutes with everything) where α, α̇ = 1, 2;
I, J = 1, ...N (this N symbolizes the extension of the SuSy algebra), σµν =
2(σµσ̄ν − σν σ̄µ), Q is a 2 component complex Weyl spinor (Q̄ is its complex
conjugated) and

εαβ =
(

0 1
−1 0

)
Now let us comment the representation of the supersymmetric algebra

for N = 1:

1. Massive representation: in this case, let us take the rest frame, where
~P = 0. Choose the eigenvalue of Pµ by Pµ = (−m, 0, 0, 0), where
m is a positive quantity. The little group of this representation is
SO(3). In this representation, the SuSy algebra simplifies a lot, and (
susyalgebra) becomes:

{Qα, Q̄β̇} = 2mδαβ̇ (3)

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 (4)

1µ, ν = 0, ..., 3
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Defining two operators,

aα :=
1√
2m

Qα (5)

(aα)† :=
1√
2m

Q̄α̇ (6)

(3) and (4) take the shape:

{aα, (aβ̇)†} = δαβ̇ (7)

{aα, aβ} = 0 = {a†α̇, a
†
β̇
} (8)

We can easily recognize that this is the algebra of two fermionic har-
monic oscillators.

The representations of this algebra are well-known. They are con-
structed from a Clifford vacuum |s〉. The Clifford vacuum is defined
through the condition

aα|s〉 = 0 (9)

For the present case N = 1, the fundamental representation consists
of the states |s〉, (aα)†|s〉 and (a1)†(a2)†|s〉. For every of these states,
they present a spin and a degeneracy showed in the following table:

state spin degeneracy
|s〉 s 2s+1

(aα)†|s〉 s± 1
2 2(2s+1)

(aα)†(aβ)†|s〉 s 2s+1

Or also,

Spin/State |0〉 |12〉 |1〉 |32〉 Degeneracy
0 (scalar field) 1+1 1 1

1
2 (Weyl fermion) 1 1+1 1 2
1 (gauge bosons) 1 1+1 1 3

3
2 (gravitino) 1 1+1 4
2 (graviton) 1 5

The first column is also known as the chiral multiplet, the second
as the massive vector multiplet, the third as the massive gravitino
multiplet and the fourth the massive graviton multiplet. Taking into
account the degeneracy, the total number of states in each of them
of 4, 8, 12 and 20, respectively. Concerning this number of states,
we can enunciate some small theorem, which says that the number of
fermionic and bosonic states must be the same,

nF = nB (10)

The proof of it is based on the computation of tr((−1)F ) (see [1]).
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2. Massless representation: we can make a similar analysis in this case,
but this time taking Pµ = (−E, 0, 0, E) for instance. This change
affects the little group, which this time is only SO(2), and also,

{Qα, Q̄β̇} = 2E(−σ0 + σ1)αβ̇ = 2E
(

1 0
0 0

)
αβ̇

(11)

Defining again the operators,

a :=
1√
2E

Qi (12)

a† :=
1√
2E

Q̄i (13)

which satisfy the relations

{a, a†} = 1 (14)

{a, a} = {a†, a†} = 0 (15)

we notice that this time, we don’t have two fermionic oscillators but
only one. The representations are now labelled by the helicity λ, the
eigenvalue of (~P ,~s). The Clifford vacuum is then |λ〉 with the similar
to (9) defining relation:

a|λ〉 = 0 (16)

The total number of states for the fundamental representation in this
case are |λ〉 and a†|λ〉 (this last one, with λ+ 1

2).

Helicity/State | − 2〉 | − 3
2〉 | − 1〉 | − 1

2〉 |0〉 |
1
2〉 |1〉 |

3
2〉

2 1
3
2 1 1
1 1 1
1
2 1 1
0 1 1
−1

2 1 1
−1 1 1
−3

2 1 1
−2 1

At this point, we shall invoke some result from QFT: massless particles
have helicities with values ±λ (due to CPT invariance).Thus, we need
to combine massless representations. In this case, the multiplets are:

chiral multiplet 1[±1
2 ] + 2[0]

vector multiplet [±1] + [±1
2 ]

gravitino multiplet [±3
2 ] + [±1]

graviton multiplet [±2] + [±3
2 ]
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2.1 N-extended sypersymmetries

Let us come back to the massive representation, with Pµ = (−m, 0, 0, 0), for
a more general case. Now the algebra is:

{QIα, Q̄Jβ̇} = 2mδαβ̇δ
IJ (17)

{QIα, QJβ} = 2εαβZIJ (18)

Notice here the presence of central charges in (18). For simplicity, let us
take N = 2. Then (17) remains the same and (18) becomes:

{QIα, QJβ} = 2εαβεIJZ (19)

Then, the Weyl operators may be expressed as linear combinations of:

aα =
1√
2

(Q1
α + εαβ(Q2

β)†) (20)

bα =
1√
2

(Q1
α − εαβ(Q2

β)†) (21)

These operators satisfy the following relations:

{aα, a†β} = 2δαβ(m+ Z) (22)

{bα, b†β} = 2δαβ(m− Z) (23)

All the other possible commutators between them cancel. From these rela-
tions, we see that M ≥ Z; this is called the BPS bound. In fact, we can
classify some of these cases:

• m > Z: this corresponds to the massive representation

• m = Z: this is the BPS representation, used among others in String
Theory

• m = Z = 0: this is the massless representation

3 σ-models for N = 1

In order to formulate a supersymmetric field theory, we first need to rep-
resent the supersymmetry algebra (2) in terms of (classical) fields. We will
start with the simplest case, N = 1. The chiral multiplet can be expressed
in terms of fields as: (z(x), χα(x)), where z(x) is a complex scalar field
(corresponding to spin s = 0) and χα(x) is a Weyl fermion (s = −1

2) 2.
Define the supersymmetric variation of the fields with respect to a pa-

rameter ε as:
δε ≡ εαQα + ε̄α̇Q̄

α̇ (24)
2χ represents 4 degrees of freedom off-shell and 2 on-shell, and Z two in both cases.
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where α, α̇ = 1, 2 and Q̄α̇ = εα̇β̇Q̄β̇. The ε are the parameters of the SuSy
transformation. They are Grassmannian variables satisfying: εαεβ = −εβεα.
Now, apply this variation to every field of the multiplet. One finds [1]:

δεz =
√

2εαχα (25)

δεχα = i
√

2σµαα̇ε̄
α̇∂µz +

√
2εαF (26)

δεF = i
√

2ε̄6∂χ (27)

where F is a complex auxiliary field.
For this kind of multiplet, the minimal lagrangian we can write is:

L = ∂µz∂
µz̄ − iχ̄ 6∂χ− FF̄ (28)

The Euler-Lagrange equations for this lagrangian are:

∂µ∂
µz = 0 (29)
6∂χ = 0 (30)
F = 0 (31)

We see that F has an algebraic field equation (i.e. no derivative is involved).
The variation of this lagrangian gives:

δεL = ∂µj
µ (32)

which tells us that the action

S =
∫
Ld4x (33)

is invariant. Any lagrangian satisfying (32) is said to be a supersymmetric
lagrangian.

If we want to generalize for the case of nc multiplets, (28) becomes:

L = −δij̄δµzi∂µz̄j̄ − iδij̄χ̄j̄ 6∂χi − δij̄F iF̄ j̄ , i = 1, . . . , nc (34)

Till now we have only considered free fields. For introducing interactions,
we must add to (34) some extra terms:

Lint = F i
∂W

∂zi
+

∂2W

∂zi∂zj
χiχj + c.c. (35)

whereW = W (z) is an arbitrary holomorphic function, called superpotential.
A physically relevant expression for W is:

W (z) =
1
2
mijz

izj +
1
3
Yijkz

izjzk + . . . (36)

where mij is the mass matrix and Yijk is the Yukawa coupling; m,Y ∈
C. In renormalizable quantum field theories, W can be at most cubic. In
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string theory, we can choose W to be arbitrary as renormalizability does not
have to be imposed. Also notice that if we derive again the Euler-Lagrange
equations:

F̄ j̄δj̄i =
∂W

∂zi
(37)

we notice that F is no longer zero, but a function of z. Plugging this back
in (34+35), we get a potential term,

V = δij̄
∂W

∂zi
∂W̄

∂z̄j
(38)

Let us make a couple of remarks:

• The terms in the potential are related to fermionic couplings.

• (62) is not the most general potential we can have, but it is determined
in terms of a superpotential.

