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Introduction

The Standard Model of Particle Physics is an extremely successful theory which has
been tested experimentally to a high level of accuracy [1, 2]. After the discovery of the
top quark the Higgs boson which is predicted to exist by the Standard Model is the
only ‘missing’ ingredient that has not been directly observed yet.

However, a number of theoretical prejudices suggest that the Standard Model is not
the ‘final answer’ of nature but rather an effective description valid up to the weak scale
of order O(100 GeV). The arbitrariness of the spectrum and gauge group, the large
number of free parameters, the smallness of the weak scale compared to the Planck scale
and the inability to turn on gravity suggest that at higher energies (shorter distances) a
more fundamental theory will be necessary to describe nature. Over the past 20 years
various extensions of the Standard Model such as Technicolor [3, 4], Grand Unified
Theories [5, 6], Supersymmetry [7, 8] or String Theory [9] have been proposed.

In recent years supersymmetric extensions of the Standard Model became very pop-
ular also among experimentalists not necessarily because of their convincing solution
of the above problems but rather because most other contenders have been (more or
less) ruled out by now. Another reason for the popularity of supersymmetric theories
among theorists is the fact that the low energy limit of superstring theory — a promis-
ing candidate for a unification of all interactions including gravity — is (by and large)
supersymmetric.

Since the seventies string theory has been discussed as a possible candidate for a
theory which unifies all known particle interactions including gravity. The concept of
point-like particles is replaced by one-dimensional extended objects — strings — and the
particles of the Standard Model appear as massless excitations of this string. One of the
massless excitation necessarily carries spin two and can be identified with the graviton
of General Relativity. Furthermore, within this framework it is possible to sensibly
compute the perturbative quantum corrections to General Relativity. Apart from the
graviton one also finds spin-1 gauge bosons as well as families of chiral fermions in
anomaly free representation of some non-Abelian gauge group G among the massless
modes. This fact led to the hope that string theory might unify all known interactions
observed in nature.

Until recently, however, string theory has only been known in its perturbative
regime. That is, the (particle) excitations of a string theory are computed in the
free theory (gs = 0), while their scattering processes are evaluated in a perturbative
series for gs < 1 [9]. The string coupling constant g is a free parameter of string theory
but for gs = O(1) no method of computing the spectrum or the interactions had been
known. This situation dramatically changed during the past years. For the first time
it became possible to go beyond the purely perturbative regime and to compute some
of the non-perturbative properties of string theory [10]. The central point of these
developments rests on the idea that the strong-coupling limit of a given string theory
can be described in terms of another, weakly coupled, ‘dual theory’. This dual theory



can take the form of either a different string theory, or the same string theory with a
different set of perturbative excitations, or a new theory termed M-theory.

Since string theory is a candidate for a unified theory of all interactions it has
always been a primary goal to identify the Standard Model of Particle Physics as the
low energy limit of string theory. The massless spectrum of string theory can indeed
accommodate families of chiral fermions transforming in appropriate representations
of a non-Abelian gauge group as well as Higgs bosons necessary for the electro-weak
symmetry breaking. Furthermore, most ground states of string theory studied so far
are supersymmetric and have a universal gauge coupling constant at the leading order
which is in very good agreement with the electroweak precision data of the past decade
[1]. However, a more quantitative agreement with the Standard Model has so far not
been achieved. The main obstacles seem to be a missing mechanism for spontaneously
breaking supersymmetry at a scale hierarchically lower than the Planck scale Mp; and
the implementation of a Higgs mechanism in string theory which generates small masses
of the light states and finally the lifting of an enormous vacuum degeneracy of string
ground states. It is commonly believed that these deficiencies are due to our lack of
understanding the non-perturbative structure of string theory. Thus it is of interest to
study the phenomenological implications of the recent developments.

The first lecture gives an elementary introduction to the supersymmetric Standard
Model. We start with some of the necessary background on generic supersymmetric
field theories and develop supersymmetric extensions of the Standard Model and dis-
cuss spontaneous breaking of supersymmetry. We present extensions of the Standard
Model with softly broken supersymmetry and discuss some of the phenomenological
properties. The presentation follows earlier lectures given at the Saalburg summer-
school 1996 [11] where also a more complete list of references can be found. Other
standard reviews include refs. [12] — [18]. The second lecture introduces string theory
and discusses some of its phenomenologically most interesting ground states. The third
lectures addresses the problem of gauge unification, supersymmetry breaking and the
stabilization of the dilaton.

Lecture 1

We start with the basic concepts of supersymmetry and the supersymmetry algebra
in its simplest form. We introduce the two irreducible multiplets of the theory, the
chiral supermultiplet and the vector supermultiplet. We review the Standard Model
of particle physics and extend it to a supersymmetric version and show how it can
be broken, both spontaneously as well as explicitly. At the end we will discuss the
hierarchy and the naturalness problem and take a first look at a unification with gravity.



1.1 Introduction to supersymmetry

Supersymmetry is a symmetry between bosons and fermions or more precisely it is a

symmetry between states of different spin [7]. For example, a spin-0 particle is mapped

to a spin—% particle under a supersymmetry transformation. Thus, the generators

0, Q. of the supersymmetry transformation must transform in the spin-i represen-
Qas Qq persy y pin-; rep

tations of the Lorentz group. These new fermionic generators form together with the

four-momentum P, and the generators of the Lorentz transformations M™" a graded
Lie algebra which features in addition to commutators also anticommutators in their
defining relations. The simplest (N = 1) supersymmetry algebra reads:

{Qon@ﬁ'} = 20'213 P,
{QaaQﬁ} = {@oﬁ@ﬁ}zo

[Qdapm] = [Qaapm]zo (1)
QuM™] = S0,
@ M™) = 50,

where we use the notation and convention of ref. [8] which are also summarized in an
appendix.

The particle states in a supersymmetric field theory form representations (super-
multiplets) of the supersymmetry algebra (1). These supermultiplets have the following
generic features:

(a) There is an equal number of bosonic degrees of freedom ng and fermionic degrees
of freedom np in a supermultiplet

(b) The masses of all states in a supermultiplet are degenerate. In particular the
masses of bosons and fermions are equal®

(¢) @ has mass dimension % and thus the mass dimensions of the fields in a super-

multiplet differ by %

The two irreducible multiplets which are important for constructing the supersym-
metric Standard Model are the chiral multiplet and the vector multiplet which are
discussed in the following two sections.

1 This follows immediately from the fact that P2 is a Casimir operator of the supersymmetry algebra,
(1) [P?,Q] = [P?,M™"] = 0.



1.2 The chiral supermultiplet 5)

1.2 The chiral supermultiplet

The chiral supermultiplet ® [7] contains a complex scalar field A(z) of spin 0 and mass

dimension 1, a Weyl fermion () of spin § and mass dimension 3

complex scalar field F'(x) of spin 0 and mass dimension 2

® = (A(z), Ya(z), F(z)) - (4)

® has off-shell four real bosonic degrees of freedom (np = 4) and four real fermionic

and an auxiliary

degrees of freedom (np = 4) in accord with (2). The supersymmetry transformations
act on the fields in the multiplet as follows:

beA = V2Ay,
Setp = V2AF 4 iV20mE0LA (5)
0eF = V285m0 .

The parameters of the transformation £* are constant, complex anticommuting Grass-
mann parameters obeying

abp = —Epla- (6)
The transformations (5) can be thought of as generated by the operator
¢ = €Q +E€Q (7)

with @ and @ obeying (1). This can be explicitly checked by evaluating the commu-
tators [d¢, d,] on the fields A, and F.

The field F has the highest mass dimension of the members of the chiral multiplet
and therefore is called the highest component. As a consequence it cannot transform
into any other field of the multiplet but only into their derivatives. This is not only
true for the chiral multiplet (as can be seen explicitly in (5)) but holds for any super-
multiplet. This fact can be used to construct Lagrangian densities which transform
into a total derivative under supersymmetry transformations leaving the corresponding
actions invariant.

For the chiral multiplet a supersymmetric and renormalizable Lagrangian is given
by [8]

LAY, F) = —itga™0p) — 0 A" A+ FF
__ 1 o
Fm(AF + AF = (Y + ) )
+Y (A%F + A*F — Aynp — Ayn))
where m and Y are real parameters. This action has the peculiar property that no

kinetic term for F' appears. As a consequence the equations of motion for F' are purely
algebraic

(SE_ - 12 5‘6__ 2 __
= Famd+y =0, Z=FamAd+ya=o,



Thus F' is a non-dynamical, ‘auxiliary’ field which can be eliminated from the action
algebraically by using its equation of motion. This yields

LAY, F=-mA—-YA*) = —ipg"0,,1) — 0, AO™A (9)

m _ _
= 5 W PP) = Y(AYy + Ady) — V(A4 4)
where V (A, A) is the scalar potential given by

V(A A) = |mA+yA?P
m?AA +mY (AA? + AA%) + Y?A2A? (10)
= FF |5£:54:0 .

