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Abstract

We briefly review some selected aspects of the relation between string theory and
particle physics.

1 Introduction

The Standard Model of Particle Physics is an extremely successful theory
which has been tested experimentally to a high level of accuracy. After the
discovery of the top quark the Higgs boson which is predicted to exist by the
Standard Model is the only ‘missing’ ingredient that has not been directly
observed yet.

However, a number of theoretical prejudices suggest that the Standard Model
is not the ‘final answer’ of nature but rather an effective description valid up
to the weak scale of order O(100 GeV). The arbitrariness of the spectrum and
gauge group, the large number of free parameters, the smallness of the weak
scale compared to the Planck scale and the inability to turn on gravity suggest
that at higher energies (shorter distances) a more fundamental theory will be
necessary to describe nature.

Since the seventies string theory has been discussed as a possible candidate for
a theory which unifies all known particle interactions including gravity. The
concept of point-like particles is replaced by one-dimensional extended objects
— strings — and the particles of the Standard Model appear as massless excita-
tions of this string. One of the massless excitation necessarily carries spin two
and can be identified with the graviton of General Relativity. Furthermore,
within this framework it is possible to sensibly compute the perturbative quan-
tum corrections to General Relativity. Apart from the graviton one also finds
spin-1 gauge bosons as well as families of chiral fermions in anomaly free rep-
resentation of some gauge group G among the massless modes. This fact led
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to the hope that string theory might unify all known interactions observed in
nature.

Until recently, however, string theory has only been known in its perturbative
regime. That is, the (particle) excitations of a string theory are computed
in the free theory (gs = 0), while their scattering processes are evaluated in
a perturbative series for g; < 1 [1]. The string coupling constant gs is a free
parameter of string theory but for g = O(1) no method of computing the spec-
trum or the interactions had been known. This situation dramatically changed
during the past years. For the first time it became possible to go beyond the
purely perturbative regime and to compute some of the non-perturbative prop-
erties of string theory [2]. The central point of these developments rests on the
idea that the strong-coupling limit of a given string theory can be described
in terms of another, weakly coupled, ‘dual theory’. This dual theory can take
the form of either a different string theory, or the same string theory with a
different set of perturbative excitations, or a new theory termed M-theory.

More recently a very different type of duality has been proposed. Strongly
coupled (super)-conformally invariant gauge theories are conjectured to be
dual to string theories in an anti-de Sitter background [4]. This led to the
hope that string theory might tell us something about QCD at low energies.

2 Perturbative string theory

In string theory the fundamental objects are one-dimensional strings which,
as they move in time, sweep out a 2-dimensional worldsheet ¥ [1]. Strings can
be open or closed and their worldsheet is embedded in some D-dimensional
target space which is identified with a Minkowskian spacetime. States in the
target space appear as eigenmodes of the string and their scattering ampli-
tudes are generalized by appropriate scattering amplitudes of strings. These
scattering amplitudes are built from a fundamental vertex, which for closed
strings is depicted in Fig. 1. It represents the splitting of a string or the joining
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Fig. 1. The fundamental closed string vertex.

of two strings and the strength of this interaction is governed by a dimension-
less string coupling constant gs. Out of the fundamental vertex one composes
all possible closed string scattering amplitudes A, for example the four-point
amplitude shown in Fig. 2. The expansion in the topology of the Riemann



Fig. 2. The perturbative expansion of string scattering amplitudes. The order of g4
is governed by the number of holes in the world sheet.

surface (i.e. the number of holes in the surface) coincides with a power series
expansion in the string coupling constant formally written as

A=Y grxAm (1)

n=0

where A™ is the scattering amplitude on a Riemann surface of genus n and
X(X) is the Euler characteristic of the Riemann surface
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R® is the curvature scalar on ¥ and b the number of boundaries of the
Riemann surface. (For the four-point amplitude of Fig. 2 one has b =4.)"

In all string theories there is a massless scalar field ¢ called the dilaton which
couples to R and therefore its vacuum-expectation value determines the size
of the string coupling; one finds

gs = €9 . (3)

gs is a free parameter since ¢ is a flat direction (a modulus) of the effective
potential. Thus, string perturbation theory is defined in that region of the
parameter space (which is also called the moduli space) where g3 < 1 and the
tree-level amplitude (genus-0) is the dominant contribution with higher-loop
amplitudes suppressed by higher powers of gs. Until 1995 this was the only
regime accessible in string theory.

Unitarity in spacetime imposes a restriction on the maximal number of space-
time dimensions and the spacetime spectrum. All supersymmetric string theo-
ries necessarily have D < 10 and they are particularly simple in their maximal
possible dimension D = 10. In D = 10 there are only five consistent spacetime
supersymmetric string theories: type-ITA, type-IIB, heterotic Eg x Eg (HES),
heterotic SO(32) (HSO) and the type-I SO(32) string.

L For open strings different diagrams contribute at the same order of the string
loop expansion [1].