• V ≥ 0

If we allow non-renormalizable interactions we get:

Lnr = −gij̄(z)∂µzi∂µz̄j−igij̄(z)χ̄j̄ 6Dχi−
1
2

(Di∂jW )χiχj+
1
4
Rij̄kl̄χ

iχkχ̄j̄χ̄l̄−V
(39)

which is called the σ-model. gij̄ has to be positive, for the positivity of the
kinetic energy, and it can be interpreted as a metric on some target space
M, with coordinates zi. In order for this lagrangian to be supersymmetric,
gij̄ has to be Kähler, i.e.

gij̄ = ∂i∂jK (40)

where K is a Kähler potential. The proof for this statement was given
between Zumino in 1979 and by Álvarez-Gaumé and Freedmann in 1981
([3], [4]). The other couplings in (39) are:

V = gij̄∂iW∂j̄W (41)

Di∂jW = ∂i∂jW − Γkij∂kW (42)

Dµχ
i = ∂µχ

i + Γijk∂µz
jzk (43)

Chiral multiplets carry charge under some gauge (finite dimensional Lie)
group G. This means that:

δΛz
i = Λakai(z), a = 1, . . . , nv (44)

where nv is the dimension of the Lie algebra asocciated to the Lie group G,
Λ is the parameter of the gauge transformation and kai is a holomorphic
Killing vector. Demanding δΛgij̄ = 0, implies

∇ikaj +∇jkai = ∇ikaj̄ +∇j̄kai = 0 (45)

7



which are the Killing equations, where for every Killing vector kaj = gjk̄k
k̄a.

The solution of (45) is kai = i∂iP
a. P a is a real parameter, called the Killing

prepotential, D-term (for N=1) or also the moment map. Defining:

ka(z) := kai
∂

∂zi
(46)

k̄a(z̄) := k̄aj̄
∂

∂z̄j̄
(47)

One has: [
ka, kb

]
= −fabckc (48)[

k̄a, k̄b
]

= −fabckc (49)[
ka, k̄b

]
= 0 (50)

where fabc are the structure constants of the Lie group G.
Thus, we can proceed and give the coupling to vector multiplets

(
V a
µ , λ

a
α

)
(λ is called the ”gaugino”):

L = −gij̄(Dµz
iDµz̄j + iχi 6Dχ̄j)

− 1
4
Re(fab(z)F aµνF

µνb − i

4
Im(fab)εµνρσF aµνF

a
ρσ

−Re(fab)λa 6Dλb

+
√

2gij̄k
iaχ̄j λ̄a + h.c.

− 1
2

(DiDjW )χiχj + h.c

+
1
4
Rij̄kl̄χ

iχkχ̄j̄χ̄l̄ − V

(51)

where
V = gij̄

∂W

∂zi
∂W

∂zj
+

1
2

(Re(fab))−1P aP b (52)

with

Dµz
i = ∂µz

i − V a
µ k

ia (53)

Dµχ
i = ∂µz

i + ΓijkDµz
jχk − V a

µ

∂kia

∂zj
χj (54)

Dµλ
a = ∂µλ

a − fabcV b
µλ

c (55)

F aµν = ∂µV
a
ν − ∂νV a

µ − fabcV b
µV

c
ν (56)

The gauge transformations for zi and V a are finally given by:

δεz
i = λa(x)Kai(z) (57)

δεV
a = ∂µλ

a + fabcλbV c
µ (58)
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4 N = 1 gauged supergravity

Our aim now will be to couple N = 1 supersymmetric field theory to gravity.
For that,

• we need to add the massless gravity multiplet (gµν ,Ψµα), where gµν is
the metric (graviton, with helicity λ = ±2) and Ψµα is the gravitino
field (λ = ±3

2).

• we need to make supersymmetric transformation local through promo-
tion of the Grassmann variables (this is analogous to local Yang-Mills
gauge transformations (57), (58) where however the gauge parameter
Λ is a Lorentz scalar): εα → εα(x)

The gravitino field Ψµα is the gauge field of local supersymmetry, obeying
the transformation law:

δΨµα = Dµεα + . . . (59)

Considering only the bosonic terms, the lagrangian is in this case 3:

L = −
√
−g

2κ2
R+
√
−gΨ̄µσνDρΨσε

µνρσ + Lmat(V a
µ , λ

a, zi, xi, gµν ,Ψµ) (60)

where κ2 = 8π
M2
Pl

, R is the Hilbert-Einstein action, and

Lmat = −Gij̄ (z, z̄) gµνDµz
iDν z̄

j − V (z, z̄)− 1
4
Re (fab (z))F aµνF

µνb

− i

4
Im (fab) εµνρσF aµνF

b
ρσ + fermionic terms

(61)

with i = 1, . . . , nc, a = 1, . . . , nv. Gij̄ = ∂i∂j̄K where K is the Kähler
potential, and the covariant derivatives are given by (53).

The potential is given by:

V (K,W,P ) = eκ
2K

[
(DiW )

(
Gij̄
)−1 (

Dj̄W̄
)
− 3κ2|W |2

]
+

1
2
Re
(
f−1
ab P

aP b
)

(62)
where W (z) is the holomorphic superpotential and fab (z) the holomorphic
gauge kinetic matrix, with the Kähler covariant derivative:

DiW =
∂W

∂zi
+ κ2

(
∂K

∂zi

)
W (63)

As we can see, the matter lagrangian is determined by the 4 coupling func-
tions (K,W, f, P ).

3This lagrangian was developed simulanously by Deser, Zumino, Freedman, Ferrara
and van Nieuwenhuizen, see [5], [6], [7]
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Let us check the limit κ2 → 0, i.e. the limit of decoupling gravity: in this
case, the space-time metric will tend to the Minkowski one, i.e. gab → ηab,
and the potential becomes

V → |∂W
∂zi
|2 +

1
2
P 2 (64)

consistently with global supersymmetry.
The Kähler geometry is projetive (Kähler-Hodge). This can be seen

from two points of view, either from superconformal constraints [8], or from
fermionic interacting terms, which are

• (Di∂jW )χiχj + h.c. in the global case

• e
K
2 (DiDjW )χiχj + h.c. in the local case

The Kähler invariance is given by:

K → K + F (z) + F (z̄) (65)

W →We−F (66)

DiW → e−F (DiW ) (67)

So imposing this invariance, we notice that

e
K
2 (DiDjW )→ e

1
2

(F̄−F )e
K
2 (DiDjW ) (68)

χ→ e−
1
4

(F̄−F )χ (69)

Then, the kinetic term of the fermion is χ̄σ̄Dχ, with Dµχ = ∂µχ+ 1
4Aµχ+...,

where
Aµ =

∂K

∂zi
∂µz

i − ∂K

∂z̄i
∂µz̄

i (70)

Let us finally focus on spontaneous SuSy breaking. This means that
the SuSy lagrangian is invariant under local SuSy transformations, but the
background (e.g. the minimum of the potential) is not invariant. Under
SuSy transformations one has generically

δεfermion = boson (71)
δεboson = fermion (72)

Analyzed in a Lorentz-invariant background, (71) and (72) become:

〈δεfermion〉 = 〈spin-0〉 (73)
〈δεboson〉 = 0 (74)
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In N = 1, the spin-0 part of the SuSy transformations of the fermions are:

δεχ
i ∼ 〈F i〉ε+ . . . (75)

δελ
a ∼ 〈P a〉ε+ . . . (76)

δεψµ ∼ Dµε+ i〈e
κ
2W 〉σµε+ . . . (77)

If 〈F i〉 6= 0 or 〈P a〉 6= 0, SuSy is broken spontaneously. 〈F i〉 and 〈P a〉 are
called the order parameters. The potential (62) then can be rewritten as:

V = F iF̄ j̄Gij̄ − 3eK |W |2 +
1
2

(Re (f))−1
ab P

aP b (78)

〈F i〉 6= 0 is surprisingly difficult to arrange (see [9]). Some short remark:
if 〈F i〉 = 〈P a〉 = 0, then the potential evaluated at the minimum is zero,
or negative: 〈V 〉 = −3〈eK |W |2〉 ≤ 0. 〈V 〉 plays the role of a cosmological
constant, so that

1. 〈V 〉 > 0: de Sitter background

2. 〈V 〉 = 0: Minkowski background

3. 〈V 〉 < 0: Anti de Sitter background

Recent cosmological observations suggest that our universe is a de Sitter
universe.

Let us consider the stability of background with spontaneous supersym-
metric breaking (see [10], [11]). Consider the Hessian matrix of the potential:(

∂i∂iV ∂i∂jV
∂j∂iV ∂j∂jV

)
(79)

which for Minkowski and de Sitter universes is bigger than zero, and obeys
BF-bound for Anti de Sitter universes. A necessary condition required for
stability is that

R (F ) ≥ −2
3

1
1 + γ

, γ > 0 (80)

or

R (F ) ≥ −2
3

1− 9
8

1 + γ
, −1 ≤ γ < 0 (81)

where

R
(
F, F̄

)
= −Rij̄kl̄

F iF̄ j̄F kF̄ k̄(
FF̄
)2 (82)

is the holomorphic sectional curvature, with γ = 〈V 〉
3〈W 2eK〉 .
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5 N = 2 supersymmetry

For the case of N = 2, the supersymmetry algebra we obtain is analogous
to (2), but with I, J = 1, . . . , N = 2. Let us mention one of the equations,
which becomes:

{QIα, QJβ} = εαβε
IJZ

where Z is the central charge (it commutes with everything). The algebra
has an automorphism group, called the R-symmetry (symmetry of rotation
of the supercharges) U (N): QI → QI

′
= U IJQ

J , where U IJ is a unitary
matrix. This group can be decomposed as: U (N) = U (1)× SU (N).