OF — §F

As can be seen from (9) and (10) after elimination of F' a standard renormalizable
Lagrangian for a complex scalar A and a Weyl fermion ¢ emerges. However (9) is
not the most general renormalizable Lagrangian for such fields. Instead it satisfies the
following properties:

e L only depends on two independent parameters, the mass parameter m and
the dimensionless Yukawa coupling Y. In particular, the (4A)? coupling is not
controlled by an independent parameter (as it would be in non-supersymmetric
theories) but determined by the Yukawa coupling Y.

e The masses for A and 1 coincide in accord with (3).?

e V is positive semi-definite, V' > 0.

1.3 The vector supermultiplet

The vector supermultiplet V' contains a gauge boson v,, of spin 1 and mass dimension

1, a Weyl fermion (called the gaugino) A of spin £ and mass dimension 3, and a real

scalar field D of spin 0 and mass dimension 2
V = (vm(2), Aa(2), D(2)) . (11)

Similar to the chiral multiplet also the vector multiplet has ng = np = 4.

The vector multiplet can be used to gauge the action of the previous section. An
important consequence of the theorems of Refs. [19, 20] is the fact that the generators
T® of a compact gauge group G have to commute with the supersymmetry generators

[TaaQOz] = [Taaad] =0. (12)

Therefore all members of a chiral multiplet (A, ¢, F') have to reside in the same repre-
sentation of the gauge group. Similarly, the members of the vector multiplet have to

2As immediate consequence of this feature one notes that supersymmetry must be explicitly or
spontaneously broken in nature.



1.3 The vector supermultiplet 7

transform in the adjoint representation of G' and thus they all are Lie-algebra valued
fields

Uy = v T Aa = N0T" D =D"T". (13)

The supersymmetry transformations of the components of the vector multiplet are

8]:

Sevl = —i\G"E +iEFMA" (14)
SN = Q€D+ o™ EFY
6¢D* = —£0™DpA* — Dy A0™E

The field strength of the vector bosons F  and the covariant derivative D,,A\® are
defined according to

Fp. = Onvy — Oyuy — gfabcvfnvg , (15)
DA = O\ — g f*l X,

where fo are the structure constants of the Lie algebra and ¢ is the gauge coupling.
A gauge invariant, renormalizable and supersymmetric Lagrangian for the vector mul-
tiplet is given by
1 < 1
L=—F" F"%—i\d" D\ + §D“D“ . (16)

4 mn

As before the equation of motion for the auxiliary D-field is purely algebraic D* = 0.
A gauge invariant, renormalizable Lagrangian containing a set of chiral multiplets
(A% 4, F*) coupled to vector multiplets is found to be [§]

LA, @' F'om, A\, DY) = —iFr‘}mFm” ¢ — X" D\ + %D“D“
—D,A'D" A" —i)'c" Dyt + F'F"
+iV2g(ATHYIN — NT5 A" (17)
+gDATEAT — % i — % Vi !
+F'W; + F'W; |
where the covariant derivatives are defined by
DA = 0 A’ +igus THA (18)
Dyt = 0y +igup, T

W; and W;; in (17) are the derivatives of a holomorphic function W(A) called the
superpotential

1 | o
W(A) = 5mijzaxw+§Y;~j,¢wm’c,
Wi = gz == mijAj + Y;]kA]Ak 5 (19)
O*W
Wi]‘ = = My, + 2}/;]kAk .

0AIQAI



By explicitly inserting (19) into (17) one observes that the m,; are mass parameters
while the Yj;, are Yukawa couplings. Supersymmetry forces W to be a holomorphic
function of the scalar fields A while renormalizability restricts W to be at most a cubic
polynomial of A. Finally, the parameters m;; and Yj;; are further constrained by gauge
invariance.

As before, F' and D obey algebraic equations of motion which read

oL _
_— = E i = y
a 0 = +W; =0
oL _
—_— = E i = R 2
3 0 = +W;=0 (20)
oL _ .
= a t a ]:
s =0 = D'+ gATHAT =0,

They can be used to eliminate the auxiliary fields F* and D® from the Lagrangian (17)
and one obtains

LA 08 N Fy = —W;, D = —gAITEAT) =

m?
1

—F F NG Dy A" — Dy, A"D™ A" — i0)'6™ D, )" (21)
_. . _ S 1 o 1.- . _. —
FIV2ATGIN = XTGAW) = Wy = Wi = VA, A)

J

where
_ 1 _. . .
V(AA) = W+ A (AT AT (AT5 )

A nl 1 a e
= (F'F +§D D?) |g—§:0,%:0 (22)
> 0.

As before the scalar potential V' (A, A) is positive semi-definite.

1.4 The Standard Model

In this section we briefly review some basic features of the Standard Model. The
Standard Model is a quantum gauge field theory with a chiral gauge group Gsy =
SU(3) x SU(2) x U(1)y. The spectrum of particles includes three families of quarks
and leptons, the gauge bosons (gluons, W=, Z°, photon) of Gy and one spin-0 Higgs
doublet. In table 1 the particle content and their representations are displayed. The
Lagrangian of the Standard Model reads

L = ((Fh, F™ ¥ @) = DmhD™h

a)=1

(—iar P ai, — i Duf, — idp dfy — il D1}, — iepPeky) (23)

|
4

N

—+
I

Il
—

|
M e

(Vi) rrhgiuh + (Ya)rshaidg, + (V) shlgeh + hec.) = V(h, h),
1

~
I



1.4 The Standard Model 9

SU3) SU(2) Uy | U[)em
I 2
quarks ql = < ZIL ) 3 2 z < B3 >
L 3
uh 3 1 —2 ~2
d} 5 1 ! 1
! 0
lept =" 1 2 ~1
o 0= (7]) ()
€x 1 1 1 1
h? 0
Hi h = 1 2 -1
(i) ()
gauge bosons G 1 0 0
w 0 (0,+£1)
B 1 0 0

Table 1: The particle content of the Standard Model. The index I = 1,2, 3 labels the
three families of chiral quarks ¢f, uk, d% and chiral leptons /£, eL,. All of them are Weyl
fermions and transform in the (3, 0) representation of the Lorentz group (they have an
undotted spinor index «). The subscripts R, L do not specify the representation of the
Lorentz group but instead are used to indicate the different transformation properties
under the chiral gauge group SU(2) x U(1). This somewhat unconventional notation
is used to make a smooth transition to the supersymmetric Standard Model later on.
The electromagnetic charge listed in the last column is defined by Q.,, = Tg’U(Q) + Qy.
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where ) = 0™D,, and the index (a) labels the 3 different factors in the gauge group.
V(h, h) is the scalar potential for the Higgs doublet which is chosen to be

V(h,h) = p*hh + A(hh)? . (24)

In order to have a bounded potential A > 0 has to hold. For u? < 0 the electroweak
gauge group SU(2) x U(1)y is spontaneously broken down to U(1)en. In this case the
minimum of the potential is not at (h) = 0, but at (hh) = —g.

1.5 Supersymmetric extensions of the Standard Model

Let us now turn to the supersymmetric generalization of the Standard Model.®> The
idea is to promote the Lagrangian (23) to a supersymmetric Lagrangian. As we learned
in the previous section supersymmetry requires the presence of additional states which
form supermultiplets with the known particles. Since all states of a supermultiplet
carry the same gauge quantum numbers we need at least a doubling of states: For
every field of the SM one has to postulate a superpartner with the exact same gauge
quantum numbers and a spin such that it can form an appropriate supermultiplet.
More specifically, the quarks and leptons are promoted to chiral multiplets by adding
scalar (spin-0) squarks (¢!, @k, d%) and sleptons (I%,é%) to the spectrum. The gauge
bosons are promoted to vector multiplets by adding the corresponding spin—% gauginos
(C;*, W,B) to the spectrum. Finally, the Higgs boson is also promoted to a chiral
multiplet with a spin—% Higgsino superpartner. However, the supersymmetric version
of the Standard Model cannot ‘live’ with only one Higgs doublet and at least a second
Higgs doublet has to be added. This can be seen from the fact that one cannot write
down a supersymmetric version of the Yukawa interactions of the Standard Model
without introducing a second Higgs doublet. The reason is that the superpotential
W is a holomorphic function and therefore does not contain factors h. The precise
spectrum of the supersymmetric Standard Model is summarized in table 2.

