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�� Introduction

Since the seventies string theory has been discussed as a possible candi�
date for a theory which uni�es all known particle interactions including
gravity� Until recently� however� string theory has only been known in its
perturbative regime� That is� the �particle� excitations of a string theory
are computed in the free theory �gs � 	�� while their scattering processes
are evaluated in a perturbative series for gs � 
� The string coupling con�
stant gs is a free parameter of string theory but for gs � O�
� no method
of computing the spectrum or the interactions had been known� This situ�
ation dramatically changed during the past three years� For the �rst time
it became possible to go beyond the purely perturbative regime and to
reliably compute some of the nonperturbative properties of string theory�
The central point of these developments rests on the idea that the strong�
coupling limit of a given string theory can be described in terms of another�
weakly coupled� �dual theory�� This dual theory can take the form of either
a di
erent string theory� or the same string theory with a di
erent set of
perturbative excitations� or a new theory termed M�theory�

The precise nature of the strong�coupling limit sensitively depends on
the number of �Minkowskian� spacetime dimensions and the amount of
supersymmetry� Supersymmetry has played a major role in the recent de�
velopments in two respects� First of all� it is di�cult �and it has not been
satisfactorily accomplished� to rigourously prove a string duality� since it
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necessitates a full nonperturbative formulation� which is not yet available�
Nevertheless it has been possible to perform nontrivial checks of the con�
jectured dualities for quantities or couplings whose quantum corrections
are under �some� control� It is a generic property of supersymmetry that it
protects a subset of the couplings and implies a set of nonrenormalization
theorems� The recent developments heavily rely on the fact that the mass
�or tension� of BPS�multiplets is protected and that holomorphic couplings
obey a nonrenormalization theorem� Thus� they can be computed in the
perturbative regime of string theory and� under the assumption of unbro�
ken supersymmetry� reliably extrapolated into the nonperturbative region�
It is precisely for these BPS�states and holomorphic couplings that the
conjectured dualities have been successfully veri�ed�

Second of all� for a given spacetime dimension D and a given repre�
sentation of supersymmetry there can exist perturbatively di
erent string
theories� For example� the heterotic SO���� string in D � 
	 and the type�
I string in D � 
	 share the same supersymmetry� but their interactions
are di
erent in perturbation theory� However� once nonperturbative correc�
tions are taken into account� it is believed that the two theories are identical
and merely di
erent perturbative limits of the same underlying quantum
theory� A similar phenomenon is encountered with other string theories in
di
erent dimensions and the moduli space of string theory is much smaller
than was previously known� In the course of these lectures we will see that
many nontrivial relations exist among perturbatively distinct string vacua
and furthermore� that� what were thought to be disconnected components
of the moduli space� can in fact be di
erent perturbative regions of one and
the same component� Thus� in determining the properties of the underlying
quantum theory� supersymmetry seems to play a much more prominent role
than had previously been appreciated�

The purpose of these lectures is to review some of these recent devel�
opments with particular emphasis on the role played by supersymmetry��

In section � we collect the representations of supersymmetry in spacetime
dimensions � � D � 

 from a common point of view� Many features are
only displayed in appropriate tables but we present slightly more detail
in the dimensions D � 

� 
	 and � as representative cases� We explain a
number of features of the dimensional reduction of supergravity� such as the
emergence of hidden symmetries� the low�energy action in di
erent frames
and other aspects relevant in the string context� In section � we �rst recall
the di
erent perturbative string theories� their �Calabi�Yau� compacti�ca�
tions and the dualities which already exist at the perturbative level� Then
we discuss the various types of possible strong�coupling limits �S�duality�

�This set of lectures notes is an expanded version of ����
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U�duality� M�theory� F�theory� and the corresponding string vacua� This
leads to a �web� of interrelations which we attempt to visualize at the end
of section �� Finally� in appendix A we review some basic properties of the
free��eld representation for states of di
erent spin� while in appendix B we
present a more detailed discussion of the relation between the parameters
of string theory and those of the corresponding low�energy e
ective �eld
theory�

�� Supersymmetry in various dimensions

���� THE SUPERSYMMETRY ALGEBRA

An enormous amount of information about supersymmetric theories is con�
tained in the structure of the underlying representations of the supersym�
metry algebra ���� Here we distinguish the supermultiplet of the �elds� which
transforms irreducibly under the supersymmetry transformations� and the
supermultiplet of states described by the theory� The latter will depend
on the dynamics encoded in a supersymmetric action or Hamiltonian� The
generators of the super�Poincar�e algebra comprise the supercharges� trans�
forming as spinors under the Lorentz group� the energy and momentum
operators� the generators of the Lorentz group� and possibly additional
generators that commute with the supercharges� For the moment we ignore
these additional charges� often called central charges�� There are other rel�
evant superalgebras� such as the supersymmetric extension of the anti�de
Sitter algebra� These will not be considered here� but they are unavoidable
when considering supersymmetry in theories with a cosmological term�

Ignoring the central extensions for the moment� the most important
anti�commutation relation is the one between the supercharges�

fQ�� �Q�g � ��iP� ������ � �
�

Here �� are the gamma matrices that generate the Cli
ord algebra with
Minkowskian signature ������� � � ���

The size of a supermultiplet depends sensitively on the number of inde�
pendent supercharge components Q� The �rst step is therefore to determine
Q for any given number of spacetime dimensions D� The result is summa�
rized in Table 
� As shown� there exist �ve di
erent sequences of spinors�
corresponding to spacetimes of particular dimensions� When this dimension
is odd� it is possible in certain cases to have Majorana spinors� These cases
constitute the �rst sequence� The second one corresponds to those odd di�
mensions where Majorana spinors do not exist� The spinors are then Dirac

�The terminology adopted in the literature is not always very precise� Usually� all
charges that commute with the supercharges� but not necessarily with all the generators
of the Poincar�e algebra� are called �central charges	� We will adhere to this nomenclature�
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D Qirr HR type

�� 
� �� ��� mod � 
�D����� SO�N� M

�� �� mod � 
�D����� USp�
N� D

�� �� mod � 
D�� U�N� M

�� mod � 
D�� USp�
N���USp�
N�� W


� ��� mod � 
D���� SO�N���SO�N�� MW

TABLE �� The supercharges in various spacetime dimensions D�
In the second column� Qirr speci�es the real dimension of an irre�
ducible spinor in aD�dimensional Minkowski spacetime� The third
column speci�es the group HR forN �extended supersymmetry� de�
�ned in the text� acting on N �fold reducible spinor charges� The
fourth column denotes the type of spinors� Majorana �M�� Dirac
�D�� Weyl �W� and Majorana�Weyl �MW��

spinors� In even dimension one may distinguish three sequences� In the �rst
one� where the number of dimensions is a multiple of �� charge conjugation
relates positive� with negative�chirality spinors� All spinors in this sequence
can be restricted to Majorana spinors� For the remaining two sequences�
charge conjugation preserves the chirality of the spinor� Now there are again
two possibilities� depending on whether Majorana spinors can exist or not�
The cases where we cannot have Majorana spinors� whenever D � � mod ��
comprise the fourth sequence� For the last sequence Majorana spinors exist
and we restrict the charges to Majorana�Weyl spinors�

One can consider extended supersymmetry� where the spinor charges
transform reducibly under the Lorentz group and comprise N irreducible
spinors� For Weyl charges� one can consider combinations of N� positive�
and N� negative�chirality spinors� In all these cases there exists a group
HR that rotates the irreducible components such that the supersymmetry
algebra is left invariant� This group acts exclusively on the spinor charges
and commutes with the Lorentz transformations� The group HR is thus
the part of the automorphism group of the supersymmetry algebra that
commutes with the Lorentz group� This group is often realized as a manifest
invariance group of a supersymmetric �eld theory�

Another way to present the various cases is shown in Table �� Here we
list the real dimension of an irreducible spinor charge and its corresponding
spacetime dimension� In addition we have included the number of states of
the shortest� supermultiplet of massless states� written as a sum of bosonic
and fermionic states�

�By the shortest multiplet� we mean the multiplet with the helicities of the states as
low as possible� This is usually �one of� the smallest possible supermultiplet�s��
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Qirr D shortest supermultiplet



 D � �� �
� � �
�

�� D � ��� �� �� � � � �

� D � �� � � � �

� D � � 
 � 



 D � 
 � � �

TABLE 
� Simple supersymmetry in various di�
mensions� We present the dimension of the irre�
ducible spinor charge with 
 � Qirr � 

 and
the corresponding spacetime dimensions D� The
third column represents the number of bosonic �
fermionic massless states for the shortest super�
multiplet�

���� MASSLESS REPRESENTATIONS

Because the momentum operators P� commute with the supercharges� we
may consider the states at arbitrary but �xed momentum P�� which� for
massless representations� satis�es P � � 	� The matrix P��� on the right�
hand side of �
� has therefore zero eigenvalues� In a positive�de�nite Hilbert
space some �linear combinations� of the supercharges must therefore vanish�
To exhibit this more explicitly� let us rewrite �
� as

fQ�� Q
y
�g � � �P� ����� � ���

For light�like P� � �P �� �P � the right�hand side is proportional to a projec�
tion operator ��� �k�

����� Here �k is the gamma matrix along the spatial

momentum �P of the states� The supersymmetry anti�commutator can then
be written as

fQ�� Q
y
�g � �P �

�
�� ��D���

�
��

� ���

Here ��D consists of the product of all D independent gamma matrices� and
��� of the product of all D� � gamma matrices in the transverse directions
�i�e�� perpendicular to �P �� with phase factors such that

���D�� � ������ � � � ���D� ���� � 	 � ���

This shows that the right�hand side of ��� is proportional to a projection
operator� which projects out half of the spinor space� Consequently� half
the spinors must vanish on physical states� whereas the other ones generate
a Cli
ord algebra� Denoting the real dimension of the supercharges by Q�
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the representation space of the charges decomposes into the two chiral
spinor representations of SO�Q���� When confronting these results with
the last column in Table �� it turns out that the dimension of the shortest
supermultiplet is not just equal to �Qirr��� as one might naively expect�
For D � �� this is so because the representation is complex� For D �
�� � the representation is twice as big because it must also accommodate
fermion number �or� alternatively� because it must satisfy the correct CPT
properties�� The derivation for D � � is presented in many places� For
D � � we refer to ����

The two chiral spinor spaces correspond to the bosonic and fermionic
states� respectively� For the massless multiplets� the dimensions are shown
in Table �� Bigger supermultiplets can be obtained by combining various
irreducible multiplets in a nontrivial way� We will demonstrate this below
in three relevant cases� corresponding to D � 

� 
	 and � spacetime dimen�
sions� For the convenience of the reader we present Fig� 
� which lists the
pure supergravity theories in dimensions � � D � 

 with Q � ��� 
�� �� ���

Some of these theories will be discussed later in more detail �in particular
supergravity in D � 

 and 
	 dimensions��

����
� D � 


In 

 dimensions we are dealing with �� independent real supercharges�
In odd�dimensional spacetimes irreducible spinors are subject to the eigen�
value condition ��D � ��� Therefore ��� simpli�es and shows that the 
�
nonvanishing spinor charges transform according to the chiral spinor rep�
resentation of the helicity group SO����

On the other hand� when regarding the 
� spinor charges as gamma ma�
trices� it follows that the representation space constitutes the spinor repre�
sentation of SO�
��� which decomposes into two chiral subspaces� one cor�
responding to the bosons and the other one to the fermions� To determine
the helicity content of the bosonic and fermionic states� one considers the
embedding of the SO��� spinor representation in the SO�
�� vector trans�
formation� It then turns out that one of the ��� representations branches
into helicity representations according to ��� � �� � ��� while the sec�
ond one transforms irreducibly according to the ��� representation of the
helicity group�

The above states comprise precisely the massless states corresponding
to D � 

 supergravity ���� The graviton states transform in the ��� the
antisymmetric tensor states in the �� and the gravitini states in the ���

�In D � � there exist additional theories with Q � �
� 
� and 
�� in D � � there
exists a theory with Q � 
� ��� and most likely there also exits a Q � 
� supergravity
in D � �� So far these supergravities have played no role in string theory and hence we
omit them from our discussion here�
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Figure �� Pure supergravity theories in dimensions � � D � �� with the number of
independent supercharges equal to Q � 

� ��� � and �� In 
 spacetime dimensions�
pure supergravity does not describe propagating degrees of freedom and is a topological
theory�

representations of SO���� Rather than showing all this in detail� we con�
tinue with other cases� where the representations are smaller and the group
theory is more transparent� The helicity representations of the graviton�
gravitino and tensor gauge �elds are discussed in the appendix� Bigger su�
permultiplets consist of multiples of ��� states� For instance� without cen�
tral charges� the smallest massive supermultiplet comprises ����� � �����
states� These multiplets will not be considered here�

������ D � 
	

In 
	 dimensions the supercharges are both Majorana and Weyl spinors�
The latter means that they are eigenspinors of ��D� According to ���� when
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we have simple �i�e�� nonextended� supersymmetry with 
� charges� the
nonvanishing charges transform in a chiral spinor representation of the
SO��� helicity group� With � nonvanishing supercharges we are dealing
with an ��dimensional Cli
ord algebra� whose irreducible representation
space corresponds to the bosonic and fermionic states� each transforming
according to a chiral spinor representation� Hence we are dealing with three
��dimensional representations of SO���� which are inequivalent� One is the
representation to which we assign the supercharges� which we will denote
by �s� to the other two� denoted as the �v and �c representations� we as�
sign the bosonic and fermionic states� respectively� The fact that SO���
representations appear in a three�fold variety is known as triality� which is
a characteristic property of the group SO���� With the exception of cer�
tain representations� such as the adjoint and the singlet representation�
the three types of representation are inequivalent� They are traditionally
distinguished by labels s� v and c �see� for instance� �����

The smallest massless supermultiplet has now been constructed with �
bosonic and � fermionic states and corresponds to the vector multiplet of
supersymmetric Yang�Mills theory in 
	 dimensions ���� Before constructing
the supermultiplets that are relevant for D � 
	 supergravity� let us �rst
discuss some other properties of SO��� representations� One way to distin�
guish the inequivalent representations� is to investigate how they decompose
into representations of an SO��� subgroup� Each of the ��dimensional repre�
sentations leaves a di
erent SO��� subgroup of SO��� invariant� Therefore
there is an SO��� subgroup under which the �v representation branches
into

�v �� � � ��

Under this SO��� the other two ��dimensional representations branch into

�s �� � � �c �� � �

where � is the spinor representation of SO���� Corresponding branching
rules for the ���� ��� and ���dimensional representations are

�� �� �� �� �
�	v �� �� �� �� �
�	c�s �� �	 �

	
v �� �� � �	 �
	
c�s �� �� �� �

���

In order to obtain the supersymmetry representations relevant for su�
pergravity we consider tensor products of the smallest supermultiplet con�
sisting of �v � �c� with one of the ��dimensional representations� There are
thus three di
erent possibilities� each leading to a 
���dimensional super�
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supermultiplet bosons fermions

vector multiplet �v �c

graviton multiplet �� ��� ��v �s � ��s

gravitino multiplet �� ��� ��c �s � ��s

gravitino multiplet �v � ��v �c � ��c

TABLE 
� Massless N � � supermultiplets in
D � �� spacetime dimensions containing � � � or
�� � �� bosonic and fermionic degrees of freedom�

multiplet� Using the multiplication rules for SO��� representations�

�v � �v � �� ��� �	v �
�s � �s � �� ��� �	s �
�c � �c � �� ��� �	c �

�v � �s � �c � 	
c �
�s � �c � �v � 	
v �
�c � �v � �s � 	
s �

���

it is straightforward to obtain these new multiplets� Multiplying �v with
�v � �c yields �v � �v bosonic and �v � �c fermionic states� and leads
to the second supermultiplet shown in Table �� This supermultiplet con�
tains the representation �	v� which can be associated with the states of
the graviton in D � 
	 dimensions �the �eld�theoretic identi�cation of the
various states will be clari�ed in the appendix�� Therefore this supermulti�
plet will be called the graviton multiplet� Multiplication with �c or �s goes
in the same fashion� except that we will associate the �c and �s represen�
tations with fermionic quantities �note that these are the representations
to which the fermion states of the Yang�Mills multiplet and the supersym�
metry charges are assigned�� Consequently� we interchange the boson and
fermion assignments in these products� Multiplication with �c then leads to
�c��c bosonic and �c��v fermionic states� whereas multiplication with �s
gives �s � �c bosonic and �s � �v fermionic states� These supermultiplets
contain fermions transforming according to the 	
s and 	
c representa�
tions� respectively� which can be associated with gravitino states �see the
appendix for the helicity assignment of gravitino states�� but no graviton
states as those transform in the �	v representation� Therefore these two
supermultiplets are called gravitino multiplets� We have thus established
the existence of two inequivalent gravitino multiplets� The explicit SO���
decompositions of the vector� graviton and gravitino supermultiplets are
shown in Table ��

By combining a graviton and a gravitino multiplet it is possible to con�
struct an N � � supermultiplet of 
�� � 
�� bosonic and fermionic states�
However� since there are two inequivalent gravitino multiplets� there will