The construction of the representation proceeds as in section 2, and one
distinguishes the massive representation (M > Z), the BPS representation
M = Z and the massless representations (M = 0). For the massive repre-
sentation, there exists 4 fermionic creation operators (in general, 2N); for
the BPS or the massless representations, there exists 2 fermionic creation
operators (in general, N).

Let us focus on the massless multiplets of N = 2. If they are CPT
complete, they consists of one state |λ〉, 2 states a†Iα |λ〉 and one a†[I[α a

†J ]
β] |λ〉.

If not CPT complete, there are 8 states in total. Let us display various
multiplets in N = 2 in the following table:

Helicity/State |−1
2〉 |−1〉 |0〉 |−2〉 |1〉

0 2 1 1
±1

2 1 1 2 2
±1 1 1 1 1
±3

2 2 2
±2 1 1

Half-hypermultiplet Vector multiplet Gravity multiplet

The half-hypermultiplet is CPT complete, but the others are not, so we
have to combine appropiately representations. Both the half-hyper and the
vector multiplet can also be BPS massive multiplets.

5.1 Geometry of N = 2 vector multiplets

The vector multiplet consists in one vector Vµ, two fermions λIα (I = 1, 2)
and two spin-zero objects (complex scalars) z. For nv vector multiplets
we use the notation

(
V a
µ , λ

aI
α , z

a
)

with a = 1, . . . , nv. In terms of N = 1
multiplets, we have the decomposition:

(
V a
µ , λ

a1
µ

)
⊕
(
λa2
α , z

a
)
, where the first

one is the vector multiplet at N = 1 and the second the chiral multiplet
N = 1. The bosonic lagrangian is:

L = −Gab̄Dµz
aDµz̄b − V (z, z̄)

− Im (N (z))ab F
a
µνF

bµν − i

2
Re (N (z))ab F

a
µνF

b
ρσε

µνρσ
(83)
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where

Gab̄ = ∂a∂b̄K

K = i
(
F̄aZ

a − FaZ̄a
)

= 2ImFab
Fa = ∂aF (z)

Nab = F̄ab = ∂̄ā∂̄b̄F̄ (z̄)

where F (z) is the holomorphic prepotential. An special requirement in
order to prevent ghost propagators and other physical inconsistencies, is
Im (N) > 0. The rigid special Kähler geometry is determined by a single
holomorphic function, F (z) 4. It is determined by Seiberg-Witter theory
[13]. Also,

DµZ
a = ∂µZ

a − Vµbkab (z)
kab̄ = Gb̄ck

ca (z) = i∂bP
a

V = Gab̄k
a
c̄k

b̄
dZ̄

c̄Zd

where kb = kba∂a satisfying
[
kb, kc

]
= −f bcd kd, and P a is the Killing prepo-

tential or the moment map.
Now we will couple this multiplet to gravity. The gravity multiplet is

given by
(
gµν , ψ

I
µα, V

0
µ

)
. Thus, we have nv + 1 vector bosons. V 0

µ is called
the graviphoton. The lagrangian is given by:

L√
−g

= −1
2
R−Gab̄Dµz

aDµz̄b − V (z, z̄)

− Im (N )AB F
A
µνF

Bµν − i

2
Re (N )AB F

A
µνF

B
ρσε

µνρσ

(84)

where a = 1, . . . , nv, A = 0, . . . , nv and

Gab̄ = ∂a∂b̄K

K = − ln i
[
X̄A (z)FA (X (z))−XAF̄A

(
X̄ (z̄)

)]
(85)

We have FA = ∂F
∂XA and XAFA = 2F , so that F is homogeneous of degree

2. As XA = XA (Za),we can define the special coordinates as Za = Xa

X0 , so
that F =

(
X0
)2F (z). Then, (85) can be also expressed as:

K = − ln 2i
(
F − F̄

)
−
(
Fa + F̄a

)
(za − z̄a)− lnX0 − ln X̄0 (86)

N is given by:

Nab = F̄AB −
(ImF )AC X

C (ImF )BD
XC (Im)CDXD

(87)

4A mathematical discussion of special geometry can be found in [12]
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where the second term is due to the graviphoton. Finally, the potential is
given by:

V = eKGab̄K
a
AK̄

b̄
B̄X

A (z)XB (z)

There exists a Kähler invariant, given by K → K + f (z) + f̄ (z). This
implies the transformation: XA → XAe−f , and FA → FAe

−f for FA.

5.2 Geometry of N = 2 hyper multiplets

A hypermultiplet is buildt from two half-hypermultiplets. For nH hyper-
multiplets we use the notation:

(
χiα, q

u
)
, where χiα, i = 1, . . . , 2nH , are the

fermions, the qn are real scalars, and n = 1, . . . , 4nH . The following ansatz
for the SuSy gauge transformations is assumed:

δqu = f (q)uIi ε
Iχi (88)

The lagrangian is in this case:

L = huv (q) ∂µqu∂µqv + hij (q)χi 6∂χ̄j (89)

(huv is the metric on MHK , on a hyper Kähler manifold). As shown in [4],
three complex structures exist given by

Jx v
u = −if iIu σ

Xj
i fvIj (90)

where the f’s satisfy f iIu f
v
iI = δvu and f iIu f

u
jI = δijδ

J
I ; x can take the values

1, 2, 3, and the complex structures satisfy:

JxJx = −1 (91)
JxJy = iJz (92)
DwJ

xv
u (93)

where Dw is the Levi-Civita connection. Using the metric, we can lower
indices: Kx

uv = huwJ
xw
v .Kx = Kx

uvdq
udqv form a triplet of hyper Kähler

forms such that they satisfy dKx = 0. Thus the scalar field space is a
hyper-Kähler manifold with hab as its metric.

The coupling to gravity proceeds as before. In this case, one finds

DwJ
xu
v = 0 (94)

where the derivative includes both Levi-Civita connection and a SU (2) con-
nection w. This tells us that we do not have a hyper-Kähler manifold but
quaternionic Kähler manifold. Furthermore, in terms of Kx we have

DKx = dKx + εxyzwy ∧Kz = 0 (95)

points out that at the same time we are also lying in a quaternionic Kähler
manifold.

The scalar geometries are summarized in the following table:
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N cases manifold
1 global MK : Kähler

local MKH : Kähler-Hodge
2 global MSK ×MHK : special Kähler × hyper Kähler

local MSKM ×MQK : special Kähler-Hodge × quaternionic Kähler
4 local SO(6,nv)

SO(6)×SO(nv)

8 local E7(7)

SU(8)

Finally, let us comment the massless multiplets for N = 4 and N = 8.
For the case N = 4, we have the maximal N possible compatible with
|λ| ≤ 1. In the massless representations, we have N = 4 fermionic creation
operators. The multiplets for this case are displayed in the following table:

Helicity/States | − 1〉 | − 2〉 |0〉
0 6 1 1
±1

2 4 4 4
±1 1 6 6
±3

2 4 4
±2 1 1

vector multiplet graviton multiplet

As we can see, in the vector multiplet we have 6 scalars, 4 Weyl fermions
and one vector, and it is CPT complete. In the gravity multiplet we have the
metric, 4 gravitinos, 6 graviphotons, 4 Weyl fermions and 2 scalars. It is not
CPT complete. The target space of the σ-model, in rigid supersymmetry, is
flat, and in local,

M =
SO (6, n)

SO (6)× SO (4)
× SU (1, 1)

U (1)

where n is the number of vector multiplets. The first component of the
product is spanned by the scalars of the vector multiplet and the second by
the scalars of the gravity multiplet.