The Lagrangian for the supersymmetric Standard Model has to be of the form (17)
with an appropriate superpotential W. It has to be chosen such that the Lagrangian
of the non-supersymmetric Standard Model (23) is contained. This is achieved by

W =3 (Vi) rrhadl i + (Ya)rshadl df + (V) shal} k) + phaha . (25)
1J

Once W it specified also the scalar potential is fixed. Of particular importance
is the scalar potential for the Higgs fields since it controls the electroweak symmetry
breaking. Using (22) and (25) one derives the Higgs potential for the two neutral Higgs
fields hY, h? by setting all other scalars to zero

1 2
0 70y — [,12 (110]2 012y . (2, 2 012 _ 1202
V(hg, k) = |ul® (1Ral” + [R3) + 3 (97 +93) (IR0l = GP)" . (26)

3See also [12] - [18].




1.5 Supersymmetric extensions of the Standard Model

11

supermultiplet F B SU@3) SU(2) U(l)y | U(1l)em
Ul - 1 :
quarks || QI = < DI > q, qr 3 2 6 < _31 )
L 3
U, uh ak 3 1 —2 —2
D}, dh, dh 3 1 L !
! ~ 0
leptons || L1 ( Eg > " I 1 2 -3 ( » >
EL el, el 1 1 1 1
H) ho hS 0
Hi H;= d . ¢ 1 2 ~1
D (Hd_> h) (hg : (—1>
Hf ht ht 1
()| Ge) i) e 2 G
gauge G G G 1 0 0
bosons W W W 3 0 (0,%1)
B B B 1 0 0

Table 2: Particle content of the supersymmetric Standard Model.

‘F’ (‘B’) denotes the fermionic (bosonic) content of the model.

The column below
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The coupling of the terms quartic in the Higgs fields is not an independent parameter
but instead determined by the gauge couplings ¢; of U(1)y and gy of SU(2). Thus it
seems that the number of parameters is reduced. However, now there are two possible
vacuum expectation values (h%), () — one more than in the Standard Model.

In the last section we learned that the potential of any supersymmetric theory is
positive semi-definite and the Higgs potential of Eq. (26) is no exception as can be
seen explicitly: |u|? cannot be chosen negative. Thus the minimum of V necessarily
sits at (hY) = (hY) = 0 which corresponds to a vacuum with unbroken SU(2) x U(1).
Therefore, the supersymmetric version of the Standard Model as it is defined so far
— the spectrum of table 2 with interactions specified by the Lagrangian (17) with the
W of (25) — cannot accommodate a vacuum with spontaneously broken electroweak
symmetry. A second phenomenological problem is the presence of all the new super-
symmetric states which have the same mass as their superpartners but are not observed
in nature. Therefore supersymmetry itself necessarily has to appear in its broken phase
and as we will see electroweak symmetry breaking is closely tied to the breakdown of
supersymmetry.

1.6 Spontaneous breaking of supersymmetry

In the previous section we learned that in the simplest supersymmetric extension of the
Standard Model the electroweak symmetry is unbroken. However, so far we constructed
a manifestly supersymmetric extension but from the mass degeneracy of each multiplet
(3) it is already clear that supersymmetry cannot be an exact symmetry in nature
but has to be either spontaneously or explicitly broken. Therefore we now turn to
the question of spontaneous supersymmetry breaking and return to the electroweak
symmetry breaking afterwards.

Let us first recall the order parameter for supersymmetry breaking. Multiplying
the anticommutator {Q., Q,} = 20™,P,, of the supersymmetry-algebra (1) with "
and using Tr(o™a™) = —2n™" results in

7" Qu, Q) = —AP" .

Thus the Hamiltonian H of a supersymmetric theory is expressed as the ‘square’ of the
supercharges

1 — — — —
H="PF= 1 (Q1Q1 + Q01 + Q205 + Q2Q2) : (27)
This implies that H is a positive semi-definite operator on the Hilbert space

(Y| H[yp) 20 Vo (28)

Supersymmetry is unbroken if the supercharges annihilate the vacuum Q,|0) = Q,|0) =
0. From (27) we learn that also H annihilates a supersymmetric vacuum H|0) = 0.
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This in turn implies that the scalar potential V' of a supersymmetric field theory which
has a supersymmetric ground state has to vanish at its minimum

(HY=0 = (W) =V(A4A)|mn=0. (29)

The general form of the scalar potential V = F'F' 4 2 D*D® was given in (22). Since V
is positive semi-definite one immediately concludes from (29) that in a supersymmetric

ground state
(F'Y = F'lpin =0 and (D") = D*| iy =0 (30)

has to hold. The converse is also true
(FY#0 or (DV#0 = V]wn>0 = Qul0>#0 (31)

and supersymmetry is spontaneously broken. Thus (F') and (D%) are the order pa-
rameters of supersymmetry breaking in that non-vanishing F'- or D-terms signal spon-
taneous supersymmetry breaking.

Specific potentials which do lead to non-vanishing D- or F-terms have been con-
structed [21, 22]. For such theories the mass degeneracy is lifted indeed. However, the
following sum rule continues to hold [23]:

1
StrM? =3 (=) (2J + 1)TeM; =0, (32)
J=0

where .J is the spin of the particles. This sum rule is problematic for the supersymmetric
Standard Model. Since non of the supersymmetric partners has been observed yet they
must be heavier than the particles of the Standard Model. Close inspection of (32)
shows that this cannot be arranged within a spontaneously broken supersymmetric
Standard Model.

To summarize, the lesson of this section is that also spontaneously broken super-
symmetry runs into phenomenological difficulties. The only way out is an explicit
breaking of (global) supersymmetry.

1.7 Local supersymmetry — supergravity

As we have seen in the previous section models with spontaneously broken supersym-
metry are phenomenologically not acceptable. For example the mass formula (32),
generally valid in such cases, forbids that all supersymmetric particles acquire masses
large enough to make them invisible in present experiments. One way to overcome those
difficulties is to allow explicit supersymmetry breaking. The corresponding supersym-
metry breaking terms in the Lagrangian can be motivated by local supersymmetric
theories that are considered in this section.

Ultimately one has to couple the supersymmetric Standard Model to gravity. This
requires the promotion of global supersymmetry to a local symmetry, that is the pa-
rameter of the supersymmetry transformation &, = &,(z) is no longer constant but
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depends on the space-time coordinates = [8, 24]. This demands the presence of an
additional massless fermionic gauge field (the gravitino) W,,, with spin 3/2 and an
inhomogeneous transformation law

0eWima = —Omat ... . (33)

(The necessity of this transformation law can be seen for example from the supersym-
metry transformation of 9,, A which now has an extra contribution 9,,0¢A o 0,,§¢ =
EOmth + (0€)1 .) Together with the metric g,,, and 6 auxiliary fields b,,, M, M the
gravitino WU, forms the supergravity multiplet (g, ¥mas bm, M, M) .

This supergravity multiplet can be coupled to vector and chiral multiplets. The
bosonic terms of the most general gauge invariant supergravity Lagrangian with only
chiral and vector multiplets and no more than two derivatives is given by [25, 8]

1 A7 ym A 1
- —\/g(Q—KZR+Gi3DmAJD A4 V(A A)
1 g(a)
— (Fpn F™), “
+ ) (4g(za)( o) T 55 (FF)w)
+ fermionic terms) : (34)

where k? = 87 Mp®>. Supersymmetry imposes constraints on the couplings of £ in
Eq. (34). The metric G;; of the manifold spanned by the complex scalars A’ is neces-
sarily a Kahler metric and therefore obeys

0 0

where K(A, A) is the Kéhler potential. It is an arbitrary real function of A and A.
The gauge group G is in general a product of simple group factors G, labeled by an
index (a), i.e.

G=]] G - (36)
(a)

With each factor G, there is an associated gauge coupling g(,) which can depend
on the A’. However, supersymmetry constrains the possible functional dependence
and demands that the (inverse) gauge couplings 9(_5 are the real part of holomorphic
functions f(,)(A) called the gauge kinetic functions. The imaginary part of the f,(¢)

are (field-dependent) #-angles. One finds

9w = Refwy(4),
9(a) = —87r21mf(a)(A). (37)

The scalar potential V (A, A) is still determined by the superpotential W (A) but in a
modified form ) 1
V ="K (DiWGTD;W — 362 W[2) + 5D'D" (38)
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where D;WW := g% + K? gfi W. To summarize, L is completely determined by three

functions of the chiral multiplets, the real Kihler potential K (A, A), the holomorphic
superpotential W (A) and the holomorphic gauge kinetic functions f(,)(A).