	

also be two inequivalent N � � supermultiplets containing the states cor�
responding to a graviton and two gravitini� According to the construction
presented above� one N � � supermultiplet may be be viewed as the tensor
product of two identical supermultiplets �namely �v ��c�� Such a multiplet
follows if one starts from a supersymmetry algebra based on two Majorana�
Weyl spinor charges Q with the same chirality� The states of this multiplet
decompose as follows 

Chiral N � � supermultiplet �IIB�

��v � �c�� ��v � �c� ��

�������
������

bosons  
�� �� �� � �� � �	v � �	c

fermions  
�s � �s � 	
s � 	
s

���

This is the multiplet corresponding to IIB supergravity ���� Because the su�
percharges have the same chirality� one can perform rotations between these
spinor charges which leave the supersymmetry algebra una
ected� Hence
the automorphism group HR is equal to SO���� This feature re!ects itself in
the multiplet decomposition� where the �� �s� �� and 	
s representations
are degenerate and constitute doublets under this SO��� group�

A second supermultiplet may be viewed as the tensor product of a
��v � �s� supermultiplet with a second supermultiplet ��v � �c�� In this
case the supercharges constitute two Majorana�Weyl spinors of opposite
chirality� Now the supermultiplet decomposes as follows 

Nonchiral N � � supermultiplet �IIA�

��v � �s�� ��v � �c� ��

�������
������

bosons  
�� �v � �� � �	v � 	
v

fermions  
�s � �c � 	
s � 	
c

���

This is the multiplet corresponding to IIA supergravity ���� It can be ob�
tained by a straightforward reduction of D � 

 supergravity� The latter
follows from the fact that two D � 
	 Majorana�Weyl spinors with oppo�
site chirality can be combined into a single D � 

 Majorana spinor� The
formula below summarizes the massless states of IIA supergravity from an


�dimensional perspective� The massless states of 

�dimensional super�
gravity transform according to the ��� �� and ��� representation of the
helicity group SO���� They correspond to the degrees of freedom described
by the metric� a ��rank antisymmetric gauge �eld and the gravitino �eld�
respectively� We also show how the 
	�dimensional states can subsequently
be branched into ��dimensional states� characterized in terms of represen�







tations of the helicity group SO��� 

�� ��
��
�
� �� �

�v �� � � �

�	v �� � � �� ��

�� ��
�
�� �� �� ��

	
v �� ��� �	
���

��� ��

����
���
�s �� �

�c �� �

	
s �� � � ��

	
c �� � � ��

Clearly� in D � � we have a higher degeneracy of states� related to the
automorphism group SO���� We note the presence of graviton and gravitino
states� transforming in the �� and �� representations�

One could also take the states of the IIB supergravity and decompose
them into D � � massless states� This leads to precisely the same super�
multiplet as the reduction of the states of IIA supergravity� Indeed� the
reductions of IIA and IIB supergravity to � dimensions� yield the same the�
ory �
	� 

� 
��� To see this at the level of the Lagrangian requires certain
duality transformations� which we discuss in section �� Hence Q � �� super�
gravity is unique in all spacetime dimensions� except for D � 
	� Maximal
supergravity will be discussed in subsection ���� The �eld�content of the
maximal Q � �� supergravity theories for dimensions � � D � 

 will be
presented in two tables �cf� Table � and ���

������ D � �
In � dimensions we have chiral spinors� which are not Majorana� The charge
conjugated spinor has the same chirality� so that the chiral rotations of the
spinors can be extended to the group USp��N��� for N� chiral spinors�
Likewise N� negative�chirality spinors transform under USp��N��� This
is already incorporated in Table 
� In principle we have N� positive� and
N� negative�chirality charges� but almost all information follows from �rst
considering the purely chiral case� In Table � we present the decomposition
of the various helicity representations of the smallest supermultiplets based
on N� � 
� �� � or � supercharges� In D � � dimensions the helicity group
SO��� decomposes into the product of two SU��� groups SO���	� �SU�����
SU������Z�� When we have supercharges of only one chirality� the smallest
supermultiplet will only transform under one SU��� factor of the helicity
group� as is shown in Table ���

�The content of this table also speci�es the smallest massive supermultiplets in four
dimensions� The SU�
� group is then associated with spin in three space dimensions�




�

SU��
� N� � � N� � 
 N� � 
 N� � �

� �

� � �

� � � 
�

� � � �� ��

� 
 � �� �


�
 � 
�C �� � ��R �

 � 

�C ��
� � �
��R

TABLE �� Shortest massless supermultiplets of D � �
N��extended chiral supersymmetry� The states transform both
in the SU��
� helicity group and under a USp�
N�� group� For
odd values of N� the representations are complex� for even N�

they can be chosen real� Of course� an identical table can be
given for negative�chirality spinors�

Let us now consider speci�c supermultiplets� All these multiplets are
summarized in Table �� The helicity assignments of the states described by
gravitons� gravitini� vector and tensor gauge �elds� and spinor �elds are pre�
sented in the appendix� The simplest case is �N�� N�� � �
� 	�� where the
smallest supermultiplet is the �
�	� hypermultiplet� consisting of a complex
doublet of spinless states and a chiral spinor� Taking the tensor product
of the smallest supermultiplet with the ��� 
� helicity representation gives
the �
�	� tensor multiplet� with a selfdual tensor� a spinless state and a
doublet of chiral spinors� The tensor product with the �
� �� helicity rep�
resentation yields the �
�	� vector multiplet� with a vector state� a doublet
of chiral spinors and a scalar� Multiplying the latter with the ����� helicity
representation� one obtains the states of �
�	� supergravity� Observe that
the selfdual tensor �elds in the tensor and supergravity supermultiplet are
of opposite selfduality phase�

Next consider �N�� N�� � ��� 	� supersymmetry� The smallest multi�
plet� shown in Table �� then corresponds to the ���	� tensor multiplet� with
the bosonic states decomposing into a selfdual tensor� and a �ve�plet of
spinless states� and a four�plet of chiral fermions� Multiplication with the
�
��� helicity representation yields the ���	� supergravity multiplet� consist�
ing of the graviton� four chiral gravitini and �ve selfdual tensors �
��� Again�
the selfdual tensors of the tensor and of the supergravity supermultiplet are
of opposite selfduality phase�

Of course� there exists also a nonchiral version with 
� supercharges�
namely the one corresponding to �N�� N�� � �
� 
�� The smallest multiplet
is now given by the tensor product of the supermultiplets with �
�	� and
�	�
� supersymmetry� This yields the vector multiplet� with the vector state
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multiplet � bosons fermions

����� hyper � � � ��� �� 
� �� � h�c� �
� �� �� ��

����� tensor � � � �
� �� �� �� � ��� �� �� �� �
� �� 
� ��

����� vector � � � �
� 
� �� �� ��� 
� 
� ��

����� supergravity �
 � �
 �
� 
� �� �� � ��� 
� �� �� �
� 
� 
� ��

�
��� tensor � � � �
� �� �� �� � ��� �� �� �� �
� �� �� ��

�
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TABLE �� Some relevant D � � supermultiplets with �N��N�� supersymmetry�
The states �n�m� �n� �m� are assigned to �n�m� representations of the helicity group
SU��
� � SU��
� and ��n� �m� representations of USp�
N�� � USp�
N��� The second
column lists the number of bosonic � fermionic states for each multiplet�

and four scalars� the latter transforming with respect to the ����� represen�
tation of USp����USp���� There are two doublets of chiral fermions with
opposite chirality� each transforming as a doublet under the correspond�
ing USp��� group� Taking the tensor product of the vector multiplet with
the ����� representation of the helicity group yields the states of the �
� 
�
supergravity multiplet� It consists of �� bosonic states� corresponding to a
graviton� a tensor� a scalar and four vector states� where the latter trans�
form under the ����� representation of USp����USp���� The �� fermionic
states comprise two doublets of chiral gravitini and two chiral spinor dou�
blets� transforming as doublets under the appropriate USp��� group�

Finally� we turn to the case of �N�� N�� � ��� ��� The smallest super�
multiplet is given by the tensor product of the smallest ���	� and �	���
supermultiplets� This yields the 
�� � 
�� states of the ����� supergravity
multiplet� These states transform according to representations of USp����
USp����

In principle� one can continue and classify representations for other val�
ues of �N�� N��� As is obvious from the construction that we have pre�
sented� this will inevitably lead to states transforming in higher�helicity
representations� As we will discuss in subsection ���� the higher�spin gauge




�

�elds associated with these representations can not be coupled to gravity�
Although the representations exist and can be described by appropriate
free��eld theories� they have no future as nontrivial quantum �eld theories�

���� MAXIMAL SUPERSYMMETRY� Q � ��

In the above we have restricted ourselves to �massless� supermultiplets
based on Q � �� supercharge components� From the general analysis it
is clear that increasing the number of supercharges leads to higher and
higher helicity representations� Obviously some of these representations will
also occur in lower�Q supermultiplets� by multiplying shorter multiplets by
suitable helicity representations� It is not so easy to indicate in arbitrary
dimension what we mean by a higher helicity representation� but we have
in mind those representations that are described by gauge �elds that are
symmetric Lorentz tensors� Symmetric tensor gauge �elds for arbitrary he�
licity states can be constructed �in four dimensions� see� for instance� �
����
However� it turns out that symmetric gauge �elds cannot consistently cou�
ple to themselves or to other �elds� An exception is the graviton �eld�
which can interact with itself as well as to low�spin matter� but not to
other higher�spin gauge �elds� By consistent� we mean that their respec�
tive gauge invariances of the higher�spin �elds �or appropriate deformations
thereof� cannot be preserved at the interacting level�

There have been many e
orts to circumvent this apparent no�go theo�
rem� What seems clear� is that one needs a combination of the following
ingredients in order to do this �for a recent review� see �
��� �i� an in�nite
tower of higher�spin gauge �elds� �ii� interactions that are inversely propor�
tional to the cosmological constant� �iii� extensions of the super�Poincar�e or
the super�de Sitter algebra with additional fermionic and bosonic charges�

Conventional supergravity theories are not of this kind� This is the rea�
son why we have avoided �i�e� in Table �� to list supermultiplets with states
transforming in higher�helicity representations� The bound Q � �� origi�
nates from the necessity of avoiding the higher�spin �elds� It implies that
supergravity does not exist for spacetime dimensions D 
 

 �at least� if
one assumes a single time coordinate�� because Lorentz spinors have more
than �� components beyond D � 

 �
���

Most of the search for interacting higher�spin �elds was performed in
four spacetime dimensions �
��� When one increases the number of super�
charges beyond Q � ��� then a supermultiplet will contain several massless
states of spin�� and at least spin���� fermions� In higher spacetime dimen�
sions� more than �� supercharges are excluded �in the absence of higher�spin
gauge �elds�� because� upon dimensional reduction� these theories would
give rise to theories that are inconsistent in D � �� There is also direct
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TABLE �� Bosonic �eld content for maximal supergravities� The p � 
 gauge �eld in
D � ��B has a self�dual �eld strength� The representations ��� and �
�� �in D � �� ��
respectively� are extended to U��� and SU��� representations through duality transfor�
mations on the �eld strengths� These transformations can not be represented on the
vector potentials� In D � 
 dimensions� the graviton does not describe propagating
degrees of freedom�

evidence in D � �� where graviton and gravitini �elds do not describe dy�
namic degrees of freedom� Hence� one can write down supergravity theories
based on a graviton �eld and an arbitrary number of gravitino �elds� which
are topological� However� when coupling matter to this theory� described
by scalars and spinors� the theory supports not more than �� supercharges�
Beyond Q � 
� there are four unique theories with Q � 
�� �	� �� and ��
����

���� MAXIMAL SUPERGRAVITIES

In this section we review the maximal supergravities in various dimensions�
These theories have precisely Q � �� supercharge components� We restrict
our discussion to � � D � 

�

The bosonic �elds always comprise the metric tensor for the graviton
�eld and a number of antisymmetric gauge �elds� For the antisymmetric
gauge �elds� it is a priori unclear whether to choose a �p�
��rank gauge �eld
or its dual �D� �� p��rank partner� but it turns out that the interactions
often prefer the rank of the gauge �eld to be as small as possible� Therefore�
in Table �� we restrict ourselves to p � �� as in D � 

 dimensions� p � �
and p � � are each other�s dual conjugates� This table presents all the �eld
con�gurations for maximal supergravity in various dimensions� Obviously�
the problematic higher�spin �elds are avoided� because the only symmetric
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TABLE �� Fermionic �eld content for maximal supergrav�
ities� For D � �� �� � the fermion �elds are counted as sym�
plectic Majorana spinors� For D � �� � we include both
chiral and antichiral spinor components� which transform
in conjugate representations of HR� In D � 
 dimensions
the gravitino does not correspond to propagating degrees
of freedom�

gauge �eld is the one describing the graviton� In Table � we also present the
fermionic �elds� always consisting of gravitini and simple spinors� All these
�elds are classi�ed as representations of the automorphism group HR� In
order to compare these tables to similar tables in the literature� one may
need to use the �local� equivalences USp���	SO���� USp���	SU��� and
SU���	SO����

The supersymmetry algebra of the maximal supergravities comprises
general coordinate transformations� local supersymmetry transformations
and the gauge transformations associated with the antisymmetric gauge
�elds	� These gauge transformations usually appear in the anticommutator
of two supercharges� and may be regarded as central charges� In pertur�
bation theory� the theory does not contain charged �elds� so these central
charges simply vanish on physical states� However� at the nonperturbative
level� there may be solitonic or other states that carry charges� An example
are magnetic monopoles� dyons� or extremal black holes� On such states�
some of the central charges may take �nite values� Without further knowl�
edge about the kind of states that may emerge at the nonperturbative level�

	There may be additional gauge transformations that are of interest to us� As we
discuss in subsection 
����� it is possible to have �part of the� the automorphism group HR

realized as a local invariance� However� the corresponding gauge �elds are then composite
and do not give rise to physical states �at least� not in perturbation theory��




�

we can generally classify the possible central charges� by considering a de�
composition of the anticommutator� This anticommutator carries at least
two spinor indices and two indices associated with the group HR� Hence we
may write

fQ�� Q�g �
X
r

��������rC��� Z������r � �
	�

where �������r is the antisymmetrized product of r gamma matrices� C is
the charge�conjugation matrix and Z������r is the central charge� which
transforms as an antisymmetric r�rank Lorentz tensor and depends on
possible additional HR indices attached to the supercharges� The central
charge must be symmetric or antisymmetric in these indices� depending on
whether the product of the gamma matrices with C is symmetric or anti�
symmetric� so that the product is symmetric in the combined indices of the
supercharges� For given spacetime dimension all possible central charges
can be classi�ed�
 For the maximal supergravities in spacetime dimensions
� � D � 

 this classi�cation is given in Table �� Because we have �� su�
percharge components� the sum of the independent momentum operators
and the central charges must be equal to ���� ����� � ����

����
� D � 



Supergravity in 

 spacetime dimensions is based on an "elfbein# �eld E A
M �

a Majorana gravitino �eld $M and a ��rank antisymmetric gauge �eld
CMNP � With chiral ���	� supergravity in � dimensions� it is the only Q 
 
�
supergravity theory without a scalar �eld� Its Lagrangian can be written
as follows ����

L�� �



����

�
� �

�ER�E�%�� �
�E

�$M�MNPDN �%�$P � �
��E�FMNPQ��

� �
���	

p
� �MNPQRSTUVWX FMNPQ FRSTU CVWX �

�

� �
���

p
�E
�

�$R�MNPQRS$S � 
� �$M�NP$Q
�
FMNPQ � � � �

	
�

where the ellipses denote terms of order $�� E � detE A
M and %M

AB denotes
the spin connection� The supersymmetry transformations are equal to

�E A
M � �

� �	�A$M �

�CMNP � ��
�

p
� �	�
MN$P � � �
��

�$M � DM�&%� 	 � �
���

p
�
�
�M

NPQR � � �NM �PQR
�
	 &FNPQR �


For a related discussion see for example ���� ��� and references therein�
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TABLE �� Decomposition of the central extension in the supersymmetry algebra with
Q � 

 supercharge components in terms of r�rank Lorentz tensors� The second row
speci�es the number of independent components for each r�rank tensor charge� The
total number of central charges is equal to �
� �D� because we have not listed the D
independent momentum operators

Here the covariant derivative is covariant with respect to local Lorentz
transformation

DM�%� 	 �
�

M � �

�%M
AB�AB

�
	 � �
��

and &FMNPQ is the supercovariant �eld strength

&FMNPQ � �� 

MCNPQ� � �
�

p
� �$
M�NP$Q� � �
��

Note the presence in the Lagrangian of a Chern�Simons�like term F �F �C�
so that the action is only invariant up to surface terms� We also wish to
point out that the quartic�$ terms can be included into the Lagrangian
�

� by replacing the spin�connection �eld % by �% � &%��� in the covariant




�

derivative of the gravitino kinetic term and by replacing FMNPQ in the

last line by � &FMNPQ � FMNPQ���� These substitutions ensure that the
�eld equations corresponding to �

� are supercovariant� The Lagrangian
is derived in the context of the so�called "
���order# formalism� in which the
spin connection is de�ned as a dependent �eld determined by its �algebraic�
equation of motion� whereas its supersymmetry variation in the action is
treated as if it were an independent �eld ��	�� The supercovariant spin
connection is the solution of the following equation�

D
M�&%�EA
N �� �

�
�$M�A$N � 	 � �
��

The left�hand side is the supercovariant torsion tensor�
We have the following bosonic �eld equations and Bianchi identities�

RMN � �

�gMN FPQRSF

PQRS � �
	FMPQR FN

PQR �


M
�
E FMNPQ

�
� �

����

p
� �NPQRSTUVWXY FRSTU FVWXY �



MFNPQR� � 	 � �
��

which no longer depend on the antisymmetric gauge �eld� An alternative
form of the second equation is ��
�



MHNPQRSTU � � 	 � �
��

where HMNPQRST is the dual �eld strength�

HMNPQRST �



�'
E �MNPQRSTUVWXF

UVWX� �
�

p
�F
MNPQCRST � � �
��

One could imagine that the third equation of �
�� and �
�� receive contri�
butions from charges that would give rise to source terms on the right�hand
side of the equations� These charges are associated with the �!ux��integral of
HMNPQRST and FMNPQ over the boundary of an �� and a ��dimensional
spatial volume� respectively� This volume is transverse to a p � � and
p � � brane con�guration� and the corresponding charges are �� and ��
rank Lorentz tensors� These are just the charges that can appear as central
charges in the supersymmetry algebra� as one can verify in Table �� Solu�
tions of 

�dimensional supergravity that contribute to these charges were
considered in ���� ��� ��� 
���

It is straightforward to evaluate the supersymmetry algebra on these
�elds� The commutator of two supersymmetry transformations yields a
general�coordinate transformation� a local Lorentz transformation� a su�
persymmetry transformation and a gauge transformation associated with
the tensor gauge �eld�

���	��� ��	��� � �gct��
M� � �Q�	�� � �L��AB� � �A��MN� � �
��



�	

The parameters of the transformations on the right�hand side are given by

�M � �
� �	��

M 	� �

	� � ��M$M �

�AB � ��M &%AB
M � �

���

p
� �	�

h
�ABCDEF &FCDEF � �� �CD &FABCD

i
	� �

�MN � ��
�

p
� �	��MN	� � ��	�

Note that the normalizations di
er from the ones used in the supersym�
metry algebra in previous subsections� The tensor gauge �eld transforms
under gauge transformations as �CMNP � 

M�NP ��

Finally� the constant 
����� in front of the Lagrangian �

�� which has
the dimension �length��� 	 �mass��� is undetermined and depends on �xing
some length scale� To see this consider a continuous rescaling of the �elds�

E A
M � e��E A

M � $M � e����$M � CMNP � e���CMNP � ��
�

Under this rescaling the Lagrangian changes according to

L�� � e���L�� � ����

This change can then be absorbed into a rede�nition of ����
�

���� � e������� � ����

The indetermination of � is not a special property of D � 

 but occurs
in any spacetime dimension where the Einstein�Hilbert action displays a
similar scaling property�

gD�� � e���gD�� � LD � e���D��LD � ��D � e���D����D � ����

Newton�s constant� ���D�physical� does not necessarily coincide with the pa�
rameter ��D but also depends on the precise value adopted for the �!at� met�
ric in the ground state of the theory� Up to certain convention�dependent
normalization factors one de�nes

���D�physical  � ��D ����D��� � ����

where gD�� is expanded about � 
D��� with 
D�� equal to the Lorentz�invariant

!at metric with diagonal elements equal to �
� Note that ���D�physical is
invariant under the scale transformations ���� and thus a physically mean�
ingful scale�

�Note that the rescalings also leave the supersymmetry transformation rules un�
changed� provided the supersymmetry parameter � is changed accordingly�



�


When the Lagrangian contains additional terms� for instance� of higher
order in the Riemann tensor� then the corresponding coupling constant
will scale di
erently under ����� Its physical value will therefore depend in
a di
erent way on the parameter � that parametrizes the �!at� metric in
the ground state� An even simpler example is a scalar massive �eld� added
to the Einstein�Hilbert Lagrangian� Its physical mass is equal to � times
the mass parameter in the Lagrangian� However� we should stress that the
physics never depends explicitly on �� provided one expresses all physical
quantities in terms of physical parameters� all determined for the same
value of �� We return to the issue of frames and scales in section ����
 and
in appendix B�

���� DIMENSIONAL REDUCTION AND HIDDEN SYMMETRIES

The maximal supergravities in various dimensions are related by dimen�
sional reduction� Here some of the spatial dimensions are compacti�ed on
a hyper�torus whose size is shrunk to zero� In this situation some of the
gauge symmetries that are related to the compacti�ed dimensions survive
and take the form of internal symmetries� The aim of our discussion here
is to elucidate a number of features related to these symmetries� mainly in
the context of the reduction of D � 

 supergravity to D � 
	 dimensions�

We denote the compacti�ed coordinate by x�� which now parameterizes
a circle of length L�� The �elds are thus decomposed as periodic functions
in x�� on the interval 	 � x�� � L� This results in a spectrum of massless
modes and an in�nite tower of massive modes� The massless modes form
the basis of the lower�dimensional supergravity theory� Because a toroidal
background does not break supersymmetry� the resulting supergravity has
the same number of supersymmetries as the original one� For compacti��
cations on less trivial spaces than the hyper�torus �which we will discuss in
section �� this is not necessarily the case and the number of independent su�
persymmetries can be reduced� Actually� fully supersymmetric compacti��
cations are rare� For instance� in 

�dimensional supergravity � coordinates
can be compacti�ed in precisely two ways such that all supersymmetries
remain una
ected ����� One is the compacti�cation on a torus T 
� the other
one the compacti�cation of a sphere S
� However� in the latter case the re�
sulting ��dimensional supergravity theory acquires a cosmological term� In
the context of these lectures� such compacti�cations are less relevant and
will not be discussed�

�Throughout these lectures we enumerate spacetime coordinates by �� �� � � � �D � ��
Nevertheless� we denote the compacti�ed coordinate by x��� to indicate that it is the
eleventh spacetime coordinate�



��

In the formulation of the compacti�ed theory� it is important to de�
compose the higher�dimensional �elds in such a way that they transform
covariantly under the lower�dimensional gauge symmetries� and in partic�
ular under di
eomorphisms of the lower�dimensional spacetime� This en�
sures that various complicated mixtures of massless modes with the tower
of massive modes will be avoided� It is a key element in ensuring that
solutions of the lower�dimensional theory remain solutions of the original
higher�dimensional one� Another point of interest concerns the nature of
the massive supermultiplets� Because these originate from supermultiplets
that are massless in higher dimensions� these multiplets must be shortened
by the presence of central charges� The central charge here originates from
the momentum operator in the compacti�ed dimension� We return to this
issue shortly�

The emergence of new internal symmetries in theories that originate
from a higher�dimensional setting� is a standard feature of Kaluza�Klein
theories ����� Following the discussion in ���� we distinguish between sym�
metries that have a direct explanation in terms of the symmetries in higher
dimensions� and symmetries whose origin is obscure from a higher�dimen�
sional viewpoint� Let us start with the symmetries associated with the
metric tensor� The 

�dimensional metric can be decomposed according to

ds� � g�� dx�dx� � e�����dx�� � V�dx���dx�� � V�dx
�� � ����

where the indices �� � label the 
	�dimensional coordinates and the factor
multiplying � is for convenience later� The massless modes correspond to
the x���independent parts of the 
	�dimensional metric g�� � the vector �eld
V� and the scalar �� Here the x���independent component of V� acts as a
gauge �eld associated with reparametrizations of the circle coordinate x��

with an arbitrary function ��x� of the 
	 remaining spacetime coordinates
x�� Speci�cally� we have x�� � x�� � ��x� and x� � x�� corresponding to

V��x� � V��x� � 
���x� � ����

The massive modes� which correspond to the Fourier modes in terms of x���
couple to this gauge �eld with a charge that is a multiple of

eKK �
��

L
� ����

Another symmetry of the lower�dimensional theory is more subtle to
identify��� In the previous subsection we identi�ed certain scale transfor�

�
There are various discussions of this symmetry in the literature� Its existence in
���dimensional supergravity was noted long ago �see� e�g� ��� 
��� and an extensive dis�
cussion can be found in ��
�� Our derivation here was alluded to in �
��� which deals
with isometries in N � 
 supersymmetric Maxwell�Einstein theories in D � �� � and 

dimensions�



��

mations of the D � 

 �elds� which did not leave the theory invariant
but could be used to adjust the coupling constant ���� In the compacti�ed
situation we can also involve the compacti�cation length into the dimen�
sional scaling� The integration over x�� introduces an overall factor L in
the action �we do not incorporate any L�dependent normalizations in the
Fourier sums� so that the 
	�dimensional and the 

�dimensional �elds are
directly proportional�� Therefore� the coupling constant that emerges in the

	�dimensional theory equals




����
�

L

����
� ����

and has the dimension �mass��� However� because of the invariance under
di
eomorphisms� L itself has no intrinsic meaning� It simply expresses the
length of the periodicity interval of x��� which itself is a coordinate without
an intrinsic meaning� Stated di
erently� we can reparameterize x�� by some
di
eomorphism� as long as we change L accordingly� In particular� we may
rescale L according to

L� e���L � ��	�

corresponding to a reparametrization of the 

�th coordinate�

x�� � e���x�� � ��
�

so that ��� remains invariant� Consequently we are then dealing with a
symmetry of the Lagrangian�

In the e
ective 
	�dimensional theory� the scale transformations ��
� are
thus suitably combined with the di
eomorphism ��
� to yield an invariance
of the Lagrangian� For the �elds corresponding to the 

�dimensional met�
ric� these combined transformations are given by��

ea� � e��ea� � �� � � 
�� � V� � e���V� � ����

The tensor gauge �eld CMNP decomposes into a �� and a ��rank tensor in

	 dimensions� which transform according to

C��� � e���C��� � C���� � e	�C���� � ����

The presence of the above scale symmetry is con�rmed by the resulting

	�dimensional Lagrangian for the massless �i�e�� x���independent� modes�

��Note that this applies to all Fourier modes� as they depend on x���L� which is
insensitive to the scale transformation�



��

Its purely bosonic terms read

L�� �



����

�
� �

�e e����R�e� ��� �
�e e���
�V� � 
�V��� ����

� �
��e e�����F���	�� � �

�e e������H����
�

� �
����

p
� ������
 C������ F�������	 F�
������


	
�

where H��� � �

�C����� is the �eld strength tensor belonging to the ��rank
tensor gauge �eld�

The above reduction allows us to discuss a number of characteristic fea�
tures� First of all� the metric tensor produces an extra vector and a scalar�
when dimensionally reducing the dimension by one unit� The scalar is in�
variant under certain shift symmetries� as shown above� which act multi�
plicatively on the other �elds� Secondly� tensor �elds generate tensor �elds
of a rank that is one unit lower� When this lower�rank �eld is a scalar
�eld �or equivalent to it by a duality transformation�� it will be subject
to shifts by a constant parameter� which is simply associated with a gauge
transformation that is linearly proportional to the extra higher�dimensional
coordinate� Because of this� these shifts must leave the Lagrangian invari�
ant� This last feature is still missing in the above discussion� as the rank��
tensor decomposes into a rank�� and a rank�� tensor� But when descend�
ing to lower dimensions than 
	� additional scalars will emerge and this
phenomenon will be present�

When consecutively reducing the dimension� this pattern repeats itself���

In this way� for each scalar �eld that is generated by the dimensional re�
duction� there is also an extra symmetry� The dimension of the isometry
group is thus �at least� equal to the dimension of the manifold� Further�
more it is easy to see that the symmetries indicated above act transitively
on the manifold� so that this manifold is homogeneous� The corresponding
algebra of these isometries is solvable and the rank of the algebra is equal
to r � 

 � D� where D is the spacetime dimension to which we reduce�
This is because its Cartan subalgebra is precisely associated with the scale
symmetries connected with the scalars that originate from the metric�

��For instance� in �
�� one considers the scale transformations �for the bosonic �elds��

e a� � e�� e a� �
V� � e�� V� �

C���� � e��� C���� �
C��� � e��� C��� �

�
��

while � remains invariant� These transformations change the Lagrangian by an overall
factor exp������ which can be absorbed into �����
� When compactifying one more di�
mension to a circle� these scale transformations yield another isometry in � spacetime
dimensions� that commutes with the scale transformations �

�

��
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D G H dim �G�� dim �H�
�� � � �� � � �

��A SO��� ���Z� � �� � � �

��B SL�
� SO�
� 
� � � 


� GL�
� SO�
� �� � � 


� E����� � SL�
��SL�
� U�
� ��� � � �
� E����� � SL��� USp��� 
�� �� � ��
� E����� � SO��� �� USp����USp��� ��� 
� � 
�
� E	��	� USp��� ��� 
� � �

� E
��
� SU��� �

 � �
 � ��


 E����� SO���� 
�� � �
� � �
�

TABLE �� Homogeneous scalar manifolds G�H for maximal supergravi�
ties in various dimensions� The type�IIB theory cannot be obtained from
reduction of ���dimensional supergravity and is included for complete�
ness� The di�erence of the dimensions of G and H equals the number of
scalar �elds� listed in Table ��

The above isometries not only leave the scalar manifold invariant but
the whole supergravity Lagrangian� In D � �� or �� these symmetries do not
leave the Lagrangian� but only the �eld equations invariant� The reason for
this is that the isometries act by means of a duality transformation on the
�eld strengths associated with the vector or ��rank gauge �eld� respectively�
They cannot be implemented directly on the gauge �elds themselves� The
presence of these duality invariances is a well�known feature of supergrav�
ity theories� which was �rst observed many years ago ���� �	� �
� ��� ����
However� it is easy to see that the scalar manifold �as well as the rest of the
theory� must possess additional symmetries� simply because the isometries
corresponding to the solvable algebra do not yet contain the automorphism
group HR of the underlying supermultiplet� We expect that HR is realized
as a symmetry� because the maximal supergravity theories have no addi�
tional parameters� so there is nothing that can break this symmetry� So we
expect an homogeneous space with an isometry group whose algebra is the
sum of the solvable algebra and the one corresponding to �part of� HR� A
counting argument �of the type �rst used in ��	�� then usually reveals what
the structure of the homogeneous space is� In Table � we list the isometry
and isotropy groups of these scalar manifolds for maximal supergravity in
dimensions � � D � 

� Earlier version of such tables can� for instance�
be found in ��� ���� A more recent discussion of these isometry groups can
be found in� for example� ���� ���� We return to this discussion and related
issues in section ��



��

We should add that it is generally possible to realize the group HR as a
local symmetry of the Lagrangian� The corresponding connections are then
composite connections� governed by the Cartan�Maurer equations� In such
a formulation most �elds �in particular� the fermions� do not transform
under the duality group� but only under the local HR group� The scalars
transform linearly under both the rigid duality group as well as under the
local HR group� After �xing a gauge� the isometries become nonlinearly
realized� The �elds which initially transform only under the local HR group�
will now transform under the duality group through �eld�dependent HR

transformations� This phenomenon is also realized for the central charges�
which transform under the group HR as we have shown in Table ��

����
� Frames and scales

The Lagrangian ���� does not contain the standard Einstein�Hilbert term
for gravity� while a standard kinetic term for the scalar �eld � is lacking�
This does not pose a serious problem� In this form the gravitational �eld
and the scalar �eld are entangled and one has to deal with the scalar�
graviton system as a whole� To separate the scalar and gravitational degrees
of freedom� one may apply a so�called Weyl rescaling of the metric g�� by an
appropriate function of �� In the case that we include the massive modes�
this rescaling may depend on the extra coordinate x��� In the context of
Kaluza�Klein theory this factor is therefore known as the �warp factor�� For
these lectures two di
erent Weyl rescalings are particularly relevant� which
lead to the so�called Einstein and the string frame� respectively� They are
de�ned by

ea� � e����� �ea��Einstein � ea� � e���� �ea��string � ����

After applying the �rst rescaling ���� to the Lagrangian ���� one obtains
the Lagrangian in the Einstein frame� This frame is characterized by a stan�
dard Einstein�Hilbert term and by a graviton �eld that is invariant under
the scale transformations �������� The corresponding Lagrangian reads��

LEinstein
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��Note that under a local scale transformation ea� � e�ea�� the Ricci scalar in D
dimensions changes according to

R� e���
h
R � 
�D� ��D�	� � �D� ���D� 
�g�� 	� 	� 

i
�
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Supergravity theories are usually formulated in this frame� where the isome�
tries of the scalar �elds do not act on the graviton�

The second rescaling ���� leads to the Lagrangian in the string frame�

Lstring
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This frame is characterized by the fact that R and �H����
� have the same

coupling to the scalar �� or� equivalently� that g�� and C���� transform
with equal weights under the scale transformations �������� In string the�
ory � coincides with the dilaton �eld that couples to the topology of the
worldsheet and whose vacuum�expectation value de�nes the string coupling
constant according to gs � exp�h�i�� We shall return to this in section ��
but here we already indicate the signi�cance of the dilaton factors in the
Lagrangian above� The metric g�� � the antisymmetric tensor C���� and the
dilaton � always arise in the Neveu�Schwarz sector and couple universally
to e���� On the other hand the vector V� and the ��form C��� describe
Ramond�Ramond �R�R� states and the speci�c form of their vertex opera�
tors forbids any tree�level coupling to the dilaton ���� 
��� In particular the
Kaluza�Klein gauge �eld V� corresponds in the string context to the R�R
gauge �eld of type�II string theory� The in�nite tower of massive Kaluza�
Klein states carry a charge quantized in units of eKK� de�ned in ����� In the
context of 
	�dimensional supergravity� states with a R�R charge are soli�
tonic� In string theory� the R�R charges are carried by the D�brane states�

As we already discussed in the previous section� Newton�s constant is
only de�ned after a choice of the metric in the ground state is made� Ex�
panding the metric in the Einstein frame around � 
�� one obtains from
�������

������
physical � ���� �

�� � ����

while expanding the metric in the string frame around � 
�� leads to

������
physical � ���� �

�� e�h�i � ��	�

Note that one cannot expand both metrics simultaneously around � 
�� �
For later purposes let us note that the above discussion can be general�

ized to arbitrary spacetime dimensions� The Einstein frame in any dimen�
sion is de�ned by a gravitational action that is just the Einstein�Hilbert
action� whereas in the string frame the Ricci scalar is multiplied by a dila�
ton term exp������ as in ���� and ����� respectively� The Weyl rescaling



��

which connects the two frames is given by�

�ea��string � e����D��� �ea��Einstein � ��
�

In arbitrary dimensions ���� and ��	� read

Einstein frame  ���D�physical � ��D ����D��� �

string frame  ���D�physical � ��D ����D��� e�h�i � ����

This frame dependence does not only apply to ��D but to any dimensionful
quantity� For example� a mass� when measured in the same !at metric but
speci�ed in the two frames� is related by

M string � e��h�i��D���MEinstein � ����

Of course this is consistent with the relation ����� The physical masses in
the above relation depend again on the value of �� In the remainder of this
subsection we choose � � 
 for convenience�

Let us now return to 

�dimensional supergravity with the 

�th coor�
dinate compacti�ed to a circle so that 	 � x�� � L� As we stressed already�
L itself has no intrinsic meaning and it is better to consider the geodesic
radius of the 

�th dimension� which reads

R�� �
L

��
e�h�i�� � ����

This result applies to the frame speci�ed by the 

�dimensional theory���
In the string frame� the above result reads

�R���
string �

L

��
eh�i � ����

It shows that a small 

�th dimension corresponds to small values of exph�i
which in turn corresponds to a weakly coupled string theory� We come back
to this crucial observation in section �� Observe that L is �xed in terms of
��� and ��� �cf� ������

From the 

�dimensional expressions�

EM
a 
M � e�a �
� � V� 
��� � EM

�� 
M � e����� 
�� � ����

where a and � refer to the 
	�dimensional Lorentz and world indices� we
infer that� in the frame speci�ed by the 

�dimensional theory� the Kaluza�
Klein masses are multiples of

MKK �



R��
� ����

��This is the frame speci�ed by the metric given in �
��� which leads to the Lagrangian
�
���



��

Hence Kaluza�Klein states have a mass and Kaluza�Klein charge �cf� �����
related by

MKK � jeKKj e��h�i�� � ����

In the string frame� this result becomes

�MKK�string � jeKKj e�h�i � ����

Massive Kaluza�Klein states are always BPS states� meaning that they are
contained in supermultiplets that are �shorter� than the generic massive
supermultiplets because of nontrivial central charges� The central charge
here is just the 

�th component of the momentum� which is proportional
to the Kaluza�Klein charge�

The surprising insight that emerged in recent years� is that the Kaluza�
Klein features of 

�dimensional supergravity have a precise counterpart
in string theory ���� ��� ���� There one has nonperturbative �in the string
coupling constant� states which carry R�R charges� We return to this phe�
nomenon in section ��

��	� NONMAXIMAL SUPERSYMMETRY

In previous subsections we discussed a large number of supermultiplets� Fur�
thermore� in Fig� 
 we presented an overview of all supergravity theories
in spacetime dimensions � � D � 

 with Q � ��� 
�� � or � supercharges�
In this section we summarize a number of results on nonmaximal super�
symmetric theories with Q � 
� supercharges� which are now restricted to
dimensions D � 
	�

For Q � 
� the automorphism group HR is smaller� Table 
	 lists this
group in various dimensions and shows the �eld representations for the
vector multiplet in dimension � � D � 
	� This multiplet comprises � � �
physical degrees of freedom�

We also consider the Q � 
� supergravity theories� The Lagrangian can
be obtained by truncation of ����� However� unlike in the case of maxi�
mal supergravity� we now have the option of introducing additional matter
�elds� For Q � 
� the matter will be in the form of vector supermul�
tiplets� possibly associated with some nonabelian gauge group� Table 


summarizes Q � 
� supergravity for dimensions � � D � 
	� In D � 
	
dimensions the bosonic terms of the supergravity Lagrangian take the form
�����

L�� �
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TABLE ��� Field content for maximal super�Maxwell
theories in various dimensions� All supermultiplets con�
tain a gauge �eld A�� scalars � and spinors 
� In D � 

dimensions the vector �eld is dual to a scalar� The ��

representation of SU��� is a selfdual 
�rank tensor�

where� for convenience� we have included a single vector gauge �eld� rep�
resenting an abelian vector supermultiplet� A feature that deserves to be
mentioned� is that the �eld strength H��� associated with the ��rank gauge
�eld acquires a Chern�Simons term A
�
�A��� Chern�Simons terms play an
important role in the anomaly cancellations of this theory� Note also that
the kinetic term for the Kaluza�Klein vector �eld in ����� depends on ��
unlike the kinetic term for the matter vector �eld in the Lagrangian above�
This re!ects itself in the extension of the symmetry transformations noted
in ���� ����

ea� � e��ea� � �� � � 
�� � C���� � e	�C���� � A� � e��A� � ��
�

where A� transforms di
erently from the Kaluza�Klein vector �eld V��
In this case there are three di
erent Weyl rescalings that are relevant�

namely

ea� � e����� �ea��Einstein � ea� � e���� �ea��string �

ea� � e��	 �ea��string
�
� ����

It is straightforward to obtain the corresponding Lagrangians� In the Ein�
stein frame� the graviton is again invariant under the isometries of the scalar
�eld� The bosonic terms read

LEinstein
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D HR graviton p � �� p � � p � �
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 SO��� � �k

TABLE ��� Bosonic �elds of nonmaximal supergravity with
Q � ��� In � dimensions type�A and type�B correspond to
����� and �
��� supergravity� Note that� with the exception of
the �B and the ��dimensional theory� all these theories contain
precisely one scalar �eld� In D � � dimensions� the SU��� trans�
formations cannot be implemented on the vector potentials� but
act on the �abelian� �eld strengths by duality transformations�
In D � 
 dimensions supergravity is a topological theory and
can be coupled to scalars and spinors� The scalars parameterize
the coset space SO��� k��SO����SO�k�� where k is an arbitrary
integer�

The second Weyl rescaling leads to the following Lagrangian�

Lstring
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which shows a uniform coupling with the dilaton� This is the low�energy
e
ective Lagrangian relevant to the heterotic string� Eventually the matter
gauge �eld has to be part of an nonabelian gauge theory based on the group
SO���� or E� � E�� in order to be anomaly�free�

Finally� the third Weyl rescaling yields

Lstring�
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Here the dilaton seems to appear with the wrong sign� As it turns out�
this is the low�energy e
ective action of the type�I string� where the type�
I dilaton must be associated with ��� This will be further elucidated in
section ��



��

�� String theories in various dimensions

���� PERTURBATIVE STRING THEORIES IN D 
 ��

The perturbative expansion� In string theory the fundamental objects are
one�dimensional strings which� as they move in time� sweep out a ��dimen�
sional worldsheet ( ����� Strings can be open or closed and their world�
sheet is embedded in some higher�dimensional target space which is iden�
ti�ed with a Minkowskian spacetime� States in the target space appear as
eigenmodes of the string and their scattering amplitudes are generalized by
appropriate scattering amplitudes of strings� These scattering amplitudes
are built from a fundamental vertex� which for closed strings is depicted in
Fig� �� It represents the splitting of a string or the joining of two strings and

� gs

Figure �� The fundamental closed string vertex�

the strength of this interaction is governed by a dimensionless string cou�
pling constant gs� Out of the fundamental vertex one composes all possible
closed string scattering amplitudes A� for example the four�point amplitude
shown in Fig� �� The expansion in the topology of the Riemann surface

� � � � �

Figure �� The perturbative expansion of string scattering amplitudes� The order of gs
is governed by the number of holes in the world sheet�

�i�e� the number of holes in the surface� coincides with a power series ex�
pansion in the string coupling constant formally written as

A �
�X
n��

g�
s A�n� � ����



��

where A�n� is the scattering amplitude on a Riemann surface of genus n
and ��(� is the Euler characteristic of the Riemann surface

��(� �



��

Z
�
R��� � �� �n� b � ����

R��� is the curvature on ( and b the number of boundaries of the Riemann
surface �for the four�point amplitude of Fig� � one has b � �����

In all string theories there is a massless scalar �eld � called the dila�
ton which couples to

p
hR��� and therefore its vacuum�expectation value

determines the size of the string coupling� one �nds ���� ���

gs � eh�i � ����

gs is a free parameter since � is a !at direction �a modulus� of the e
ective
potential� Thus� string perturbation theory is de�ned in that region of the
parameter space �which is also called the moduli space� where gs � 
 and
the tree�level amplitude �genus�	� is the dominant contribution with higher�
loop amplitudes suppressed by higher powers of gs� Until three years ago
this was the only regime accessible in string theory�

The spacetime spectrum of the string� The propagation of a free string
�gs � 	� is governed by the ��dimensional action

Sfree � � 


����

Z
�

iX

���� �� 
iX���� �� 
�� � ����

where 
i denotes 
�
� and 
�
� � Here � parameterizes the spatial direction
on ( while � denotes the ��dimensional time coordinate� The coordinates
of the D�dimensional target spacetime in which the string moves� are rep�
resented by X�� with � � 	� � � � � D � 
� in terms of the ��dimensional �eld
theory they appear as D scalar �elds� For S to be dimensionless �� has
dimension �length�� 	 �mass���� it is the fundamental mass scale of string
theory which is also denoted by Ms with the identi�cation �� � M��

s � The
mass of all perturbative string states is a multiple of Ms� Just as the cou�
pling constant � in the supergravity Lagrangians in section �� this scale
has no intrinsic meaning and must be �xed by some independent criterion�
Demanding that string theory contains Einstein gravity as its low�energy
limit relates the characteristic scales of the two theories� By comparing for
example physical graviton�graviton scattering amplitudes in both theories

��For open strings di�erent diagrams contribute at the same order of the string loop
expansion� See �
�� for further details�



��

one �nds in the following expression for Newton�s constant in D dimensions
������	

���D�physical � ��
�D�����

e�h�i � ��	�

where we dropped convention�dependent numerical proportionality factors�
The equations of motion of the action ���� are given by

�
�� � 
�	�X� � 	 � ��
�

with the solutions

X� � X�
L�� � �� � X�

R�� � �� � ����

A closed string satis�es the boundary condition X���� � X�������� which
does not mix X�

L and X�
R and leaves them as independent solutions� This

splitting into left �L� and right �R� moving �elds has the consequence that
upon quantizing the ��dimensional �eld theory� also the Hilbert space splits
into a direct product H � HL 
 HR where HL�HR� contains states built
from oscillator modes of XL�XR�� These states also carry a representation
of the D�dimensional target space Lorentz group and thus can be identi�ed
as perturbative states in spacetime of a given spin and mass��


In open string theory one has a choice to impose at the end of the open
string either Neumann �N� boundary conditions� 
	X

� � 	� or Dirichlet
�D� boundary conditions� X� � constant� The boundary conditions mix
left� and right�movers and the product structure of the closed string is not
maintained� As a consequence a perturbative spectrum of states is built
from a single Hilbert space� Neumann boundary conditions leave the D�
dimensional Lorentz invariance una
ected�

Dirichlet boundary conditions� on the other hand� lead to very di
erent
types of objects and a very di
erent set of states �D�branes� in spacetime
��	�� In this case the end of an open string is constrained to only move in
a �xed spatial hyper�plane� This plane must be regarded as a dynamical
object with degrees of freedom induced by the attached open string� A
careful analysis shows that the corresponding states in spacetime are not
part of the perturbative spectrum but rather correspond to nonperturbative
solitonic type excitations��� It is precisely these states which dramatically

�	The relation ���� holds in arbitrary dimensions with eh�i being the string coupling
constant for a string moving in D spacetime dimensions� Later in these lectures we
consider compacti�cations of string theory and then there is a volume�dependent relation
between the string couplings de�ned in di�erent dimensions� This relation is discussed in
appendix B�

�
These are perturbative states since the quantization procedure is a perturbation
theory around the free string theory with gs � ��

��They are nonperturbative in that their mass �or rather their tension for higher�
dimensional D�branes� goes to in�nity in the weak coupling limit gs � ��



��

a
ect the properties of string theory in its nonperturbative regime� These
aspects will be subject of section ����

So far we discussed the free string governed by the action ����� its inter�
actions are incorporated by promoting Sfree to a nonlinear ��dimensional
��model� The amplitude A can be interpreted as a unitary scattering am�
plitude in the target space whenever this ��dimensional �eld theory is con�
formally invariant� The action is found to be

S � � 
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Z
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where g���X� is the metric�� of the target space� b���X� is the antisymmet�

ric target�space tensor and R��� is the curvature scalar of the ��dimensional
worldsheet (� The target�space �eld ��X� represents a scalar coupling and
corresponds to the dilaton� since the coe�cient of its constant vacuum�
expectation value h�i is the Euler number ��(� � �

��

R
� R

���� The ellipses
denote further terms depending on the type of string theory and the number
of spacetime dimensions�

The spacetime properties of a string theory signi�cantly change once
one introduces supersymmetry on the worldsheet� In two dimensions the
irreducible supercharges are Majorana�Weyl spinors �see Table 
�� In ad�
dition there are independent left� and right�moving supercharges QL� QR�
so that in general one can have p supercharges QL and q supercharges QR�
this is also termed �p� q� supersymmetry� A supersymmetric version of the
action ���� requires the presence of Majorana�Weyl worldsheet fermions
�� with appropriate couplings� for example a scalar supermultiplet of �
� 	�
supersymmetry contains the �elds �XL�� � ��� �L�� � ���� Depending on
the amount of worldsheet supersymmetry one de�nes the di
erent closed

string theories the bosonic string� the superstring and the heterotic string
�see Table 
���

For open string theories the left� and right�moving worldsheet super�
charges are not independent� One can either have a bosonic open string
�with no worldsheet supersymmetry� or an open superstring with one su�
percharge which is a linear combination of QL and QR� The latter string
theory is called type�I� It contains �unoriented� open and closed strings
with SO���� Chan�Paton factors coupling to the ends of the open string�

��As we mentioned already in subsection 
��� the metric g���X� in ��
� is the metric
in the string frame�



��

closed worldsheet Dmax

string theories supersymmetry

bosonic string ��� �� 
�

superstring ��� �� ��

heterotic string ��� �� ��

TABLE �
� The closed�string theories� their
worldsheet supersymmetry and the maximal
possible spacetime dimension�

The bosonic string �open or closed� is tachyonic and cannot accommo�
date spacetime fermions� for these reasons we omit it from our subsequent
discussion� The superstring� the heterotic string and the type�I string can
all be tachyon�free and do have spacetime fermions in the massless spec�
trum� In addition� in most cases they are also spacetime supersymmetric
and contain �at least� a massless gravitino� There are also tachyon�free non�
supersymmetric string theories ��
� but they have a dilaton tadpole at one�
loop and thus do not seem to correspond to stable vacuum con�gurations���

For this reason we solely focus on supersymmetric string theories hence�
forth�

The worldsheet fermions �� can have two distinct type of boundary
conditions when transported around the closed string�

����� �



����� � ��� Ramond �R� �

����� � ��� Neveu�Schwarz �NS� �
����

Consequently the states of the closed string Hilbert space can arise in four
di
erent sectors of fermion boundary conditions 

NSL 
 NSR
RL 
 RR

�
spacetime bosons

NSL 
 RR

RL 
 NSR

�
spacetime fermions �

The �rst two sectors contain the spacetime bosons� while the last two sec�
tors generate spacetime fermions� The bosons from the R�R sector are built
from bi�spinors and thus the representation theory of the Lorentz group con�
strains these bosons to always be antisymmetric Lorentz tensors of varying
rank� Furthermore� in the e
ective action and in all scattering processes

�
For a recent discussion of non�supersymmetric string theories� see ��
��
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these tensors can only appear via their �eld strength and thus there are no
states in perturbative string theory which carry any charge under the anti�
symmetric tensors in the R�R sector� However� it turns out that this is an
artifact of perturbation theory and states carrying R�R charge do appear
in the nonperturbative spectrum� they are precisely the states generated
by appropriate D�brane con�gurations ��	��

Conformal invariance on the worldsheet �or equivalently unitarity in
spacetime� imposes a restriction on the maximal number of spacetime di�
mensions and the spacetime spectrum� All supersymmetric string theories
necessarily have D � 
	 and they are particularly simple in their maximal
possible dimension D � 
	���

In D � 
	 there are only �ve consistent spacetime supersymmetric
string theories type�IIA� type�IIB� heterotic E��E� �HE��� heterotic SO����
�HSO� and the type�I SO���� string� The �rst two have Q � �� super�
charges and thus there is a unique massless multiplet in each case with a
�eld content given in Table �� As we already indicated perturbative string
theory distinguishes between states arising in the NS�NS sector from states
of the R�R sector in that the coupling to the dilaton is di
erent� In the
type�IIA theory one �nds the graviton g�� � an antisymmetric tensor b��
and the dilaton � in the NS�NS sector while an abelian vector V� and a
��form C��� appear in the R�R sector� The corresponding low�energy ef�
fective Lagrangian was already given in section ����
� In type�IIB one has
exactly the same states in the NS�NS sector� but in the R�R sector one has
a ��form b��� � an additional scalar �� and a ��form c����	 whose �eld strength
is selfdual� Its �eld equations can be found in ����

The other three string theories all have Q � 
� supercharges� In this
case� the supersymmetric representation theory alone does not completely
determine the spectrum� The gravitational multiplet is unique �see Ta�
ble 

�� but the gauge group representation of the vector multiplets �see
Table 
	� is only �xed if also anomaly cancellation is imposed� The low�
energy e
ective Lagrangian for the two heterotic theories is displayed in
���� and ����� with the abelian vector appropriately promoted to vector
�elds of E� � E� or SO����� respectively� The type�I string has the same
supersymmetry but b�� arises in the R�R sector and thus has di
erent �per�
turbative� couplings to the dilaton� The corresponding low�energy e
ective
Lagrangian is given by ���� with � replaced by ��� In Table 
� we sum�
marize the bosonic massless spectra for the �ve string theories� which is in

��For closed strings an additional constraint arises from the requirement of modular
invariance of one�loop amplitudes which results in an anomaly�free spectrum of the cor�
responding low�energy e�ective theory ��
�� For open strings anomaly cancellation is a
consequence of the the absence of tadpole diagrams �
���



��

type Q bosonic spectrum

IIA 

 NS�NS g�� � b�� � �

R�R V�� C���

IIB 

 NS�NS g�� � b�� � �

R�R c����	� b
�
�� � �

�

HE� �� g�� � b�� � �

A� in adjoint of E� � E�
HSO �� g�� � b�� � �

A� in adjoint of SO�

�

I �� NS�NS g�� � �

R�R b��

open string A� in adjoint of SO�

�

TABLE �
� Supersymmetric string theories in D � ��
and their �elds describing the bosonic massless spectrum�

direct correspondence with some of the material collected in the Tables ��

	 and 

� presented in section ��

���� CALABI�YAU COMPACTIFICATIONS AND PERTURBATIVE

DUALITIES

So far we discussed the various string theories in 
	 spacetime dimen�
sions� Lower�dimensional theories can be obtained by compactifying the
D � 
	 theories on an internal� �curled up� compact manifold Y ��� Uni�
tarity in spacetime requires Y to be a Calabi�Yau manifold ������� Calabi�
Yau manifolds are Ricci�!at K)ahler manifolds of vanishing �rst Chern class
�c��Y � � 	� with holonomy group SU�M� where M is the complex dimen�
sion of Y � A one dimensional �complex� Calabi�Yau manifold is topologi�
cally always a torus T � and toroidal compacti�cations leave all supercharges
intact� For M � � all Calabi�Yau manifolds are topologically equivalent to
the ��dimensional K� surface ���� and as a consequence of the nontrivial
SU��� holonomy half of the supercharges are broken� For M � � there exist

��There are also string vacua which cannot be viewed as a compacti�cation of the
���dimensional string theories� Their duality properties have been much less investigated
and for a lack of space we neglect them in our discussion here and solely focus on string
vacua with a geometrical interpretation�

��By a slight abuse of terminology we include in our discussion here also the circle T ��
which strictly speaking is not a Calabi�Yau manifold but does give unitary S�matrices�



��

D
Q

10

9

8

7

6

5

4
N=8 N=2N=4

IIB IIA HE8 HSO I

N=1

481632

(1,0)(1,1)(2,0)(2,2)

Figure �� Calabi�Yau compacti�cations of the ���dimensional string theories� The solid
line ��� denotes toroidal compacti�cation� the dashed line ���� denotes K
 compacti��
cations and the dotted line �� � �� denotes Y� compacti�cations� Whenever two compact�
i�cations �two lines� terminate in the same point� the two string theories are related by
a perturbative duality� �A line crossing a circle is purely accidental and has no physical
signi�cance��

many topologically distinct Calabi*Yau threefolds Y� and they all break
�
� of the supercharges ����� We summarize this situation in the following
table 

M � 
  T � breaks no supercharges
M � �  K� breaks 
�� of the supercharges
M � �  Y� breaks ��� of the supercharges

The di
erent theories obtained by compactifying on such Calabi*Yau
manifolds are depicted in Fig� �� Note that di
erent compacti�cations can
have the exact same representation of supersymmetry�



�	

����
� Toroidal compacti
cations and T 	duality�
Compactifying the 
	�dimensional string theories on an n�dimensional torus
Tn leads to string theories with D � 
	 � n� Supersymmetry remains
unbroken and thus one moves down vertically in the D�Q plane of Fig� ��
The massless spectrum can be obtained by dimensional reduction of the
appropriate 
	�dimensional theories� For simplicity we start by considering
closed string theories with one compact dimension which we take to be a
circle T �� In this case there are nine spacetime coordinates X� satisfying
the boundary conditions��

X� �� � ��� �� � X� �� � 	� �� � ����

and one internal coordinate X��� which can wrap m times around the T �

of radius R�

X�� �� � ��� �� � X�� �� � 	� �� � ��mR � ����

The massless spectrum of the ��dimensional theory includes the two abelian
Kaluza�Klein gauge bosons g� �� and b� �� as well as a massless scalar �eld
g���� which is a !at direction of the e
ective potential and whose vacuum�
expectation value parameterizes the size of the internal T � �cf� section ����
The appearance of !at directions is a generic feature of string compacti��
cations and such scalar �elds are called moduli� For the case at hand the
moduli space is one�dimensional and hence there is a one�parameter fam�
ily of inequivalent string vacua��� The boundary condition ���� leads to a
quantization of the internal momentum component p�� � k�R and a whole
tower of massive Kaluza*Klein states labelled by the integer k� In addition
there are also massive winding modes labelled by m and altogether one
�nds a mass spectrum

M� � �
��P �

L � P �
R� � � � � � PL�R �

k

R
� mR

��
� ����

The ellipses stand for R�independent contributions of the oscillator modes�
The mass spectrum is invariant under the exchange of R� ���R if simul�
taneously one also exchanges m � k� This Z� invariance of the spectrum
is the �rst example of a T�duality �����

These considerations can be generalized to higher�dimensional toroidal
compacti�cations on a torus Tn ����� The boundary conditions on the n
compact coordinates are

X i �� � ��� �� � X i �� � 	� �� � ��Ri � ����

��Throughout this section the indices �� � always denote the uncompacti�ed spacetime
directions�

��The di�erent solutions of a given string theory are often referred to as the vacuum
states of that string theory or simply as the string vacua�



�


where Ri �
P

I mIe
i
I are vectors on an n�dimensional lattice with basis

eiI �
�	 The momenta pi live on the dual lattice and one �nds

M� � �
��P �

L � P �
R� � � � � � P i

L�R � pi � Ri

��
� ����

Modular invariance constrains the lattice to be an even� selfdual Lorentzian
lattice� The inequivalent lattices of this type can be labelled by points in
the coset space ����

M �
SO�n� n�

SO�n�� SO�n�

�
�T � ��	�

where

�T � SO �n� n� Z� ��
�

is the T*duality group identifying equivalent lattices or in other words
equivalent toroidal compacti�cations� The mass formula ���� �as well as
the entire partition function� shares the invariance under �T �

Type	II compacti
ed on Tn� Toroidal compacti�cations of type�II string
theory all have the maximal number of supercharges Q � ��� The asso�
ciated supergravities have been discussed in section ��� and for each of
these cases there is a unique gravitational multiplet containing all massless
�elds��
 However in perturbative string theory there is a clear distinction
between states arising from the NS�NS versus the R�R sector� In the NS�NS
sector one �nds the Kaluza*Klein gauge bosons g�i and b�i of a gauge group
G � U�
��n� the dilaton � and the moduli gij � bij� the latter are precisely
the n� coordinates of the toroidal moduli space M given in ��	�� The dila�
ton and the scalars of the R�R sector are not part of this M� However� all
scalar �elds * NS�NS and R�R * reside in the same gravitational multiplet
and so the supergravity considerations discussed in section ��� suggest that
they combine into a larger moduli space with nontrivial mixings� For a long
time this state of a
airs seemed incompatible with perturbative string the�
ory since the speci�c form of the vertex operator of the R�R scalars implies

�	The index i runs over the internal dimensions� i�e� i � �� � � � � n � ���D�
�
We brie!y mentioned in section 
�
�
 that below D � �� the type�IIA and type�IIB

supergravities are equivalent� A careful analysis in D � � reveals a !ip of the chiralities
of the space�time fermions in the limits R � � versus R � � and thus the non�chiral
type�IIA and the chiral type�IIB theory can be viewed as two distinct limits of one and
the same type�II theory in D � � ���� ���� One also often refers to this fact by stating
that in D � � type�IIA and type�IIB are T�dual to each other in that type�IIA at a large
compacti�cation radius is equivalent to type�IIB at a small compacti�cation radius and
vice versa�
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that they can have no nontrivial couplings to the NS�NS scalars ��	�� How�
ever� nonperturbative corrections alter this conclusion and by now it is be�
lieved that taking perturbative and nonperturbative contributions together
exactly reproduces the geometrical structures suggested by supergravity�
We will return to this point in more detail in section ����

Heterotic string compacti
ed on Tn� The heterotic string compacti�ed on
Tn has 
� supercharges and there are n additional scalars Aa

i transforming
in the adjoint representation of E� �E� or SO����� However� only the 
�n
scalars in the Cartan subalgebra are !at directions and their �generic� vac�
uum expectation values break the non�abelian gauge symmetry to U�
��	�
Together with the �n Kaluza*Klein gauge bosons g�i and b�i they form��

the total gauge group G � U�
��n��	� On special subspaces of the moduli
space there can be nonabelian enhancement of the U�
��	� at most up to
the original E� � E� or SO���� �at least perturbatively��

The 
�n scalars in the Cartan subalgebra parametrize together with
the toroidal moduli gij � bij and the dilaton � the n�n� 
�� � 
 dimensional
moduli space ����

M � R� � SO�n� n� 
��

SO�n�� SO�n � 
��

�
�T � ����

with the T*duality group

�T � SO �n� n � 
�� Z� � ����

The toroidal moduli all reside in n � 
� �abelian� vector multiplets and
the heterotic dilaton is the unique scalar in the gravitational multiplet �see
Table 

�� Supergravity implies that there can be no mixing between the
dilaton and the other n�n� 
�� scalars and thus the dilaton spans the R�

component of M��� Locally� the moduli space is uniquely determined by
supersymmetry ���� and so already from this point of view the moduli space
���� is likely to be exact�

It has also been shown that below ten dimensions the heterotic E��E�

theory and the heterotic SO���� theory are continuously connected in the
moduli space� That is� the two theories sit at di
erent points of the same

��n � �� of these vectors reside in vector multiplets while the remaining n vectors are
part of the gravitational multiplet �see Tables �� and ����

��In D � � the antisymmetric tensor in the gravitational multiplet is dual to a pseu�
doscalar and thus can be combined with the dilaton into one complex scalar �eld� Since
this scalar still resides in the gravitational multiplet it does not mix with the other toroidal
moduli and again spans a separate component of the moduli space which is found to be
locally equivalent to the SU��� ���U��� coset space� which replaces R� in ��
��
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moduli space of one and the same heterotic string theory ����� The continu�
ous path which connects the two theories in D � � involves a transformation
R� ���R and hence they are also called T*duals of each other�

Type	I compacti
ed on Tn� Toroidal compacti�cations of the type�I the�
ory are slightly more involved� Locally the moduli space is dictated by
supersymmetry to be the coset R��SO�n� n�
���SO�n��SO�n�
�� but
perturbatively there is no T*duality symmetry and thus the global moduli
space does not coincide with ����� However� once D�branes are included as
possible open string con�gurations� type�I theories also have T*duality and
the moduli space is given by ���� and ���� �

� ��� �	�� In fact� establishing
T*duality was a guiding motive in the original discovery of D�branes �

��
From the open string point of view T*duality is not a perturbative symme�
try since it necessarily involves the presence of solitonic�like excitations�

������ K� compacti
cations

So far we discussed toroidal compacti�cations which leave all supercharges
intact� Compacti�cations on a ��dimensional K� surface break half of the
supercharges and hence one moves one column to the right and four rows
down in the D�Q plane of Fig� �� the resulting string theories therefore
have D � � and either 
� or � supercharges� The massless modes of K�
compacti�cations arise from nontrivial deformations of the metric and from
nontrivial harmonic forms on the K� surface ����� The moduli space of
nontrivial metric deformations is known to be ���dimensional and given by
the coset space

M � R� � SO��� 
��

SO���� SO�
��
� ����

where the second factor is the Teichm)uller space for Einstein metrics of
unit volume and the �rst factor is associated with the size of the K��

On any �complex� K)ahler manifold� the di
erential forms can be de�
composed into �p� q��forms with p holomorphic and q antiholomorphic dif�
ferentials� The harmonic �p� q��forms form the cohomology groups Hp�q of
dimension hp�q and for K� one has a Hodge diamond

h���

h��� h���

h��� h��� h���

h��� h���

h���

�



	 	


 �	 

	 	




� ����

Thus there are �� harmonic p� q � �*forms which represent the nontrivial
deformations of an antisymmetric tensor bij � On a ��dimensional manifold



��

an antisymmetric tensor can be constrained to a selfdual or an anti�selfdual
tensor and on K� one �nds that the �� ��forms decompose into � selfdual
and 
� anti�selfdual ��forms ����� For later reference we also record that the
Euler number of K� is found to be

��K�� �
X
p�q

���p�q hp�q � ��� ����

Type	IIA compacti
ed on K� Compactifying the type�IIA string on K�
breaks half of the �� �non�chiral� supercharges in D � 
	 and thus results
in a �
� 
� supergravity in D � � coupled to vector multiplets which we
already discussed in section ������ The massless bosonic modes of such
compacti�cations are given by g�� � b�� � �� gij � bij all of which arise from
the NS�NS sector� gij denotes the �� zero modes of the metric on K� and bij
are the �� harmonic ��forms��� In the R�R sector one �nds V�� C��� and ��
vectors C�ij � In D � � a ��form is dual to a vector �eld so that altogether
there are �� vector �elds in the R�R sector and �
 scalars in the NS�NS
sector� The multiplets of �
� 
� supergravity are discussed in section ������
and one infers that the bosonic states of the K� compacti�cation �ll out
one gravity multiplet and �	 vector multiplets�

All �
 scalars arise in the NS�NS sector� The deformations of the metric
span the moduli space given in ����� Together with the �� harmonic ��forms
they combine into the �
�dimensional moduli space ��	� �
�

M � R� � SO��� �	�

SO���� SO��	�

�
�T � ����

where the factor R� is again parameterized by the single scalar in the grav�
itational multiplet which can be identi�ed with the ��dimensional dilaton�
The second coset factor is spanned by the scalar �elds of the vector multi�
plets� Similar to toroidal compacti�cations one �nds perturbative identi��
cations of the parameter space which are directly related to the properties
of the underlying ��dimensional conformal �eld theory� Such equivalences
are also termed T �duality and for the case at hand the T*duality group is
found to be ��	� �
�

�T � SO��� �	� Z� � ����

Type	IIB compacti
ed on K�� Compactifying the type�IIB string on K�
breaks half of the �� chiral supercharges in D � 
	 and thus results in
a ��� 	� supergravity in D � � coupled to tensor multiplets which we

�
Contrary to toroidal compacti�cations there are no massless vectors g�i or b�i since
there are no one�forms on K
 �cf� ������
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already discussed in section ������ The massless bosonic modes of such
compacti�cations are given by g�� � b�� � �� gij� bij in the NS�NS sector and
b��� � �

�� b�ij� C���	� C��ij in the R�R sector� both bij and b�ij are �� harmonic
��forms on K�� In D � � a ��form tensor C���	 describes only one phys�
ical degree of freedom and is dual to a real scalar� Furthermore� there
are �� spacetime tensors C��ij � proportional to the �� harmonic forms
on K�� Since C is chosen selfdual in D � 
	� the tensor �elds C��ij are
selfdual or anti�selfdual and their selfduality phase is correlated with the
�anti�selfduality of the corresponding K� harmonic forms� Hence the C��ij

decompose into � selfdual and 
� anti�selfdual D � � antisymmetric tensors�
Altogether there are thus �
 NS�NS and �� R�R scalars and � selfdual and
�
 anti�selfdual R�R antisymmetric tensors� The corresponding supermul�
tiplets were already discussed in section ������� we immediately infer that
the massless modes arising from the K� compacti�cation combine into one
gravitational and �
 tensor multiplets of ��� 	� supersymmetry� This theory
being chiral is potentially anomalous� however� it was shown in �
�� that
precisely this combination of multiplets is anomaly free�

The �
 scalars of NS�NS sector span the same moduli space as in ����
and similar to toroidal compacti�cations the scalars from the R�R can�
not have any nontrivial mixing with the NS�NS scalars at the perturbative
level� However� the ��� 	� gravitational multiplet contains no scalar at all
but rather all scalars appear in the �
 tensor multiplets� On the basis of
supersymmetry it was conjectured ���� that all 
	� scalars locally parame�
terize the moduli space

M �
SO��� �
�

SO���� SO��
�
� ����

Indeed� once nonperturbative corrections of string theory are taken into ac�
count this moduli space is generated� we return to this point in section ������

The heterotic string compacti
ed on K� The heterotic string compacti�
�ed on K� has � unbroken supercharges or �
� 	� supergravity in D � �
coupled to vector�� tensor� and hypermultiplets� Contrary to the previously
discussed type�II compacti�cations this heterotic string theory does not
uniquely �x the massless spectrum but instead one �nds distinct families
of string vacua with di
erent contents of massless states��� However� �
� 	�
supersymmetry is chiral and thus gauge and gravitational anomaly cancel�
lation do impose some constraints on the allowed spectra of supermultiplets�
One �nds the condition ����

nH � nV � ��nT � ��� � 	� ��	�

��Of course� it is a general property of supersymmetry and string theory that fewer
unbroken supercharges lead to a much richer variety of low�energy spectra�
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where nH � nV and nT are the numbers of hyper� vector and tensor mul�
tiplets� respectively� �The speci�c �eld content of these multiplets is dis�
played in Table ��� In the perturbative spectrum of the heterotic string
there is only one tensor multiplet which contains the selfdual part of b��
�the anti�selfdual piece resides in the gravitational multiplet� and the dila�
ton and hence anomaly cancellation in any perturbative heterotic string
vacua demands nH � nV � ���� In addition the Green*Schwarz mech�
anism requires a modi�ed �eld strength H for the antisymmetric tensor
H � db� �L�Pa va �

Y M
a where �L is a Lorentz*Chern*Simons term and

�YMa are the Yang*Mills Chern*Simons terms ����� The index a labels the
factors Ga of the gauge group G � 
aGa and va are some computable con�
stants which depend on the speci�c massless spectrum� In order to ensure
a globally well�de�ned H on the compact K� the integral

R
K� dH has to

vanish� This implies

X
a

na �
X
a

Z
K�

�
trF �

�
a

�
Z
K�

trR� � ��� ��
�

where the last equation used the fact that �� is the Euler number of K��
From ��
� we learn that in any compacti�cation of the heterotic string
on K� the original 
	�dimensional gauge symmetry �E� � E� or SO�����
is necessarily broken since consistency requires a non�vanishing instanton
number na�

As before we can also ask for perturbative equivalences on the space of
heterotic K� compacti�cations� It has been shown that the K� compact�
i�cations of the 
	�dimensional heterotic string with gauge group SO����
lie in the same moduli space as �particular� K� compacti�cations of the

	�dimensional heterotic string with gauge group E� � E� ���� ���� More
precisely� the gauge group is really Spin�����Z� and one has to distinguish
two di
erent types of instantons which are characterized by the second
Stie
el*Whitney class ����� The corresponding distinct compacti�cations
of the Spin�����Z� heterotic string are also called compacti�cations with
and without vector structure� It has been shown that compacti�cations
with vector structure have a common moduli space with E��E� compact�
i�cations of instanton numbers n� � �� n� � 
� ���� while compacti�ca�
tions without vector structure have a common moduli space with E� � E�

compacti�cations of instanton numbers n� � n� � 
� ����� The continu�
ous path which connects the two pairs of theories involves a transforma�
tion R � ���R and hence they are also called T*dual� Furthermore� the
E� � E� compacti�cations with instanton numbers n� � n� � 
� are part
of the same moduli space as the compacti�cations with instanton numbers
n� � 
	� n� � 
� ���� ����
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Type	I compacti
ed on K�� Also this compacti�cation leads to �
� 	� su�
persymmetry and thus anomaly cancellation imposes the same constraint
��	� on the massless spectrum� However� in type�I compacti�cation there
can be more than one tensor multiplet and as a consequence also a gen�
eralized Green�Schwarz mechanism can be employed ����� The resulting
spectra are much less investigated and we refer the reader to the literature
for further details ���� ����

������ Calabi	Yau threefolds compacti
cations

Compacti�cations on a ��dimensional Calabi�Yau threefold Y� break ���
of the supercharges present in D � 
	 and hence one moves two columns
to the right and six rows down in the D�Q plane of Fig� �� the resulting
string theories therefore have D � � and either � or � supercharges� The
massless modes of such compacti�cation arise from the nontrivial harmonic
forms on Y� which again are most conveniently summarized by the Hodge
diamond
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� ����

where h��� and h��� are arbitrary integers ���� ���� The corresponding �
� 
�
and �
� �� forms are the deformations of the Calabi�Yau metric and the
complex structure� respectively� Using the de�nition ���� one �nds the Eu�
ler number of a threefold to be ��Y�� � ��h��� � h����� It is believed that
most �if not all� Calabi*Yau threefolds Y� have an associated mirror man�
ifold �Y� with the property that its Hodge numbers are exactly reversed�
i�e� h���� �Y�� � h����Y�� and h���� �Y�� � h����Y��� so that ��Y�� � ��� �Y��
�����

The moduli space of Calabi*Yau threefolds is locally a direct product
space

MY� � M�����
M����� � ����

whereM����� �M������ is the moduli space parameterized by the �
� 
��forms
��
� ���forms�� Both factors are constrained to be special K)ahler manifolds
��
� �	� �
� ���� The metric Gi�j of a K)ahler manifold is determined by a
real scalar function� the K)ahler potential K

Gi�j �




zi




�z�j
K �z� �z� � ����



��

IIA IIB

nH h�
� � � h�
� � �

nV h�
� h�
�

G U���h
����� U���h

�����

TABLE ��� Massless spectra of
type�II vacua�

where zi are the �complex� coordinates on the moduli space� For a special
K)ahler manifold the K)ahler potential satis�es the additional constraint

K � � log
h
��F�z� � �F��z��� �zi � �z

�i��Fi�z�� �F�i��z��
i
� Fi � 
F


zi
�

����
That is� K is determined by a single holomorphic function F�z��

Type	II compacti
ed on Y�� Such compacti�cations have � unbroken su�
percharges which is also called N � � supersymmetry in D � �� The
multiplets are the gravitational multiplet� the vector multiplet and the hy�
permultiplet�

Compacti�cations of the type�IIA string results in the massless modes
g�� � b�� � �� gij� bij from the NS�NS sector and A�� C�ij� Cijk from the R�R
sector� From gij � bij one obtains h��� � h��� complex massless scalar �elds
in the NS�NS sector� C�ij leads to h��� abelian vectors while h��� complex
scalars arise from Cijk �all in the R�R sector� ��	� ���� These states �together
with their fermionic partners� combine into h��� vector multiplets and h���

hypermultiplets� Furthermore� in D � � an antisymmetric tensor is dual to
a scalar and hence �� b�� and two R�R scalars from Cijk form an additional
hypermultiplet� Thus the total number of vector multiplets is nV � h���

while the number of hypermultiplets is given by nH � h��� � 
�
For type�IIB vacua one also has h��� � h��� complex massless scalar

�elds in the NS�NS sector but now h��� abelian vectors together with h���

complex scalars in the R�R sector �the universal hypermultiplet containing
the dilaton is again present� ��	� ���� Hence� nV � h��� and nH � h��� � 

holds for the type�IIB theory�

The gauge group is always abelian and given by �h��� � 
� U�
� factors
in type�IIA and �h��� � 
� U�
� factors in type�IIB �the extra U�
� is the
graviphoton of the gravitational multiplet�� We summarize the spectrum of
type�II vacua in Table 
��

As we see the role of h��� and h��� is exactly interchanged between type�
IIA and type�IIB� Therefore� compacti�cation of type�IIA on a Calabi*Yau



��

threefold Y� is equivalent to compacti�cation of type�IIB on the mirror
Calabi*Yau �Y�� This is another example of a perturbative equivalence of
two entire classes of string vacua�

Heterotic string compacti
ed on Y�� Such compacti�cation have � unbro�
ken supercharges which corresponds to N � 
 supersymmetry in D � ��
Now the �
� 
� and �
� �� forms both correspond to massless chiral mul�
tiplets� Generically� there are many distinct families of string vacua with
varying gauge groups and matter content and relatively little can be said
in general about their properties�

As in K� compacti�cations of the heterotic string the �eld strength H
of the antisymmetric tensor has to be modi�ed by appropriate Lorentz* and
Yang*Mills Chern*Simons terms� However� the requirement for a globally
de�ned H on Y� is slightly more involved since the compact manifold is now
��dimensional and the integral over dH is no longer a topological invariant�

A special class of consistent compacti�cations is obtained by embedding
the spin connection in the gauge connection of E��E� or SO���� ����� In the
�rst case one obtains a gauge group E� � E	 with h��� chiral multiplets in
the �� and h��� chiral multiplets in the �� representation of E	� In addition
there are also h��� � h��� gauge neutral moduli multiplets�

Similarly� compacti�cations of the SO���� heterotic string lead to a
gauge group SO�����U�
� with h��� chiral multiplets in the �
����� and
h��� chiral multiplets in the �
�� � �� representation of SO�����U�
�� In
addition� there are h��� � h��� gauge neutral moduli multiplets�

Again we encounter a perturbative equivalence A heterotic string com�
pacti�ed on a given Y� leads to the exact same string vacuum as a com�
pacti�cation on the mirror manifold �Y�� This can be seen from the above
assignment of the massless spectrum �it is only convention what is called
�� versus ��� but also has been shown more generally for the full string
theory �����

There are many compacti�cations with di
erent embeddings than the
one discussed above and they can lead to very di
erent spectra� The space
of heterotic Y� compacti�cations displays a much bigger variety of spec�
tra than any of the compacti�cations discussed so far and many of the
properties can only be discussed on a case�by�case basis �����

Type	I string compacti
ed on Y�� This class of string compacti�cation
also has � supercharges �N � 
� but has been much less investigated as the
heterotic string� There are also many distinct families of string vacua with
varying spectra and couplings �����
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���� DUALITY IN STRING THEORY

The concept of duality is very common in physics� Generically it means that
there are two �or more� di
erent descriptions of the same physical system�
Frequently the di
erent descriptions are only valid in speci�c domains of
the parameter space and only together they can be used to cover the entire
parameter space of the physical system� The past few years have shown
���� 
�� �	� that also the various string theories of Fig� � are interrelated
by a complicated �web� of duality relations� they are not at all independent
but instead are di
erent regions of a common parameter space� In fact�
it seems that a given representation of the supersymmetry algebra �with
a given number of supersymmetries and spacetime dimensions� lead only
to one distinct quantum theory with a parameter space that can encom�
pass various perturbatively distinct string theories� In Fig� � we plotted
the di
erent perturbative compacti�cations� some of which share the same
representation of supersymmetry� As we will see in this section they all turn
out to be di
erent regions in a common parameter space�

One distinguishes perturbative and nonperturbative dualities� Pertur�
bative dualities already hold at weak string coupling and the map which
identi�es the perturbative theories does not involve the dilaton� On the
other hand nonperturbative dualities identify regions of the parameter
space which are not simultaneously at weak coupling and the duality map
involves the dilaton in a nontrivial way� Such nonperturbative dualities are
of utmost importance since they map the strong�coupling region of a given
�string� theory to the weak�coupling region of a dual theory where pertur�
bative methods are applicable and hence the strong�coupling limit gets �at
least partially� under quantitative control�

The perturbative dualities are well established and we have already
seen them in the previous section� The nonperturbative dualities are more
di�cult to deal with and they cannot be proven at present� Rather their va�
lidity has only been checked for quantities or couplings which do not receive
quantum corrections� Such quantities or couplings exist in supersymmetric
�string� theories� they are the BPS states of the theory as well as the holo�
morphic couplings �such as the prepotential F�z� of N � � supergravity
in D � �� of the e
ective action� It is precisely for this reason that su�
persymmetry has played such an important �technical� role in establishing
nonperturbative dualities�

Let us �rst brie!y discuss the perturbative dualities from a common
point of view� Then we focus on the nonperturbative dualities and discuss
the various relations in turn�



�


����
� T�dualities

All perturbative dualities are now called T*dualities but one can divide
them into two classes� In toroidal compacti�cations �which we discussed in
section ����
�� di
erent points in the parameter space of the compacti�ca�
tion correspond to equivalent theories with the exact same spectrum and
interactions� As a consequence there is a discrete symmetry �T acting on
the space of toroidal compacti�cations� The same situation is encountered
in K� compacti�cations of type�IIA string theories where also a discrete
symmetry �T has been identi�ed �cf� ������

A di
erent situation occurs in T � or K� compacti�cations of the het�
erotic string� What was thought are two distinct perturbative string theories
* the E� � E� heterotic string compacti�ed on T � or K� and the SO����
string compacti�ed on T � or K� * turn out to be merely di
erent regions
of a common parameter space� In other words there is a continuous path
which connects the two theories and thus also their respective parame�
ter spaces are continuously connected� Finally� the equivalence of type�IIA
compacti�ed on Y� with type�IIB compacti�ed on the mirror �Y� identi�es
compacti�cations on geometrically distinct manifolds as identical and hence
maps the parameter space of type�IIA compacti�cations onto the parame�
ter space of type�IIB compacti�cations� The common feature of all of these
examples is a perturbative equivalence between string compacti�cations�
Let us now turn to nonperturbative equivalences�

������ S�dualities

Let A and B be two perturbatively distinct string theories each with its
own string coupling gA and gB� respectively� However� it is possible that
once all quantum corrections �including the nonperturbative corrections�
are taken into account A and B are equivalent as quantum theories and
one has

A � B � ����

This situation can occur in two di
erent ways 

�a� The strong�coupling limit of A is mapped to the weak coupling limit
of B

lim
gA��

A � lim
gB��

B � ����

or in other words gA 	 g��B � Using ���� one �nds in terms of the
corresponding dilatons the identi�cation

�A � ��B � ����

Along with this strong�weak coupling relation goes a map of the ele�
mentary excitations of theory A to the nonperturbative� solitonic ex�



��

citations of theory B and vice versa� The theories A and B are called
S*dual and one also refers to this situation as a �string*string duality��
Examples of S*dual string theories are 

� The heterotic SO���� string and the type�I string are S*dual in
D � 
	� The evidence for this duality is the agreement of the
low�energy e
ective actions�� once one identi�es �HSO � ��I
���� ��� ��� and the fact that the perturbative heterotic SO����
string has been identi�ed as the D*string of the type�I theory ��	��
In the limit of strong coupling in the type�I theory �gI��� the
heterotic SO���� string becomes the �lightest� and thus perturba�
tive object�

� The type�IIA string compacti�ed on K� and the heterotic string
compacti�ed on T � are S*dual ��
� ��� ��� ��� ���� Both theories
have �
� 
� supersymmetry in D � � with exactly the same mass�
less spectrum� Furthermore� from ���� ��� one learns that also
the moduli spaces of the two string compacti�cations coincide�
The e
ective actions of the two perturbative theories agree if one
identi�es ����

�H � ��IIA �

HH � e���IIA �HIIA � ����

�g���H � e���IIA�g���IIA �

where H � db is the �eld strength of the antisymmetric tensor and
�H is its Poincare dual� The �rst equation in ���� again implies a
strong�weak coupling relation while the second is the equivalent of
an electric�magnetic duality� Further evidence for this S�duality
arises from the observation that the zero modes in a solitonic
string background of the type�IIA theory compacti�ed on K� have
the same structure as the Kaluza*Klein modes of the heterotic
string compacti�ed on T � ���� ����

�b� There is a variant of the above situation where the dilaton of theory
A is not mapped to the dilaton of theory B as in ����� but rather to
any of the other perturbative moduli RB of theory B� In this case one
has the identi�cations

�A 	 RB � �B 	 RA � ��	�

or in other words the strong�coupling limit of A is independent of gB

lim
gA��

A � independent of gB � ��
�

��In ��
�"���� we displayed the heterotic Lagrangian in di�erent frames� The last frame
���� shows the equivalence with type�I�
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As in case �a� also here the strong�coupling limit of A is controlled by
the perturbative regime of theory B and thus accessible in perturbation
theory �at least in principle��
This situation is found in the following examples 