For the case of N = 8 (the maximum N possible with |λ| ≤ 2), we
observe the following multiplet:

Helicity/State |2〉
0 70 70 scalars
±1

2 56 56 Weyl fermions
±1 28 28 vectors
±3

2 8 8 gravitinos
±2 1 1 graviton

which is CPT complete. The target space in this case is M = E7(7)

SU(8) .
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6 Supersymmetry in arbitrary dimensions

Take the space-time to beR1,D−1 with Lorentz metric: ηMN = diag (−1,+1, . . . ,+1)
with D− 1 ”+1”s. The first step in order to generalize the supersymmetric
models is to discuss the spinor representation of SO (1, D − 1) 5. The Dirac
algebra is given by:

{γM , γN} = 2ηMN (96)

withM,N = 0, . . . , D−1. ΣMN := 1
4

[
γM , γN

]
is the generator of SO (1, D − 1)

in the spinor representation, and satisfies (1).
Let us analyze the different cases depending on the value of D:

1. D = 2l + 2, l = 0, 1, 2, . . .: for this case, define

γ0± :=
1
2
(
±γ0 + γ1

)
(97)

γa± :=
1
2
(
γ2a ± iγ2a+1

)
a = 1, . . . , l (98)

γA± :=
(
γ0±, γa±

)
A = 0, . . . , l (99)

Inserting these definitions into (96), we obtain the relations:

{γA+, γB−} = δAB (100)

{γA±, γB±} = 0 (101)

Thus, we obtain l + 1 fermionic creation and annihilation operators
(oscillators). From them, we can define a Clifford vacuum |Ω〉 by
demanding γA−|Σ〉 = 0, ∀A. The states are given by |Ω〉, γA+|Ω〉,...
The real dimension of the Dirac representation is given by:

dimR(Dirac rep) = 2
l+1∑
i=1

(
l + 1
i

)
= 2l+2 (102)

It is also possible to define γD+1 := ilγ0γ1 . . . γD−1, which satisfies

{γD+1, γ
M} = 0 (103)[

γD+1,ΣMN
]

= 0 (104)

γ2
D+1,M = 1 (105)

It is possible to define two projection operators, 1 ± γD+1, that split
the Dirac representation into 2 Weyl representations with eigenval-
ues ±1.Furthermore, the dimension of the Weyl representation is:
dimR(Weyl rep) = 2l+1. Then,

(
γM
)∗ = BγMB−1 and γ∗D+1 =

(−1)lγD+1. If l is even (D = 2, 6, 10, . . .), the Weyl representation
5This discussion can be found in detail in [14]
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is its own conjugate (self-conjugate). If l is odd (D = 4, 8, . . .), the
Weyl representations are conjugated to each other. At this point,
for D = 2, 4, 8, 10, we can define the Majorana spinor as: ψ∗ = B̂ψ
(which is called the reality condition). The dimension of the Majo-
rana representation is: dimR(Majorana rep) = 2l+1. A Majorana-
Weyl representation is only possible if the Weyl one is self-conjugated,
i.e. D = 2, 10, . . ., and its dimension is: dimR(M-W rep) = 2l

2. D = 2l + 1: in this case, there is no Weyl representation, and the Ma-
jorana one is only possible inD = 1, 3, 9, 11, . . .. Also, dimR(Majorana rep) =
2l. All the possibilites of representations are displayed in the following
table:

D l M W M-W dim
4 1 ok c.c. - 4
5 2 - - - 8
6 2 - s.c. - 8
7 3 - - - 16
8 3 ok c.c. - 16
9 4 ok - - 16
10 4 ok s.c. ok 16
11 5 ok - - 32
12 5 ok c.c. - 32

The supersymmetry algebra in arbitrary D depends on the spinor rep-
resentation of SO (1, D − 1). Schematically, (2) becomes:

{QI , Q̄J} ∼ γMPMδIJ

{QI , QJ} ∼ ZIJ[
LMN , Q

I
]
∼ ΣMNQ

I (106)[
PM , Q

I
]

= 0

If we display all the possible theories compatible with both the dimension
D and number of real supercharges q, we obtain the table below:

D/q 4 8 12 16 20 24 28 32 64
4 � � � � � � � � �
5 � � � � �
6 �(1,0) �(1,1) �(2,0) � �(2,2) �
7 � � �
8 � � �
9 � � �
10 �I �IIA �IIB �
11 �M �
12 �F
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The corresponding scalar geometries are:

D/q 4 8 16 32
4 MK MSK ×MQK SO6,n

E7(7)

SU(8)

5 MRSK ×MQK SO5,n
E6(6)

Usp(8)

6 R+ ×MQK SO4,n/SO5,21
E5(5)

Usp(4)×Usp(4)

7 SO3,n
E4,4

Usp(4)

8 SO2,n
E3,3

U(2)

9 SO1,n
GL(2)
SO(2)

10 R+ R+, SU(1,1)
U(1)

11 - -
”MSK” ×MQK SO10−D,n

E11−D
HR

where
SOm,n ≡

SO(m,n)
SO(m)× SO(n)

× SU(1, 1)
U(1)

if D = 4, and

SOm,n ≡
SO(m,n)

SO(m)× SO(n)
× R+

otherwise.

7 Kaluza-Klein Compactification

The basic idea of Kaluza-Klein theory is to formulate gauge symmetries as
space-time symmetries of a higher dimensional space-time.

7.1 Circle Compactification

Consider a five dimensional spacetime R1,3 × S1. S1 is a circle with coordi-
nates:

xM = (xµ, y), (107)
M = 0, ..., 4,
µ = 0, ..., 3.

y is the periodic coordinate of the circle i.e. y = y+2πR and R is the radius
of the circle. Scalar field can be expanded into Fourier modes according to:

Φ(xM ) =
n=+∞∑
n=−∞

φ(n)(xµ)einy/R + c.c.
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Φ satisfies the massless Klein Gordon equation:

�5Φ = ηMN∂M∂NΦ = (ηµν∂µ∂ν + ∂y
2)Φ

=
∑
n

(�4φ
(n) −m2

(n)φ
(n)) = 0

where m2
(n) = n2/R2. Each Fourier mode φ(n) satisfies �4φ

(n) −m2
nΦ(n) =

0. From an R1,3 perspective φ(n) form an infinite tower of massive scalar
fields called the Kaluza-Klein tower. One can estimate the size of S1 by
experimentally testing the validities of the two 1

r potentials:

VCoulomb ∼
e1 · e2

r
r confirmed for r > 10−18m

VNewton ∼
m1 ·m2

r
r confirmed for r > 10−4m

Therefore we need to choose generically R 5 10−18m and then the extra
dimensions are not visible. However there is an exception where we choose
R 6 10−4m. As was suggested by Rubakov, Shaposhnikov: They assumed
that electromagnetism is localized on a 3 dimensional hyper plane inside a
higher dimensional spacetime. In string theory this scenario is realized by
D-brains (See [15]).

Here we do not consider this possibilitiy and therefore study the massless
modes or zero modes of �5; i.e. n = 0 and φ(0)(x), when there is no y
dependence :

Φ(xµ, y)→ Φ(0)(xµ).

Next we consider 5-dimensional geometry with a metric:

gMN =
(
ĝµν ĝµ4

ĝ4ν ĝ44

)
From a 4 dimensional perspective we identify:

Spin particle
ĝµν 2 graviton
ĝµ4 1 gauge boson
ĝ44 0 Scalar field

A convenient parametrization of the metric is:

gMN =
(
gµν + r2VµVν r2Vµ

r2Vν r2

)
ĝµν = gµν + r2VµVν

ĝµ4 = r2Vµ (108)

ĝ44 = r2

(109)
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which implies:

det(gMN ) = r2det(gµν) (110)

ds2 = gMNdx
MdxN = gµνdx

µdxν + r2(Vµdxµ + dy)2 (111)
(112)

We expand the metric around SO(1, 3) invariant background for some
fluctuation δgµν :

gMN = gMN |background + δgMN

where

gMN |background =
(
ηµν 0
0 < r2 >

)
and δgMN =

(
δgµν + r2VµVν r2Vµ

r2Vν r2− < r2 >

)
For zero modes we have in addition:

gMN (x, y)→ g
(0)
MN (x, 6 y).

Therefore there are three metrics:

gMN (x, y), gMN |background and g
(0)
MN (x)

General coordinate transformation are of the form:

xM → x′M = xM − ξM (x) (113)

And the zero modes of the transformation are:

xµ → x′µ = xµ − ξµ(x, 6y) (114)

y → y′ = y − ξ4(x, 6y) (115)

which are the 4 dimensional coordinate transformations and as xµ-dependent
isometries of S1.The metric transforms:

δξgMN = −ξL∂LgMN − (∂MξL)gLN − (∂NξL)gLM (116)

Inserting (111) and (112) one obtains:

δVµ = −∂µξ4(x) (117)

which is a local U(1) gauge transformation. Let us now reduce the Einstein-
Hilbert action

S =
−1
2κ2

5

∫
d5x

√
−g(5)R(5) (118)

where R is the Ricci scalar. Inserting g(0) one finds:

S =
1

2κ2
5

∫
d4x

√
−g(4)

√
g44(R(4) + ...)