The limit k? — 0 corresponds to turning off gravity and in this limit one obtains
indeed V' — &% gg/i + +D*D" in accord with (22). Local supersymmetry is sponta-
neously broken if D;W|,,;, # 0 for some i. This can be achieved by introducing a

hidden sector which only couples via non-renormalizable interactions to the observable
sector of the supersymmetric Standard Model and which has a superpotential Wj;4(¢)
suitably chosen to ensure DyW |, # 0 [12, 26]. In this case the gravitino becomes
massive through a supersymmetric Higgs effect whereas the graviton stays massless
[25].

Expanding the Lagrangian (34) in powers of mg/,/Mp; where myg, is the gravitino
mass one gets at leading order the Lagrangian of an effective (renormalizable) theory

L= £susy + £soft (39)

where Lqusy is given by (21) and
Lot = —m?jAZA] — (b ATAT — aip ATAT AR 4 he) — i(fnab)\“)\b +h.c.) . (40)

Loty breaks global supersymmetry explicitly but softly. That is, no quadratic diver-
gences are introduced into the theory (we return to this feature shortly). The param-
eters mfj, (bij, @iji, My are expressed in terms of the coupling functions K, W, f of the
hidden sector fields. The sum rule (32)) of global supersymmetry is modified and reads

in supergravity
1

> (=) (2 + 1)TrM7 = mgs . (41)

J=0

As a consequence all superpartners in the observable sector can be heavier than the
particles of the Standard Model. Hence, the supersymmetric Standard Model coupled
to spontaneously broken supergravity in leading order in mg o /Mp; leads to an explicitly
but softly broken supersymmetric theory which is no longer in obvious conflict with
current experimental data.

1.8 The hierarchy and naturalness problem

Before we continue in our endeavor to construct a phenomenologically viable extension
of the Standard Model let us briefly review what is called the hierarchy and naturalness
problem in the Standard Model.

Consider the following (non-supersymmetric) Lagrangian of a complex scalar A and
a Weyl fermion yx

- 1 -
L= = 0nAP"A—iXa"dnx — 5 my (XX +XX) —m) AA

— YV (Axx+Axw) — A(44)7. (42)
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e ——

Figure 2: The one-loop corrections to the boson mass.

From (9) we learn that this Lagrangian is supersymmetric if m; = m;, and Y2 = A
but let us not consider this choice of parameters at first. £ has a chiral symmetry for
my = 0 given by

A— et g X — ey . (43)

This symmetry prohibits the generation of a fermion mass by quantum corrections. For

mys # 0 the fermion mass does receive radiative corrections, but all possible diagrams

have to contain a mass insertion as can be seen from the one-loop diagram shown

in Fig. 1. Since the propagator of the boson (upper dashed line in the diagram) is
1

~ k_12 while the propagator of the fermion (lower solid line) is ~ + one obtains a mass

correction which is proportional to my

m2

dms ~ Y?msln A—; , (44)
where A is the ultraviolet cutoff. Hence the mass of a chiral fermion does not receive
large radiative corrections if the bare mass is small. For that reason ‘t Hooft calls
fermion masses ‘natural’ — an extra symmetry appears when the mass is set to zero
which in turn leads to a protection of the fermion mass by an approximate chiral
symmetry [27].

This state of affairs is different for scalar fields. The diagrams giving the one-loop
corrections to my; are shown in Fig. 2. Both diagrams are quadratically divergent but
they have an opposite sign because in the second diagram fermions are running in the
loop. One finds

omy ~ (A — Y?)A%. (45)
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Thus, in non-supersymmetric theories scalar fields receive large mass corrections (even
if the bare mass is set to zero) and small scalar masses are ‘unnatural’ [27, 28, 3].
They can only be arranged by delicately fine-tuning the bare mass and the couplings
A, Y. This problem becomes apparent in extensions of the Standard Model which apart
from the weak scale M, do have a second larger scale, say Mgyt with Mgyt > M,
(28, 3]. In such theories the mass of the scalar boson is naturally of the order of the
largest mass parameter in the theory. This discussion applies to the Higgs boson of the
Standard Model and it is difficult to understand the smallness of Mz and how it can
be kept stable against quantum corrections whenever the Standard Model is the low
energy limit of a theory with a large mass scale.

A concrete example of this problem occurs in Grand Unified Theories (GUTSs) [6]
where the Standard Model is embedded into a single simple gauge group Ggur (e.g.
Ggour = SU(5)). The GUT gauge symmetry is broken by a Higgs mechanism to the
gauge group of the Standard Model and one has the following pattern of symmetry
breaking

Geour " SU(3) x SU(2) x U(1) % SU3) x U(1)em , (46)

where MGUT ~ 1015 GeV and thus MGUT > Mz.

This problem is solved in supersymmetric theories where the Higgs boson is elemen-
tary but the quadratic divergence in (45) exactly cancels due to the supersymmetric
relation Y2 = \.

The cancelation of quadratic divergences is a general feature of supersymmetric
quantum field theories and a consequence of a more general non-renormalization the-
orem: The superpotential W of a supersymmetric quantum field theory is not renor-
malized in perturbation theory [29] and all quantum corrections solely arise from the
gauge coupling and wavefunction renormalization. The non-renormalization theorem
or in other words the ‘taming’ of the quantum corrections is one of the attractive fea-
tures of supersymmetric quantum field theories. It leads (among other things) to the
possibility of stabilizing the weak scale M.

In that sense supersymmetry solves the naturalness problem in that it allows for
a small and stable weak scale without fine-tuning. However, supersymmetry does not
solve the hierarchy problem in that it does not explain why the weak scale is small in
the first place.

The ‘attractive’ feature of supersymmetric field theories to solve the naturalness
problem can be maintained in theories with explicitly broken supersymmetry if the
supersymmetry breaking terms are of a particular form. Such terms which break su-
persymmetry explicitly and generate no quadratic divergences are called ‘soft breaking
terms’ and in particular the terms resulting from supergravity considered in the previ-
ous section are of this ‘soft’ type.
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1.9 Back to the supersymmetric Standard Model coupled to
supergravity

In the equations (39) and (40) the most general Lagrangian of a softly broken super-
symmetric gauge theory was presented. For Ly, we continue to take (21) together
with the superpotential specified in (25). For Ly only gauge invariance and R-parity
is imposed. This leads to the following possible soft terms [12, 13, 15, 16, 18]:

Esof‘u = — ((au)fjhuqiﬂ}‘]{ + (ad)fjhd(jicié + (ae)[!]hdiié}‘]% + bhuhd + h.c. )
T AJ 1 ’ ~
— Z mf]A A] — (5 Z m(a)()\)\)(a) + h.C. ) . (47)
all scalars (a)=1

Obviously a huge number of new parameters is introduced via Lg. The parameters
of Lgusy are the Yukawa couplings Y and the parameter ;4 in the Higgs potential. The
Yukawa couplings are determined experimentally already in the non-supersymmetric
Standard Model. In the softly broken supersymmetric Standard Model the parameter
space is enlarged by

(M, (aw)1, (@a)1s, (@e)17, b, m?ja m(a)) . (48)

A much more constrained version (with less free parameters) became known as the
Minimal Supersymmetric Standard Model (MSSM). The MSSM was motivated by the
success of Grand Unified Theories combined with a simple, flavor blind mechanism of
supersymmetry breaking in a hidden sector [30]. Over the last 15 years this model went
through a few alterations but today it is a well defined model with a very particular
set. of soft supersymmetry breaking terms which are flavor blind and in some sense
the minimal choice of free parameters [12, 13, 15, 16]. One imposes that all scalar
masses are the same m?j = m%éij, all gaugino masses are the same m; = my =
mg = m, all a-parameters are proportional to the Yukawa couplings with the same
universal proportionality constant ay and finally that the b-parameter is of a specific
form. Altogether one has

my; = mgd mp=mz=mzg=m, b=bymop,
(ay)ry = ao(Yu)rs , (aa)rs = ao (Ya)1s , (ar)ry =ao (Y)1s - (49)

Thus, the parameter space of the MSSM is spanned by the 5 parameters
(m()a ma Qg, b07 N’) . (50)

This model is not ruled out and in particular in specific regions of the parameter space
it is consistent with the electroweak precision data. It will be further tested in future
experiments such as the LHC.
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1.10 Electroweak symmetry breaking in the MSSM

In section 1.5 we noticed that for unbroken or spontaneously broken supersymmetry the
electroweak symmetry remains intact in the supersymmetric version of the Standard
Model. Let us now review the situation in the presence of soft breaking terms [31]. The
Higgs sector of the supersymmetric Standard Model consists of two SU(2)-doublets

hy hy
h“‘(hﬂ) ’ hd_(%) ’

which carry eight real degrees of freedom, four of them neutral and four charged. Like
in the Standard Model SU(2);, x U(1)y will be broken to U(1)em by non-vanishing
VEVs of the neutral Higgs bosons h% and h).