Lower dimensional theories can be obtained by compactifying the D = 10
theories on an internal, ‘curled up’ compact manifold Y

M(IU) — M(D) % Y(lU*D) ) (4)

If one demands some ‘left-over’ supersymmetry in lower dimensions Y has
to be a Calabi—Yau manifold [1]. Calabi—Yau manifolds are Ricci-flat Kahler
manifolds of vanishing first Chern class (¢;(Y) = 0) with holonomy group
SU(M) where M is the complex dimension of Y. For D = 4 three-dimensional
Calabi-Yau manifolds Y3 are particularly important. However, it is also possi-
ble to construct string backgrounds directly in D = 4 without going through
a geometrical picture but instead using an appropriate conformal field theory
on the string worldsheet. In either case there exist a large variety of allowed
constructions and this is what is generally called vacuum degeneracy: Every
Calabi—Yau manifold or every appropriate conformal field theory defines a
consistent string background.

Calabi-Yau manifolds have generically continuous deformations parameterized
by so called moduli which preserve the Calabi-Yau condition. Thus there is
a continuous degeneracy of possible string groundstates. The moduli param-
eters correspond to vacuum expectation value of scalar fields which are flat
directions of the effective potential.

Since string theory is a candidate for a unified theory of all interactions it has
always been a primary goal to identify the Standard Model of Particle Physics
as the low energy limit of string theory [3]. The massless spectrum of string
theory can indeed accommodate families of chiral fermions transforming in
appropriate representations of a non-Abelian gauge group as well as Higgs
bosons necessary for the electro-weak symmetry breaking. Furthermore, most
ground states of string theory studied so far are supersymmetric and have a
universal gauge coupling constant at the leading order which is in very good
agreement with the electroweak precision data of the past decade. However, a
more quantitative agreement with the Standard Model has not been achieved
so far. The main obstacles seem to be a missing mechanism for spontaneously
breaking supersymmetry at a scale hierarchically lower than the Planck scale
Mp,. Closely related is the lack of a viable Higgs mechanism in string theory
which generates small masses of the light states. Finally, lifting the (enormous)
vacuum degeneracy of possible string backgrounds is the third problem faced
by phenomenological studies of string theory.

It is commonly believed that these deficiencies are due to our lack of under-
standing the non-perturbative structure of string theory. Thus one has started
to study the phenomenological implications of the non-perturbative properties
of string theory.



3 Non-perturbative developments

Since 1995 string theory has seen spectacular progress in that for the first
time it has been possible to also control a subset of the interaction in the
strong coupling regime. This is due to the observation that many (if not all)
of the perturbatively distinct string theories are related when all quantum
corrections are taken into account [2]. In particular it has been observed that
often the strong coupling regime of one string theory can be mapped to the
weak coupling regime of another, perturbatively different string theory. This
situation is termed duality among string theories and it offers the compelling
picture that the known perturbative string theories are merely different regions
in the moduli space of one underlying theory termed ‘M-theory’.

The precise nature of the strong-coupling limit sensitively depends on the
number of (Minkowskian) spacetime dimensions and the amount of supersym-
metry. Supersymmetry has played a major role in the recent developments in
two respects. First of all, it is difficult (and it has not been satisfactorily ac-
complished) to rigorously prove a string duality, since it necessitates a full non-
perturbative formulation, which is not yet available. Nevertheless it has been
possible to perform nontrivial checks of the conjectured dualities for quanti-
ties or couplings whose quantum corrections are under (some) control. It is a
generic property of supersymmetry that it protects a subset of the couplings
and implies a set of non-renormalization theorems. The recent developments
heavily rely on the fact that the mass (or tension) of BPS-multiplets is pro-
tected and that holomorphic couplings obey a non-renormalization theorem.
Thus, they can be computed in the perturbative regime of string theory and,
under the assumption of unbroken supersymmetry, reliably extrapolated into
the non-perturbative region. It is precisely for these BPS-states and holomor-
phic couplings that the conjectured dualities have been successfully verified.

Second of all, for a given spacetime dimension D and a given representation
of supersymmetry there can exist perturbatively different string theories. For
example, the heterotic SO(32) string in D = 10 and the type-I string in
D = 10 share the same supersymmetry, but their interactions are different
in perturbation theory. However, once non-perturbative corrections are taken
into account, it is believed that the two theories are identical and merely
different perturbative limits of the same underlying quantum theory. A similar
phenomenon is encountered with other string theories in different dimensions
and the moduli space of string theory is much smaller than was previously
assumed.

Of particular interest is the strong coupling limit of string theories with D = 4
and N = 1 supersymmetry. They are related to M-theory compactified on
Calabi—Yau threefolds times an interval or F-theory compactified on elliptic



Calabi—Yau fourfolds. Let us discuss these two cases in turn.