∫
S1

dy (119)
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Where
∫
S1
dy = 2πR.The Einstein-Hilbert term is noncanonical and there-

fore the Weyl transformation has to be applied to the metric:

gµν = Λ(x)g̃µν(x). (120)

The corresponding Ricci scalar is:

R(4) = Λ−1R̃(4) + · · · (121)

where R̃(4) = R(4)(g̃) and the ellipsis depends on ∂Λ. Now choose Λ−1 =
r(x) and then the action will turn into:

S =
∫
d4x

√
g̃(4)

(
−1
2κ2

4

R̃(4) − r2

4
F̃µF̃

µν −
∂νµ∂

µ
ν

κ2
4r

2

)
, (122)

where

κ−2
4 =

2πR
−κ2

5

,

F̃µν = ∂µṼν − ∂ν Ṽµ
Ṽµ = κ4Vµ

This shows that the 5 dimensional Einstein-Hilbert action decomposes into
the 4 dimensional Einstein-Hilbert action and U(1) gauge theory plus a
neutral scalar under the Kaluza-Klein reduction.

7.2 Generalization

As a first generalization consider a spacetime of the form:

M4 × T d (123)

where T d is a d-dimensional form. The metric is:

gMN =
(

gµν + gmnV
m
µ V n

ν gnpV
p
µ

gnpV
p
ν gmn

)
, (124)

m,n = 1, ..., d

For a 4-dimensional perspective we have

Zero modes Spin Multiplicity
gµν 2 1
V p
µ 1 d

gmn 0 1
2d(d+ 1)
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The isometries of T d:

ym −→ ym − ξm(x) (125)
V m
µ −→ V m

µ − ∂µξm (126)

Corresponds to a [U(1)]d gauge theory. Then the action of the KK reduction
will take the following form:

S =
∫
d4x

√
−g̃(4)

(
1

2κ2
4

R̃(4) + gmnF̃
m
µνF̃

nµν − (∂µgmn)(∂mgmn)
)

(127)

Remarks. The potential is zero and the σ-model target space is:

M = GL(d)/SO(d) (128)

7.3 Fermions in Kaluza Klein theory

Consider a spacetime:

R(1,3) ×Xd (129)
(xµ, ym)

(130)

where (xµ, ym) are coordinates, µ = 0, ..., 3 and m = 1, ..., d. Including
fermions into KK theories we write down the massless Dirac equation:

iγMDMΨ(x, y) = 0 (131)

where γM are Dirac matricies and we denote iγMDM by 6D.
KK ansatz:

Ψ(x, y) =
∑
I

ψI(x)ηI(y) (132)

The Dirac operator decomposes according to (6D(4) + 6Dd)Ψ = 0 so that
the massless modes obey:

6DdηI = 0. (133)

More generally we can demand 6DηI = mIηI , where there is no sum on I
We call ηI “Eigen-Spinors” and require ηI to be normalizable:

||ηI || = 1 (134)

Let us discuss the constraint of the theory. The Dirac algebra is:

{γM , γN} = 2ηMN ⇔


{γµ, γν} = 2ηµν

{γµ, γ4} = 0
{γ4, γ4} = 2

(135)

where the later implies (γ4)2 = 1 and thus γ4 = γ5 of R1,3. As a result
the projection operators P± = 1

2(1 ± γ5) break 5-dim Lorentz invariance.
Therefore chiral theories are not Lorentz invariant in higher dimensional
spacetime.
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7.4 Supersymmetry In KK-theories

Consider the R(1,3) ×Xd background with KK-Ansatz:

Q(x, y) = QI(x)ηI(y) (136)

where QI(x) and ηI(y) are the spinor on R1,3 and the eigen spinor on Xd,
respectively. The number of eigen spinors ηI is qual to the number of su-
persymmetries. We also require the followings conditions on ηI

• It is normalizable i.e. nowhere vanishing on Xd.

• It should be a singlet of the structure group which implies it is globally
well-defined.

The second requirement implies a reduction of the structure group. There-
fore implies constraints on Xd. With these two requirements we can con-
struct a well-defined supersymmetry. Xd is called a manifold with the G-
structure (G ⊂ GL(d,R)) which leaves ηI invariant.

7.5 Examples With d = 6

• 1)X6 = T 6 or Torus fiberation. Thus has an identity structure and
four η exist. This leads to N = 4 supersymmetry.

• 2)X6 with SU(2). In this case two η exist. Therefore we have N = 2
supersymmetry.

• 3)X6 with SU(3) structure. One η exists. Therefore we have N = 1
supersymmetry.

D
Q

10

9

8

7

6

5

4
N=8 N=2N=4

IIB IIA HE8 HSO I

N=1

481632

(1,0)(1,1)(2,0)(2,2)

Figure 1: The super gravity

Here the solid, dashed and dotted lines show S1 compactification, su(2)
and su(3) structure respectively.
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7.6 Supergravity In D=10,11

In D=11. The massless spectrum contains:

g(MN), A[MNP ], ΨM , (137)

where M,N,P = 0, ...10, A[MNP ] is an antisymmetric 3-index tensor or
equivalently related to a three form and ΨM is the gravitino. The bosonic
Lagrangian is:

Lbosonic =
√
−g(R− 1

2
|F4|2)− 1

6
A3 ∧ F4 ∧ F4 (138)

where F4 = dA3 is the field strength of the three from. The claim is that L
has the following symmetries:

• General covariance

• Local susy (upon adding appropriate fermionic terms.)

• Three form gauge invariance:

A3 → A′3 = A3 + dΛ2,

F4 → F ′4 = F4, (139)

L → L′ = L+
−1
6
d(Λ2 ∧ F4 ∧ F4),

(140)

where Λ2 is a 2-form. The last line implies the the action S is invariant,
i.e. δS = δ

∫
L = 0.

Let us consider type IIA supergravity in D = 10.The metric is:

gMN =
(
gM̂N̂ gM̂10
g1̂0M g1010

)
(141)

with M̂ = 0, ..., 9. AMNP splits into three parts:

• AM̂N̂P̂

• AM̂N̂10 ≡ BM̂N̂

• AM̂1010 = 0

For the massless spectrum we have:

gM̂N̂ , BM̂N̂ , φ, (142)
AM̂ , AM̂N̂P̂ , (143)

Ψ1,2

M̂
, λ1,2 (144)
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where φ is the scalar field called dilaton and (141) and (142) are called
NS-NS and R-R sectors respectively. The Lagrangian reads 6:

LIIA
bosonic = e−φ(R+ 4∂Mφ∂Mφ−

1
2
|H3|2)− 1

4
|F2|2 + |F̂4|2 (145)

where H3 = dB2, F2 = dA1 and |F4| = dA3 furthermore we abbreviate:

|H3|2 = HMNPH
MNP

|F2|2 = FMNFMN

|F̂4|2 = F̂MNPQF̂
MNPQ

F̂4 = F4 −A1 ∧H3

The symmetries of the theory are:

• general covariance

• N = 2 local supersymmetry (There are two 16-dim supercharges
Q′,Q2)

• Three gauge invariances with p-forms λp as gauge parameters:
(i) δA3 = A′3 −A3 = dΛ2,
(ii) δB2 = dΛ1,
(iii) δA1 = dΛ0, δA3 = Λ0H3 which implies:

δF̂4 = (dΛ0)H3 − dΛ0H3 = 0

Note that the theory contains no charged fermions.
Next, we consider the case of type IIB supergravity. The massless spec-

trum is given by:

gMN , B
1
MN , φ (146)

l, B2
MN , A

∗
MNPQ (147)

where A∗MNPQ is a 4-form with a self-dual 5-form field strength, B2
MN is a

second 2-form, and (146) and (147) are NS-NS and R-R sectors respectively.
This theory has no Lorentz invariant action but only field equations.

7.7 Supersymmetric Background In R1,3 ×X6

Let us now consider compactifications, i.e. study the theories in backgrounds
of the form R1,3 ×X6. Let us additionally impose the following conditions:

6we omit the “∧” hence forth.
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1. Super charges should exist. This implies X6 is a manifold with G-
structure ( globally well defined spinor η).
2. The background does not break any Susy spontaneously.

Let’s look at the susy transformation of the fermion evaluated at the
background:

δfermion

∣∣
background

= 0 (148)

The variation of the gravitino’s field ΨM is:

δΨM ∼ ∇LCM ε|bg +
∑
p

apγ.Fpε|bg + ... = 0 (149)

where ε,γ and ap are the parameter of the susy transformation, the Dirac γ
matricies and a number respectively.γ.Fp denotes contractions of the form
γMγNFMN for all p-forms present in the theory.

Now choose γ.FP |bg = 0. This means:

∇M ε(x,y) =
∑
I

∇M εI(x)ηI(y) = 0, (150)

or equivalently:

∇µε(x, y) = 0⇒ ∇µεI(x) (151)

∇mε(x, y) = 0⇒ ∇mηI = 0. (152)

the latter implies:

[∇m,∇n]ηI = Rmnklγ
[kγl]ηI = 0. (153)

This says that the Hol(∇m) ⊆ su(3), i.e. it is reduced. A further conse-
quence is Rmn = 0, That is Xd is Ricci flat and is called the Calabi-Yau
manifold.
Classes of examples:

• The 6-dimensional Torus T 6 which has four spinors ηI .It is flat and
leads to N = 8 supersymmetriy in R1,3.