It turns out that the electroweak symmetry is unbroken at tree level. However,
the Higgs potential has flat directions and electroweak symmetry breaking is induced
radiatively by the soft terms and the top Yukawa coupling. This symmetry break-
ing mechanism results in three light particles corresponding to W* and Z and five
remaining degrees of freedom that yield the physical Higgs bosons of the model:

H* charged Higgs boson pair
A° CP-odd neutral Higgs boson
HO h° CP-even neutral Higgs bosons .

Their masses obey the relations
mHizMw, mHOEMz, thSMz. (51)

Physically the most interesting is the last inequality since it predicts the existence
of a light Higgs boson. This ‘prediction’ can be directly traced to the fact the quartic
couplings in the Higgs potential are fixed by the (measured) gauge couplings and are
not free parameters as in the Standard Model. However, radiative corrections for
this lightest Higgs boson mass can be large and after taking into account quantum
corrections the upper bound on myo is pushed up to about 150 GeV [32]. However,
the prediction of one light neutral Higgs boson remains and is one of the characteristic
features of the supersymmetric two-doublet Higgs sector. It even holds in the limit
that all masses of the supersymmetric particles are sent to infinity. In this limit one
recovers the non-supersymmetric Standard Model — albeit with a light Higgs.

Minimization of the Higgs potential results in the Z mass which is expressed in
terms of the soft parameters

My = Mz (@, my, by, ag, mo) - (52)

If these soft parameters are much larger than 100GeV fine tuning is necessary to adjust
this mass. Therefore the solution of the naturalness problem requires the soft param-
eters to be at the weak scale or at most at about 1TeV. This ‘absence of fine-tuning’
is one of the theoretical reasons to expect supersymmetry to be observable in the next
generation of accelerator experiments.
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Lecture 2

In this lecture perturbative string theory is introduced. We focus on string backgrounds
with four space-time dimensions and outline the derivation of the effective low-energy
action.

2.1 Perturbative string theory

In string theory the fundamental objects are one-dimensional strings which, as they
move in time, sweep out a 2-dimensional worldsheet 3 [9]. Strings can be open or closed
and their worldsheet is embedded in some D-dimensional target space which is identified
with a Minkowskian spacetime. States in the target space appear as eigenmodes of
the string and their scattering amplitudes are generalized by appropriate scattering
amplitudes of strings. These scattering amplitudes are built from a fundamental vertex,
which for closed strings is depicted in Fig. 3. It represents the splitting of a string or the

Ngs

Figure 3: The fundamental closed string vertex.

joining of two strings and the strength of this interaction is governed by a dimensionless
string coupling constant gs. Out of the fundamental vertex one composes all possible
closed string scattering amplitudes A, for example the four-point amplitude shown in
Fig. 4. The expansion in the topology of the Riemann surface (i.e. the number of holes

Figure 4: The perturbative expansion of string scattering amplitudes. The order of g
is governed by the number of holes in the world sheet.

in the surface) coincides with a power series expansion in the string coupling constant
formally written as

A= g XAW (53)
n=0

where A™ is the scattering amplitude on a Riemann surface of genus n and x () is
the Euler characteristic of the Riemann surface

1
X(z)zﬂ/x}zm:%m—b. (54)
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R® is the curvature scalar on ¥ and b the number of boundaries of the Riemann
surface. (For the four-point amplitude of Fig. 4 one has b = 4.)*

In all string theories there is a massless scalar field ¢ called the dilaton which
couples to R and therefore its vacuum-expectation value determines the size of the
string coupling. One finds [9, 33]

gs = €9 . (55)

gs is a free parameter since ¢ is a flat direction (a modulus) of the effective potential,
which is called dilaton. Thus, string perturbation theory is defined in that region of
the parameter space (which is also called the moduli space) where g; < 1 and the tree-
level amplitude (genus-0) is the dominant contribution with higher-loop amplitudes
suppressed by higher powers of gs. Until 1995 this was the only regime accessible in
string theory.

Conformal invariance on the worldsheet (or equivalently unitarity in spacetime) im-
poses a restriction on the maximal number of spacetime dimensions and the spacetime
spectrum. All supersymmetric string theories necessarily have D < 10 and they are
particularly simple in their maximal possible dimension D = 10.°

In D =10 there are only five consistent spacetime supersymmetric string theories:
type-ITA, type-1IB, heterotic Eg x Eg (HE8), heterotic SO(32) (HSO) and the type-
I SO(32) string. In the type-ITA theory the massless bosonic spectrum contains the
graviton g,,, an antisymmetric tensor b,,, the dilaton ¢, an abelian vector V), and a
3-form C,,. In type-IIB one also has g,,,b,, and ¢ together with a 2-form b, an
* .~ whose field strength is self dual.

uvpo
Type II string theories have a unique massless supergravity multiplet while type

additional scalar ¢’ and a 4-form ¢

I and the heterotic string feature a gravitational multiplet consisting of the metric
Juv, an antisymmetric tensor b, and the dilaton ¢ together with vector multiplets in
anomaly free representations of the gauge group. In D = 10 anomaly cancelation is
very restrictive and only allow Eg x Eg or SO(32) as possible gauge groups.

2.2 String theory with D < 10

So far we discussed the various string theories in 10 spacetime dimensions. Lower
dimensional theories can be obtained by compactifying the D = 10 theories on an
internal, ‘curled up’ compact manifold Y

MU0 = pD) o y(10-D) (56)

If one demands some ‘left-over’ supersymmetry in lower dimensions Y has to be a
Calabi—Yau manifold [9]. Calabi-Yau manifolds are Ricci-flat Kéhler manifolds of

“For open strings different diagrams contribute at the same order of the string loop expansion [9].

5For closed strings an additional constraint arises from the requirement of modular invariance
of one-loop amplitudes which results in an anomaly-free spectrum of the corresponding low-energy
effective theory [34]. For open strings anomaly cancelation is a consequence of the the absence of
tadpole diagrams [9].
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vanishing first Chern class (¢;(Y) = 0) with holonomy group SU(M) where M is the
complex dimension of Y. For D = 4 three-dimensional Calabi—Yau manifolds Y3 are
particularly important. However, it is also possible to construct string backgrounds
directly in D = 4 without going through a geometrical picture but instead using an
appropriate conformal field theory on the string worldsheet. In either case there exist
a large variety of allowed constructions and this is what is generally called vacuum
degeneracy: Every Calabi-Yau manifold or every appropriate conformal field theory
defines a consistent string background, corresponding to consistent string vacua.

Calabi-Yau manifolds have generically continuous deformations parameterized by
so called moduli which preserve the Calabi-Yau condition. Thus there is a contin-
uous degeneracy of possible string groundstates. As we will see shortly the moduli
parameters correspond to the vacuum expectation value of some scalar fields.

To solve this problem one could either try to classify the sting vacua and try to find
some adequate selection principle, or one could study only the space of phenomenolog-
ical interesting string vacua (string phenomenology).

2.3 Vacuum cleaning

String phenomenology focuses on the low energy limit of string theory and asks to
what extent the Standard Model emerges as this low energy effective theory. Thus,
only those string theories have to be considered which can possibly accommodate the
Standard Model. This process of choosing (by hand) a subset of all string theories
and within a string theory only a subspace of the space of ground states is sometimes
termed ‘vacuum cleaning’.®

The criteria for this selection process are somewhat ambiguous but the following
necessary conditions should hold: 7

1. D=4
The spacetime should have four flat Minkowski dimensions.

2. SUB)x SU((2) xU(1) c @
The gauge group G should be big enough to contain the gauge group of the
Standard Model and account for its fermion content.

3. ng >3
The number of light chiral generations n, should be at least three.

6This terminology was coined by L. Dixon.

