Übungsblatt 10

Quantenmechanik I

SS 06

Abgabetermin: 29.6.

Aufgabe 1 (2 Punkte)

Gegeben sei der Hamiltonoperator

$$H = H_0 + \alpha \vec{L} \cdot \vec{S}$$
, $\alpha \in \mathbf{R}$,

wobei H_0 der Hamiltonoperator des Wasserstoffatoms ist.

Berechnen Sie in 1. Ordnung Störungstheorie die Korrektur zur Energie.

Hinweis: Benutzen Sie die Basis $|j, m_j, l, s\rangle$ zur Berechnung.

Aufgabe 2 (4 Punkte)

- a) Geben Sie für ein System aus 3 nicht-wechselwirkende Fermionen mit den 1-Teilchenzuständen $|n\rangle$ die orthonormierten Eigenzustände an. Überprüfen Sie explizit die Antisymmetrie der Wellenfunktion und ihre Normierung.
- b) Wie lauten die orthonormierten Eigenzustände für 3 nicht-wechselwirkende Bosonen, wenn sich zwei der Bosonen im gleichen Zustand befinden. Überprüfen Sie explizit die Symmetrie der Wellenfunktion und ihre Normierung.
- c) Nehmen Sie an, daß die 1-Teilchenzustände $|n\rangle$ die Eigenzustände des H-Atoms (mit Spin) sind. Wie lautet in diesem Fall die Energie für die in a) gefundenen Zustände? Geben Sie für dieses System den Grundzustand und seine Entartung an.

Aufgabe 3 (4 Punkte)

Gegeben sei ein System zweier Teilchen mit Spin \vec{S}_1 und Spin \vec{S}_2 . Der Hamiltonoperator sei

$$H = a \vec{S}_1 \cdot \vec{S}_2$$
, $(a = konst.)$.

- a) Berechnen Sie $[H, \vec{S}_1]$, $[H, \vec{S}_1^2]$, $[H, \vec{S}]$, $[H, \vec{S}^2]$ mit $\vec{S} = \vec{S}_1 + \vec{S}_2$.
- b) Bestimmen Sie einen vollständigen Satz von vertauschbaren Operatoren der H einschließt.
- c) Wie lauten Eigenwerte und Eigenfunktionen von H? Sind die Eigenwerte entartet?