• K3 × T 2 which has two spinors, Hol= su(2) and leads to N = 4.

• The Calabi-Yau three-fold cy3 which has one spinor, Hol= su(3) and
leads to N = 2.

7.8 Massless Spectrum

We have p-forms Ap corresponding to the field strength Fp+1 = dAp. The
field equation of the p-form is:

d†Fp = 0. (154)
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We define the action for this case:

S =
∫
Fp+1 ∧∗ Fp+1 (155)

Ap is not well-defined due to the gauge invariance Ap → Ap + dΛp−1. We
impose a gauge choice to simplify the field equations:

d†Ap = 0 (156)

Rewrite the field equation:

(d†d+ dd†)Ap = ∆10Ap = (∆4 + ∆6)Ap = 0 (157)

where d†d+dd† = ∆ is the Laplacian acting on p-forms. For massless modes
∆6Ap = 0 solutions are harmonic forms :

dAp = 0 = d†Ap (158)

where Ap = dΛp−1 is a gauge transformation. Therefore:

Ap ∈ H(p)(X6) =
closed p-forms
exact p-forms

. (159)

On a complex manifold Ap decomposes as follows:

Ap =
∑
q+k=p

Aq,k (160)

where Aq,k = Ai1,··· ,iq ,j1,··· ,jkdz
i1 · · · dziqdzj1 · · · dzjk . Correspondingly there

is a Hodge decomposition:

Hp =
∑
q+k=p

H(q,k). (161)

Let us introduce the Hodge number hq,k = dimH(q,k). They are convention-
ally arranged in the Hodge diamond :

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

(162)
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For the Calabi-Yau this diagram reads:

1
0 0

0 h1,1 0
1 h2,1 h1,2 1

0 h2,2 0
0 0

1

(163)

Genericaly we have the following rules:{
hq,k = hk,q

hq,k = h
d
2
−q, d

2
−k (164)

which are used in sketching the diagram. To compute the spectrum for IIA
we have:
the dilaton expanded in massless modes:

φ(x, y) = φ(x) (165)

the 2-form:

BMN (x, y) =


Bµν(x)
Bµν = 0
Bmn =

∑h1,1

a=1 b
a(x)wa1,1(y)

(166)

the 3-form:

AMNP (x, y) =


Aµνρ(x)
Aµmn =

∑
aA

A
µ (x)wa(1,1)(y)

Aµνm = 0
Amnp = ξI(x)αI(y) + ξ̃I(x)βI(x)

(167)

where I = 0, ..., h1,2, (αI , βI) ∈ H3 and ξI(x), ξ̃I(x) are real scalar fields.
The metric gMN splits into gµν(x), gµu = 0 and gmn(x, y). We expand gmn
around the Calabi-Yau metric:

gmn(x, y) = g0
mn(y) + δgmn(x, y) (168)

Inserting it in the Ricci tensor we get:

0 = Rmn(g0 + δg) = ... = ∆δgmn +Rklmnδgkl (169)

This equation is known as the Lichnerowicz equation. Going to complex
coordinates, then we have:

δgmn =
{
δgαβ̄
δgαβ

(170)

where α, β = 1, 2, 3. The properties are:
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• δgαβ̄, δgαβ satisfy Lichnerowicz equation separately.

• Both obey (dd†+d†d)δg = 0. Therefore we can write down the solution:

δgαβ̄ =
h1,1∑
a=1

va(x)wa(y) (171)

δgαβ =
h1,2∑
i=1

ti(x)Ωαγδχ
i
βγ̄δ̄g

0γγ̄g0δδ̄ (172)

where χi ∈ H1,2 is a harmonic (1, 2)-form and Ω ∈ H3,0. va(x) are
h1,1 real scalars while ti are h1,2 complex scalars.
Remark. There is a Kähler form J = −igαβ̄dzαdz̄β̄ and if we expand
it we get:

J = J0 + δJ0. (173)

We can view δJ0 as the deformation of the Kähler form which leaves
the Calabi-Yau Ricci flat.

• There is a complex structure I with Imn I
n
k = −δmk . Deformations of I

should leave the Nijenhuis tensor N invariant, i.e.

I → I + δI (174)

with N(I + ∂I) = 0. On a Calabi-Yau one finds:

∂Iαβ̄Ωαβγ = χβ̄βγ (175)

That is the deformations of I are related? to the (1, 2)-form and thus
also to ∂gαβ.

7.9 Final (bosonic) Spectrum

Let us summarize the final spectrum in R1,3:

gravity multiplet: (gµν , A0
µ)

h1,1vector multiplets: (Aαµ, z
a)

h1,2 hyper multiplets: (ti, ξI , ξ̄I , φ, a)

where a is the dual of Bµν .The Lagrangian reads:

LN=2 =
√
g(

1
2
R− ImNAB(z)FAµνF

Bµν − i

2
ReNABFAµνFBρσεµνρσ) (176)

−Gab̄(z)∂µza∂µz̄b̄ − huv(q)∂µqn∂µqv
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where Gab̄ = ∂a∂b̄KJ and KJ is the Kähler potential:

KJ = −ln
∫
cy3

J ∧ J ∧ J (177)

The holomorphic prepotential is F = κabcz
azbzc and:

κabc =
∫
cy3

wa1,1 ∧ wb1,1 ∧ wc1,1. (178)

The last term in the Lagrangian is given by:

huv(q)∂µqu∂µqv = ∂φ∂φ+ e4φ(∂a+ ξ̃I∂µξI − ξI∂µξ̃I)2+ (179)

gij̄∂t
i∂t̄j̄+

e2φImMIJ(∂ξ̃I +MIKξ
K)(∂ξ̃J +MJLξ

L)

where gij̄ = ∂i∂j̄KΩ and KΩ = −ln
∫
cy3

Ω ∧ Ω̄. Note that no potential arises
(V = 0) and no charged fields are present.

7.10 IIB

The spectrum in R1,3 is:

gMN , B
1,2
MN , A

∗
MNPQ, φ, l (180)

Repeating the analysis of the previous section we find: h1,1 + 2h1,2 real
scalars arising from the deformation of the Calabi-Yau metric, 2(h1,1 + 1)
real scalars arising from the two B1,2

mn, h1,1 real scalars arising from A∗MNPQ

and the two additional φ, l. Furthermore from Aµmnp arise h1,2 + 1 vector
fields. So altogether we have h1,2 vector multiplets and h1,1 hyper multiplets.

String theory suggests that IIA symmetry in the background R1,3 × cy3

is equivalent to IIB symmetry in R1,3 × c̃y3 with:
h1,1(cy3) = h1,2(c̃y3)
h1,2(cy3) = h1,1(c̃y3)
F (cy3) = G(c̃y3)

(181)

This is called mirror symmetry. c̃y3 is called the mirror Calabi-Yau manifold.
The conjencture of the mirror symmetry says that for every Calabi-Yau
threefold cy3 there is a mirror threefold c̃y3 with reversed Hodge numbers
and identical prepotentials.

7.11 Flux Compactification and Generalized Geometries

So far we have assumed Fp|bg = 0. Now we will relax this condition and
have Fp|bg 6= 0. However, we keep the following property:

dFp = 0 (182)

d†Fp = 0. (183)
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We introduce the flux: ∫
γIp

Fp = eI 6= 0 (184)

where γIp ∈ X6 is a p-cycle. As a result we can write:

Fp =
∑
I

eIω
I
p (185)

and ωIp ∈ H(p)(X6). eI induces a potential V (e) in the action. We studied
the gravitino variation:

δΨM (x, y) = ∇M ε(x, y) +
∑
p

ap(γ.Fp)M ε+ ... (186)

where M = 0, ..., 9. Now we want to evaluate this in a supersymmetric
background δΨM (x, y) = 0 for R1,3 ×X6 and ε(x, y) =

∑
I ε
I(x)ηI(y). We

have:

δΨm = ∇mε+ ... =
∑
I

εI(x)∇mηI + ..., m = 1, ..., 6 (187)

which means ∇mηI 6= 0.
In addition, if we want to have a supersymmetric theory we should have a

manifold X6 with G-structure. If X6 has SU(3) structure only one globally
defined spinor η exists, and one can define:

J[mn] ∼ η̄γ[mγn]η. (188)

Furthermore, Iκm = Jmng
nκ obeys IκmI

n
κ = −δnm. Then it follows that in

general the Nijenhuis tensor N(I) is non-vanishing, i.e.:

N(I) 6= 0. (189)

This is a consequence of ∇mη 6= 0. In this case I is an almost complex
structure. One can check that J is of the type (1, 1) with respect to I and
dJ 6= 0 due to ∇mη 6= 0.