“One might contemplate to impose additional constraints. For example, one could demand the
gauge group to be precisely the gauge group of the SM G = SU(3) x SU(2) x U(1) or the number of
light generations to be exactly three n, = 3. However, none of these two is obviously true since they
strongly depend on the physics which governs the energy range between the weak scale Myeax and
Mpy. Similarly, demanding no fast proton decay or a reasonable fermion mass hierarchy is difficult to
impose without further knowledge of the physics just above Myeak-
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In addition to 1.-3. one further condition is usually imposed:

4. N =1 spacetime supersymmetry
The low energy limit should be N = 1 supersymmetric.

This last condition is much more questionable than the first three. After all there
are no experimental signs for supersymmetry yet. However, it seems difficult to un-
derstand how a hierarchy of scales Myea/Mp) < 1 can be generated and kept stable
without something like supersymmetry. Furthermore, among the known, consistent
string backgrounds almost all display low energy supersymmetry. It is for these two
reasons that most phenomenological investigations in string theory have concentrated
on supersymmetric backgrounds and we follow here the same assumption.® However, it
might be worthwhile at some point to relax condition 4 and study non-supersymmetric
ground states in more detail [35]. Once we accept condition 4 we eventually have to
face the problem of how to break supersymmetry near Myea. This question will occupy
a later section.

The bosonic string (open or closed) is tachyonic and cannot accommodate space-
time fermions. Thus it does not obey conditions 2,3 and will be immediately discarded.
Type II string theories are tachyon-free and do have spacetime fermions in its massless
spectrum. However, Dixon, Kaplunovsky, and Vafa showed that the particular fermion
representation of the Standard Model can never appear in the massless spectrum [36].
Therefore also the perturbative type II strings have been discarded. Finally, the het-
erotic string and the type I string have no obvious deficiency and have been extensively
studied. In fact until recently it was the heterotic string which was the prime target
of string phenomenology [37]. On the one hand it is easier to accommodate chiral
representations in the massless spectrum of the heterotic string and on the other hand
the construction of consistent four-dimensional ground states is considerably simpler
in the heterotic string. Only recently the phenomenological properties of the type I
string have been investigated [38].

2.4 The low energy effective action

The spacetime spectrum of a string theory contains a finite number of massless modes,
which we denote as L, and an infinite number of massive modes H. The mass of H
is an (integer) multiple of M,. To derive the low energy effective action Leg(L) which
only depends on the light modes L one considers scattering processes of L with external
momenta p much smaller than M,, i.e. p?/M? < 1. A systematic procedure for com-
puting Lez(L) has been developed and is often referred to as the S-matrix approach
(39, 40, 41]. One computes the S-matrix elements for a given string vacuum as a pertur-
bative power series in g;. At the lowest order (tree level) an S-matrix element typically

8In fact one needs precisely N = 1 supersymmetry since theories with N > 1 have difficulties
accommodating the chiral structure of the Standard Model.
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has a pole in the external momentum which corresponds to the exchange of a massless
mode L. The finite part is a power series in p?/M? and corresponds to the exchange of
the whole tower of massive H-modes. Lqg is then constructed to reproduce the string
S-matrix elements in the limit p?/M? < 1 with S-matrix elements constructed entirely
from the effective field theory of the L-modes. In this low energy effective theory the
exchange of the H-modes in the string scattering is replaced by an effective interaction
of the L-modes. For a four-point amplitude this procedure is schematically sketched
in figure 5. The first row denotes the string scattering amplitude and its separation

SO

+ t and u channels

L L L L
e
_ +
p? < M? L/ . ! T

string

+ t and u channels

Figure 5: The S-matrix approach.

in a ‘pole piece’ (exchange of a massless mode) and the finite piece (exchange of the
heavy modes). The second row indicates ordinary field-theoretical Feynman diagrams
computed from the effective Lagrangian. The pole piece is reproduced by the same
exchange of the massless modes while the finite part is identified with an effective in-
teraction. Using this procedure Loz can be systematically constructed as a power series
in both p?/M? and g,. The power of p? counts the number of spacetime derivatives
in Leg; at order (p?/M2?)° one finds the effective potential while the order (p?/M?)
corresponds to the two-derivative kinetic terms.”

The selection criteria 1-4 already significantly reduce the number of string vacua for
which the low energy effective theory has to be computed. Further simplification of the
S-matrix approach comes from the use of all symmetries a string vacuum might have
in that one does not have to compute separately S-matrix elements which are related
by a symmetry.!® One only has to determine those couplings in the effective theory
which are not related by general coordinate transformations, gauge transformations

9nstead of using the S-matrix approach one can alternatively construct the effective action by
computing the [S-functions of the two-dimensional o-model and interpreting them as the equations
of motion of string theory. The effective action is then constructed to reproduce these equations of
motion [33].

10FExcept to check the consistency of the procedure.
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and N = 1 supersymmetry. Concretely this means that one only has to compute the
function K, W, f of the supersymmetric Lagrangian given in Eq. (34).

Generically, these function are ‘model-dependent that is, they depend on the specific
Calabi-Yau manifold under consideration. However, it is also possible to determine a
few generic properties. Already in supersymmetric field theories the holomorphicity of
W (A) and f(,)(A) leads to two perturbative non-renormalization theorems: W receives
no perturbative corrections [29] while f(, is only corrected at one-loop order but has
no further perturbative corrections [42]. Altogether one has

w o= wO L whP) (57)
fo= f°+f1+fNP,
K = ZK )+ KO

where the superscript (NP) indicates possible non-perturbative corrections.

Lecture 3

In this lecture we discuss the unification of the gauge couplings, the problem of su-
persymmetry breaking and the stabilization of the dilaton. Finally we consider non-
perturbative developments, M-theory and F-theory together with some of their phe-
nomenological aspects.

3.1 Unification of gauge couplings

Let us first briefly recall the unification of the gauge couplings in the supersymmetric
Standard Model. Grand Unified Theories (GUTSs) predict a universal gauge coupling
gcut at some scale Mgyur. The observable low energy gauge couplings of the Standard
Model are then obtained as the ‘running’ gauge couplings from the relation

1 by, M,
22 = 4 Aay y, HMaur

géur 872 " A(a) ’ (58)

where b, are the one-loop coefficients of the S-function and A, are infrared finite
‘threshold’ correction. In the Standard Model (58) are three equations for two un-
knowns (ggut, Mgur) and thus a successful fit is non-trivial. Indeed such a fit fails for
the Standard Model while the supersymmetric Standard Model does satisfy (58) for
Mcur =~ 3-10' GeV and ggyr ~ 5= [43].

In string theory all couplings become the vacuum expectation value (VEV) of a
complex dilaton S or a set of moduli scalars T%.!'' Using the method outlined in the

"One combines the dilaton ¢ with the dual axion a of the antisymmetric tensor b, into a complex
superfield S = e 2¢ +ia.



26

last lecture one determines in heterotic string perturbation theory

fg = S+ D), (59)
Aw(T,T) = Ref,)(T)+ AT, T),

where A is a non-harmonic term known as the holomorphic anomaly [37, 44, 45, 46].
The important point is that at the string tree level f,) and thus g are universal
functions of the dilaton. Thus the heterotic string automatically reproduces the feature
of a universal gauge coupling at leading order. However, the fundamental scale of string
theory M, is not an arbitrary scale but related to Mp; and g5 by [47]

2.3 Fes(l-7) 377 e3(1)

M. = = Mp1 ~ g5 -5 -107GeV . 60
s SR . gsVip1 =~ g e (60)

Thus the string scale is roughly one order of magnitude bigger than Mgyr. The
perturbative heterotic string does reproduce the experimental situation of a unified
gauge coupling. However, the unification occurs not quite at the right scale. The
mismatch between M, and Mgyt needs an explanation but the fact that it comes so
close is one of the attractive model independent features of the perturbative heterotic
string.

In the past a number of attempts to overcome this mismatch have been suggested
and we briefly review some of them here. One of the early suggestions has been that
maybe the compactification scale of Calabi—Yau manifolds can be chosen lower than
M, and therefore serve as Mgyr. However, within the perturbative heterotic string
this suggestion is problematic [48]. Since this argument partially breaks down in non-
perturbative string theory let us go through it in slightly more detail.