It turns out that not all strong-coupling limits are governed by a perturbatively

different string theory. Instead it is possible that the strong-coupling limit of

a given theory is something entirely new, not any of the other string theories

[5]. The prime example of this situation is the strong-coupling limit of the

type-IIA theory in D = 10. It has a Kaluza-Klein BPS spectrum with masses
]
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where n is an arbitrary integer. These KK-states are not part of the pertur-
bative type-IIA spectrum since they become heavy in the weak-coupling limit
gs — 0. However, in the strong-coupling limit g, — oo they become light
and can no longer be neglected in the effective theory. This infinite number
of light states (which can be identified with D-particles of type-ITA string
theory, or extremal black holes of ITA supergravity) signals that the theory
effectively decompactifies where g is related to the radius Ry; of a new (11-th)
dimension|[5]

2
RH ~ l11 gs3 . (6)

l11 is the characteristic length scale of the 11th dimension which is related
to the 11-dimensional Planck scale via k%, ~ [{,. Supersymmetry is unbro-
ken in this limit and hence the KK-states assemble in supermultiplets of the
11-dimensional supergravity. Since there is no string theory which has 11-
dimensional supergravity as the low-energy limit, the strong-coupling limit of
type-ITA string theory has to be a new theory, called M-theory, which cannot
be a theory of (only) strings.

There exists a conjecture according to which the degrees of freedom of M-
theory are captured in U(N) supersymmetric matrix models in the N —
oo limit [6]. These matrix models have been known for some time and were
also known to describe supermembranes in the lightcone gauge [7]. The same
quantum-mechanical models describe the short-distance dynamics of N D-
particles, caused by the exchange of open strings.

A second and maybe even more surprising result shows that also the strong-
coupling limit of the heterotic Eg x Eg string is captured by M-theory. In this
case, 11-dimensional supergravity is not compactified on a circle but rather
on a Z, orbifold of the circle [8]. In this case there is an Eg gauge factor on
each hyperplane at the end of the interval. Just as in the type-IIA case one
has Ry ~ g2/* and thus weak coupling corresponds to small R;; and the two

10-dimensional hyperplanes sit close to each other; in the strong-coupling limit
the two 10-dimensional hyperplanes move far apart (to the end of the world).



The strong coupling limit of type-IIB theory in 10 spacetime dimensions is
believed to be governed by type-1IB itself. This is accomplished by an exact
SL(2, Z) quantum symmetry which is a generalization of a strong-weak cou-
pling duality. This fact led Vafa to propose that the type-IIB string could be
viewed as the toroidal compactification of a twelve-dimensional theory, called
F-theory [9]. Apart from having a geometrical interpretation of the SL(2, Z)
symmetry this proposal led to the construction of new, non-perturbative string
vacua in lower spacetime dimensions. In order to preserve the SL(2, 7) quan-
tum symmetry the compactification manifold cannot be arbitrary but has to
be what is called an elliptic fibration. That is, the manifold is locally a fiber
bundle with a two-torus 72 over some base B but there are a finite number
of singular points where the torus degenerates. As a consequence nontrivial
closed loops on B can induce an SL(2, 7Z) transformation of the fiber. This im-
plies that the dilaton is not constant on the compactification manifold, but can
have SL(2, Z) monodromy. It is precisely this fact which results in nontrivial
(non-perturbative) string vacua inaccessible in string perturbation theory.

It is believed that the heterotic string compactified on a Calabi—Yau threefold
Y3 is quantum equivalent to F-theory compactified on an elliptic Calabi—Yau
fourfold. Calabi-Yau fourfolds are Calabi-Yau manifolds of complex dimension
four and holonomy group SU(4). Compactification of F-theory on Calabi-Yau
fourfolds is not yet well understood and the phenomenological investigations
are only at the beginning.

4 AdS/CFT Correspondence

Recently, a very different type of duality relating a string theory to a (strongly
coupled) gauge field theory has been conjectured. It was put forward that
IIB string theory in the background AdSs x Sy is equivalent or dual to a
supersymmetric N = 4 SU(n) gauge theory [4].

AdSs5 is the five-dimensional Anti-de-Sitter space which is a space of negative
constant curvature (R < 0) whose boundary at spatial infinity is the D = 4
Minkowski space. The isometry group of AdSsis SO(2,4) which coincides with
the conformal group of Minkowski space. Sj is the five-dimensional sphere
which has positive curvature R > 0 and the isometry group SO(6). In the
AdS/CFT correspondence this is identified with the R-symmetry of N = 4
supersymmetry. The parameters of the dual theories are related by

g%M ~ Gs, (TMST)4 ~ gsT, (7)

where gyyr is the Yang-Mills gauge coupling, Mgt is the mass scale of string



theory, r is the radius of S5 and n denotes the n of SU(n). Type IIB super-
gravity is a valid approximation for

Js < 1; 7ﬂ]\/[ST > 1. (8)

In terms of the gauge theory this corresponds to

gYM<17 n— 00 (9)

The 't Hooft limit

gym < 1, n— oo, goy e fixed (10)

corresponds to classical string theory without string loop corrections. In that
sense it can be viewed as a realization of Witten’s ‘master field’.

To check or prove this duality is problematic since the two dual theories have
no common range of validity. Thus only quantities with simple quantum prop-
erties have been successfully matched. Specifically, global symmetries and cor-
relation functions related to anomalies have been shown to agree. Furthermore,
the gauge invariant (chiral) operators of the SU(n) gauge theory are mapped
to the Kaluza-Klein excitation of IIB-supergravity.
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