Analogously we can define a 3-form:

Ωmnp ∼ η̄γ[mγnγp]η (190)

such that it obeys:

• dΩ 6= 0

• It is of the type (3, 0) with respect to I

• J ∧ J ∧ J ∼ Ω ∧ Ω̄, J ∧ Ω = 0

Note that for ∇mη = 0 we have:

dJ = 0, N(I) = 0, dΩ = 0 (191)

therefore X6 is cy3 with J a Kähler form and Ω (3, 0) form of cy3.
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7.12 Compute Kaluza-Klein Reduction

The conditions [∇m,∇n]η 6= 0 implies
∫
X6 R

(6) 6= 0 generates a potential V
which implies some modes become massive. To proceed we should distin-
guish two cases:
(i) m ≈ mKK (ignore all massive modes)
(ii)m� mKK (keep the light modes)
For case (ii) one expands in bases of light fields:

J = J0 +
∑
a

vaωa (192)

where wa is the solution of (∆6 +m2)w = 0. Additionally we assume there
is no extra light gravitino and one only has two massless gravitinos (i.e.
N = 2). Geometrically this means:{

d(J ∧ J) = 0
(dΩ)3,1 = 0

(193)

Supergravity implies M = Mν
Sκ×Mh

Qκ. The result in IIA is M = MδJ×MδΩ

where MδJ ∈Mν
Sκ and MδΩ ∈Mh

Qκ. In IIB we have:

M = MδΩ ×MδJ

7.13 Compute The Potential

The Killing verctor is defined by:

Dµq
u = ∂µq

u − V A
µ k

u
A(q) (194)

where kuA(q) is a function of the scalars qu in the hyper multiplets, u =
1, .., 4nh and A = 0, ..., nν . Then:

kuAk
x
uv = −∂vP xA + εxyzωyvP

z
A = −DvP

x
A (195)

where x = 1, 2, 3. We get the following result for IIA:

P 1 + iP 2 = e
1
2
KΩ+φ

∫
X6

Jc ∧ dΩ (196)

P 3 = −e2φ

∫
eJc ∧

∑
P

FP (197)

where φ is dilaton. And for IIB:

P 1 + iP 2 = e
1
2
KJ+φ

∫
X6

Jc ∧ dΩ (198)

P 3 = e2φ

∫
Ω ∧ (H3 + F3) (199)

Remarks:
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• P x mirror symmetries

• Can also be computed for SU(3)× SU(3)

8 String theory

8.1 Basic concepts7

String theory can be defined as the quantum theory of extended objects.
The basic idea of string theory is to replace point-like objects by closed or
open strings.

Figure 2: Open and closed string

ls denotes the extension of the string, and thus is the fundamental length
scale.

Let us look at a closed string moving in D-dimensional Minkowskian
background M1,D−1. It sweeps out a 2-dimensional world sheet Σ (σ, τ),
where σ denotes the coordinate on the string and τ the time direction.

Figure 3: World sheet of a closed string

The motion of the string is described by 2 dimensional quantum field theory.
Therefore one looks at the Polyakov action:

S = − 1
4πα′

∫
Σ
dσdτ

√
det h hβγ (σ, τ) ∂βXM∂γX

NηMN +
∫

Σ
R(2) (200)

Here α′ denotes the string tension with
√
α′ = ls, h is the metric on the world

sheet Σ, ηMN the Minkowski metric on M1,D−1 with η = diag (−1, 1, . . . , 1)
and XM : Σ → M1,D−1, M = 0, . . . , D − 1 are fields on the world sheet in

7[17], [16]
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2 dimensional QFT which can be seen as coordinates of the target space of
Σ. The term

∫
ΣR

(2) is proportional to the Euler number χ (Σ) of the world
sheet and therefore does not affect the dynamics of the 2-dimensional QFT.

The symmetries of this action are:

1. Lorentz transformations SO (1, D − 1) acting on XM

as XM → X ′M = ΛMN X
N , Λ ∈ SO (1, D − 1)

2. Translations of XM : XM → X ′M = XM + aM

 Poincare group
in target space

3. Reparametrization of Σ
4. Weyl-invariance with respect to h: hαβ → Λ (σ, τ)hαβ

Due to the last two properties, hαβ can be chosen locally flat (i.e. there
are no dynamical degrees of freedom in hαβ) and as a consequence of the
Weyl-invariance one can take hαβTαβ = 0 where Tαβ ∼ ∂S

∂hαβ
. Therefore the

2 dimensional QFT is conformal and hence it is described by 2 dimensional
CFT.

The equation of motion for XM is the 2-dim Klein-Gordon-equation:

�(2)XM = 0 (201)

The solution of this equation can be written in the following way:

XM (σ, τ) = XM
L (τ + σ) +XM

R (τ − σ) (202)

where XM
L is called left mover and XM

R right mover. Moreover, XM has to
fulfill a periodicity condition (we are still considering the closed string) in
the string coordinate σ:

XM (σ) = XM (σ + 2πR) (203)

where R denotes the radius of the closed string. Hence we have a discrete
spectrum of eigenvalues.

Using canonical quantization one imposes the following commutation
relations: [

XM (σ) , PN
(
σ′
)]

= iδ
(
σ − σ′

)
ηMN (204)[

XM , XN
]

= 0 =
[
PN , PM

]
(205)

Here PM = ∂L
∂ ˙XM

and XM are operators acting on some Hilbert space H. To
get H positive semi-definite, it is necessary to set either D = 26, or, if the 2
dimensional CFT is supersymmetric, D = 10. D = 10 is also necessary to
have fermions in the space-time.

From Poincare-invariance on can take the time translation symmetry to
define the Hamiltonian H in M1,9 (as the generator of time translation) and
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the Lorentz rotation symmetry to get the rotation operator J also in M1,9

(as the generators of the rotation group). By computing the eigenvalues of
H and J in each mode, one gets m2 and s, where m is the mass and s is the
spin of the according mode. From this computation one gets:

• m2 < 0: tachyons, only appear in non-supersymmetric case

• m2 = 0:
s = 2 → graviton
s = 3

2 → gravitino
s = 1 → gauge bosons
s = 1

2 → quarks, leptons
s = 0 → scalars, Higgs

• m2 > 0: there are infinitely many massive excitations: m2 = nms,
n ∈ N, m2

s = 1
l2s

= 1
α′ , where the associated spin is given by s (m) = m2

m2
s

(Regge-behaviour). ms is a characteristic scale of string theory, the
tension of the string, related to its length ls.

The identification of the s = 2 excitation with Einstein’s graviton leads to
the following identification:

ms ∼ mPL ∼ 1019GeV and ls ∼ lPL ∼ 10−35m

Therefore the massive modes are in general not observable. The difference
between pointlike particles and strings becomes relevant only at high ener-
gies, where string theory softens the UV behaviour.

Interactions:
For interactions, one looks at two strings which merge to one, or at one
string which splits into two.
For low energies, these pictures correspond to Feynman-diagrams in QFT,
and they are determined by the coupling constant gs = e−〈φ〉, where φ is the
scalar field.
If one wants to look at real interactions, one takes the quantization as for
Feynman-diagrams by summing over all world sheet topologies of two par-
ticles going into the interaction and two particles leaving it to compute the
scattering amplitude A. The scattering amplitude obeys the following ex-
pansion:

A =
∞∑
n=0

A(n)g2+2n
s (206)

A comparison between QFT and string theory shows, that in QFT one starts
with an action S =

∫
L and then gets to Feynman-diagrams, whereas in

string theory one has somesthing corresponding to the Feynman-diagrams,
but one didn’t start from an action functional, where no analogue is known
until now.
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Figure 4: Two merging closed strings

Figure 5: Interactions

Remarks:
One can show:

• for scattering with E << Es, where Es = msc
2: Astring → AQFTGR

• A is finite for E >> Es, therefore the theory is a candidate for per-
turbative quantum gravity

Including non-perturbative correction, one expects A =
∑∞

n=0A
(n)g2+2n

s +

O
(
e−g

−2
s

)
, which is convergent for gs << 1 (perturbative region).

8.2 Different string theories8

For differen choices of the background M1,9, one gets the following different
theories:

8for the following see [18]
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1. M1,9 = R1,9: In this case, there are 5 different string theories:

•II A
•II B

}
left-right symmetric on Σ E<<EPL→

II A supergravity
II B supergravity

• I gauge group G = SO(32) E<<EPL→ I supergravity

•
heterotic
string

{
G = SO(32)
G = E8 × E8

}
left-right
antisymmetric

E<<EPL→ I supergravity

2. M1,9 = R1,D−1 × Y 10−D: Here, Y is a compact manifold with volume
V >> l10−D

s . In this case there is a family of backgrounds and hence
there is some freedom of choice:

• discrete choice of Y (discrete degeneracy)
• choice of moduli (continuous degeneracy)

} vacuum degeneracy of
string theory (landscape
of string theory)

That suggests that even if string theory is unique, the degeneracy of
the ground states is not.