Compactification of the ten-dimensional effective field theory on a Calabi-Yau

() in the four-dimensional

threefold yields a relation between the string coupling g3

action and the string coupling ¢{'® in the ten-dimensional action which involves the

volume V4 of the Calabi—Yau threefold
(972 = (") 2V 10 (61)

S S

where [, = /o' is the string length. The volume Vg is in principle an independent
scale in the problem, the compactification scale. The perturbative decompactification
limit sends V5 [;% — oo and demands that the string coupling stays in the perturbative
regime, i.e. g{'” is kept fixed and small. Eq. (61) then implies in this limit g{¥ — 0.
On the other hand, the measured gauge couplings do not allow an arbitrarily small
gauge coupling as a consequence of (58). Instead one roughly has to have

i . géUT ~ (95(4))2 _ (géw))Qﬁ < lf for g(10)
S

23 dm Amr Am Ve AmVg
We learn that Vi cannot be arbitrarily big but has to obey Vil ¢ < % ~ 2 which
implies Vg = O(I%). Thus V5 cannot be used as an independent scale or tuned to be
Megur.

<1. (62)



3.2 Supersymmetry breaking and stabilizing the dilaton 27

The same problem in another disguise can be seen from Eq. (58). One might hope
to find string vacua where A, (T") is large [49, 50]. If A, (7") has the form

b(a)
82

A (T = =25 (T*) + Ay (T7) (63)

one would have a “redefinition of the GUT-scale”

1 bw, Mour  x
= — 1 A (T 64
Z s, A (64)

with Mgyt = % In order to have Mgyt =~ 3-10'%GeV one needs § = 20 or In§ =~ 3.
Thus the mismatch of scales puts a strong constraint on sign, coefficient and size of
Ay (T"). However, generically one finds Ind = O(1) which is just another way to
observe the perturbative decompactification limit.

As an alternative scenario one can envisage a GUT-group Ggut at Mp; which breaks
by an appropriate Higgs mechanism at Mgyt to Gsy. However, now one is in need of
an explanation why this breaking occurs precisely at Mqyr.

3.2 Supersymmetry breaking and stabilizing the dilaton

Let us now turn to the question of lifting the vacuum degeneracy and supersymmetry
breaking which is another and more serious problem shared by all perturbative heterotic
string vacua. In particular we need to address the following points:

e What determines the vacuum expectation values (S) and (T%) of the dilaton and
moduli fields and what are their values? As a consequence of (58) one needs for

he dil
the dilaton 53

~Y 72 ~Y
<R’eS> - gs - 47T

(65)
For the case of a geometrical compactification the moduli 7% parameterize the
size and shape of the Calabi-Yau threefold. Thus, as a consequence of (62) one
needs to arrange

(T = O(12) . (66)

S

e What is the mechanism for supersymmetry breaking and at what scale does
the breaking occur? The naturalness problem of the Standard Model and the
unification of the gauge couplings result in the theoretical prejudice of unbroken
supersymmetry almost all the way down to M yeax-

e Independently of the previous points one needs an explanation of the hierarchy
Mweak
Mpy

None of these issues has a satisfactory answer within the perturbative heterotic
string and thus the hope has been that non-perturbative effects come to rescue. With-
out a non-perturbative formulation of the heterotic string it is difficult to address
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non-perturbative properties and in fact only those of the effective field theory can be
sensibly studied [51, 52]. These field-theoretic effects certainly do occur in string the-
ory but to what extent they dominate over ‘stringy’ non-perturbative contributions
remains open.'?

One considers an asymptotically free supersymmetric gauge theory which becomes

strong at the scale
2

8m
A = Mp1 6_”9_2 . (67)
Thus a hierarchy MLM < 1 is generated if g and/or b are small. In addition super-
symmetry can be broken and the scale of the breaking (often parameterized by the
gravitino mass msg/) is found to be

Mgjg X —5 . (68)

Thus for A ~ 10" — 10" GeV one obtains mg/; ~ 10' —10* GeV which is the ‘desired’
mass scale.!® In string theory asymptotically free gauge theories do exist but their
gauge couplings ¢ are necessarily tied to the dilaton ¢ = g, and the unification of all
gauge couplings (58) implies g2 = 2.

The strong gauge forces generate a potential which looks like

(69)

Inserting (67) one finds that the minimum of V' occurs at g5 = 0, (S) — oo (see fig. 6)
unacceptable for realistic phenomenology. This is a generic problem of all heterotic
string vacua and is known as the dilaton problem [54].

\Y

ReS

Figure 6: The dilaton potential

12Conversely, under the assumption that the field-theoretic effects are the dominant non-
perturbative contribution the following analysis is legitimate.

130nce supersymmetry is broken it can induce radiatively the breakdown of the electroweak sym-
metry by a supersymmetric version of the Coleman—Weinberg mechanism [53].
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It is surprisingly difficult to contemplate solutions of the dilaton problem. Within
the perturbative heterotic string essentially only one scenario has been proposed [55].
One considers two (or more) confining gauge groups each with different one-loop correc-
tions to the gauge couplings (this situation does exist in string theory). The appropriate
condensation scale for each group factor reads

82 (S-l—f(l)(Tl))

Ay = Mp) e P (@) (70)
Self-consistent expansion in A/Mp gives at leading order
1 2

V& A (A7 + A3 (71)

with a minimum at |A;| = [As|. Inserting (70) one obtains

bbo (A7 1

ReS) ~ — 72
< € > b2 _ bl ( bl bg Y ( )

where in our conventions the size of f(! is generically f() = 0(24’;2). Estimating

the order of magnitudes one has 47(ReS) = O(Z). Thus 47 (ReS) = 23 can only be
arranged if

i) b is large (b ~ 400),
i) f is large (f ~2),
iii) one ‘fine-tunes’ by =~ by.

The first two options are impossible in the perturbative heterotic string. b =~ 400 is
incompatible with rank(G) < 22 and f") ~ 2 is in conflict with the consistency condi-
tion 7% = O(I2)."* Only the last option (iii) seems barely possible in the perturbative
heterotic string. For example G; = SU(8),Gy = SU(9), f) ~ 2, ReT = 2 does not
contradict any perturbative constraint. However, arranging 47ReS = 23 is only one re-
quirement and one needs to simultaneously generate the hierarchy A ~ 10 —10*GeV .
As we already noted this demands b and/or g to be small. Inserting the appropriate
numbers one finds that within the perturbative heterotic string it is almost impossible
to arrange the correct ggur and simultaneously generate a hierarchy.

3.3 Non-perturbative developments

Since 1995 string theory has seen spectacular progress in that for the first time it has
been possible to also control a subset of the interaction in the strong coupling regime.
This is due to the observation that many (if not all) of the perturbatively distinct
string theories are related when all quantum corrections are taken into account [10].

14As we will see shortly both options are available in the non-perturbative heterotic string.
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In particular it has been observed that often the strong coupling regime of one string
theory can be mapped to the weak coupling regime of another, perturbatively different
string theory. This situation is termed duality among string theories and it offers the
compelling picture that the known perturbative string theories are merely different
regions in the moduli space of one underlying theory termed ‘M-theory’.

The precise nature of the strong-coupling limit sensitively depends on the number
of (Minkowskian) spacetime dimensions and the amount of supersymmetry. Super-
symmetry has played a major role in the recent developments in two respects. First of
all, it is difficult (and it has not been satisfactorily accomplished) to rigorously prove
a string duality, since it necessitates a full non-perturbative formulation, which is not
yet available. Nevertheless it has been possible to perform nontrivial checks of the
conjectured dualities for quantities or couplings whose quantum corrections are under
(some) control. It is a generic property of supersymmetry that it protects a subset of
the couplings and implies a set of nonrenormalization theorems. The recent develop-
ments heavily rely on the fact that the mass (or tension) of BPS-multiplets is protected
and that holomorphic couplings obey a nonrenormalization theorem. Thus, they can
be computed in the perturbative regime of string theory and, under the assumption of
unbroken supersymmetry, reliably extrapolated into the non-perturbative region. It is
precisely for these BPS-states and holomorphic couplings that the conjectured dualities
have been successfully verified.

Second of all, for a given spacetime dimension D and a given representation of
supersymmetry there can exist perturbatively different string theories. For example,
the heterotic SO(32) string in D = 10 and the type-I string in D = 10 share the same
supersymmetry, but their interactions are different in perturbation theory. However,
once non-perturbative corrections are taken into account, it is believed that the two
theories are identical and merely different perturbative limits of the same underlying
quantum theory. A similar phenomenon is encountered with other string theories in
different dimensions and the moduli space of string theory is much smaller than was
previously assumed.