� The type�II string compacti�ed on Y� and the heterotic string
compacti�ed on K� � T � are S*dual in the sense just de�ned
���� ���� The heterotic dilaton is a member of a vector multiplet
and mapped to one of the geometrical moduli of the Calabi�Yau
threefold Y��

�� Conversely� the type�II dilaton is part of a hyper�
multiplet and mapped to one of the geometrical moduli of the
K�� The validity of this duality has been checked in a variety of
ways for quite a number of dual string vacua ���� ��� ��� ���� In
particular it has been shown that the prepotential F�z� appearing
in ���� agrees for dual pairs of string vacua�

� In the same sense the heterotic string compacti�ed on K� and
the type�I string compacti�ed on K� are S*dual ���� �	��

Let us summarize the known S*dualities in the following table

D � 
	  HSO
S�� I

D � �  IIA�K�
S�� H�T �

H�K�
S�� I�K�

D � �  II�Y�
S�� H�K�� T �

In Fig� � these S�dualities are denoted by a horizontal bar � ��

������ Self	duality and U 	duality
Another situation is encountered when the strong�coupling limit of a theory
A is controlled not by a distinct theory B� but rather by a di
erent pertur�
bative region of the same theory A� That is� the strong�coupling regime of
A has an alternative weakly�coupled description within the same theory A
but in terms of a di
erent set of elementary degrees of freedom� The new
perturbation theory is often called the magnetic theory and its perturbative
degrees of freedom are called magnetic degrees of freedom� This stems from
the fact that the �rst duality �in D � �� put forward by Montonen and
Olive ��
� suggested that an electric U�
� gauge theory is dual to a mag�
netic U�
� gauge theory with a magnetic photon and magnetic monopoles
as perturbative degrees of freedom� This situation is more general and can
appear also for extended objects� However� for such a self�duality to hold

��More precisely� Y� has to be a K
��bration and the heterotic dilaton is mapped to
the modulus parameterizing the size of the P� base of the �bration ���� ��� ����
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the theory A has to have a nontrivial �discrete� symmetry which maps the
strong�coupling region to a region of weak coupling and simultaneously the
di
erent elementary excitations onto each other� One has to make a further
subdivision of this case 

�a� The symmetry group is �S � SL��� Z� which acts on a single complex
scalar �eld containing the dilaton as its real �or imaginary� part� Un�
fortunately this situation is also called S*duality and the associated
symmetry group �S is called the S*duality group� �We prefer to call it
a special case of a U*duality��
Examples of this case are 

� The type�IIB string in D � 
	 is conjectured to have �S �
SL��� Z� ���� ��� ���� The corresponding supergravity theory has a
SL��� R� as a symmetry group ��� �see also Table �� but quantum
corrections break this continuous symmetry to its discrete ver�
sion SL��� Z�� This exact symmetry predicts an in�nite number
of equivalent weakly coupled type�IIB strings which carry R�R
charge� such strings have indeed been identi�ed as appropriate
D�strings ���� ����

� A second example is the heterotic string compacti�ed on T 	 which
has D � � and also �S � SL��� Z�� In toroidal compacti�cations
of the heterotic string the dilaton is the unique scalar in the grav�
itational multiplet and parameterizes the R� component of the
heterotic moduli space ����� However� in D � � an antisymmetric
tensor of rank � is on�shell equivalent to a pseudoscalar and thus
can be combined together with the dilaton into one complex scalar
of the gravitational multiplet spanning the SU�
�
��U�
� compo�
nent of the moduli space� It is this complex scalar on which �S
acts� leaving all other toroidal moduli invariant��� The vacuum�
expectation value of the pseudoscalar plays the role of the ��
angle and so this duality is nothing but the string theoretical
version of the original electric*magnetic Montonen*Olive dual�
ity which in many respects started the subject of string dualities
��
� ��� ��� ����

In Fig� � we mark the theories with �S � SL��� Z� by an �S� next to it�
There also is a nontrivial generalization of this case 

�b� The product of �S and the T �duality group �T is contained as a max�
imal subgroup in a bigger group �U � called the U*duality group �����

��Note that this is rather di�erent than the previous case where #S acted on the two
scalars of the IIB string�
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D #T #U

��A � �

��B � SL�
�Z�

� Z� SL�
� Z��Z�

� SO�
� 
� Z� SL�
� Z��SL�
� Z�
� SO�
� 
� Z� SL��� Z�

� SO��� �� Z� SO��� �� Z�

� SO��� �� Z� E	��	��Z�

� SO��� �� Z� E
��
��Z�

TABLE ��� U"duality groups for type�II
strings�

This situation is encountered in toroidal Tn compacti�cations of the
type�II string� �S is �inherited� from the type�IIB string in D � 
	 and
�T already exists at the perturbative level �cf� ��
��� As we already
discussed extensively in section ���� the corresponding supergravities
do have a much larger continuous symmetry group which transforms
all scalar �elds into each other irrespective of their NS�NS or R�R
origin �cf� Table ��� This is a consequence of the fact that the su�
pergravities have a unique gravitational multiplet� which contains all
scalar �elds on an equal footing� Furthermore� they are constructed as
toroidal compacti�cations of the 

�dimensional supergravity while the
string vacua arise as compacti�cations of 
	�dimensional string theo�
ries� Within the perturbative regime there can never be a symmetry
which mixes NS�NS scalars with their R�R �colleagues� due to their
rather di
erent dilaton couplings� However� nonperturbatively� when
also D�brane con�gurations are taken into account� such a symmetry
is no longer forbidden and evidence in its favour has been accumulated
���� ���� The necessary states carrying R�R charge have been identi�ed
and the nonperturbative BPS�spectrum assembles in representations
of �U � The U*duality groups in arbitrary dimensions are summarized
in Table 
� ����� they are just the discrete version of the group G in
Table �� In Fig� � these theories are marked with a �U��

������ M	theory

The various dualities discussed so far relate di
erent perturbative string
theories� In these cases the strong�coupling limit of a given string theory is
controlled by another �or the same� perturbative string theory� However�
not all strong�coupling limits are of this type� Instead it is possible that
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the strong�coupling limit of a given theory is something entirely new� not
any of the other string theories ����� Only limited amount of information is
so far known about this new theory which is called M �theory� Examples of
this situation are 

� The strong�coupling limit of the type�IIA theory in D � 
	� The low�
energy e
ective action was discussed in section ��� where we also in�
dicated how it can be constructed as a T � compacti�cation of 

�
dimensional supergravity� This implied a relation between the radius
R�� of the 

�th dimension and the string coupling constant gs � eh�i

���� �cf� �����

R�� �
L

��
g
�
�
s � ����

where L is the length of the 

�th dimension introduced in section ����
Moreover� the Kaluza�Klein spectrum of this theory obeys �in the
string frame�

MKK �
��jnj
gsL

� ����

where n is an arbitrary integer �cf� ������ These KK�states are not part
of the perturbative type�IIA spectrum since they become heavy in the
weak�coupling limit gs � 	� However� in the strong�coupling limit gs �
� they become light and can no longer be neglected in the e
ective
theory� This in�nite number of light states �which can be identi�ed
with D�particles of type�IIA string theory� or extremal black holes of
IIA supergravity� signals that the theory e
ectively decompacti�es�
which can also be seen from ����� Supersymmetry is unbroken in this
limit and hence the KK�states assemble in supermultiplets of the 

�
dimensional supergravity� Since there is no string theory which has 

�
dimensional supergravity as the low�energy limit� the strong�coupling
limit of type�IIA string theory has to be a new theory� called M�theory�
which cannot be a theory of �only� strings� M�theory is supposed to
capture all degrees of freedom of all known string theories� both at
the perturbative and the nonperturbative level ���� ��� ��� 
��� There
exists a conjecture according to which the degrees of freedom of M�
theory are captured in U�N� supersymmetric matrix models in the
N � � limit ����� These matrix models have been known for some
time ���� and were also known to describe supermembranes ��	� in the
lightcone gauge ��
�� The same quantum�mechanical models describe
the short�distance dynamics of N D�particles� caused by the exchange
of open strings ���� �	�� A review of these developments is beyond the
scope of these lectures and we refer the reader to the literature �����
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� A second and maybe even more surprising result shows that also the
strong�coupling limit of the heterotic E��E� string is captured by M�
theory� In this case� 

�dimensional supergravity is not compacti�ed
on a circle but rather on a Z� orbifold of the circle ����� The space
coordinate x�� is odd under the action of Z� and hence the three�
form C��� as well as g��� are also odd� The Z��invariant spectrum in
D � 
	 consists of the metric g�� � the antisymmetric tensor C����

and the scalar g����� Up to the gauge degrees of freedom this is pre�
cisely the massless spectrum of the 
	�dimensional heterotic string�
The E� � E� Yang�Mills �elds have to arise in the twisted sector of
the orbifold� One way to see this is to note that the Z� truncation
of 

�dimensional supergravity is inconsistent in that it gives rise to
gravitational anomalies ����� In order to cancel such anomalies non�
abelian gauge �elds have to be present with appropriate couplings to
the antisymmetric tensor such that a Green�Schwarz mechanism can
be employed ����� Such additional states can only appear in the twisted
sectors of the orbifold theory which are located at the orbifold �xed
points x�� � 	 and x�� � L��� However� due to the Z� symmetry�
these two 
	�dimensional hyperplanes have to contribute equally to
the anomaly� This can only be achieved for a gauge group which is a
product of two factors and thus E��E� with one E� factor on each hy�
perplane is the only consistent candidate for such a theory ����� Just as

in the type�IIA case one has R�� � g
���
H L��� and thus weak coupling

corresponds to small R�� and the two 
	�dimensional hyperplanes sit
close to each other� in the strong�coupling limit the two 
	�dimensional
hyperplanes move far apart �to the end of the world�� Using the previ�
ous terminology the heterotic E� � E� string theory can be viewed as
M�theory compacti�ed on T ��Z��

� There is an immediate corollary of the dualities discussed so far� The
strong�coupling limit of the type�IIA string compacti�ed on K� is si�
multaneously governed by M�theory compacti�ed on K��T � and the
heterotic string compacti�ed on T �� Since there is a T � in both theo�
ries one concludes that the strong�coupling limit of the heterotic string
compacti�ed on T � is governed by M�theory compacti�ed on K� �����
From ���� and ���� we learn that indeed the moduli spaces of both
theories agree if the heterotic dilaton is related to the overall size of
the K�� A detailed comparison of the respective e
ective actions re�
veals that the strong�coupling limit on the heterotic side corresponds
to the large�radius limit of the K� on the M�theory side �����

� The exact same argument can be repeated in D � �� The strong�
coupling limit of the type�IIA string compacti�ed on �a K���bred� Y�
is simultaneously governed by M�theory compacti�ed on Y� � T � and
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the heterotic string compacti�ed on K�� T �� By the same argument
used above one concludes that the strong�coupling limit of the heterotic
string compacti�ed on K�� T � is governed by M�theory compacti�ed
on �a K���bred� Y� ����� In this case the heterotic dilaton is directly
related to the size of the P� base of the K���bration�

� A slightly more involved analysis is necessary to conclude that the
strong�coupling limit of the IIB string compacti�ed on K� is gov�
erned by M�theory compacti�ed on T ��Z� ����� Compactifying 

�
dimensional supergravity on the orbifold T ��Z� one obtains the chiral
��� 	� supergravity with one gravity multiplet and �ve tensor multi�
plets from the untwisted sector� The twisted sector is again inferred
by anomaly cancellation and provides 
� further tensor multiplets�
The weakly�coupled type�IIB theory on K� corresponds to a �smashed�
T ��Z� where the �� �xed points degenerate into 
� pairs and the 
�
tensor multiplets are equally distributed among those pairs� The �

scalars from the NS�NS sector combine with the �� scalars from the
R�R sector to form the moduli space ���� ��� ���

M �
SO��� �
�

SO���� SO��
�

�
�U � ����

with a U*duality group �U � SL��� �
� Z�� The local structure of this
moduli space is already �xed by supergravity �cf� ����� while the global
structure follows from M�theory�

Let us summarize the nontrivial compacti�cations of M�theory 

M�T � � IIA
M�T ��Z� � HE�
M�K� � H�T �

M�T ��Z� � IIB�K�
M�Y� � H�K�� T �

Theories whose strong�coupling limit is governed by M�theory are marked
with an �M� in Fig� ��

������ F 	theory
As we discussed previously the type�IIB theory in 
	 spacetime dimensions
is believed to have an exact SL��� Z� quantum symmetry which acts on
the complex scalar � � e��� � i��� where � and �� are the two scalar
�elds of type�IIB theory �c�f� Table 
��� This fact led Vafa to propose that
the type�IIB string could be viewed as the toroidal compacti�cation of a
twelve�dimensional theory� called F�theory� where � is the complex structure
modulus of a two�torus T � and the K)ahler�class modulus is frozen �����



��

Apart from having a geometrical interpretation of the SL��� Z� symmetry
this proposal led to the construction of new� nonperturbative string vacua
in lower space�time dimensions� In order to preserve the SL��� Z� quantum
symmetry the compacti�cation manifold cannot be arbitrary but has to
be what is called an elliptic �bration� That is� the manifold is locally a
�bre bundle with a two�torus T � over some base B but there are a �nite
number of singular points where the torus degenerates� As a consequence
nontrivial closed loops on B can induce a SL��� Z� transformation of the
�bre� This implies that the dilaton is not constant on the compacti�cation
manifold� but can have SL��� Z� monodromy �
		�� It is precisely this fact
which results in nontrivial �nonperturbative� string vacua inaccessible in
string perturbation theory�

F�theory can be compacti�ed on elliptic Calabi*Yau manifolds and each
of such compacti�cations is conjectured to capture the nonperturbative
physics of an appropriate string vacua� One �nds 

� The IIB string in D � 
	 can be viewed as F�theory compacti�ed on
T � with a frozen K)ahler modulus�

� F�theory compacti�ed on an elliptic K� yields an ��dimensional vac�
uum with 
� supercharges which is quantum equivalent to the heterotic
string compacti�ed on T � ���� 
	
��

� F�theory compacti�ed on an elliptic Calabi*Yau threefold has � un�
broken supercharges and is quantum equivalent to the heterotic string
compacti�ed on K� ����� In fact there is a beautiful correspondence be�
tween the heterotic vacua labelled by the instanton numbers �n�� n��
and elliptically �bred Calabi�Yau manifolds with the base being the
Hirzebruch surfaces IFn���� �we have chosen n� 
 n�� �����

� Finally� the heterotic string compacti�ed on a Calabi*Yau threefold Y�
is quantum equivalent to F�theory compacti�ed on an elliptic Calabi*
Yau fourfold �
	��� Calabi�Yau fourfolds are Calabi�Yau manifolds of
complex dimension four and holonomy group SU����

Let us summarize the nontrivial compacti�cations of F�theory 

F�T � � IIB
F�K� � H�T �

F�Y� � H�K�
F�Y� � H�Y�

The theories governed by F�theory are marked with an �F� in Fig� ��

������ Summary of all strong	coupling limits�

So far we tried to systematically discuss the di
erent possible strong�cou�
pling limits of string theories along with the relevant examples� In this �nal
section let us one more time summarize all strong�coupling relations but
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Figure �� The distinct string theory and their strong�coupling limit� As in Fig� � the solid
line ��� denotes toroidal compacti�cation� the dashed line ���� denotes K
 compacti�
�cations and the dotted line �� � �� denotes Y� compacti�cations� The �ne�dotted line �����
denotes Y� compacti�cations while the horizontal bar � � indicates a string�string dual�
ity� The theories marked with a �U	 ��S	� have a U"duality �S"duality�� the strong�coupling
limit of the theories marked by �M	 ��F	� are controlled by M�theory �F�theory�� With
a slight abuse of convention� we also denote the two orbifold compacti�cation M�T ��Z�

and M�T ��Z� by a solid line�

now organized by the number of supercharges� The following discussion is
visualized in Fig� ��

Q � ��� Theories with Q � �� have a unique massless multiplet which
contains all scalar �elds on an equal footing and does not single out a string



�


coupling constant� As a consequence there is a discrete symmetry group �U
�listed in Table 
�� which leads to global identi�cations in the moduli space
and in any given region a di
erent scalar plays the role of the perturbative
expansion parameter� A special situation occurs in D � 
	 where the type�
IIB string has �U � �S � SL��� Z� while the strong�coupling limit of the
type�IIA string cannot be a string theory but is something new * M�theory
* whose low�energy limit is 

�dimensional supergravity�

Q � 
�� Theories with Q � 
� contain� besides the gravitational super�
multiplet� also a set of vector supermultiplets� The gravitational multiplet
always contains one scalar �cf� Table 