3. M1,9 = R1,D−1 × “SCFT”: Here the SCFT is an “abstract SCFT”
(with c = c̄ = 3

2(10 − D)), i.e. there is no known geometrical inter-
pretation. Developing a geometric notion of this case is part of the
research in the area of quantum geometry. The volume V in this case
is V ≈ l10−D

s .

8.3 Perturbative dualities

Perturbative dualities are dualities that hold at each order in gs and hence
are visible for gs → 0 (weak coupling region).

1. T-duality:
Background: R1,8×S1, coordinates: XM (σ, τ) = (Xµ, X9) where M =
0, . . . , 9, µ = 0, . . . , 8. As we are still looking at a closed string, we have
the following condition for the string-coordinate: X9 (σ = 2π, τ) =
X9 (σ = 0, τ) + 2πlR Thus we get the spectrum of excitations: m2

n,l =
n2

R2 + l2R2

α′2 , where n, l ∈ Z and the first term denotes the Kaluza-Klein-
modes, whereas the second term corresponds to the winding-modes,
which are absent for pointlike particles. By this formula one computes
that m2

n,l ↔ m2
l,n for R↔ α′

R . This is the so called T-duality. In type

II theories one finds IIA (R) = IIB
(
α′

R

)
.

Remarks:

• The T-duality does not exist for point particles
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• It’s a symmetry of the full string theory (not only the spectrum)

• It suggests a minimal length: R =
√
α′

• For the background R1,D−1×T 10−D the T-duality group is ΓT =
SO (10−D, 10−D,Z)

2. Mirror symmetry:
Mirror symmetry says that IIA in background R1,3×CY3 equals IIB
in R1,3 × ˜CY3, where ˜CY3 is the according mirror Calabi-Yau mani-
fold, i.e. h1,1 (CY3) = h1,2

(
˜CY3

)
and h1,2 (CY3) = h1,1

(
˜CY3

)
. This

symmetry should also hold for the entire theory.
For the type IIA and IIB theories, we have the following geometries:

M =

{
M

(1,1)
J (z)×M (1,2)

Ω (t) ⊂M (1,1)
J (z)×MQK(t, ξ, ξ̃, φ, a) for IIA

M
(1,1)
J (z̃)×M (1,2)

Ω (t̃) ⊂MQK(z̃, ξ, ξ̃, φ̃, ã)×M (1,2)
Ω (t̃) for IIB

Here M (1,1)
J and M

(1,2)
Ω are special Kähler manifolds, whereas MQK

is quaternionic Kähler and corresponds to the hypermultiplet. There-
fore, the mirror map should identify M

(1,1)
J (CY3) with M

(1,2)
Ω ( ˜CY3)

and M (1,2)
Ω (CY3) with M (1,1)

J ( ˜CY3). On the level of prepotentials, this
means FJ(CY3) = FΩ( ˜CY3) and FΩ(CY3) = FJ( ˜CY3).

We check this in terms of the third derivatives ∂za∂zb∂zcFJ = Fabc and
∂zi∂zj∂zkFΩ = Fijk (Yukawa couplings). We have:

KJ = −ln
∫
J ∧ J ∧ J = −ln(F + F̄ − (za − z̄a)(Fa − F̄a)) (207)

KΩ = −ln
∫

Ω ∧ Ω (208)

And moreover:

Fijk =
∫

Ω ∧ ∂i∂j∂kΩ(t) and (209)

F classabc = κabcz
azbzc (210)

where κabc =
∫
ω1,1
a ∧ ω1,1

b ∧ ω1,1
c the classical interaction numbers

and Fabc = F classabc + F intabc where F intabc are the worldsheet instanton
corrections.

To compute these quantities, one can write Fabc in the following form:

Fabc = 〈OaObOc〉 =
∫

[DX]OaObOcd−S (211)

where Oa, Ob, Oc are operators that we evaluate, and S = Sclas+Sinst,
Sinst = 2πi

∑n+1
a=1 maz

a.
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From a physical point of view, we are looking at holomorphic world
sheet instantons (∂X

M

∂σ̄ = 0, σ = σ+iτ, σ̄ = σ−iτ), from a mathemati-
cal point of view, these are rational curves of genus 0, i.e. holomorphic
maps from P1 to CY3. One finds ([19]):

F instabc (z) =
∑
~n

N~nnanbnc
e2πi

∑
d ndz

d

1− e2πi
∑
d ndz

d (212)

Thus there exists a mirror map t(z) relating F instabc (z) and Fijk(t).

If one draws these dualities into the diagram with the different theories, one
gets the following picture:
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Figure 6: String theories and dualities

8.4 Non-perturbative dualities

Non-perturbative dualities involve the string coupling constant gs.
Basic idea:

The strong coupling region of a given string theory should be described by
“another” weakly coupled theory.
There are the following logical possibilites how this could be done:

1. by another string theory (S-duality)

2. by the same string theory (U-duality)

3. by another theory (M-theory)

But this is difficult to prove without a non-perturbative formulation of string
theory. Therefore everything is conjectured and not yet proven, but there
is “overwhelming evidence” instead. This means it has been checked for
“special” couplings/ states, where non-perturbative corrections are known
(exact) and thus can be extrapolated into the strong coupling region. Pos-
sible such states/ couplings are:
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• BPS-states (i.e. M = Z)

• holomorphic couplings (e.g. prepotential F (z))

D-branes:
As already mentioned, strings can be open or closed. Until now, we only con-
sidered the closed string. When looking at the open string XM (σ, τ) , M =
0, . . . , 9, one can introduce boundary conditions. If these boundary condi-
tions are imposed on ∂Xµ (σ0), they are called von Neumann conditions. If
they are imposed on Xm (σ0), they are Dirichlet conditions, and hence the
D in the word “D-brane”. The Dirichlet conditions define dynamical objects
of string theory. Due to the attached open strings degrees of freedom, there
are D-branes of different dimensions:

Figure 7: D-branes

The light modes correspond to the supersymmetric abelian vector multi-
plets. One can also look at a stack of N D-branes, where the open string
can end either on the same or on different branes. This leads to an U(N)
gauge boson. As the mass/ tension are proportional to 1

gs
, the D-branes are

non-perturbative states of string theory, which is therefore not only a theory
of strings, but also describes higher dimensional objects.

1. S-duality:
Here, the strong coupling of a theory A is mapped to the weak cou-
pling of a theory B, i.e. A and B are S-dual. This means gA ∼ 1

gB
.

Examples:

• Het SO(32)(gs) ≡ type I( 1
gs

)
For the perturbative states, a string corresponds to a D1-string.
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gA << 1 g
B

 << 1

Figure 8: Duality

The non-perturbative states are more difficult and not yet checked.
The supergravities coincide, i.e. LHetsupergravity(gs) = LIsupergravity( 1

gs
).

• Het(R1,5 × T 4) ≡ IIA(R1,5 ×K3)

A closely related duality between two theories A and B is the case, if
the string coupling is mapped to another geometric quantity: gA ↔ RB
and RA ↔ gB.
Examples:

• IIA(R1,5 × CY3) ≡ Het(R1,5 ×K3)

• I(R1,5 ×K3) ≡ Het(R1,5 ×K3)

2. U-duality:
In this case, the strong coupling limit is determined by the same theory
(self duality).
Examples:

• IIB in R1,9

One can complexify the coupling constant τ = l+ ie−φ, where l is
the RR scalar, φ corresponds to the dilaton and e−φ|background =
1
gs

. SL(2,Z) acts on τ via τ → aτ+b
cτ+d , a, b, c, d ∈ Z, ad − bc =

1. τ → − 1
τ is the strong-weak coupling symmetry and implies

e−φ → eφ. One only has to look at a fundamental domain of pos-
sible values of τ , as the other ones are mapped into this domain
by SL(2,Z).

• Het/T 6 also has SL(2,Z).

3. M-theory:
Here, the strong coupling region is mapped to a new, different theory
(not a string theory). Witten called this theory M-theory.
Examples:
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• IIA in R1,9:
IIA supergravity in D = 10 can be obtained from D = 11 super-

gravity by compactification on S1, where R11 ∼ g
2
3
A. This means

limgA→∞ IIA→ 11D−theory.
For the Kaluza-Klein states holds:

m ∼ 1
R11
∼ 1

g
2
3
A

→

{
∞ for gA → 0
0 for gA →∞

Therefore one can view them as non-perturbative states. These
are BPS-states and can be identified with D − 0-particles. Since
there is no string theory with D = 11 this theory must be some-
thing new: M-theory
Other strong coupling limits:

– M/I ← Het E8 × E8

– M/K3← Het/T 3

– M/(T 5/Z)← IIB/K3
– M/CY3 ← Het/(K3× S1)

One therefore gets the following picture:

Figure 9: M-theory

Altogether, one can also draw these dualities into the diagram of the
different string theories:
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Figure 10: String theories and dualities
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