We are particularly interested in the strong coupling limit of string theories with
D = 4 and N = 1 supersymmetry. They are related to M-theory compactified on
Calabi—Yau threefolds times an interval or F-theory compactified on elliptic Calabi—
Yau fourfolds. Let us discuss these two cases in turn.

3.4 M-theory

It turns out that not all strong-coupling limits are governed by a perturbatively different
string theory. Instead it is possible that the strong-coupling limit of a given theory is
something entirely new, not any of the other string theories [56]. The prime example
of this situation is the strong-coupling limit of the type-ITA theory in D = 10. It has
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a Kaluza-Klein BPS spectrum with masses

M*¥ ~ M , (73)
Js

where n is an arbitrary integer. These KK-states are not part of the perturbative type-
ITA spectrum since they become heavy in the weak-coupling limit g — 0. However,
in the strong-coupling limit g — oo they become light and can no longer be neglected
in the effective theory. This infinite number of light states (which can be identified
with D-particles of type-ITA string theory, or extremal black holes of ITA supergravity)
signals that the theory effectively decompactifies where gg is related to the radius Ry;
of a new (11-th) dimension[56]

Riy ~ i gd . (74)

[11 is the characteristic length scale of the 11th dimension which is related to the 11-
dimensional Planck scale via k3, ~ [3,. Supersymmetry is unbroken in this limit and
hence the KK-states assemble in supermultiplets of the 11-dimensional supergravity.
Since there is no string theory which has 11-dimensional supergravity as the low-energy
limit, the strong-coupling limit of type-ITA string theory has to be a new theory, called
M-theory, which cannot be a theory of (only) strings.'?

A second and maybe even more surprising result shows that also the strong-coupling
limit of the heterotic Eg X Eg string is captured by M-theory. In this case, 11-
dimensional supergravity is not compactified on a circle but rather on a Z5 orbifold
of the circle [63]. In this case there is an Eg gauge factor on each hyperplane at the
end of the interval. Just as in the type-ITA case one has Ry ~ gg/?’ and thus weak
coupling corresponds to small R;; and the two 10-dimensional hyperplanes sit close to
each other; in the strong-coupling limit the two 10-dimensional hyperplanes move far
apart (to the end of the world).

3.5 F-theory

The strong coupling limit of type-IIB theory in 10 spacetime dimensions is believed to
be governed by type-IIB itself. This is accomplished by an exact SL(2,7) quantum
symmetry which is a generalization of a strong-weak coupling duality. This fact led Vafa
to propose that the type-IIB string could be viewed as the toroidal compactification
of a twelve-dimensional theory, called F-theory [64]. Apart from having a geometrical
interpretation of the SL(2, Z) symmetry this proposal led to the construction of new,
non-perturbative string vacua in lower spacetime dimensions. In order to preserve
the SL(2,Z) quantum symmetry the compactification manifold cannot be arbitrary

15There exists a conjecture according to which the degrees of freedom of M-theory are captured in
U(N) supersymmetric matrix models in the N — oo limit [57]. These matrix models have been known
for some time [58] and were also known to describe supermembranes [59] in the lightcone gauge [60].
The same quantum-mechanical models describe the short-distance dynamics of N D-particles, caused
by the exchange of open strings [61, 62].
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but has to be what is called an elliptic fibration. That is, the manifold is locally a
fiber bundle with a two-torus T2 over some base B but there are a finite number of
singular points where the torus degenerates. As a consequence nontrivial closed loops
on B can induce an SL(2, Z) transformation of the fiber. This implies that the dilaton
is not constant on the compactification manifold, but can have SL(2, Z) monodromy
[65]. It is precisely this fact which results in nontrivial (non-perturbative) string vacua
inaccessible in string perturbation theory.

It is believed that the heterotic string compactified on a Calabi-Yau threefold Y3
is quantum equivalent to F-theory compactified on an elliptic Calabi—Yau fourfold
[64]. Calabi-Yau fourfolds are Calabi-Yau manifolds of complex dimension four and
holonomy group SU(4). Compactification of F-theory on Calabi—Yau fourfolds is not
yet well understood also the phenomenological investigations are only at the beginning.
Let us point out a few features which seem to emerge from the study of non-perturbative
heterotic string vacua.

e One finds that generically new massless gauge bosons appear which have no tree
level coupling to the dilaton [66]. The total gauge group is thus a sum

G= G(p) + G(Np), (75)

where G(ypy denotes the non-perturbative factors. The gauge couplings for these
factors are governed by some moduli other than the dilaton, i.e. 9(1\12 ) = ReT+. ...
Thus g, 2 is no longer universal at tree level but only the perturbative gauge
factors of G(py are universal. Furthermore, rank(G) is no longer bounded to be
smaller than 23 but can be almost arbitrarily big. The current record gauge
group has rank(G) = 302896 with 251 simple factors and SO(7232) being the
biggest of them [67].

Thus, there seems to be no problem in such vacua to have a hidden sector with
b ~ 400; for example SO (140) could nicely do the job. Furthermore, one can
have many gauge factors participating in the stabilization of the dilaton and
hierarchical supersymmetry breaking. Now it is easy to have a different sector
which breaks supersymmetry and another sector which stabilizes the dilaton and
the moduli [68].

However, now also the gauge couplings of the Standard Model are no longer
necessarily universal and one needs a mechanism to ensure it. This might point
towards a GUT-unification within string theory.

e A different issue concerns non-perturbative corrections to the superpotential. Due
to the non-renormalization theorem one only has W = W + W®&P) but within
the perturbative heterotic string the corrections to W) have to be of the form
W®EE) ~ e J(ST) However, an asymptotically free gauge factor of Gxp) gener-
ates terms of the form W®P) ~ ¢=7/(T) with no dilaton dependence. In this case
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W(P) is indistinguishable from W or in other words non-perturbative effects
can ‘compete’ with perturbative effects due to their unusual dilaton dependence.

This fact has been used to ‘explain’ the conifold singularities of the tree level
superpotential [69, 70]. In all Calabi—Yau compactifications one has

WO = V,QQQF + ..., (76)

where @ are charged matter multiplets and the Yj;; are their moduli dependent
Yukawa couplings. The moduli dependence is always singular on subspaces of

the moduli space, i.e.
1

«T)

where z(7T) has a zero at a conifold singularity. Singularities of holomorphic, not

Yijk ~ (77)

renormalized quantities should have a physical mechanism behind them. It has
been suggested that a non-perturbative gauge group with a quantum modified
moduli space confines and generates the conifold singularity [69, 70].

Appendix - conventions and notation

In these lectures the notation and conventions of ref. [8] are used. The four-dimensional
Lorentz metric is chosen as

Nmn = diag(—1,1,1,1) . (78)

Lorentz indices are labeled by Latin indices m, n, ... which run from 0 to 3. Greek indices
are used to denote spinors. A two-component Weyl spinor can transform under the

(%, 0) or the complex conjugate (0, %)frepresentation of the Lorentz group and dotted

or undotted indices are used to distinguish between these representations. ), denotes
3
(0, %) representation of the Lorentz group. The spinor indices o and & can take the
values 1 and 2. These indices can be raised and lowered using the skew-symmetric

a spinor transforming under the (5,0) representation while Y4 transforms under the

SU(2)- invariant tensor €* or €,4.

V=g, e = €apt’ (79)
where
€21 = —€12 =1, €11 =€ =0, Gavﬁw = 5§ .

For dotted indices the analogous equations hold. The product €?*1, x5 = 1’5 is a
Lorentz scalar. Spinors are anticommuting objects and one has the following summa-
tion convention:

X = V"X = =YX = X Vo = XV,
VX = YaX® = —1U*Xa = Xa¥® = X0 (80)
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The convention for the conjugate spinors are chosen such that it is consistent with the

conjugation of scalars:

(W) = (¥ a)! = daX® =X = XV .

The o-matrices o), are given by:

The invariant e-tensor raises and lowers their indices:

—maa __ 0'4,6" af -m
g =€ € O-/Bﬁ

and we have:

-0 0 ~1,2,3

o =0, o 123

=—0
The generators of the Lorentz group in the spinor representation are given by

(o"d™ —o™a") g = i(a”am—aman) :

The Dirac-y-matrices can be written in terms of Weyl matrices:
0 o™
o 0

™" =2y

A four component Dirac spinor contains two Weyl spinors
X X

Up=0hy' = (x*, a) -

The Dirac equation describing relativistic spin—% particles reads:

which fulfill

Its conjugate is

It can be decomposed into two Weyl equations

o hX +myp = 0,
0”0, + my = 0.

(81)

(82)

(83)

(84)

(85)
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