�� which can be uniquely identi�ed
to play the role of the coupling constant� In D � 
	 the heterotic SO����
string and the type�I string are S�dual while the strong�coupling limit of
the E� � E� string is governed by M�theory compacti�ed on an orbifold
T ��Z�� In D � � the two heterotic theories are perturbatively equivalent
and their strong coupling limit is governed both by M�theory and type�I� In
D � � the strong coupling limit is governed both by F�theory and type�I�
in D � � the strong�coupling limit is governed by M�theory compacti�ed
on K�� In D � � the heterotic string compacti�ed on T � and the type�IIA
string compacti�ed on K� are S�dual and the strong�coupling limit of type�
IIB compacti�ed on K� is captured by M�theory compacti�ed on T ��Z��
In D � � the strong�coupling limit of the heterotic string compacti�ed on
T � is governed by type�IIB compacti�ed on K� � T � ����� In D � � the
antisymmetric tensor and the dilaton can be combined into one complex
scalar with an appropriate action of �U � �S � SL��� Z��

Q � �� Theories with Q � � supercharges exist in D � � and below� In
D � � the heterotic E�� E� and the heterotic SO���� string are perturba�
tively equivalent and their nonperturbative regime is governed by F�theory
compacti�ed on elliptic Calabi*Yau threefolds� Furthermore� there also ex�
ists an S�duality with type�I compacti�ed on K�� In D � � the strong�
coupling limit is controlled by M�theory while in D � � the heterotic string
compacti�ed on K��T � is S�dual to the type�II string compacti�ed on Y��

Q � �� Finally� theories with Q � � only exist in D � �� Both heterotic
string theories are non�perturbatively equivalent to F�theory compacti�ed
on an elliptic Calabi*Yau fourfold Y�� while the strong�coupling limit of the
type�I theory is not yet completely understood� Some of the type�I models
seem to be S�dual to the heterotic vacua �
	��� It might well be that all
three theories are part of a larger moduli space�



��
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Appendix

A� Field representations

In section � we have outlined the derivation of various supermultiplets of
states� At the noninteracting level� these states can easily be described in
terms of local �elds� The purpose of this appendix is to present suitable
�eld representations for the relevant states� With the help of these �eld
representations one can then write down free massless supersymmetric �eld
theories� Interactions can be introduced separately� for instance� by itera�
tion or by some more systematic procedure� We should stress that there are
sometimes ambiguities� because di
erent �eld representation can describe
the same massless free states� At the interacting level� these ambiguities will
usually disappear� So the proper choice of the �eld representation may be
subtle� Our strategy is to discuss a number of standard �eld representations�
in D spacetime dimensions� with their corresponding free wave equations
and exhibit the behaviour of the corresponding states under helicity rota�
tions� The supermultiplets discussed previously can then be converted into
supersymmetric actions� quadratic in the �elds� For selfdual tensor �elds�
the action must augmented by a duality constraint on the corresponding
�eld strength�

A��� GRAVITON FIELDS

The linearized Einstein equation for g�� � 
�� � �h�� implies that �for
D 
 ��

R�� � 
�h�� � 
�
�h� 
�

�h�� � 
�


�h�� � 	 � ����

where h � h�� and R�� is the Ricci tensor� To analyze the number of
states implied by this equation� one may count the number of plane�wave
solutions with given momentum q�� It then turns out that there are D ar�
bitrary solutions� corresponding to the linearized gauge invariance� h�� �



��

h�� � 
��� � 
���� which can be discarded� Many other components van�
ish and the only nonvanishing ones require the momentum to be lightlike�
These reside in the �elds hij � where the components i� j are in the trans�
verse �D � ���dimensional subspace� In addition� the trace of hij must be
zero� Hence� the relevant plane�wave solutions are massless and have polar�
izations �helicities� characterized by a symmetric traceless ��rank tensor�
This tensor comprises �

�D�D � ��� which transform irreducibly under the
SO�D � �� helicity group of transverse rotations� For the special case of
D � � spacetime dimensions� the helicity group is SO���� which factorizes
into two SU��� groups� The symmetric traceless representation then trans�
forms as a doublet under each of the SU��� factors and it is thus denoted
by ������

As is well known� for D � � there are obviously no dynamic degrees
of freedom associated with the gravitational �eld� When D � � there are
again no dynamic degrees of freedom� but here ���� should be replaced by
R�� � �

�g��R�

A��� ANTISYMMETRIC TENSOR GAUGE FIELDS

Antisymmetric tensor gauge �elds have �eld�strength tensors which are
antisymmetric and of rank p � �� They satisfy �eld equations and Bianchi
identities� generalizations of the Maxwell equations� which read



��F������p�� � � 	 � 
�F
��� ����p�� � 	 � ����

A trivial example is the case p � �
� which describes an ordinary scalar
�eld� For p � �
 the solution of the �rst equation of ���� yields F� � 
���
so that the second equation yields the Klein�Gordon equation for �� Another
example is the case of a vector gauge �eld� which corresponds to p � 	�
where ���� are just the Maxwell equations�

There are two ways of dealing with ����� One is to solve the �rst equation
in terms of an antisymmetric tensor gauge �eld A��


�p�� of rank p � 
�

F������p�� � �p � �� 

��A������p��� � ����

and then impose the second equation� The alternative is to �rst solve the
second equation in terms of an antisymmetric gauge �eld B������D�p�� of
rank D � p � ��

F������p�� �



�D � p� 
�'
�������p���������D�p�� 


�B�� ����D�p�� � ����

after which one imposes the �rst equation� The second procedure coincides
with the �rst one� but it is based on the dual �eld strength de�ned by

F������p�� �



�D � p� ��'
�������p��������D�p��

�F ������D�p�� � ����



��

which can be written as

�F������D�p�� � �D� p� �� 

��B������D�p��� � �
		�

For �F the two equations ���� are interchanged and the solution in terms of
B��


�p��� � with p� � p � D � � is the dual formulation of the one in terms
of A��


�p�� � As is well known� in a so�called "�rst�order# formulation it is
possible to have a Lagrangian that encompasses both descriptions�

Let us now examine the plane�wave solutions for the equations �����
We will be somewhat more explicit here and start from a decomposi�
tion of F������p�� in the momentum representation� with a �xed momen�

tum vector q�� Introducing D � � transverse polarization vectors 	i�� with

i � 
� �� � � � � D � �� and an additional vector �q� � ��q�� �q�� we decompose
the �eld strength according to

F��


�p���q� � ai� ���ip���q� 	
i�

��
� � � 	ip���p���

�
�
bi����ip���q� �q
�� � ci����ip���q� q
��

�
	i��� � � �	

ip��
�p�� �

� di�


ip�q� 	
i�

��
� � � 	ip�p �q�p�� q�p�� � � �
	
�

Imposing ���� yields

ai����ip���q� � bi����ip���q� � di����ip�q� � 	 � q� ci����ip���q� � 	 � �
	��

so that the dynamic degrees of freedom are massless and reside in the
antisymmetric �p � 
��th rank tensors ci����ip���q� living in the transverse
�D����dimensional space� Hence the number of degrees of freedom is equal
to �D � ��'���p � 
�'�D � p � ��'�� which is� as expected� invariant under
p� p� � D � �� p�

If D � � mod � and p�
 � �
��D���� it is possible to restrict the tensor

F��


�p�� to be selfdual or antiselfdual� viz�

F��


�p�� � � 


�p � ��'
��������p�� F

�p�� 


��p�� � �
	��

For such tensors the two equations ���� are no longer independent� The
above duality condition on the �eld strength induces a corresponding �D�
���dimensional duality condition �but now in the space of transverse mo�
menta� which is Euclidean� on the coe�cients ci����ip���q��

ci����ip���q� � � 


�p � 
�'
�i����i�p�� c

ip�����i�p���q� � �
	��



��

Consequently the number of independent solutions associated with the an�
tisymmetric tensor is reduced by a factor �� For D � � where the helic�
ity group factorizes� the representation of the �anti��selfdual tensor gauge
�elds� correspond to ���
� and �
���� In D � 
	 the �anti��selfdual tensors
correspond to the �	s and �	c representations�

A��� SPINOR FIELDS

Consider a spinor u�q� in D space�time dimensions� satisfying the massless
Dirac equation �in momentum space��

�qu�q� � 	� �
	��

The Dirac equation implies that q� � 	� Using the same manipulations as
those leading to ���� we rewrite the Dirac equation as

q�
�
�� ��D ���

�
u�q� � 	 � �
	��

where ��D and ��� were de�ned in section ����
In odd dimensions ��D is proportional to the unit matrix� so that the

above condition determines that the spinors are reduced to a subspace
where ��� � ��� For even dimensions the states constitute a spinor repre�
sentation of the helicity group whose chirality is related to the D�dimen�
sional chirality of the spinor �eld� For instance� for D � � dimensions a
chiral spinor will transform under only one of the SU��� groups of the he�
licity group� so we have either ���
� of �
���� For Majorana�Weyl spinors in
D � 
	� the states transform as �c or �s� depending on the chirality of the
spinor �eld�

A��� GRAVITINO FIELDS

The gravitino �eld is a vector�spinor �� and acts as the gauge �eld of local
supersymmetry transformations� Free gravitini satisfy the Rarita�Schwinger
equation

���
��� � 
���� � 	 � �
	��

To examine the nature of plane�wave solutions� we again consider the mo�
mentum representation and decompose ��q� as

���q� � ui�q� 	
i
� � v�q� �q� � w�q� q� � �
	��

where the coe�cient functions ui�q�� v�q� and w�q� are spinors� The �eld
equation �
	�� takes the form

�qui�q� 	
i
� � ��	iui�q�� ��qv�q�� q� � �qv�q� �q� � 	 � �
	��



��

where �	i � 	i� ��� The spinor w�q�� which is subject to gauge transforma�
tions ��� � 
�	� is not determined by the gauge invariant �eld equation
�
	�� and can be discarded� The remaining spinors ui�q� and v�q� satisfy

�qui�q� � �qv�q� � 	 � ��qv�q� � �	iui�q� � �

	�

Multiplying the last equation with �q and using the �rst two equations and
	i � q � 	� one derives q � �qv�q� � 	� Hence v�q� � 	� so that we are left with
two equations for ui�q��

�qui�q� � �	iui�q� � 	 � �


�

Hence the gravitino states transform under transverse rotations according
to the highest helicity representation contained in the product of a vector
and a spinor representation�

For instance� in D � � dimensions ui�q� transforms as a chiral vector�
spinor� which is a product of ����� with ���
� or �
���� This product decom�
poses into ��� �� � �
� ��� or ��� �� � ��� 
�� respectively� The second repre�
sentation is again suppressed by virtue of the second condition in �


�� so
that we are left with ����� or ������

In D � 
	 spacetime dimensions a chiral gravitino �eld ui�q� transforms
as a chiral vector�spinor� which constitutes a tensor product �v � �c � or
�v � �s� depending on the chirality�� According to the multiplication rules
���� this product decomposes into �s � 	
s �or� �c � 	
c�� However� the
second equation in �


�� which is SO��� covariant� imposes eight conditions
thus suppressing the �s or �c representation� Consequently chiral gravitini
transform according to the 	
s or 	
c representations of SO����

B� Coupling constants of low�energy e�ective 
eld theories

In section � we discussed various �eld theories that play a role as e
ective
low�energy �eld theories for superstrings� The e
ective �eld theories can be
rigorously derived from the underlying string theory and in this process the
free parameters of the �eld theories are expressed in terms of the parameters
of the string theory itself� The purpose of this appendix is to brie!y recall
the various possibilities of deriving the low�energy e
ective action�

One method to obtain the low�energy e
ective action is known as the
�S�matrix approach�� which was pioneered in ����� Here one computes phys�
ical scattering amplitudes in both string theory and the low�energy �eld
theory and demands their equality in the limit p � Ms where p is the
characteristic momentum of the scattering process� This method is carried
out most conveniently in the Einstein frame� Alternatively one can use the
���model approach� which was pioneered in �
	��� One imposes conformal
invariance on the ��dimensional ��model speci�ed by the action ����� This



��

requirement leads to �eld equations in spacetime which coincide with the
�eld equations obtained from an action in the string frame� �The ��model
approach is not applicable to all string compacti�cations��

Let us �rst outline how the relation ��	� emerges in the S�matrix ap�
proach� From ���� and ���� we know that the dilaton couples to the topol�
ogy of the world sheet� so that in leading order �genus�	�� the N �particle
S�matrix elements are proportional to gN��

s multiplied by an appropriate
power of ��� in accordance with dimensional counting� On the other hand�
the corresponding S�matrix elements when calculated from the e
ective
�eld theory� are expressed in terms of Newton�s constant� Comparing the
S�matrix elements one obtains �suppressing numerical factors� the relation
��	��

���D�physical � ��D ����D��� � ��
�D�����

e�h�i � �

��

with � given in the Einstein frame�

Note that the parameter ��D is not determined by �

�� in agreement
with our previous arguments that it is intrinsically undetermined� There
are basically two ways to proceed First one may choose the constant ��D
to be Newton�s constant� This implies that one has to expand the metric
around g�� � 
�� in the Einstein frame� so that � � 
� This is a convenient
setting� which is most commonly used �see� e�g� ����� and which leads to
��D � �����D�����g�s � However� this choice implies that a coupling constant
���D� in the e
ective Lagrangian depends on a parameter �gs� that arises
as the vacuum�expectation value of the dilaton� Alternatively one could
insist that any dependence on gs only arises as a result of the explicit
couplings of the dilaton �eld in the e
ective Lagrangian� Or in other words�
no parameters of the e
ective action are chosen to explicitly depend on gs�
In the Einstein frame this requires to expand the metric around g�� � � 
��
with ��D����� � gs� while in the string frame an expansion around g�� � 
��

is necessary� In both frames one obtains ��D � ���D����� with no explicit
dependence on gs� In the string frame� this e
ective action coincide with
the one obtained by the ��model approach��� In the Einstein frame this
choice is somewhat awkward and rarely used�

As a further illustration of the two di
erent parameter choices let us
consider higher order gravitational interactions which generically arise in
string theory� For example� the string calculations �still to leading order in
gs� of the S�matrix of graviton�graviton scattering give rise to contributions

��Observe that the 
�model approach does not insist on a particular ground�state value
for the metric� Since it derives the e�ective action by integration of the �eld equations�
it determines the Lagrangian only up to an overall constant�



��

that require an e
ective interaction quartic in the Riemann tensor

Le� �



��D

p�g e���
h
R � A�� �

�
RabcdR

cdefRefghR
ghab � � � �

�i
� �

��

We have displayed Le� is the string frame and the higher�order terms de�
pend on a dimensionless constant A which is independent of gs� In the
Einstein frame the dilaton factor in front of the Ricci scalar is removed
by a Weyl transformation which also changes the coupling in front of the
R��terms into a factor exp��
����D � ���� Expanding the metric in the
Einstein frame around g�� � 
�� and comparing the relevant S�matrix el�

ements to the string calculation� one �nds that ��D � �����D����� g�s while

A � g
����D���
s ������	 Again� the dependence on gs cannot be tied to the

presence of a dilaton interaction in neither one of the two terms� How�

ever� if one expands the Einstein metric around g�� � g
����D���
s 
�� �or

equivalently� the metric in the string frame around g�� � 
��� one �nds

��D � �����D����� and A � constant * both couplings independent of gs�
This form of the parameters is also obtained in the ��model approach where
the R��term arises as a ��loop counterterm �
	���

The �nal point of this appendix concerns the dilaton in arbitrary space�
time dimensions� It can be de�ned as the �eld in the ��model action ����
taken in D dimensions� The corresponding vertex operator is composed only
out of operators of the spacetime sector of the conformal �eld theory �CFT�
and no operators in the �internal CFT�� Let us denote the dilaton de�ned
in this manner by ��D�� This de�nition has the virtue that ��D� is invariant
under T�duality transformations of the D�dimensional theory which orig�
inates from the existence of equivalence classes of the internal CFT� The
same is true for the graviton and the antisymmetric tensor� whose vertex
operators are similarly composed solely out of the spacetime sector of the
CFT�

Compacti�cation of the low�energy e
ective actions relates the dilatons
of di
erent dimensions by a volume�dependent factor of the compacti�ca�
tion manifold Y and the metric associated with the compacti�ed dimen�
sions� More precisely� starting in D � 
	 one �nds �in the string frame�




����
e���

��
�
Vn
p

det gn �



�����n
e���

��
�n�
� �

��

where n is the dimension of Y � Vn is the volume of the n�dimensional com�
pacti�ed coordinates and gn is the metric associated with the compacti�ed

�	Note that the relation with the dilaton �eld used in the second reference of �
�� is
given by �� h�i � p
�D �in �� spacetime dimensions��



��

dimensions��
 The latter is directly related to the vacuum�expectation value
of certain moduli �elds� Furthermore� the space�time part of the metric �in
the string frame� is left unchanged in the parametrization used in �

��
and the D�dimensional quantities are de�ned by




�����n
�

Vn
����

� �����n� � ����� � �
� log det gn � �

��

The D�dimensional string metric� the dilaton and the antisymmetric ten�
sor are invariant under T�duality� For the perturbative dualities one can
demonstrate this fact by performing a dimensional reduction on the 
	�
dimensional supergravity �eld theory �for instance on the Lagrangian �����
from 
	 to 
	 � n dimensions� Using the arguments of section ��� one es�
tablishes the existence of a rank�n group of invariances that leaves the
string metric� the dilaton �de�ned according to �

��� and the antisymmet�
ric tensor �eld invariant� However� the original 
	�dimensional dilaton �����

transforms under these symmetries�
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